
Univ
ers

ity
 of

 C
ap

e T
ow

n

1

DATA REPLICATION AND UPDATE PROPAGATION

IN
XML P2P DATA MANAGEMENT SYSTEMS

A dissertation submitted to the Department of Computer Science,
Faculty of Science at the University of Cape Town
in fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in
Computer Science

- Marlon Paulse -

Supervisor
Dr S. Berman

UNIVERSITY OF CAPE TOWN
iYUNiVES:THi":'SEKAPA· UNiYERSi,TT V,4~ K~,APSTAD

August, 2008

Univ
ers

ity
 of

 C
ap

e T
ow

n

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

© 2008 Marlon Paulse

Abstract

XML P2P data management systems are P2P systems that use XML as the underlying data

format shared between peers in the network. These systems aim to bring the benefits of XML

and P2P systems to the distributed data management field. However, P2P systems are known

for their lack of central control and high degree of autonomy. Peers may leave the network

at any time at will, increasing the risk of data loss. Despite this, most research in XML P2P

systems focus on novel and efficient XML indexing and retrieval techniques. Mechanisms for

ensuring data availability in XML P2P systems has received comparatively little attention. This

project attempts to address this issue.

We design an XML P2P data management framework to improve data availability. This frame

work includes mechanisms for wide-spread data replication, replica location and update prop

agation. It allows XML documents to be broken down into fragments. By doing so, we aim

to reduce the cost of replicating data by distributing smaller XML fragments throughout the

network rather than entire documents.

To tackle the data replication problem, we propose a suite of selection and placement algorithms

that may be interchanged to form a particular replication strategy. To support the placement of

replicas anywhere in the network, we use a Fragment Location Catalogue, a global index that

maintains the locations of replicas. We also propose a lazy update propagation algorithm to

propagate updates to replicas.

Experiments show that the data replication algorithms improve data availability in our experi

mental network environment. We also find that breaking XML documents into smaller pieces

and replicating those instead of whole XML documents considerably reduces the replication

cost, but at the price of some loss in data availability. For the update propagation tests, we

find that the probability that queries return up-to-date results increases, but improvements to the

algorithm are necessary to handle environments with high update rates.

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Sonia Berman, for her patience, understanding

and guidance throughout the project, and for allowing me the freedom to carry out my ideas.

I also thank my fellow students in the Advanced Information Management research group for

their friendship and making the lab an enjoyable working environment. Finally, thank you to

my parents for their continuous love and support during my years of study.

