
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2007 

XML Integrated Environment for Service-Oriented Data XML Integrated Environment for Service-Oriented Data 

Management Management 

Marwan Younes Maarouf 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Repository Citation Repository Citation 
Maarouf, Marwan Younes, "XML Integrated Environment for Service-Oriented Data Management" (2007). 
Browse all Theses and Dissertations. 108. 
https://corescholar.libraries.wright.edu/etd_all/108 

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It 
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/80834396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/108?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 

 

 

XML INTEGRATED ENVIRONMENT FOR SERVICE-ORIENTED DATA 

MANAGEMENT 

 

 

 

 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of 

Doctor of Philosophy 

 
 
 

By 
 
 

MARWAN YOUNES MAAROUF 
M.S., Wright State University, 1991 

B.S., Youngstown State University, 1988 
 
 
 
 
 
 
 
 

2007 
Wright State University 



 ii 

WRIGHT STATE UNIVERSITY 

SCHOOL OF GRADUATE STUDIES 

May, 16 2007 

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY 
SUPERVISION BY Marwan Younes Maarouf ENTITLED XML Integrated 
Environment For Service-Oriented Data Management BE ACCEPTED IN PARTIAL 
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of 
Philosophy. 
                                                                                                                                               

                                                                        Soon M. Chung, Ph.D.    
                     Dissertation Director 
 
 
                                                                         
                                                                        Thomas Sudkamp, Ph.D.                                                            
                                                                        Ph.D.  Program Director of 
                                                                        Computer Science and Engineering 
 
 
                                                                        
                                                                        Joseph F. Thomas, Jr., Ph.D. 
                                                                        Dean, School of Graduate Studies 
 
Committee on  Final Examination 
 
 
Soon M. Chung, Ph.D. 
 
 
Krishnaprasad Thirunarayan, Ph.D. 
 
 
Thomas Hartrum, Ph.D. 
 

 

 
Raymond Hill, Ph.D. 
 
 

 
Michael Talbert, Ph.D. 



 iii 

ABSTRACT 
 
 
 
Maarouf, Marwan Younes. Ph.D., Department of Computer Science and Engineering, 
Wright State University, 2007. XML Integrated Environment for Service-Oriented Data 
Management. 
 

The proliferation of XML as a family of related standards including a markup 

language (XML), formatting semantics (XSL style sheets), a linking syntax (XLINK), 

and appropriate data schema standards have emerged as a de facto standard for encoding 

and sharing data between various applications. XML is designed to be simple, easily 

parsed and self-describing. XML is based on and support the idea of separation of 

concerns: information content is separated from information rendering, and relationships 

between data elements are provided via simple nesting and references. As the XML 

content grows, the ability to handle schemaless XML documents becomes more critical 

as most XML documents do not have schema or Document Type Definitions (DTDs). In 

addition, XML content and XML tools are often required to be combined in effective 

ways for better performance and higher flexibility. In this research, we proposed XML 

Integrated Environment (XIE) which is a general-purpose service-oriented architecture 

for processing XML documents in a scalable and efficient fashion. The XIE supports a 

new software service model that provides a proper abstraction to describe a service and 

divide it into four components: structure, connection, interface and logic. We also 

proposed and implemented XIE Service Language (XIESL) that can capture the creation 

and maintenance of the XML processes and the data flow specified by the user and then 

orchestrates the interactions between different XIE services. Moreover, XIESL manages 

the complexity of XML processing by implementing an XML processing pipeline that 



 iv 

enables better management, control, interpretation and presentation of the XML data 

even for non-professional users. The XML Integrated Environment is envisioned to 

revolutionize the way non-professional programmers see, work and manage their XML 

assets. It offers them powerful tools and constructs to fully utilize the XML processing 

power embedded in its unified framework and service-oriented architecture. 



 v 

TABLE OF CONTENTS 

 

 

Introduction........................................................................................................................ 1 

1.1 Internet and XML Computing ................................................................................... 1 

1.2 Motivation ................................................................................................................. 4 

1.3 Usage of XIE ............................................................................................................. 7 

1.4 Contributions ........................................................................................................... 12 

1.5 Outline of Dissertation ............................................................................................ 13 

Background ...................................................................................................................... 15 

2.1 Service-Oriented Computing (SOC) ....................................................................... 15 

2.2 Service-Oriented Architecture (SOA) ..................................................................... 16 

2.3 SOA and Web Services ........................................................................................... 18 

XIE Architecture.............................................................................................................. 20 

3.1 The XIE n-tier Architecture..................................................................................... 20 

3.2 XIE Features and Benefits....................................................................................... 22 

3.3 The Meta-Service Model ......................................................................................... 23 

3.4 The XIE Service-Oriented Architecture .................................................................. 24 

XIE Service Language (XIESL)...................................................................................... 26 

4.1 XIESL Features and Benefits .................................................................................. 26 

4.2 XIESL Vocabulary .................................................................................................. 26 



 vi 

4.3 XIESL Details ......................................................................................................... 27 

4.3.1 XIESL pipeline service ..................................................................................... 28 

4.3.2 XIESL namespace ............................................................................................. 28 

4.3.3 <x:XIESL> element .......................................................................................... 28 

4.3.4 <x:service> element .......................................................................................... 29 

4.3.5 <x:structure> element........................................................................................ 29 

4.3.6 <x:connection> element .................................................................................... 30 

4.3.8 <x:interface> element........................................................................................ 30 

4.3.9 <x:service-operation> element.......................................................................... 30 

4.3.10 <x:rule> element ............................................................................................. 31 

4.3.11 <x:condition> element .................................................................................... 31 

4.3.12 <x:action> element.......................................................................................... 32 

4.3.13 <x:parameter> element.................................................................................... 33 

4.3.14 <x:input> element ........................................................................................... 34 

4.3.15 <x:output> element ......................................................................................... 35 

4.3.16 Pipeline inputs and outputs ............................................................................. 36 

4.3.17 <x:component> element.................................................................................. 37 

4.3.18 <x:select> element .......................................................................................... 38 

4.3.19 <x:repeat> element.......................................................................................... 39 

4.3.20 <x:href> attribute ............................................................................................ 39 

4.4 XIESL Service Processing Contexts ....................................................................... 40 

4.4.1 XIESL integration context ................................................................................ 40 

4.4.2 XIESL customization context ........................................................................... 41 



 vii 

4.4.3 XIESL organization context.............................................................................. 42 

4.4.4 XIESL generation context................................................................................. 43 

4.5 XIE Server Design................................................................................................... 44 

4.6 XIESL vs. Business Process Execution Language (BPEL) .................................... 46 

XUpdate Service ............................................................................................................... 49 

5.1 XIESL XUpdate Service ......................................................................................... 49 

5.2 Why XUpdate? ........................................................................................................ 50 

5.3 Using the XUpdate Service ..................................................................................... 51 

5.3.1 Interface............................................................................................................. 51 

5.3.2 Using Multiple Documents ............................................................................... 51 

5.4 XUpdate Usage Cases ............................................................................................. 52 

5.4.1 Insert Element Before ....................................................................................... 53 

5.4.2 Insert Element After .......................................................................................... 54 

5.4.3 Append Element................................................................................................ 54 

5.4.4 Insert attribute ................................................................................................... 54 

5.4.5 Insert XML Block ............................................................................................. 55 

5.4.6 Update Element ................................................................................................. 55 

5.4.7 Update Attribute................................................................................................ 55 

5.4.8 Delete Element .................................................................................................. 56 

5.4.9 Delete Attribute ................................................................................................. 56 

5.4.10 Copying a Node............................................................................................... 56 

5.4.11 Moving a Node................................................................................................ 57 



 viii 

XIE Examples .................................................................................................................. 58 

6.1 A Simple Pipeline Service....................................................................................... 58 

6.2 A Select/Choose Service ......................................................................................... 60 

6.3 An XML pipeline with two XSLT services............................................................. 62 

6.4 A Join/Aggregate Service........................................................................................ 66 

6.5 A Quarterly Report Service ..................................................................................... 69 

6.6 An Order Processing Pipeline ................................................................................. 70 

Conclusion........................................................................................................................ 76 

7.1 Future Works ........................................................................................................... 77 

References ........................................................................................................................ 78 



 ix 

LIST OF FIGURES 

 

Figure 1: XSLT Transformer .............................................................................................. 5 

Figure 2: XIE Usage Example .......................................................................................... 11 

Figure 3: The Basic Service-Oriented Architecture.......................................................... 18 

Figure 4: The XML Integrated Environment n-tier Service Layered Architecture .......... 20 

Figure 5: The Meta-Service Model................................................................................... 24 

Figure 6: The XIE Service-Oriented Architecture............................................................ 25 

Figure 7: XIESL Vocabulary ............................................................................................ 27 

Figure 8: A Pipeline  Example.......................................................................................... 36 

Figure 9: XIE Server Design............................................................................................. 44 

Figure 10: Using Multiple Documents in XUpdate.......................................................... 52 

Figure 11: A Simple Pipeline Example ............................................................................ 59 

Figure 12: A Select/Choose Service ................................................................................. 62 

Figure 13: A Pipeline including XSLT(pick) and XSLT(sort) Services .......................... 65 

Figure 14: A Sorted CD Catalog....................................................................................... 66 

Figure 15: A Joint/Aggregate Service............................................................................... 68 

Figure 16: An Order Processing Pipeline ......................................................................... 73 

Figure 17: Sorted Orders................................................................................................... 75 

 



 x 

ACKNOWLEDGEMENT 
 
 

I would like to express my deep and sincere gratitude to my supervisor, Professor 

Soon M. Chung. His support, encouragement and personal guidance have provided me 

with an outstanding foundation to build on during this research.  

Besides my advisor, I wish to express my warm and sincere thanks to the rest of 

my dissertation committee: Professor T.K. Prasad, Professor Thomas Hartrum, Professor 

Raymond Hill and Professor Michael Talbert.  With their insightful comments and 

questions, they contributed a lot to this work and kept me focused on what is important. 

This dissertation concludes an exciting and challenging goal that I had set for 

myself over 5 years ago. However, it is only a starting point of what I believe and pray to 

be my continued effort in pursuing good and useful research that serves science and 

humanity.  

 
 
 

Maarouf, Marwan Y. 

May 2007 

Dayton, Ohio, USA 



 xi 

DEDICATION 
 
 

To my parents, wife and children for their continued prayers, love, encouragement 

and support. 



 1 

Chapter 1  
 

Introduction 
 

1.1 Internet and XML Computing 

The explosive growth and spread of the internet and its technologies have brought 

revolutionary changes, opened new horizons, and raised the bar very high for future 

computing systems and applications. In order to meet the new challenges, more 

interactive, flexible and scalable distributed heterogeneous infrastructure services are 

developed and rapidly deployed.  Enterprise platforms like the Java Enterprise Edition 

(JEE) are becoming the environment choice for developing and deploying enterprise 

applications. JEE consists of a set of services, application programming interfaces (APIs), 

and protocols that provide the functionality for developing multi-tiered, Web-based 

applications [11]. 

At the heart of this revolution is the data that is transferred, displayed, translated, 

parsed, stored, searched, indexed, and always changing and expanding. Users are 

demanding simple, flexible, consistent and reliable services on the World Wide Web 

(WWW) regardless of the complexity of the data, the uncertainty in the infrastructure, or 

the shortage of the underlying distributed resources [12].



 2 

Extensible Markup Language (XML) is being used to deliver more richly 

structured content over the web and other important platforms. It is extensible because it 

does not have a fixed format, unlike HTML. XML is not a single, predefined markup 

language, rather it is a meta-language (a language for describing other languages), which 

allows us to design our own mark-up [1]. 

A predefined markup language like HTML defines a way to describe information 

in one specific class of documents. XML, on the other hand, lets you define your own 

customized markup languages for different classes of documents. 

The World Wide Web Consortium (W3C) calls XML “a common syntax for 

expressing structure in data” [1]. Structured data refers to data that is tagged for its 

content, meaning, or use. XML is a public format: it is not the proprietary product of any 

company. XML allows groups of people or organizations to create their own customized 

markup applications for exchanging information in their domain. XML is called the 

“global currency” for the information economy [29]. Some of its key attributes include:  

• Describing of data in a human-readable format. In addition, XML can be easily 

interpreted and processed by a computer. 

• XML documents are self-describing. XML is a meta language for describing data 

in the form of tags and attributes. 

• Separation of content and presentation – XML tags describe meaning. The 

presentation or display properties can be controlled by XSL style sheets, which 

provides a way to separate display properties from the data and where the same 

content of the document can be displayed in multiple places using different 

formats.  



 3 

• Additional XML tags can be created easily and as required. In another words, 

XML does not have a fixed set of tags. XML is a meta-markup language. It 

allows us to define our own markup languages (i.e., our own vocabulary, our own 

grammar). 

• Flexible and efficient data handling – any required data type is possible, and 

existing data structures can be mapped to XML. In searching data, XML reduces 

search time substantially, results in more accurate searches, and enables more 

effective searches. 

• A standard data and document interchange format independent of platform, 

language, and vendor. 

• Author identification and versioning at the element level – any XML tag can 

include the attributes that are needed to identify author or version information. 

• Supporting of multilingual documents – XML documents are written in Unicode 

which can contain characters from practically all known written languages. 

Unicode support is particularly useful for web services. 

Today, XML is playing a dominant role as a data interchange format in business-

to-business (B2B) Web applications, such as e-commerce, supply-chain management, 

workflow, and application integration. XML is used in Web services as a platform-

independent method for creating messages. XML supports network efficiency by 

reducing redundant data flow, eliminating the need to retrieve entire records, and 

allowing posting new data without refreshing the page [9]. 

 



 4 

XML is also useful for structured information management, including information 

contained in databases. XML supports media-independent publishing by allowing 

documents to be written once and published in multiple media formats and devices.  

XML enables a single view of all data regardless of database organization. It supports 

rich, hierarchical, structured and semi-structured forms of data [7]. 

XML is becoming the dominant format for internet-based application-to-

application interactions. Web servers and related applications can easily and quickly 

build their own information in a common syntax and exchange it easily, thus allowing 

better and easier interoperability between the information providers.  In fact, XML 

dominance as an interoperability-enabling technology will ensure that these interactions 

will grow considerably faster than application-to-person interactions.  

 

1.2 Motivation 

Today’s XML tools like XML parsers, XSLT transformers, XML validators and 

Web Services do a good job in storing, parsing, transforming, exchanging and presenting 

XML content. In addition, countless XML applications are being developed to address 

different XML specific requirements like formatting XML data for output to screen, 

paper or other media (XSLFO) and querying XML data including databases (XQuery). 

XML tools often require to be combined. For example, validating the resulting document 

after an XSLT transformation; and updating a database after querying and manipulating 

an XML info set. Thus, there is a need for effective ways and mechanisms of combining 

XML content and XML tools for better performance and higher flexibility. We can also 

consider this as an integration challenge for all these technologies. For instance, 



 5 

application integration requires the synchronization and coordination of XML data 

processing flows, in addition to the possible orchestration and automation of business 

processes, due to e-business trends such as virtual supply chains and business-to-business 

commerce. 

XML processing usually involves multiple operations where branches, conditions 

and validations also play a major role. So, managing the complexity of XML processing 

by using processing pipelines allows the XML processing to be composed of a number of 

smaller, simpler components. Moreover, it allows unit testing and reduces the effort, cost 

and risk of integration.  

To illustrate the difficulty of dealing with today’s tools, we present a simple 

XSLT transformer example that only touches the surface of the complexity of developing 

a solution for even one of the simplest XML tasks – XML transformation.  

XSLT is a language for transforming XML documents into other XML 

documents. XSLT is designed for use as part of XSL, which is a stylesheet language for 

XML. Typically, the transformation is done by implementing an XSLT transformer with 

two inputs and one output, all of which are XML documents as depicted in Figure 1: 

 

 

 

Figure 1: XSLT Transformer 

 

• An input document to transform (XML-Doc) 

• An input style-sheet document that specifies the transformation (XSLT-Doc) 



 6 

• An output transformed document (XML-Transformed-Doc) 

There are two primary methods of implementing such a transformation. The first 

method is to use a command-line transformer that will read and parse the input 

documents (XML-DOC and XSLT-DOC) and output the result as files (XML-

Transformed-Doc). This solution is efficient when a single transformation is required and 

the data is available in the form of files. However, it is poorly sensitive to situations 

where high-performance is important. It requires parsing of the files every time a 

transformation is performed and does not support optimizations techniques such as 

caching stylesheets, inputs and/or valuable intermediate results.  

The second method is to develop an application that will perform the 

transformation, for example, by using JAXP (Java API for XML Processing). This 

solution is more flexible but requires an extensive knowledge of XML APIs. Java 

programming skills are needed to use JAXP to read and parse the files needed for a 

transformation. In case of cascading XSLT transformations, a SAX pipeline is required to 

process the XML elements on the fly, or a DOM tree can be used to store the 

intermediate results for further processing. The learning curve for a low-level API-based 

solution is steep and complex and out of reach for non-programmers. While many 

programmers utilize low-level APIs like JAXP for simple XML processing or a single-

shot XSLT transformation, going further to construct processing pipelines often proves 

difficult especially when advanced features such as conditionals, validations, caching and 

debugging are desired. 

 

XML continues to be rapidly accepted, adopted and augmented with parsing, 

processing, and style sheets together with other related standards to bring it up to 



 7 

“enterprise strength” as an integrated standard [9]. In the midst of this technical 

revolution, we also seem to forget a simple fact that most of the people who work with 

the data are non-professional programmers. The people who generate, modify, publish 

and work with the data are non-experts and don’t have the computer skills to handle the 

complex tasks at hand without the help of expert programmers or powerful applications. 

Recent history tells us that HTML, a simple markup language that can be used by non-

experts, revolutionized electronic publishing by enabling non-professional programmers 

to distribute information on the Internet in electronic form. Our proposed XML 

Integrated Environment (XIE) is envisioned to revolutionize the way non-professional 

programmers see, work and manage their XML assets. It provides tools and constructs to 

fully utilize the XML processing power embedded in its unified framework and service-

oriented architecture. 

 

1.3 Usage of XIE 

With XIE, we can quickly build, execute and debug simple and complex 

schemaless XML data flows. The data flows can track and profile user activity to support 

process improvement plans and strategies. For example, it is possible to learn and create 

XML vocabularies and tools to detect and resolve discrepancies among XML tags by 

building specialized XML processing services with the help of built-in XML 

transformation and XML updates services, and hence facilitating the integration of 

information. Also, the XIE can serve as a dynamic integration and incremental server 

allowing better control and easier debugging of the XML services that are executed 

within it. In addition, the XIE can be used as a candidate environment for filtering, 



 8 

classifying and routing the growing number of XML data documents associated with 

large-scale information dissemination systems and XML messages associated with web 

services [5, 8].  

Moreover, with XIE, we can quickly create and efficiently execute very specific 

XML computing tasks. Some use cases include but not limited to the following [4]: 

1) Style an XML document in a browser with one of several different style sheets 

without having multiple copies of the document containing different XML style 

sheet directives. 

2) Style the different elements of an XML document with the same style sheet 

without having to recompile it again for each element. 

3) Apply a sequence of operations such as routing, validation, and transformation to 

a document. If the result or an intermediate stage is not valid, it can be aborted. 

4) Allow an application on a handheld device to construct a pipeline, send the 

pipeline and some data to the server, allow the server to process the pipeline and 

send the result back. 

5) Process large XML documents: Processing large (300MB or larger) XML files to 

extract particular element(s) that need processing (e.g. transformation) which are 

repeated over-and-over. An XPath step can be applied in a streaming fashion to 

the input. The matching info sets (i.e. the particular elements) are produced as a 

sequence of little XML documents info sets. When the XML processing step runs 

(e.g. XSLT), it caches the streaming of those info sets into a “DOM” tree so that 

an XML processing step (e.g. XSLT) can run on the whole document. Since that 

document is tiny, we can process the large data XML document of arbitrary size 

in constant memory. 

6) Service Network Servers (e.g. Ajax server) requests: 

a. Receive XML request with word to complete. 



 9 

b. Call XML data flow that retrieves list of completion for that word. 

c. Format resulting document with XSLT 

d. Serialize response to XML.  

7) Execute  a dynamic query 

a. Dynamically create XQuery using XSLT, based on input XML document. 

b. Execute XQuery on XML database. 

c. Construct XHTML result page based on returned data. 

d. Serialize result to HTML 

8) Aggregate XML documents 

a. Provide several XML documents to aggregate. 

b. Perform the aggregation under a new root element. 

c. Serialize result as XML. 

9) Conditional database access 

a. Receive XML document to save on input. 

b. Retrieve existing document from the database. 

c. If document exists, call the “XUpdate” service. 

d. If document does not exist, call the “XInsert” service. 

10) Content-dependent transformations 

a. Receive document to transform. 

b. If document is XHTML, apply the XSLT stylesheet and serialize to 

HTML. 

c. If document is XSL-FO, run XSL-FO to PDF converter. 

d. Otherwise, just serialize as XML. 



 10 

11) Configuration-dependent transformations 

a. Receive document to format on first input. 

b. Receive configuration on second input. 

c. If configuration is “desktop browser”, run the first XSLT transformation 

and serialize to HTML. 

d. If configuration is “mobile browser”, run the second XSLT transformation 

and serialize as HTML. 

12) Generation of multiple-file command-line document 

a. Read list of source documents. 

b. For each document in list 

i. Read source document. 

ii. Perform series of XSLT transformations. 

iii. Serialize each transformed document to disk, or 

iv. Aggregate all resulting documents and serialize a single resulting 

document. 

13) Importing to a database 

a. Read list of source documents 

b. For each document in list 

i. Validate document. 

ii. Call the “XInsert” service to perform the insertion into a relational 

or XML database. 

14) Supporting a Document Production Framework (DPF) processing sequence 

a. A special purpose tagging task is applied to generate a well formed XML 



 11 

document (i.e. sectioning). 

b. Table of content is extracted from the document; anchors and links are 

created to specify the document navigation. 

c. Pagination is performed, splitting the document structure through some 

configuration (e.g., 1 sub-section per page, 3 paragraphs per page, etc.), 

updating the table of content at each pagination step. 

d. Each page is transformed into some output language (e.g. XHTML), with 

the table of content re-integrated.  

Figure 2 shows an example of XIE usage that captures a possible XML data flow, 

where six processing steps are involved. In step 1, an XSLT service processes the 

incoming XML data with Style Sheet1. In step 2, a similar XSLT service processes the 

styled data from step 1 with Style Sheet2. In step 3, a broadcast service sends a copy of 

XML-S2 that is the output from step 2 to the update, route, and some other service. In 

step 4, the update service executes against a database with an input XML-S2. In step 5, 

the route service routes the XML-S2 to a browser, and finally in step 6, more processing 

can be done on the XML-S2 data by a service. 

 

Figure 2: XIE Usage Example 



 12 

 

1.4 Contributions 

In this research, we proposed XML Integrated Environment (XIE) which is a 

general-purpose service-oriented architecture for processing schemaless XML documents 

in a scalable and efficient fashion. The XIE supports a new software service model that 

provides a proper abstraction to describe a service and divide it into four components: 

structure, connection, interface and logic. We also proposed and implemented XIE 

Service Language (XIESL) that can capture the creation and maintenance of the XML 

processes and the data flow specified by the user and then orchestrates the interactions 

between different XIE services. XIESL manages the complexity of XML processing by 

implementing an XML processing pipeline that enables better management, control, 

interpretation and presentation of the XML data even for non-professional users. The 

main contributions of this research are as follows:  

• Designing and building a general-purpose XML system that can process 

schemaless XML data that is envisioned to revolutionize the way non-

professional programmers see, work and manage their XML assets.  

• Providing the foundation for a powerful user-driven data management experience 

by offering powerful tools and constructs that can fully utilize the XML 

processing power embedded in the XIE’s unified framework and service-oriented 

architecture. 

• Specifying, developing and implementing a unified service-oriented layered 

architecture for processing XML documents in a scalable, efficient and powerful 

fashion. 



 13 

• Designing and implementing a new service model called Meta-Service Model 

(MSM) that builds the proper abstractions to describe a service that can be easily 

mapped to the different tiers of the XIE architecture. MSM went one step further 

than the typical service-oriented models and subdivided the service component 

into four additional subcomponents: structure, connection, interface and logic. 

• Developing and implementing a declarative language called XML Integrated 

Environment Services Language (XIESL) that describes and specifies the 

processing of schemaless XML data. XIESL manages the complexity of XML 

processing by implementing an XML processing pipeline that enables better 

management, control, interpretation and presentation of the XML data.  

1.5 Outline of Dissertation 

The rest of the dissertation is structured as follows: Chapter 2 provides detailed 

background for Service-Oriented Computing (SOC). SOC is the new computing 

paradigm for distributed computing that utilizes services as fundamental elements for 

developing applications and solutions. We discuss Service-Oriented Architecture (SOA) 

that is the new style of architecture used to design enterprise systems. We then explain 

Web services which are an instantiation of an SOA that has gained widespread industry 

acceptance. Chapter 3 presents the general-purpose service-oriented layered architecture 

that is used to build the XML Integrated environment. Chapter 4 introduces the new 

XML Integrated Environment Service Language (XIESL) with a thorough explanation of 

its features, benefits, detailed vocabulary and service processing contexts. Chapter 5 

illustrates in details the incorporation and integration of the XUpdate service as one of the 

core XIESL registered services. The XUpdate service implements the XUpdate 



 14 

specification that defines the syntax and semantics of the XUpdate update language. 