11

Contents

Abstract

1 Introduction

1.1 Overview of Approach

1.1.1 Data Replication

1.1.2 Replica Location

1.1.3 Update Propagation.

1.2 Objectives . ..
1.3 Scope and Limitations

1.4 Dissertation Outline .

2 P2P Systems
2.1 P2P Computing

2.2 P2P Architectures

2.2.1 Overview

2.2.2 Overlay Network Structures

1
2

3

4

4

4

5

6

7
7

8

8

10

2.2.3 The Degree of Decentralisation in Overlay Networks 10

2.3 The Implications of P2P Architectures on Data Replication and Replica Location 12

2.3.1 Unstructured P2P Systems 13

2.3.2 Structured P2P Systems 15
2.3.3 Loosely-Structured P2P Systems.

2.4 Discussion

3 Existing P2P Replication, Location and Update Propagation Techniques

3.1 Data Replication .

3.2 Replica Location .

3.3 Update Propagation

4 Managing XML Content in P2P Systems
4.1 XML - The eXtensible Markup Language

4.2 Existing XML P2P Systems

4.2.1 BRICKS

4.2.2 XP2P

III

17

17

19

19

21

23

25
25
25
26
27

IV

4.2.3 XPeer

4.2.4 Content-Based Multi-Level Bloom Filters

4.2.5 Distributed XML Catalogues.

4.3 Discussion.....................

CONTENTS

28

30

31

33

5 A P2P Framework for Replicated XML Document Fragments 34
35

36

39

40

41

41

43

44

46

47

48

48

50

50

51

52

5.1 System Constraints

5.2 Fragmentation of XML Documents

5.3 XML Fragment Path Expression Language

5.4 Locating XML Fragments in a P2P Network.

5.5 Update Management

5.5.1 The Fragmentation Table

5.5.2 Processing Document Updates

5.5.2.1 Types of XML Fragment Update

5.5.2.2 Outline of the Update Process .

5.5.2.3 Example ..

5.6 Query Processing

5.6.1 Design Considerations ..

5.6.2 The Fragment Path Index.

5.6.3 Query Processing Algorithm

5.6.4 Query Processor Limitations

5.7 Summary

6 Replication Management and Update Propagation Algorithms 54
6.1 Replication Management 54

6.1.1 Overview................... 54

6.1.2 Replica Selection Algorithms 56

6.1.2.1 Random Replica Selection (RRS) . 57

6.1.2.2 Most-Frequently Accessed Replica Selection (MFA) . 58

6.1.2.3 Most-Recently Accessed Replica Selection (MRA) 60

6.1.3 Replica Placement Algorithms

6.1.3.1 Random Replica Placement (RRP)

6.1.3.2 Counter-based Replica Placement (CRP) .

6.1.3.3 Counter-State Replica Placement (CSRP) .

6.1.3.4 Average Uptime Replica Placement (AURP)

6.2 Update Propagation

6.2.1 Update Notification.

6.2.2 Update Retrieval

6.3 Summary

7 Prototype Implementation
7. 1 Overview

60

61

62

62

63

65

65

66

67

68

68

CONTENTS

7.2 The P2P Manager . . .

7.3 The XML Data Store .

7.4 The Fragment Creator .

7.5 The Fragment Location Catalogue

7.6 The Fragmentation Table

7.7 The Update Manager

7.8 The Query Processor

7.9 The Peer Discovery and Pinger Components

7.10 The Replication Manager

7.11 Summary

8 Experimental Evaluation

8.1 Experimental Setup

8.1.1 Network Environment

8.1.2

8.1.3

8.1.4

Test Documents. . . .

Test Queries

Peer Online-Offline Behaviour

v

69

71

73

78

78

80

81

82

83

84

85

85

85

87

88

88

8.2 Data Replication Algorithm Evaluation 90

8.2.1 Method............. 91

8.2.1.1 Overview 91

8.2.1.2 Measuring the Data Availability. 92

8.2.1.3 Measuring the Replication Cost . 94

8.2.2 Results and Analysis 96

8.2.2.1 Real-World Peer Online-Offline Behavioral Model . 96

8.2.2.2 Poisson-Generated Peer Online-Offline Behavioural Model 104

8.3 Update Propagation Algorithm Evaluation 107

8.3.1 Method.............. 107

8.3.1.1 Overview 107

8.3.1.2 Calculating the Percentage of Up-to-date XML Fragments. 108

8.3.2 Results and Analysis 108

8.4 Summary 109

9 Conclusions and Future Work

A Low-Level Prototype Implementation Details
A.l The P2P Manager

A.2 The Fragment Creator.

A.3 The Fragment Location Catalogue

A.4 The Update Manager

A.5 The Query Processor

A.6 The Peer Discover and Pinger Components

A.7 The Replication Manager

111

115
116

118

119

121

122

125

126

VI

B Procedures Used During Experimental Evaluation

C List of Acronyms

CONTENTS

128

132

List of Figures

2.1 The client/server architecture .. 8

2.2 An example of a P2P overlay network built on top of the Internet Protocol (lP) . 9

2.3 An example of a purely decentralised P2P system 11
2.4 The hybrid decentralised P2P architecture 12

2.5 An example of a super-peer network 13

2.6 The Gnutella data location algorithm 14

2.7 An example of a Chord P2P network 16

3.1 An example of the hierarchical deployment of RLI and LRC sites in Giggle 22

3.2 The update propagation chain proposed in [70] 24

4.1 An example XML document 26

4.2 Determining the path expressions of XML fragments in XP2P 28

4.3 The hierarchical unstructured super-peer architecture of XPeer 29

4.4 Examples of the tree-shaped DataGuides used by XPeer. . . . 29

4.5 An example of how XML data in a P2P network are indexed using the dis-
tributed XML catalogue approach proposed by [30] 32