Chapter 6 presents a few XIE examples. Chapter 7 presents conclusions and summarizes 

the completed work of XIE.  It also describes the future works: Development of a 

graphical XML data flow designer; incorporating and building more core software 

service capabilities (e.g. supports for XML schema, compression and encryption);  

incorporating  and building  more XIESL core capabilities (e.g. web-service integration);  

and  incorporating a more powerful internal caching mechanism for efficient use and 

greater flexibility. 



 15 

Chapter 2  
 

Background 
 

2.1 Service-Oriented Computing (SOC) 

Service-Oriented Computing (SOC) is the new computing paradigm for 

distributed computing that utilizes services as fundamental elements for developing 

applications and solutions. Services are autonomous platform-independent computational 

elements that support rapid, low-cost composition of distributed applications. Services 

can be described, discovered, orchestrated and programmed using XML artifacts for the 

purpose of developing massively distributed interoperable applications [12]. 

Services are offered by service providers – organizations that define, develop, 

deploy, manage and run the service. In general, service providers offer a distributed 

computing infrastructure for both intra- and cross-enterprise application integration and 

collaboration.  

On the other hand, services are requested and consumed by clients. Clients can be 

simple or sophisticated processes and applications within an enterprise or outside the 

enterprise. Consequently, to satisfy the above requirements, services should be:



 16 

• Reusable: As services are published in a directory available over a network, they 

become more easily discoverable, reusable and location transparent.  

• Technology neutral: By using standard based technologies, services will use 

common denominator technologies for their invocation like standard protocols, 

descriptions and discovery mechanisms.   

• Loosely-coupled: Service providers and consumers can be developed 

independently using well-defined interfaces. Service implementers can change 

interface, data or message versions in the service without impacting consumers. 

• Non-intrusive in their development: Existing software components don’t need to 

be modified to expose their functionality as services. Services are developed or 

generated using the interface definition of a component. 

• Able to offer composite services: Composite services combine new and existing 

application logic and transactions [12, 14, 18, 20]. 

 

2.2 Service-Oriented Architecture (SOA) 

Service-Oriented Architecture (SOA) is a new style of architecture used to design 

enterprise systems. In the SOA approach, application components are viewed as service 

consumers or service providers. Services represent complete business functions. They are 

intended to be used at the level of individual program to the level of the enterprise or 

even across enterprises. For example, a bank might have a deposit service, a withdrawal 

service, and a loan approval service. Each service is implemented using one or more 

application components. In this scenario, a bank customer might interact with a web 

browser or a customized application that takes on the role of a service consumer. Based 



 17 

on the action taken by the customer, the service consumer interacts with one or more 

service providers to complete the customer’s transaction.  

A service has two parts: the interface and the implementation. The interface 

defines the programmatic contract between the consumer and the provider. A service 

interface must contain the identity of the service that will be performed, the format of the 

input message, and the format of the response message. Thus, service consumer only 

knows what will be done – not how it will be done. The service implementation contains 

the functional or business logic of the service. The implementation should be a “black 

box” to the service consumer. 

The SOA defines a well established interaction between service requestors 

(clients) and service providers. Clients are software agents that request the execution of a 

service. Providers are software agents that provide the service. Agents can be 

simultaneously both service clients and providers [12, 24]. 

The SOA defines a relationship between three kinds of participants: the service 

provider, the service discovery agency, and the service requestor (client). The interactions 

involve the publish, find/discover and bind/invoke operations, as shown in Figure 3. 

These roles and operations act upon the service artifacts: the service description and the 

service implementation.  



 18 

Bind/Invoke 

Service

Find/Discover 

Service

Publish 

Service

Service

Provider 

Service

Registry

Service

Client

 

Figure 3: The Basic Service-Oriented Architecture 

 

Service descriptions are used to advertise the service capabilities, interface, 

behavior, and quality. Publication of such information about available services (on a 

service registry) provides the necessary means for discovery, selection, binding, and 

composition of services. In particular, the service interface description publishes the 

service signature [14, 24, 26]. 

 

2.3 SOA and Web Services 

The Web Service is an instantiation of an SOA that has gained widespread 

industry acceptance. However, SOA does not require Web Services for implementation, 

and Web Services deployment does not result in an SOA.  A Web Service is a specific 

kind of service that is identified by a URI and exhibits the following characteristics: 

• It exposes the application’s internal workflows, business processes, and 

architectures over the Internet. 

• It can be executed as standalone service, or combined with other services to create 

composite services or applications [21]. 



 19 

• It uses standard technologies (e.g., standard Internet languages and protocols 

which are available every where today) and exposes its features programmatically 

over the Internet. 

• It can be implemented via a self-describing interface based on open Internet 

standards. Interactions of Web Services occur as Simple Object Access Protocol 

(SOAP) calls over HTTP carrying XML data content, and the service descriptions 

of the web-services are expressed using Web Service Description Language 

(WSDL) as the common (XML-based) standard. WSDL is used to publish a Web 

Service in terms of its operational service descriptions or interfaces. The ports 

specify the addresses implementing the service. The port types associate an 

identity for the definition of operation and exchanges of messages. The binding 

identifies the concrete definition of which packaging and transportation protocols, 

such as SOAP, are used to interconnect two conversing end-points. In addition, 

Web Services uses the Universal Description, Discovery and Integration (UDDI) 

standard. UDDI is a directory service and a network-based repository for service 

publications and enables Web Service clients to locate candidate services and 

discover their detailed descriptions as XML interfaces [26]. 



 20 

Chapter 3  
 

XIE Architecture 
 

3.1 The XIE n-tier Architecture 

The general-purpose service-oriented layered architecture that is used to build the 

XML Integrated environment is presented in Figure 4. The XIE is designed and built 

based on the concept of a software service. Software services are a collection of reusable 

networked services communicating through well-defined, platform-independent 

interfaces. XML is used for defining, describing, orchestrating, and capturing the 

interaction between the different layers. Also, XML is used for application data 

exchange. The XIE architecture is divided into six different pieces, layers or parts: 

 

Figure 4: The XML Integrated Environment n-tier Service Layered Architecture 



 21 

Client Tier abstracts the client or user interfaces and acts as a uniform and 

ubiquitous information distributor for a wide range of computing devices (such as 

handheld computers, Personal Digital Assistant (PDAs), cellular telephones, or 

appliances) and software platforms. 

External Connectivity Tier abstracts the external communication between the 

client tier and the software tier. It provides external connectivity services by allowing us 

to plug-in different software services when needed. A client or a consumer can bypass 

this layer and bind to the software tier services directly.   

Software Tier abstracts all the software services available directly or over the 

network. It provides all the core services (e.g. update, query, transform, route, security 

and compress services) for the XIE from a user’s and/or a programmer’s perspective.  All 

of these services are described, coordinated and processed through the XML integrated 

Environment Service Language (XIESL). 

Internal Connectivity Tier abstracts the internal communication between the 

software tier and the data tier. It provides internal connectivity services by allowing us to 

use standard or non-standard database access methods to retrieve the data requested by a 

consumer. 

Data Tier abstracts the data access services that allow the users to access, 

integrate, translate, and transform data from various relational and non-relational data 

resources across the enterprise. These services hide the direct access to the resource, the 

complexity of the underlying format, and the direct transformation and manipulation of 

data. They provide a uniform API, a common data-model, and the reuse of consistent 

information across applications. 



 22 

XML Integrated Environment Service Language (XIESL) is a declarative 

language intended to describe and specify the processing of schemaless XML data. It 

orchestrates the relationships and interactions between the different tasks in the XML 

data flow to create a business logic capturing the requirements of its users. These tasks 

are implemented as an XML processing services. An XML processing service is a 

software component which consumes and produces XML documents.  XIESL manages 

the complexity of XML processing by implementing an XML processing pipeline that 

enables better management, control, interpretation and presentation of XML data. XML 

documents are efficiently processed by one or more XML processing services in the 

XML pipeline, and are then transferred, displayed, translated, parsed, stored, searched or 

indexed as specified by the XIESL instructions or directives. XIESL creates a unified 

framework for users to fully utilize the XML processing power embedded in their XML 

integrated environment.  

3.2 XIE Features and Benefits 

The XIE has many features and benefits that make the XML processing tasks very 

easy. The infrastructure is built on top of an optimized XML pipeline engine that uses 

caching of inputs, outputs and intermediate results for efficient processing of XML 

documents. This also allows better management and scalability for a large quantity of 

data. The XIE software services are portable because of their Java implementation and 

their use of standard XML, XSLT, XUpdate, and XPath parsers and processors. In 

addition, XIE is designed to support a rich set of XML data composite operations used in 

XML data flow composition. These operations are implemented efficiently, as part of the 

XML Integrated Environment Language (XIESL), by a multithreaded data flow engine 



 23 

with software integrated components and service-oriented architecture. XIESL is simple 

to use and easy to analyze declarative language that allows better management, control 

and interpretation of the data. 

3.3 The Meta-Service Model 

XIE supports a new software service model called the Meta-Service Model 

(MSM). MSM builds a proper abstraction to describe a service that can be mapped to the 

different tiers of the XIE architecture. Like the general service-oriented model, MSM 

divides the services into three major components: consumer, provider and broker as 

shown in Figure 5. The consumer component binds to the service and calls the provider. 

The provider offers a rich set of data composite operations or services. The broker 

publishes the whereabouts of services, and locates services when requested by a 

consumer. Also, the broker provides all the orchestration, composition and information 

infrastructure services needed. 

MSM goes one step further than typical service-oriented models and subdivides 

the service component construct into four additional subcomponents: structure, 

connection, interface, and logic. The structure describes different pieces or parts of the 

service construct. The connection describes the connection to the service. The interface 

provides the different methods, operations or tasks provided by the service. The logic 

represents the actual business logic of the service, including runtime interaction or 

behavior desired, such as events, method calls, and operations. 



 24 

 

Figure 5: The Meta-Service Model 

 

3.4 The XIE Service-Oriented Architecture 

The XIE Service-Oriented Architecture is depicted in Figure 6. The Software Tier 

Service plays the role of a service provider providing a rich set of XML data composite 

operations or services.  The Client Tier Service takes the role of a client who binds to the 

service and calls the provider directly. XIESL plays the role of a broker who publishes 

the whereabouts of services, and locates services when requested by a client. Also, the 

XIESL provides all the orchestration, composition and information infrastructure services 

needed for the XML Integrated Environment.  

 



 25 

 

Figure 6: The XIE Service-Oriented Architecture 



 26 

Chapter 4  
 

XIE Service Language (XIESL) 
 

4.1 XIESL Features and Benefits 

XIESL is expressed in XML, so it is possible to author and manipulate XIESL 

documents using standard XML tools. Also, we are able to address the tasks of capturing, 

processing and presenting schemaless XML data flows. In addition, XIESL allows better 

management and control because it is easy and simple to use and to construct new XML 

documents, extract from existing XML documents, and augment or transform existing 

XML documents to new XML documents [3]. Moreover, the order of processing tasks 

can be specified with multiple inputs, multiple outputs and other parameters for the XML 

processing services that work on the XML documents. XIESL declarative nature allows 

the building of simple and complex XML data flows using simple statements and 

directives, which results in increased productivity for complex XML processing. 

 

4.2 XIESL Vocabulary  

Figure 7 shows the vocabulary of XIESL, and the details of the vocabulary 

elements are described in the next section.



 27 

 

 

Figure 7: XIESL Vocabulary 

4.3 XIESL Details 

XIESL introduces the new concept of the data flow processing of XML 

documents as separate processing software services. XIESL supports the creation and 

processing of data flow processing services and it handles the structural and processing 

description. 



 28 

4.3.1 XIESL pipeline service 

 

The XIESL pipeline service reads the data flow definition conforming to the 

XIESL syntax. It assembles a pipeline and makes it ready for execution.  

4.3.2 XIESL namespace 

 

The XIESL language uses the name space 

xmlns:x="http://www.wright.edu/xie/pipeline" for all its elements. All the XIESL 

elements should use the x prefix for consistency and ease of reference. 

4.3.3 <x:XIESL> element 

 

The root element of a XIESL document (layout), and it defines: 

• General information about the data flow processing services, including human-

readable documentation with <x:documentation> . 

• Context used for processing documents in the data flow processing services with 

<x:service-context>. 