5.1 An overview of the replicated XML document fragments framework 35

5.2 An example XML document before fragmentation. 38

5.3 Fragmenting the XML document in figure 5.2 using some arbitrary fragmenta-
tion scheme . 38

5.4 XML fragmentation with placeholder elements 38

5.5 Fragmenting the XML document in figure 5.2 by extracting whole subtrees 39

5.6 The Fragment Creator component 39

5.7 A conceptual view of the global Fragment Location Catalogue (FLC) 41

5.8 The Fragmentation Table . 43

5.9 An example of the information stored in the Fragmentation Table for fragments
fl, f-1 and f5 in figure 5.5

5.10 The Update Manager viewed as a black-box

5.11 The bubbling of updates through an XML document

44

45

46

5.12 An example of how a subtree insertion affects the path expression information 46

5.13 An example of a document update. 49

5.14 A conceptual view of the global Fragment Path Index (FPI) 50

VB

Vlll LIST OF FIGURES

5.15 The query processing algorithm in pseudocode 51

6.1 The design of the Replication Manager component 55

6.2 The basic structure of the replica selection algorithm 57

6.3 Generating the path expressions for each element in an XML document 58

6.4 An example of the information stored in the MFA algorithm's access informa-
tion tables .. 59

6.5 An example of the information stored in the MRA algorithm's access informa-
tion tables 61

6.6 Calculating the average uptime of a peer 64

7.1 An overview of the components in the prototype . 68

7.2 The design of the P2P Manager component . . . 70

7.3 The directory structure of the XML data store . . 71

7.4 An example meta.xml file in the XML data store directory 73

7.5 The contents of an example XML data store directory . . . 73

7.6 The path expression, /1/2/1, represented as a list of PathStep objects 74

7.7 An example of how the Fragment Creator processes an XML document 77

7.8 A sample XML document and its fragments 79

7.9 The Fragmentation Table XML file for the sample document in figure 7.8 79

7.10 The data sent to remote peers when transferring updates via a direct connection 81

7.11 The data sent to remote peers when transferring replicas via a direct connection 84

8.1 The experimental network setup .. 86

8.2 The file size distribution of the test XML documents 87

8.3 Changes in the network population size using the real-world peer online-offline
behavioural model 89

8.4 Changes in the network population size using the Poisson-generated peer online-
offline behavioural model .. 90

8.5 The difference between a complete and partial query result 93

8.6 Two XML documents expressing the same information, but formatted differently 94

8.7 Comparing the query result fingerprint lists to determining whether a query
result is complete, partial or missing .. 95

8.8 Comparing the number of complete query results obtained when fragmentation
is enabled and disabled .. 98

8.9 Comparing the number of missing query results obtained when fragmentation
is enabled and disabled .. 98

8.10 Comparing the amount of replica data transferred when fragmentation is en-
abled and disabled. .. 99

8.11 Comparing the total number of query results obtained when fragmentation is
enabled and disabled .. 99

8.12 Comparing the number of complete query results obtained when using different
replica selection algorithms . 100

LIST OF FIGURES IX

8.13 Comparing the number of missing query results when using different replica
selection algorithms . 101

8.14 Comparing the amount of replica data transferred when using different replica
selection algorithms . 102

8.15 Comparing the number of complete query results obtained when using different
replica placement algorithms . 103

8.16 Comparing the number of missing query results when using different replica
placement algorithms . 103

8.17 Comparing the amount of replica data transferred when using different replica
placement algorithms . 104

8.18 Comparing the percentage of up-to-date fragments accessed in an update prop-
agation enabled and disabled system for varying update rates 109

A.l UML class diagram of the P2P Manager component . . . 116
A.2 UML class diagram of the Fragment Creator component 118