• The list of services that need to be executed in the pipeline with <x:service>. A 

service is subdivided into four additional subcomponents: <x:structure>, 

<x:connection>, <x:interface> and <x:logic>.  A service defines a unit of work or 

a task with its connections to other services in the pipeline using <x:connector>, a 

condition service using <x:select>, or a repeated service using <x:repeat>. 

• Support for particular processing in any given environment without disrupting the 

current way applications are processing the XIESL documents with the use of the 

optional <x:service-extension> element, for example,  to conform to a particular 

vocabulary within a specific environment, to support scripting, and to provide 



 29 

inheritance mechanism to permit XIESL to add (or subtract from) other XIESLs 

documents. 

4.3.4 <x:service> element 

 

The <x:service> element of a XIESL document specifies: 

• A unit of work that need to be executed for the pipeline. The service is subdivided 

into four subcomponents: <x:structure>, <x:connection>, <x:logic> and 

<x:interface>, that capture the fine-grain details of a service. The <x:structure> 

describes different pieces or parts of the service construct.   <x:connection> 

describes the connection to the service. <x:logic> represents the actual business 

logic of the service including runtime interaction, desired service calls or service 

operations. <x:interface> provides the different methods, operations or tasks 

provided by the service.  

• A name which identifies this service. Different processing services can use this 

attribute to uniquely identify this service of the XIESL document. 

4.3.5 <x:structure> element 

 

The optional <x:structure> element of a XIESL document specifies: 

• A container for data type definition using the <x:data-type> element. <x:data-

type> is used to specify some type-system used to describe the data used for this 

service (e.g., schema definition) 

• The actual data that is processed and exchanged for this service using the 

<x:data> element. <x:data> consists of messages that are transmitted for this 



 30 

service. A message consists of logical parts which is associated with the data type 

definition container <x:data-type>.  

4.3.6 <x:connection> element 

 

The optional <x:connection> element of a XIESL document specifies: 

• A concrete protocol and data format specifications for the operations or tasks 

using the <x:binding> element (e.g., SOAP protocol) 

• An address of the service using the <x:location> element. <x:location> specifics 

the address information of the service (e.g., an URL address)  

4.3.7 <x:logic> element 

The <x:logic> element of a XIESL document defines: 

• The actual business logic of the service including runtime interaction using the 

<x:service-operation>.  

4.3.8 <x:interface> element 

 

The <x:interface> element of a XIESL document specifies: 

• The different tasks or operations that is provided by the service using the optional 

<x:task> element. <x:task> consists of one or more optional components using 

the <x:component> element. 

• A name which identifies this task or operation. Different processing services can 

use this attribute to uniquely identify this task of the XIESL document.  

4.3.9 <x:service-operation> element 

 

The <x:service-operation> element of a XIESL document specifies: 



 31 

• A service operation that need to be executed for this service. The service 

operation is subdivided into three subcomponents <x:pre-service>, <x:service-

body> and <x:post-service>. <x:pre-service> specifies the pre-processing that is 

required before the execution of the body of a service.  <x:service-body> lists one 

or more <x:rule> elements that capture the logic of this service. <x:rule> is a 

container of a rule-based implementation of the logic of the service. <x:rule> 

specifies the <x:condition> element that should be satisfied for the  <x:action> 

element to execute.  <x:post-service> specifies any processing required after the 

execution of the body of the service. 

• A name which identifies this service operation. Different processing services can 

use this attribute to uniquely identify this service operation of the XIESL 

document. 

4.3.10 <x:rule> element 

 

The <x:rule> element of a XIESL document specifies: 

• A container for the processing condition using the <x:condition> element. 

<x:condition> is used to specify a  condition that should be satisfied for the 

processing to continue.  

• The actual action that needs to be performed for this rule using the <x:action> 

element. <x:action> directs the XIESL engine to perform one of the core 

operations that is supported by the XIESL language. 

4.3.11 <x:condition> element 

 

The <x:condtion> element of a XIESL document specifies: 



 32 

• An equal condition using the <x:equal> element. <x:equal> is used to specify an 

equal condition that should be satisfied for the processing to continue.  

• An otherwise condition using the <x:otherwise> element. <x:otherwise> is used 

to specify an alternative processing path if there is no matching equality. 

• A depend condition using the <x:depend> element. <x:depend> is  used to create 

a dependency of execution between this condition and some other condition in the 

XIESL document. 

• An xpath result dependency using the <x:xpath> element. <x:xpath> is used to 

specify an xpath matching expression that is compiled and executed by an xpath 

service against the XML documents. 

4.3.12 <x:action> element 

 

The <x:action> element of a XIESL document specifies processing directives 

like: 

• A wait action using the <x:wait> element. <x:wait> is used to hold processing and 

wait for the completion of another service execution thread.  

• A process action using the <x:process>  element. <x:process> is used to direct the 

continuation of the service execution thread. 

• A call action using the <x:call>  element. <x:call> is used to call another service 

execution thread. 

• An exception handling action using the <x:exception>  element. <x:exception> is 

used to specify  exception handling for the service execution thread. 



 33 

• An aggregate action using the <x:aggregate> element. <x:aggregate> allows the 

aggregation of one or more root elements of different XML sets into a one 

common root element of an XML set.  

• An identify action using the <x:identify> element. <x:identify> is used to specify 

an id for the current executing element  in the XIESL document.  

• A parallel action using the <x:parallelize> element. <x:parallelize>  is used to hint 

to the XIESL engine the non-existence of any dependency for this rule.  

• A null action using the <x:null> element. <x:null> is used to specify that no 

processing is desired.  

• A service action using the <x:service> element. <x:service> is used to specify the  

unit of work that need to be executed for this pipeline 

4.3.13 <x:parameter> element 

 

The <x:parameter> element defines a value pair name and value  of a  specific 

variable. It can be used in any processing context within the XIESL document. Each 

parameter/variable has a name and a value.  

• name – The name of the variable. 

• value  – The value of the variable.  

The two variables of an "add" processing component is declared in the XIESL 

document below:  

<x:xiesl     xmlns:x="http://www.wright.edu/xie/pipeline">  
<x:service name=”add-at-head-and-at-tail”> 

<x:interface name=”some-interface”> 
<x:task  name=”some-task”> 

<x:component name=”add-component”> 
<x:parameter      name="position1"            value="head" />  
<x:parameter      name="position2"            value="tail" /> 



 34 

</x:component> 
</x:task> 

</x:interface> 
</x:service> 
</x:xiesl> 
 

The <x:parameter> element and its content are defined in the Relax NG schema 

with: 

<define name="parameter">  
<zeroOrMore>  

<element name="x:parameter">  
<interleave>  

<attribute name="name"/> 
<attribute name="value"/> 

</interleave> 
</element> 

</zeroOrMore> 
</define> 

4.3.14 <x:input> element 

 

The <x:input> element specifies and  connects the input of a service  with the 

name specified with the name attribute. It enables flexible interactions among services. 

Each <x:input> element has a name, a role , and an optional href attribute. 

• name – Input name which defines an id that can be later referenced. 

• role – Specifies the role that this <x:input> plays in the current processing 

context. 

“data”   – a well formed XML data feed from any source (inline, file 

                       system, web, etc). 

“current”  – a reference to the current  data in the processing context. 

“style”  – a style sheet. 

“schema”  – a schema reference to validate the XML data feed. 

“config”  – a configuration setup for the input connector. 



 35 

“pipe-in”  – a pipeline input. 

• href  –  A hyperlink reference to the XML document according to  the full syntax 

of the href attribute.  

The <x:input> element and its content are defined in the Relax NG schema with:  

 <define name="input">  
   <element name="x:input">  
    <attribute name="name"/> 

<attribute name="role"/> 
<optional> 
<attribute name="href"/> 
</optional> 

</element> 
  </define> 

4.3.15 <x:output> element 

 

The <x:output> element specifies and  connects the output of the service with the 

name specified with the name attribute. It enables flexible interactions among services. 

Each <x:output> element has a name, a role, and  an optional reference attributes. 

• name –   Output name which defines an id that can be later referenced. 

• role   –   Specifies the role that this <x:output> plays in the current processing 

context as follows: 

                “id”   – output connector identifier. 

                “current”   – a reference to the current  data in the processing context. 

                 “pipe-connect” – connects the current output to a pipeline output. 

                  “pipe-out”  –  a  pipeline output. 

• reference  – Specifies either an id of the current output or a name of the pipeline 

output that gets connected to this output. 

The <x:output> element and its content are defined in the Relax NG schema with:  



 36 

 <define name="output">  
   <element name="x:output">  
    <attribute name="name"/> 

<attribute name="role"/> 
<optional> 
<attribute name="reference"/> 
</optional> 

</element> 
  </define> 

4.3.16 Pipeline inputs and outputs 

 

The pipeline inputs and outputs can be specified by using the <x:connector> and 

its children: <x:input> and <x:output>. There cannot be two inputs with the same name 

or two outputs with the same name, but it is possible to have an output and an input with 

the same name.  

 

some-data input

output some-data  

Figure 8: A Pipeline  Example 

 

The inputs and outputs of the above pipeline are declared in the XIESL document 

below:  

<x:xiesl xmlns:x="http://www.wright.edu/xie/pipeline”>  
<x:service name=”pipeline-inputs-outputs-example”> 
<x:interface name=”some-interface”> 

<x:task  name=”some-task”> 
<x:component name=”add-component”> 

    <x:connector name=”pipeline-connector”> 
<x:input  name=”some-data” role="pipe-in" /> 



 37 

<x:input   name=”input”  role="pipe-in”  /> 
     <x:output     name=”some-data” role="pipe-out" /> 

<x:output     name=”output”    role="pipe-out" /> 
< /x:connector> 

</x:component> 
</x:task> 

</x:interface> 
</x:service> 
</x:xiesl> 

4.3.17 <x:component> element 

 

The <x:component> element forms one unit of computation for a service in the 

pipeline, places a component in the pipeline, and connects it to other components, 

pipeline inputs, or pipeline outputs.  

The following example feeds an XSLT processor with a XML document and an 

external style sheet. Also, the XML document is validated with a schema while entering 

the pipeline. 

<x:xiesl xmlns:x="http://www.wright.edu/xie/pipeline">  
<x:service name=”style-xml-and-output”> 
<x:interface name=”some-interface”> 
<x:task  name=”some-task”> 
<x:component name=”style-an-xml-document”> 
<x:connector name=”pipeline-connector”> 

<x:input name=”data” role="current" href=”xml-input.xml”/> 
<x:input  name=”options” role="schema”    href="schema-in.xml” /> 
<x:input   name=”options” role="style”         href="styelsheet.xml” /> 
<x:output     name=”data” role="pipe-out" /> 
<x:output     name=”result” role="pipe-out" reference-with="result-pipe-out"/> 

< /x:connector> 
</x:component> 
</x:task> 
</x:interface> 
</x:service> 
</x:xiesl> 
 

The <x:component> element and its content are defined in the Relax NG schema 

as: 



 38 

<define name="Component">  
<element name="x:component">  

<zeroOrOne> 
<ref   name=”x:connector”/> 

</zeroOrOne> 
<interleave> 

<zeroOrMore> 
<ref   name=”x:input”/> 

</zeroOrMore>  
<zeroOrMore> 

<ref   name=”x:output”/> 
</zeroOrMore> 
<zeroOrMore> 

<ref   name=”x:parameter”/> 
</zeroOrMore> 

</interleave> 
</element> 
</define> 

 4.3.18 <x:select> element 

 

The <x:select> element chooses  different software services to execute depending 

on a specific condition. The general syntax for this is:  

<x:select   href=”xml-conditioned-doc” xmlns:x="http://www.wright.edu/xie/pipeline">  
<x:when   test="first-condition"   then>...</x:when> 
<x:when   test="second-condition"   then>...</x:when> 
<x:when   test=”third-condition”     then>…</x:when> 
  <x:otherwise>...</x:otherwise> 

</x:select> 
 

The conditions are expressed in XPath and operate on the XML document 

specified by the href attribute on <x:select>. Each branch can contain one component 

declaration as well as nested conditions.  

The <x:select> element and its content are defined in the Relax NG schema as: 

<define name="Select">  
<element name="x:select">  

<attribute name=”href”/> 
<oneOrMore>  

<element name="x:when">  
<attribute name="test"/> 



 39 

   <ref name="Service-to-Execute"/> 
</element> 

</oneOrMore> 
<optional> 
<element name="x:otherwise">  
<ref name="Service-to-Execute"/> 
</element> 
</optional> 

</element> 
</define> 

 4.3.19 <x:repeat> element 

 

The <x:repeat> element allows us to execute service component multiple times 

based on the content of a document according to the syntax of the href attribute, selects 

the desired content according to the Xpath syntax, aggregates results in  a root-element  

with aggregate-with and identifies the current output with the identify-with attribute. The 

general syntax is:  

<x:repeat   work-with=”href”     select-with=”Xpath-expression”   
                   aggregate-with=”root-element”    identify-with=”output-id-name”>  
……. 
</x:repeat> 
 

The <x:repeat> element and its content are defined in the Relax NG schema as: 

<define name="repeat">  
<element name="x:repeat">  

<attribute name=”work-with”/> 
<attribute name=”select-with”/>  
<attribute name=”aggregate-with”/> 
<attribute name=”identify-with”/> 
<oneOrMore>  

<ref name="task"> 
</oneOrMore>  

</element> 
</define> 

4.3.20 <x:href> attribute 

 

The href attribute is used to:  



 40 

• Refer to outputs of other processing services. 

• Reference external documents.  

The complete syntax of the href attribute is described below in a Backus Nauer 

Form (BNF)-like syntax:  

    href    ::= ( local_reference | external_reference) 
    local_reference  ::= "#" some-id 
    external_reference ::= URI 
 

The URI syntax is defined in RFC 2396. A URI is used to reference an external 

document. A URI can be:  

• Absolute, if a protocol is specified. For example, file:/dir/file.xml.  

• Relative, if no protocol is specified. For instance ../file.xml. The document is 

loaded relatively to the URL of the XIESL document where the href is declared. 

4.4 XIESL Service Processing Contexts 

4.4.1 XIESL integration context 

 

Objectives 

• Integrates the data from heterogeneous source (static or dynamic). 

• Improves the integrity (physical or data information integration) and 

semantic integration of XML resources sets. 

• Ties things together for handling schemaless structured, unstructured, and 

semi-structured data. 

• Serves as a dynamic integration and incremental server for a user. 

Operations 



 41 

• Scanning – scan for the existence of an element. 

• Joining – aggregate two or more XML inputs. The XML inputs are 

aggregated at the root element. 

• Filtering – filters the XML input based on an element. 

The complete syntax of the integration attribute is described below in a BNF-like 

syntax:  

integration  ::=  scanning | joining | filtering  

scanning ::= scan( href element_name ) 

joining ::= join( href element_name, join_parameter ) 

join_parameter ::= href [, join_parameter]  

filtering ::= filter( href element_name ) 

element_name ::= 'name' 

 

4.4.2 XIESL customization context 

 

Objectives 

• Customizes the structure and content of the information. For example, 

multilingual requirements will necessitate the conversion from one 

language to another.  

Operations 

• Transformation – transform the data from one format to another using 

XSL technology. 

• Compression – compress the data for compact transfer and storage. 

• Securing – secure/check the XML for transfer/processing. 



 42 

The complete syntax of the customization attribute is described below in a BNF-

like syntax:  

customization ::= transforming | compressing | securing  

transforming ::= transform( href element_name, transform_parameter 

) 

transform_parameter ::= href [, transform_parameter] 

compressing  ::= compress( href element_name ) 

securing ::= secure( href element_name ) 

element_name ::= 'name' 

 

4.4.3 XIESL organization context 

 

Objectives 

• The ability to route, to slice, and to dice the XML data. For example, we 

might need to disseminate the XML messages associated with Web 

Services or a data document associated with large-scale information 

dissemination systems. 

Operations 

• Routing – the ability to route the data to one or more targets. 

• Excluding – exclude a specific element from the XML collection. 

• Including– include a specific element from the XML collection. 

The complete syntax of the Organization attribute is described below in a BNF-like 

syntax:  

organization ::= routing | excluding | including  

routing ::= route( href element_name, route_parameter ) 



 43 

route_parameter ::= href [, route_parameter] 

excluding ::=  exclude( href element_name ) 

including ::=  include( href element_name ) 

element_name ::=  'name' 

 

 

4.4.4 XIESL generation context 

 

Objectives 

• Generates a dynamic user defined XML document structure for a XML 

integrated environment. 

• Analyzes and mines the data to create structured and useable information.  

• The ability to track and profile the user's data process flow allowing the 

creation and adaptation of process improvement plans and strategies. For 

example, we can learn and create XML vocabularies and tools to detect 

and resolve discrepancies among XML tags facilitating information 

integration. 



 44 

 

4.5 XIE Server Design  

 

 

Figure 9: XIE Server Design 

 

Figure 9 shows XIE server design. The XIESL engine is the heart of the XIE 

system. It reads the data flow definition conforming to the XIESL syntax and then 

assembles an XML processing pipeline and makes it ready for execution. Also, it 

implements the Meta-Service Model, manages the complexity of XML processing by 

implementing an XML processing pipeline, and provides the core XML constructs to 

enable better management, control, interpretation and presentation of the XML data. The 

XIESL engine passes control to the XIE service manager that orchestrates and manages 

the interactions between different XIE services and their supporting infrastructure. 



 45 

XIE incorporates a cache manager that uses object-level caching associated with 

XML documents.  The cache manager can cache XML transformer objects associated 

with XSLT transformers in order to save the time-consuming task of compiling a style 

sheet. Moreover, the cache manager can cache an intermediate document or a resulting 

XML output from an XML transformer if neither the data source file nor the style sheet 

has changed. This type of caching is called document-level caching and can usually be 

implemented at the cost of memory or disk space.   

XIESL registered services can customize the structure and content of the 

information through a transformation service that supports the XSLT 1.0 and 2.0 

standards. In addition, there is a select service that can execute different services 

depending on a condition as specified in the <x:select> element.  Moreover, these 

services have the ability to route, slice, and dice the XML data by Xroute and XPath 

operations.  

Also, XIESL has a registered repeat service that allows the execution of service 

components multiple times based on the content of a document according to the syntax of 

the href attribute, selects the desired content according to the Xpath syntax, aggregates 

results in a root-element with aggregate-with, and identifies the current output with the 

identify-with attribute. This enhances XIE ability to automate repetitive operations on 

XML documents and increase productivity and efficiency of complex XML pipelines. 

In addition, XIESL registered services incorporate and integrate the XUpdate 

service. The XUpdate service implements the XUpdate specification that defines the 

syntax and semantics of the XUpdate update language.  



 46 

Moreover, XIESL registered services include a join/aggregate operation that 

supports the aggregation of two or more XML documents. This facilitates easier 

integration of data from heterogeneous sources and the collection of data results from 

different services. 

Service dispatchers manage and control the actual execution of services including 

a set of special services called generators with no data inputs but at least one data output  

and serializers with no data output but at least one data input. 

The service data flow builder is responsible for the creation of the XML data flow 

and considered a helper class for the main XIESL engine. On the other hand, the output 

dispatcher is a file serializer that is capable of outputting an XML document to a storage 

resource like a file on a disk. 

 

4.6 XIESL vs. Business Process Execution Language 

(BPEL)  

Business Process Execution Language (BPEL) is an execution language for 

business processes and a technology that integrates and assembles Web Services [54]. It 

is an important element of the service-oriented enterprise and the overall Web Service 

technology stack. BPEL deals explicitly with the functional aspects of business 

processes: coordinating asynchronous communication between services, correlating 

message exchanges between parties, implementing parallel processing of activities, 

manipulating data between partner interactions, supporting long running business 



 47 

transactions and activities, and providing consistent exception handling [54]. BPEL is 

defined in an XML format. 

XIESL is focused on XML data processing, where the orchestration of 

relationships and interactions between different tasks in the XML data flow include any 

XML processing services, including data manipulation, management, control, 

interpretation and presentation.  On the other hand, the usage of BPEL is limited to Web 

Services as it deals with the functional aspects (e.g. control flow) of business processes 

that are exposed as Web Services. XIESL provides many built-in XML data integration 

services (transformation, aggregation and XML updates) that go far beyond the capability 

of BPEL. 

XIESL describes and implements a new software service model called the Meta-

Service Model (MSM). XIESL and BPEL share some common ways in describing and 

composing services like service structure and service interfaces.  However, XIESL is 

unique in the inclusion and supporting of a rule-based processing model under service 

logic. This allows greater flexibility in the implementation of the actual business logic of 

the service, including the ability to change the runtime interaction or behavior desired, by 

simply modifying or inserting new rules. 

Both XIESL and BPEL empower the selection of the best-of-breed tools, 

processes and services to incorporate into the business operation. For XIESL, this 

provides flexibility to add, replace, or upgrade new and existing XML processing 

services. For instance, we can replace the current XSLT service with a more efficient 

one, or add a new XQuery service to the set of built-in services provided by the XML 

Integrated Environment (XIE).  For BPEL, this provides flexibility to replace or upgrade 



 48 

certain aspects of a business process without impacting the systems that are working well. 

For instance, a company can change their warehouse service provider without impacting 

their order management system, even though both may be participants in several business 

processes [54]. 



 49 

Chapter 5 
 

XUpdate Service  
 

5.1 XIESL XUpdate Service 

The XUpdate service implements the XUpdate specification that defines the 

syntax and semantics of the XUpdate language. This language describes how to update an 

XML document and makes extensive use of the expression language defined by XPath. 

An update is represented by an xupdate:modifications element in an XML document. 

xupdate:modifications must have a version attribute, indicating the version of XUpdate 

that the update requires. For this version of XUpdate, the value should be 1.0. 

The xupdate:modifications element may contain the following types of elements [44]: 

• xupdate:insert-before  

• xupdate:insert-after  

• xupdate:append  

• xupdate:update  

• xupdate:remove  

• xupdate:rename  

• xupdate:variable  

• xupdate:value-of  

• xupdate:if



 50 

5.2 Why XUpdate? 

In general, XUpdate transformation is similar to XSLT transformation. Both 

transform an XML input document into an XML output document based on some 

configuration. With XSLT, the configuration is an XSLT stylesheet. With XUpdate, the 

configuration is a program written in the XUpdate language. So, when is it appropriate to 

use XUpdate and when is it appropriate to use XSLT? 

XUpdate is more appropriate when the output document is similar to the input 

document, while XSLT is more appropriate when the output document is a new 

document in which values from the input document are inserted.  

From an execution model perspective, XSLT nodes from the input document 

trigger the execution of templates that define the output document, while XUpdate 

provides the sequence of operations to be performed on the input document to create the 

output document.  

From an application development perspective, XSLT can be used as a template 

language, for instance to create HTML page with both dynamic and static data. The input 

document contains the dynamic data. The stylesheets contain the static data and describes 

how the dynamic data is inserted in the document. Doing the same thing in XUpdate 

would be unnecessarily complicated.  

XUpdate can be used as an annotation language, for instance to validate elements 

of an input document and to add attributes on those elements stating if they are valid or 

not. Another usage is when annotating an XML document to add calculated values based 

on existing values. Some cases, for instance when parent elements have to be updated 



 51 

based on the updates previously done to child elements, cannot be handled in XSLT 1.0 

without using XSLT extensions or pipelining multiple stylesheets. 

5.3 Using the XUpdate Service 

5.3.1 Interface 

 

The XUpdate service interface has two inputs: configuration and  XUpdate 

program, and data: the document to update. In XIESL, the XUpdate service invocation is 

as follows: 

XIESL definition: 

<x:xiesl  xmlns:x= "http://www.wright.edu/xie/pipeline" 
          xmlns:xie="http://www.wright.edu/xie/services"> 
<x:service name="xie:xupdate">  
    <x:interface name="some-interface" > 
        <x:input name="options" role="config" href="xupdate.xml"/>       
        <x:input name="data" role="data" href="#data"/> 
        <x:output name="data" role="pipe-out" id="output"/> 
   </x:interface>    
</x:service> 
</x:xiesl> 

5.3.2 Using Multiple Documents 

 

The XUpdate service can connect to and process multiple input documents, where 

a document need to be updated based on information stored in other documents.  For 

example, Figure 10 illustrates the situation where a document is modified based on four 

other documents: a, b, c, and d. 

 



 52 

 

Figure 10: Using Multiple Documents in XUpdate 

 

The Xupdate service program has access to the those documents through XPath 

expressions with the document() or doc() functions using the URIs: #a, #b, #c, and #d 

[44, 54]. In XIESL, the XUpdate service invocation is as follows: 

 

XIESL definition: 

<x:xiesl  xmlns:x= "http://www.wright.edu/xie/pipeline" 
          xmlns:xie="http://www.wright.edu/xie/services"> 
<x:service name="xie:xupdate">  
    <x:interface name="some-interface" > 
        <x:input name="options" role="data" href="xupdate.xml"/>   
        <x:input name="data" role="data" href="#data"/> 
        <x:input name="a" role="data" href="a.xml"/> 
        <x:input name="b" role="data" href="b.xml"/> 
        <x:input name="c" role="data" href="c.xml"/> 
        <x:input name="d" role="data" href="d.xml"/> 
        <x:output name="data" role="pipe-out" id="output"/> 
   </x:interface>    
</x:service> 
</x:xiesl> 

5.4 XUpdate Usage Cases 

The set of usage cases for the XUpdate specification given in this section covers 

the basic functionality and is intended as a solid set of XUpdate examples showing how 

the language can be used [55]. 



 53 

All usage cases operate on the following XML document that is stored in a file 

named addresses.xml. 

addresses.xml: 
 

<addresses>  
   <address id="1">  
      <!--This is the users name--> 
      <name> 
         <first>John</first> 
         <last>Doe</last> 
      </name>        
      <city>Dayton</city> 
      <state>Ohio</state> 
      <country>United States</country> 
      <phone type="home">937-433-0300</phone> 
      <phone type="work">937-555-6070</phone> 
      <note><![CDATA[This is a new user]]></note> 
   </address>  
   </addresses> 

All usage cases were tested against XIESL XUpdate service.  

5.4.1 Insert Element Before 

Add a middle name element before the last name element. The XUpdate 

definition is stored in a file called XIE-Insert-Before.xml.  

 

XIE-Insert-Before.xml: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
      <xu:insert-before   select="/addresses/address[@id=1]/name/last"> 
            <xu:element name="middle">Steven</xu:element> 
      </xu:insert-before>  
</xu:modifications> 

Here is the XUpdate service invocation in XIESL: 

XIESL definition: 



 54 

<x:xiesl  xmlns:x= "http://www.wright.edu/xie/pipeline" 
          xmlns:xie="http://www.wright.edu/xie/services"> 
<x:service name="xie:xupdate">  
    <x:interface name="some-interface" > 
        <x:input name="options" role="data" href="XIE-Insert-Before.xml"/> 
        <x:input name="data" role="data" href="#update-xml-input"/> 
        <x:output name="data" role="pipe-out" id="update-XML-output"/> 
   </x:interface>    
</x:service> 
</x:xiesl> 

5.4.2 Insert Element After 

Add a cell-phone element after the home phone element.  

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Add a cell phone element after the home phone number--> 
      <xu:insert-after   select="/addresses/address[@id=1]/phone[@type='home']"> 
            <xu:element name="phone"> 
               <xu:attribute name="type">cell</xu:attribute> 
               937-494-4904 
            </xu:element> 
      </xu:insert-after> 
</xu:modifications> 

5.4.3 Append Element 

Append a zip code element to the address record.  

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Append a zip code element to the address record --> 
      <xu:append   select="/addresses/address[@id=1]"> 
            <xu:element name="zip">45449</xu:element> 
      </xu:append> 
</xu:modifications> 

5.4.4 Insert attribute 

Add an extension attribute to the work phone element.  

XUpdate definition: 



 55 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Add an extension attribute to the work phone element --> 
      <xu:append   select="/addresses/address[@id=1]/phone[@type='work']"> 
            <xu:attribute name="extension">122</xu:attribute> 
      </xu:append> 
</xu:modifications> 

5.4.5 Insert XML Block 

Add a new address record to the top-level address element.  

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Add a new address record to the top level addresses element --> 
      <xu:append   select="/addresses"> 
         <xu:element name="address"> 
            <xu:attribute name="id">2</xu:attribute> 
            <name> 
               <first>Susan</first> 
               <last>Wang</last> 
            </name> 
            <city>Columbus</city> 
            <state>Ohio</state> 
            <country>United States</country> 
            <phone type="home">513-504-2030</phone> 
         </xu:element>            
      </xu:append> 
</xu:modifications> 

5.4.6 Update Element 

Change the first name of address with id = 1 to be Johnathan.  

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Change the first name of address with id = 1 to Johnathan --> 
      <xu:update  select="/addresses/address[@id=1]/name/first">Johnathan</xu:update>   
</xu:modifications> 

5.4.7 Update Attribute 

Change the type of the phone number 937-433-0300 to be a cell.  



 56 

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Change the type of the phone number 937-433-0300 to be a cell --> 
      <xu:update  select="/addresses/address[@id=1]/phone[.='937-433-
0300']/@type">cell</xu:update>   
</xu:modifications> 

5.4.8 Delete Element 

Remove all phone elements.  

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Remove all phone elements --> 
      <xu:remove  select="/addresses/address[@id=1]/phone"/>  
</xu:modifications> 

5.4.9 Delete Attribute 

Delete all type attributes on phone elements.  

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Remove all type attributes on phone elements --> 
      <xu:remove  select="/addresses/address[@id=1]/phone/@type"/>  
</xu:modifications> 

5.4.10 Copying a Node 

Copy the state node and place the copy after the country node.  

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Copy the state node and place the copy after the country node --> 
      <xu:variable   name="state"  select="/addresses/address[@id=1]/state" /> 
      <xu:insert-after   select="/addresses/address[@id=1]/country"> 
         <xu:value-of  select="$state"/> 
      </xu:insert-after> 
</xu:modifications> 



 57 

5.4.11 Moving a Node 

Move the country node before the state node.  

XUpdate definition: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
   <!-- Move the country node before the state node --> 
      <xu:variable   name="country"  select="/addresses/address[@id=1]/country" /> 
      <xu:remove   select="/addresses/address[@id=1]/country"/> 
      <xu:insert-before  select="addresses/address[@id=1]/state"> 
         <xu:value-of  select="$country"/> 
      </xu:insert-before> 
</xu:modifications>

 



 58 

Chapter 6 
 

XIE Examples  
 

6.1 A Simple Pipeline Service 

Consider the following XML document containing a simple title element:   

          <document> 
              <title>This is a simple XIE example</title> 
          </document>   
   

 You may want to read this document as an inline XML document and store it 

on your local file system under the c:\temp directory.  

The XIESL for doing that is as follows, and the graphical depiction is shown in 

Figure 11. 

The XIESL definition: 

<?xml  version="1.0" encoding="ISO-8859-1" ?> 
<!--   A Simple XIE example --> 
<x:xiesl  xmlns:x="http://www.wright.edu/xie/pipeline" 
          xmlns:xie="http://www.wright.edu/xie/services">  
<x:service name="xie:file-serializer">  

<x:structure name="some-structure"/>



 59 

<x:connection name="some-connection"/> 
<x:logic name="some-logic"/> 
<x:interface name="some-interface" > 

     <x:task  name="some-task" > 
         <x:component name="some-component"> 
          <x:input name="options" role="config"> 
               <options> 
                  <content-type>text/xml</content-type> 
                  <directory>c:/temp</directory> 
                  <file>XIE-Simple-xiesl.xml</file> 
              </options> 
          </x:input> 
          <x:input name="data" role="current"> 
             <document> 
                  <title>This is a simple XIE example</title> 
             </document> 
          </x:input> 
       </x:component> 
   </x:task> 
   </x:interface>   
   </x:service> 
</x:xiesl> 
 
 
 
 
 

 

 

Figure 11: A Simple Pipeline Example 

 

 
Here are the execution steps for the pipeline: 

1. The in-line XML document and the configuration options inputs are read by the file-

serializer service.  

2. The file-serializer service executes storing the XML data in a file named XIE-Simple-

xiesl.xml under the c:/temp directory. 

XIE-Simple-xiesl.xml: 

 



 60 

<?xml version="1.0" encoding="utf-8"?> 
<document xmlns:xie=http://www.wright.edu/xie/services 
xmlns:x="http://www.wright.edu/xie/pipeline"> 
<title>This is a simple XIE example</title> 

</document> 
 

6.2 A Select/Choose Service 

Consider an XML document containing a simple execute element with a child 

element called condition1. This document is stored in a file named choose-input.xml. 

Choose-input.xml: 

<execute> 
    <condition1>1</condition1> 
</execute>  
        

You may want to direct the execution path of the select/choose service depending 

on the value of the test condition branch in the select statement.  

 

The XIESL for doing that is as follows, and the graphical depiction is shown in 

Figure 12. 

The XIESL definition: 

<?xml  version="1.0" encoding="ISO-8859-1" ?> 
<!-- Select/Choose Example --> 
<x:xiesl xmlns:x="http://www.wright.edu/xie/pipeline" 
          xmlns:xie="http://www.wright.edu/xie/services"> 
           
   <x:select   href="choose-input.xml"  xmlns:x="http://www.wright.edu/xie/pipeline"> 
      <x:when   test="/execute/condition1">   
           <x:service name="xie:file-serializer"> 
           <x:interface name="some-interface"> 
           <x:input name="options" role="config"> 
               <options> 
                   <content-type>text/xml</content-type> 
                   <directory>c:/temp</directory> 
                   <file>XIE-choose-condition1.xml</file> 
               </options> 
          </x:input> 
          <x:input name="data" role="config"> 



 61 

            <document> 
                <title>This is a condition1 example from the choose service</title> 
            </document> 
          </x:input> 
         </x:interface> 
       </x:service> 
     </x:when> 
     <x:when   test="/execute/condition2">   
         <x:service name="xie:file-serializer"> 
           <x:interface name="some-interface"> 
           <x:input name="options" role="config"> 
               <options> 
                   <content-type>text/xml</content-type> 
                   <directory>c:/temp</directory> 
                   <file>XIE-choose-condition2.xml</file> 
               </options> 
          </x:input> 
          <x:input name="data" role="current"> 
            <document> 
                <title>This is a condition2 example from the choose service</title> 
            </document> 
          </x:input> 
       </x:interface> 
       </x:service> 
     </x:when> 
     <x:otherwise>   
        <x:service name="xie:file-serializer"> 
           <x:interface name="some-interface"> 
           <x:input name="options" role="config"> 
               <options> 
                   <content-type>text/xml</content-type> 
                   <directory>c:/temp</directory> 
                   <file>XIE-choose-otherwise.xml</file> 
               </options> 
          </x:input> 
          <x:input name="data" role="current"> 
            <document> 
                <title>This is otherwise example from the choose service</title> 
            </document> 
          </x:input> 
       </x:interface> 
       </x:service> 
    </x:otherwise>      
 </x:choose>  
</x:xiesl> 
 



 62 

 

 
 
 
 
 

  

Figure 12: A Select/Choose Service 

 

 
Here are the execution steps for the pipeline: 

1. The choose-input.xml file is read by the select/choose service: the test condition 

<x:when   test="/execute/condition1"> evaluates to true. 

2. The corresponding file-serializer service executes storing the XML data in a file 

named XIE-choose-condition1.xml under the c:/temp directory. 

XIE-choose-condition1.xml: 

<?xml version="1.0" encoding="utf-8"?> 
<document  xmlns:xie="http://www.wright.edu/xie/services" 
xmlns:x="http://www.wright.edu/xie/pipeline"> 
<title>This is a condition1 example from the choose service</title> 

</document> 
 
 

6.3 An XML pipeline with two XSLT services 

Consider an XML document containing CD catalog information like title, artist, 

country, company, price and year. This document is stored in a file named cdcatalog.xml. 

cdcatalog.xml: 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<catalog> 
 <cd> 
  <title>Empire Burlesque</title> 
  <artist>Bob Dylan</artist> 
  <country>USA</country> 



 63 

  <company>Columbia</company> 
  <price>10.90</price> 
  <year>1985</year> 
 </cd> 
 <cd> 
  <title>Hide your heart</title> 
  <artist>Bonnie Tyler</artist> 
  <country>UK</country> 
  <company>CBS Records</company> 
  <price>9.90</price> 
  <year>1988</year> 
 </cd> 
            .... the rest of the xml data …. 
 

You may want to filter the artist and the title elements using a style sheet named 

cdcatalog.xsl. This document is stored in a file named cdcatalog.xsl. 

cdcatalog.xsl: 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
<xsl:template match="/"> 
<catalog> 
      <xsl:for-each select="catalog/cd"> 
      <cd> 
        <title><xsl:value-of select="title"/></title> 
        <artist><xsl:value-of select="artist"/></artist> 
      </cd> 
      </xsl:for-each>   
</catalog>  
</xsl:template> 
</xsl:stylesheet>  
 

Then, you may want to use the filtered output and sort it on the artist element 

using a style sheet named cdcatalaog_sort.xsl. This document is stored in a file named 

cdcatalaog_sort.xsl. 

cdcatalog_sort.xsl: 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xsl:stylesheet version="1.0"  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
<xsl:template match="/"> 
<html> 



 64 

  <body> 
    <h2>My CD Collection</h2> 
    <table border="1"> 
      <tr bgcolor="#9acd32"> 
        <th>Title</th> 
        <th>Artist</th> 
      </tr> 
      <xsl:for-each select="catalog/cd"> 
      <xsl:sort select="artist" /> 
      <tr> 
        <td><xsl:value-of select="title"/></td> 
        <td><xsl:value-of select="artist"/></td> 
      </tr> 
      </xsl:for-each> 
    </table> 
  </body> 
  </html> 
</xsl:template> 
</xsl:stylesheet> 
 

The XIESL for doing all of the above is as follows, and the graphical depiction is 

shown in Figure 13. 

The XIESL definition: 

<?xml  version="1.0" encoding="ISO-8859-1" ?> 
<x:xiesl xmlns:x="http://www.wright.edu/xie/pipeline" 
          xmlns:xie="http://www.wright.edu/xie/services">       
    <!-- Pipeline input called "cdcatalog-input" --> 
    <x:parameter  name="cdcatalog-input" role="pipe-in" />       
    <x:service name="xie:xslt"> 
      <x:interface> 
        <x:connector> 
          <x:input    name="data"        role="current"   href="cdcatalog.xml"/> 
          <x:input    name="options"   role="style"      href="cdcatalog.xsl"/> 
          <x:output  name="data"        role="current"   with-id="style1-XML-output"/> 
        </x:connector> 
      </x:interface> 
    </x:service> 
   <x:service name="xie:xslt"> 
       <x:interface> 
       <x:connector> 
          <x:input      name="data"        role="current"    href="#style1-XML-output"/> 
          <x:input      name="options"   role="style"       href="cdcatalog_sort.xsl"/> 
          <x:output    name="data"        role="current"    with-id="style2-XML-output"/> 



 65 

      </x:connector> 
       </x:interface> 
    </x:service> 
</x:xiesl> 
 

 

 

 
 

Figure 13: A Pipeline including XSLT(pick) and XSLT(sort) Services 

 
Here are the execution steps for the pipeline: 

 
1. The cdcatalog.xml input document is read by the first XSLT service.  

2. The cdcatalog.xsl style sheet is read and executed: the title and artist elements are 

selected from the cd catalog input. 

3. The selected data is passed to the second XSLT service. 

4. The cdcatalog_sort.xsl style sheet is read and executed by the second XSLT service: 

the elements are sorted on the artist element.  

5. The sorted cd catalog data is passed along and displayed by the browser as depicted 

in Figure 14 below. 

 



 66 

 

Figure 14: A Sorted CD Catalog 

 

6.4 A Join/Aggregate Service 

Consider two or more XML documents that needed to be joined or aggregated at 

the root level. These documents can be either static or dynamic inputs to the 

join/aggregate function. Those XML documents are stored in two files named aggregate-

document1.xml and aggregate-document2.xml. 

 

Aggregate-document1.xml: 

<document1> 
<title1>This is an aggregate-document 1 for the Join/Aggregate service </title1> 
 </document1>   

 

Aggregate-document2.xml: 

<document2> 
    <title2>This is an aggregate-document 2 for the Join/Aggregate Service</title2> 



 67 

</document2>   

 

You may want to simply join or aggregate the two documents at the root level. 

The XIESL for doing that is as follows, and the graphical depiction is shown in Figure 

15. 

The XIESL definition: 
 

<?xml version="1.0" encoding="ISO-8859-1" ?> 
<!-- Join/Aggregate Example --> 
<x:xiesl xmlns:x="http://www.wright.edu/xie/pipeline" 
          xmlns:xie="http://www.wright.edu/xie/services"> 
    <x:service name="xie:url-generator" xmlns:x="http://www.wright.edu/xie/pipeline"> 
    <x:interface name=”url-interface”> 
        <x:input name="options" role=”config”> 
            <options> 
                <url>xie:aggregate-document1.xml</url> 
                <content-type>application/xml</content-type> 
                <validating>false</validating> 
            </options> 
        </x:input> 
        <x:output name="data1" role=”id” /> 
  </x:interface>   
</x:service> 
     <x:service name="xie:url-generator" xmlns:x="http://www.wright.edu/xie/pipeline"> 
        <x:input name="options" role=”config”> 
            <options> 
                <url>xie:aggregate-document2.xml</url> 
                <content-type>application/xml</content-type> 
                <validating>false</validating> 
            </options> 
        </x:input> 
        <x:output name="data2" role="id"/> 
    </x:service> 
    <x:service name="xie:file-serializer"> 
        <x:input name="options" role=”config”> 
            <options> 
                <content-type>text/xml</content-type> 
                <directory>c:/temp</directory> 
                <file>Simple-Aggregate.xml</file> 
            </options> 
        </x:input> 
        <x:input name="aggregate-data" role=”data”  href="join('aggregate-document', 
#data1, #data2)"/> 
    </x:service> 



 68 

</x:xiesl>      

  
    
 
 
 
 
 
 
 

Figure 15: A Joint/Aggregate Service 

 

 
 

Here are the execution steps for the pipeline: 

1. The aggregate-document1.xml and aggregate-document2.xml files are read by the 

URL generator services: data1 and data2 are generated respectively as outputs.  

2. The join/aggregate service executes with data1 and data2 as XML inputs: the two 

inputs are joined or aggregated at the root element (aggregate-document), and the data 

is passed to the file-serializer service. 

3. The file-serializer service stores the XML data in a file named Simple-Aggregate.xml 

under the c:/temp directory. 

Simple-Aggregate.xml: 

 

<?xml    version="1.0" encoding="ISO-8859-1" ?> 
<aggregate-document> 
     </document1> 

<title1>This is an aggregate-document 1 for the Join/Aggregate service 
</title1> 

     </document1> 
<document2> 

 <title2>This is an aggregate-document 2 for the Join/Aggregate 
Service</title2> 
</document2> 

</aggregate-document>   



 69 

 6.5 A Quarterly Report Service 

Consider an XML document containing information about graduate students in 

the department of Computer science and Engineering. This document is stored in a file 

called cse.xml. You may want to print a quarterly report using a style sheet called cse-

quarterly.xsl for each student. The XIESL for doing this is as follows: 

The XIESL definition: 

<?xml  version="1.0" encoding="ISO-8859-1" ?> 
<x:xiesl xmlns:x="http://www.wright.edu/xie/pipeline" 
                        xmlns:xie="http://www.wright.edu/xie/services">            
<x:service name="monthly-report-service"> 
<x:structure/> 
<x:connection/> 
<x:logic> 
<x:service-operation name="repeat" > 
  <x:pre-service>  
     <x:aggregate aggregate-with="report"/>  
     <x:identify    identify-with="report-out"/> 
 </x:pre-service> 
<x:service-body> 
   <x:rule> 
      <x:condition> 
         <x:xpath  work-with="cse.xml"  select-with="/cse/student" /> 
       </x:condition> 
      <x:action> 
 <x:process/> 
      </x:action> 
  </x:rule> 
</x:service-body> 
<x:post-Service> 
  <x:null/> 
</x:post-Service> 
</x:service-operation> 
</x:logic> 
<x:interface> 
<x:task     name="monthly-report"> 
<x:component    name ="Transform"> 
<x:connector> 
    <x:input     name="cse-data"      role="input"         href="current()"/> 
    <x:input     name="cse-config"          role="style"         href="cse-monthly.xsl"/> 



 70 

    <x:output   name="cse-data"       role="pipe-out"      reference-with="report-out" /> 
</x:connector> 
</x:component> 
</x:task>   
</x:interface> 
</x:service> 
</x:xiesl> 
 

Here is the processing sequence according to the XIESL document shown above: 

1. The cse.xml input document is referenced by the attribute work-with.  

2. The different parts of the documents (different students) are selected based on the 

select-with attribute. 

3. The Transform component gets executed on each part (each student element). 

4. The results (XML documents) produced by the execution of each component are 

aggregated in the root element report (aggregate-with attribute). 

5. The aggregated document report-out is accessible with the identify-with attribute. 

 

6.6 An Order Processing Pipeline 

Consider an XML document containing orders information for an enterprise like 

OrderID, CustomerID, EmployeeID, OrderDate, RequiredDate, ShippedDate, ShipVia, 

Freight, ShipName, ShipAddress, ShipCity, ShipPostalCode, and ShipCountryRegion. 

The document is generated by joining or aggregating XML order files from different 

regions of the enterprise. This document is stored in a file named orders.xml.  

You may want to filter the OrderID, CustomerID, OrderDate, RequiredDate, 

ShippedDate, ShipName, ShipCity and the ShipCountryRegion elements using a style 

sheet named orders.xsl. This document is stored in a file named orders.xsl. 

orders.xsl: 



 71 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xsl:stylesheet version="1.0" 
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
<xsl:template match="/"> 
<allOrders> 
      <xsl:for-each select="allOrders/orders"> 
      <orders> 
        <OrderID><xsl:value-of select="@OrderID"/></OrderID> 
        <CustomerID><xsl:value-of select="@CustomerID"/></CustomerID> 
        <OrderDate><xsl:value-of select="@OrderDate"/></OrderDate> 
        <RequiredDate><xsl:value-of select="@RequiredDate"/></RequiredDate> 
        <ShippedDate><xsl:value-of select="@ShippedDate"/></ShippedDate> 
        <ShipName><xsl:value-of select="@ShipName"/></ShipName> 
        <ShipCity><xsl:value-of select="@ShipCity"/></ShipCity> 
        <ShipCountryRegion><xsl:value-of 
select="@ShipCountryRegion"/></ShipCountryRegion> 
      </orders> 
      </xsl:for-each> 
</allOrders> 
</xsl:template> 
</xsl:stylesheet> 
 

Then, you may want to use the filtered output and update the ShipCity element 

(e.g. update ShipCity element for OrderID 10716 to Dayton) using an XUpdate program 

named order_update.xml. This document is stored in a file named order_update.xml. 

order_update.xml: 

<xu:modifications   xmlns:xu="http://www.xmldb.org/xupdate"> 
 <!-- Update the ShipCity for OrderID 10716 to Dayton --> 
 <xu:update   select="allOrders/orders[OrderID='10716']/ShipCity">Dayton</xu:update> 
</xu:modifications> 
 

Then, you may want to use the updated output and sort it on the 

ShipCountryRegion, ShipCity and RequiredDate elements using a style sheet named 

orders_sort.xsl. This document is stored in a file named orders_sort.xsl. 

orders_sort.xsl: 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
<xsl:template match="/"> 



 72 

  <html> 
  <body> 
    <h2>All Orders</h2> 
    <table border="1"> 
      <tr bgcolor="#9acd32"> 
        <th>OrderID</th> 
        <th>CustomerID</th> 
        <th>OrderDate</th> 
        <th>RequiredDate</th> 
        <th>ShippedDate</th> 
        <th>ShipName</th> 
        <th>ShipCity</th> 
        <th>ShipCountryRegion</th> 
      </tr> 
      <xsl:for-each select="allOrders/orders"> 
      <xsl:sort select="ShipCountryRegion" /> 
      <xsl:sort select="ShipCity" /> 
      <xsl:sort select="RequiredDate" /> 
      <tr> 
        <td><xsl:value-of select="OrderID"/></td> 
        <td><xsl:value-of select="CustomerID"/></td> 
        <td><xsl:value-of select="OrderDate"/></td> 
        <td><xsl:value-of select="RequiredDate"/></td> 
        <td><xsl:value-of select="ShippedDate"/></td> 
        <td><xsl:value-of select="ShipName"/></td> 
        <td><xsl:value-of select="ShipCity"/></td> 
        <td><xsl:value-of select="ShipCountryRegion"/></td> 
      </tr> 
      </xsl:for-each> 
    </table> 
  </body> 
  </html> 
</xsl:template> 
</xsl:stylesheet> 
 

The core XIESL services for doing all of the above is as follows, and the 

graphical depiction is shown in Figure 16. 

The XIESL definition: 

<x:service name="xie:xslt"> 
    <x:interface name="some-interface"> 
        <x:input name="data" role="data" href="aggregate('all', #ordersEast, #ordersWest, 
#ordersNorth, #ordersSouth)"/> 
        <x:input name="options" role="config" href="orders.xsl"/> 



 73 

        <x:output name="data" role="data" id="style1-XML-output"/> 
    </x:interface> 
    </x:service>    
   <x:service name="xie:xupdate">  
    <x:interface name="some-interface" > 
        <x:input name="options" role="data" href="XIE-order-update.xml"/> 
        <x:input name="data" role="data"  href="#style1-XML-output"/> 
        <x:output name="data" role="pipe-out" id="update-XML-output"/> 
   </x:interface>   
   </x:service> 
   <x:service name="xie:xslt"> 
   <x:interface name="some-interface"> 
        <x:input name="data" role="data" href="#update-XML-output"/> 
        <x:input name="options" role="config" href="orders_sort.xsl"/> 
        <x:output name="data" role="data" id="style2-XML-output"/> 
   </x:interface> 
    </x:service> 
 

 

Figure 16: An Order Processing Pipeline 

 
Here are the execution steps for the order processing pipeline: 

 
1. The ordersEast.xml, ordersWest.xml, ordersNorth and ordersSouth input documents 

are read by the URL generator service.  The generated outputs are passed along as 

inputs to the Join/Aggregate Service. 

2. The Join/Aggregate service executes: data from all regions are aggregated in one 

root element called allOrders. The aggregated output is passed along as an input to 

the XSLT service. 



 74 

3. The orders.xsl style sheet is read and executed: the OrderID, CustomerID, 

OrderDate, RequiredDate, ShippedDate, ShipName, ShipCity and the 

ShipCountryRegion elements are selected from the orders aggregated input. 

4. The selected data is passed to the XUpdate service. 

5. The order_update.xml update program is read and the XUpdate service executes: the 

ShipCity element for OrderID 10716 is updated to Dayton. 

6. The updated data is passed to the second XSLT service. 

7. The orders_sort.xsl style sheet is read and executed by the second XSLT service: the 

elements are sorted on the ShipCountryRegion, ShipCity and RequiredDate 

elements.  

8. The sorted orders data is passed along and displayed by the browser as depicted in 

Figure 17 below. 

 



 75 

 

Figure 17: Sorted Orders 



 76 

 

Chapter 7 
 

Conclusion  
 

In this research, we proposed XML Integrated Environment (XIE) which is a 

general-purpose service-oriented architecture for processing XML documents in a 

scalable and efficient fashion. The XIE supports a new software service model that 

provides a proper abstraction to describe a service and divide it into four components: 

structure, connection, interface and logic. We also proposed and implemented XIE 

Service Language (XIESL) that can capture the creation and maintenance of the XML 

processes and the data flow specified by the user and then orchestrates the interactions 

between different XIE services. Moreover, XIESL manages the complexity of XML 

processing by implementing an XML processing pipeline that enables better 

management, control, interpretation and presentation of the XML data even for non-

professional users.  

Our completed research works and contributions are summarized here: 

• Designed and built a general-purpose XML system that can process schemaless 

XML data.   

• Provided the foundation for a powerful user-driven data management experience 

by offering tools and constructs that can fully utilize the XML processing power 



 77 

embedded in the XIE’s unified framework and service-oriented architecture (e.g.,  

transformation, XML updates, repeat, select, aggregate and route services).  

• Specified, developed and implemented a unified service-oriented layered 

architecture for processing schemaless XML documents in a scalable, efficient 

and powerful fashion through the incorporation and use of an internal caching 

mechanism.  

• Proposed, designed and implemented a new service model called Meta-Service 

Model (MSM) that builds the proper abstractions to describe a service that can be 

easily mapped to the different tiers of the XIE architecture.  

• Proposed, developed and implemented a declarative language called XML 

Integrated Environment Services Language (XIESL) that described and specified 

the processing of schemaless XML data. XIESL manages the complexity of XML 

processing by implementing an XML processing pipeline that enables better 

management, control, interpretation and presentation of the XML data.  

7.1 Future Works  

The work presented in this dissertation can be extended by adding new tools. The 

main extension is developing a graphical XML data flow designer that is user-friendly. 

The designer should be capable of building, executing and debugging XML data flows 

using XIESL; incorporating and building  more core software service capabilities (e.g. 

supports for XML schema, compression and encryption);  incorporating  and building  

more XIESL core capabilities (e.g. web-service integration);  and  incorporating a more 

powerful internal caching mechanism for efficient use and greater flexibility. 



 78 

References 
 

[1] W3C Recommendation, “Extensible Markup Language (XML) 1.0 (Third 

Edition),” 2004, http://www.w3.org/TR/2004/REC-xml-20040204 

[2] W3C Recommendation, “XSL Transformation (XSLT) Version 1.0,” 1999, 

http://www.w3.org/TR/xslt. 

[3] W3C Recommendation, “XML Pipeline Definition Language Version 1.0,” 2002, 

http://www.w3.org/TR/xml-pipeline. 

[4] W3C Submission, “XML Pipeline Language (XPL) Version 1.0 (Draft),” 2005, 

http://www.w3.org/Submission/xpl/ 

[5] W3C Candidate Recommendation, “Web Service Description Language (WSDL) 

Version 2.0 Part 1: Core Language,” 2006, http://www.w3.org/TR/2006/CR-wsdl20-

20060106/  

[6] NG Specification, “Relax NG committee,” 2001, http://www.relaxng.org/spec-

20011203.html 

[7] D. Draper, A. HalLevy, and D. Weld, “The Nimble XML Data Integration System,” 

IEEE  Proc. of  Int’l Conf. on Data Engineering, 2001, pp. 155-160 

[8] An Open-source XML Publishing Framework, http://cocoon.apache.org/ 

[9] S. Abiteboul, D. Suciu, and P. Buneman, Data on the Web: From Relations to 

Semistructured Data and XML, Morgan Kaufmann, 1999. 

[10] J. Hunter and B. McLaughlin, “Easy Java/XML integration with JDOM,” Java 

World Newsletters, 2000. 

[11] Sun Microsystems, Java Enterprise Edition Home page, http://java.sun.com/javaee.



 79 

[12] N. Bieberstein et al., “Service-Oriented Architecture Compass: Business Value, 

Planning, and Enterprise Roadmap,” IBM Press, 2006. 

[13] W3 schools training, XSLT – Transformation Home page, 

http://www.w3schools.com/xsl/xsl_transformation.asp 

[14] M. Humphrey, G. Wasson, J. Gawor, et al., “State and Events for Web Services: A 

Comparison of Five WS-Resource Framework and WS-Notification 

Implementations,” Proc. of the 14th IEEE International Symposium on High 

Performance Distributed Computing, 2005. 

[15] Organization for the Advancement of Structured Information Standards (OASIS), 

“Web Services Security: SOAP Message Security 1.0,” available at 

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss, 2004. 

 

[16] F. Cabrera, et al., “Web Services Coordination  (WS-Coordination),” August, 2005, 

http://specs.xmlsoap.org/ws/2004/10/wscoor/wscoor.pdf 

[17] CBDI Journal Modeling for SOA, February, 2002, www.cbdiforum.com 

[18]  M. Champion, C. Ferris, E. Newcomer, and D. Orchard, “Web Services 

Architecture W3C Group Note”, February, 2004, www.w3.org/TR/ws-arch/ 

[19]  F. Curbera, Y. Goland, J. Klein, F. Leyman, D. Roller, S. Thatte, and S. 

Weerawarana, “Business Process Execution Language for Web Services 

(BPEL4WS)1.1,” February, 2005,  

http://www.ibm.com/developerworks/library/ws-bpel.  

[20]  J. Goepfert, M. Whalen, “An Evolutionary View of Software as a Service,” IDC 

White paper, 2002, www.idc.com 



 80 

[21] M. Shivaram, “Securing Web Services – Concepts, Standards, and requirements,” 

SUN White paper, 2003, www.sun.com 

[22] P. Brittenham, “Web Services Development Concepts (WSDC 1.0),” IBM White 

paper, 2001, www.ibm.com 

[23] F. Leymann, “Web Services: Distributed Applications without Limits - An 

Outline,” Proc. of Database Systems for Business, Technology and Web, 2003. 

[24] M. P. Papazoglou and J. Yang, “Design, Methodology for Web Services and 

Business Processes,” Proc. of the 3rd VLDB-TES Workshop, Hong-Kong, 2002. 

[25]  M. P. Papazoglou and D. Georgakopoulos, “Service Oriented Computing,” 

Communications of the ACM, October, 2003. 

[26] UDDI.org, UDDI Technical White paper, 2001, http: //www.uddi.org/ 

[27] M. Altmel and M. J. Franklin, “Efficient Filtering of XML Documents for Selective 

Dissemination of Information,” Proc. of the 26th VLDB Conf., 2000, pp. 53-64. 

[28] R. Baeza-Yates and G. Navarro, “Integrating Contents and Structure in Text 

Retrieval,” ACM SIGMOD Record, 25(1), 1996, pp. 67-79 

[29] T. M. Chester, “Cross-Platform Integration with XML and SOAP,” IT Pro, 3(5), 

2001, pp. 26-34. 

[30] C. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient Filtering of XML 

Documents with XPATH Expressions.”  Proc. of Int’l Conf. On Data Engineering, 

2002, pp. 235-244. 

[31] H. Lie and J. Saarela, “Multipurpose Web Publishing Using HTML, XML, AND 

CSS,” Communications of the ACM, 42(10), 1999, pp. 95-101. 



 81 

[32] L. Fegaras and R. Elmasri, “Query Engines for Web-Accessible XML Data,” Proc. 

of the 27th VLDB Conf., 2001, pp. 251-260. 

[33] M. J. Hudson, “XML@Work,” EAI Journal, 2001, pp. 32-37. 

[34] A. Bouguettaya, B. Benatallah, L. Hendra, J. Beard, K. Smith, and M. Ouzzani, 

"World Wide Database – Integrating the Web, CORBA and Databases," Proc. of 

ACM SIGMOD Conf., 1999, pp. 594-596. 

[35] T. Usdin and T. Graham, “XML: Not a Silver Bullet, But a Great Pipe Wrench,” 

ACM Standard View, 6(3), 1998, pp. 125-132. 

[36] C. White, L. Quin, and L. Burman, Mastering XML Premium Edition, Sybex, 2001. 

[37] T.W. Leung, Professional XML Development with Apache Tools: Xerces, Xalan, 

FOP, Cocoon, Axis, xindice, Wrox Press, 2004. 

[38] The XML Family, SkillSoft Press, 2003 

[39] M. Akif, Java XML Programmer’s Reference, Apress, 2003. 

[40] M. Jasnowski, Java, XML, and Web Services Bible, John Wiley & Sons, 2002. 

[41] D. Cheung, S.D. Lee, T. Lee, W. Song, and C.J. Tan, “Distributed and Scalable 

XML Document Processing Architecture for E-Commerce Systems,” Proc. of  Int’l 

Workshop on Advanced Issues of E-Commerce and Web-based Information 

Systems (WECWIS'00). San Jose, 2000. 

[42] L. Seligman and A. Rosenthal, “XML’s Impact on Databases and Data Sharing,” 

IEEE Data Eng., pp. 59-67, 2001. 

[43] L. Marian, S. Abiteboul, G. Cobena, and L. Mignet, “Change-Centric Management 

of Versions in an XML Warehouse,” Proc. of the 27th VLDB Conf., 2001, pp. 581-

590. 



 82 

[44] “XUPDATE Specification,” 2000, http://www.xmldb.org/xupdate 

[45] I. Tatarinov, Z. G. Ives, A. Y. Halvey, and D. S. Weld, “Updating XML,” Proc. of  

ACM SIGMOD Conf., 2001, pp. 413-424. 

[46] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman, “On Supporting 

Containment Queries in Relational Database Management Systems,” Proc. of ACM 

SIGMOD Conf., 2001, pp. 425-436. 

[47] P. M. Tolani and J. R. Harista, “XGRIND: A Query-friendly XML Compressor,” 

Proc of Int’l Conf. on Data Enginerring, 2002, pp. 225-234. 

[48] P. Felber, C. Chan, and R. Rastogi, “Scalable Filtering of XML Data for Web 

Services,” IEEE Internet Computing, 2003, pp.49-57. 

[49] A. Morishima, S. Koizumi, H. Kitagawa, and S. Takano, “Enabling End-users to 

Construct Data-intensive Web-sites from XML Repositories: An Example-based 

Approach,” Proc. of the 27th VLDB Conf., 2001, pp. 703-704. 

[50] S. S. Chawathe, T. Baby, and J. Yeo, “VQBD: Exploring Semistructured Data,” 

Proc. of ACM SIGMOD Conf., 2001, pp. 603-604. 

[51] D. Braga, A. Campi, S. Ceri, M. Klemettinen, and P. L. Lanzi, “A Tool for 

Extracting XML Association Rules.” Proc. of Int’l Conf. on Tools with Artificial 

Intelligence, 2002, pp. 57-64. 

[52] D. Kha, M. Yoshikawa, and S. Uemura, “An XML Indexing Structure with Relative 

Region Coordinate,” Proc. of Int’l Conf. on Data Engineering, 2001, pp.313-320. 

[53] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton, “Estimating the Selectivity 

of XML Path Expressions for Internet Scale Applications,” Proc. VLDB Conf., 

2001, pp. 591-600. 

 



 83 

[54] www.softcare.com, “What is BPEL and Why Is It Important for My business,” 

2004, http://www.software.com/whitepapers/wp_whatis_bpel.php 

 

[55] XML:DB initiative for XML Databases, http://xmldb-org.sourceforge.net/ 

 


	XML Integrated Environment for Service-Oriented Data Management
	Repository Citation

	Microsoft Word - Marwan-PhD-Dissertation.doc