A.3 UML class diagram of the Fragment Location Catalogue 119

AA UML class diagram of the Update Manager component 121

A.5 UML class diagram of the Query Processor component . 122

A.6 UML class diagram of the Fragment Path Index 124

A.7 UML class diagram of the Peer Discovery and Pinger components 125

A.8 UML class diagram of the Replication Manager component. 126

B.l Pseudocode for generating the set of test queries. 129

B.2 BNF notation for the form of the XPath queries used in the experiments 129

B.3 The XML tree fingerprinting algorithm used for comparing XML trees as de-
scribed in section 8.2.1.2 .. 130

BA Serializing XML element attributes to strings for fingerprinting in figure B.3 . . 131

List of Tables

2.1 Classification of distributed systems

5.1 Path expressions for the example fragments shown in figure 5.5 .

6.1 An example of how peer counters are calculated in the CRP algorithm

6.2 An example of how peer scores are calculated in the CSRP algorithm

6.3 An example of how the average uptimes of peers are calculated in the AURP

9

40

62

63

algorithm .. 64

8.1 The results for the data replication experiments when using the real-world peer
online-offline behavioural model 97

8.2 The number of query results and amount of replica data transferred. 105

x

Chapter 1

Introduction

In recent years, research has been conducted to bring some of the benefits of peer-to-peer (P2P)

systems to the distributed data management field [5, 28, 35, 36, 37,41, 51, 52, 59]. A P2P sys

tem is a distributed computing system consisting of large populations of interconnected nodes

(or peers) that cooperate to directly share resources such as files, storage space, network band

width or processing power. Unlike traditional distributed data management systems [12], P2P

systems are generally known for their lack of central control, low administration and deploy

ment overhead, high degree of autonomy and heterogeneity, and their ability to self-adapt and

function in unstable network environments [3].

Peers in P2P systems use various data formats and schemas to describe their data. In order to

share data with others, a common format that is understood by all peers is needed. XML's [93]

ability to represent any hierarchical or semistructured data, makes it an interesting option for

such data sharing in P2P environments. XML allows autonomous peers to interact despite the

differences in their data formats and schemas. Furthermore, the use of XML enables users to

pose queries using expressive query languages such as XPath [98] and XQuery [99], rather than

employing simple keyword-based searches.

Motivated by the benefits of XML, many researchers have begun investigating the use of XML

data in P2P data management systems [9,42,64,65,68]. Our survey of existing XML P2P data

management systems revealed that most of this research focuses on the efficient indexing and

retrieval of XML data in P2P networks. The problem of ensuring the availability of data when

peers depart the network has received comparatively little attention. Koloniari and Pitoura make

a similar observation in [43].

Ensuring data availability is an important problem in P2P systems. Peers may leave the network

2 CHAPTER 1: Introduction

any time at will, resulting in data loss. Measurement traces of the Overnet P2P system by

Bhagwan et al [6] showed that over 20% of the total peer population entered and departed the

network every day. A similar trace by Saroui et al [63] on Napster [11 J and Gnutella [75] showed

that approximately 50% of the total peer population never remained online for more than one

hour. While these traces are for P2P filesharing systems where users are more interested in

sharing files for selfish purposes rather than being part of a community of integrated data stores,

it still gives a rough idea of how high the rate of peer departures from a P2P network may

become.

In this project, we investigate the data availability problem in XML P2P data management

systems. In particular, we study algorithms for replicating XML data to reduce the data loss in

curred when peers depart the network. We propose a P2P framework in which XML documents

are fragmented into smaller pieces to reduce the transfer cost when replicating data. Finally, we

look at an update propagation algorithm for transmitting updates to replicas when the original

data items are updated.

1.1 Overview of Approach

In order to ensure data availability, we believe that a P2P system should fulfill three require

ments:

1. Wide-spread Data Replication: The system must support the replication of data at arbi

trary locations in the network to ensure data availability even after random peer depar

tures or failures. The placement of replicas should not be limited to specific areas in the

network, as this may weaken the spread of replicas.

2. Replica Location: Once replicas have been created and distributed throughout the net

work, there needs to be a mechanism to efficiently locate replicas when performing

queries or data updates.

3. Update Propagation: When a data item is updated, its replicas should be updated as

well. This update propagation may either be done eagerly or lazily. An eager approach

would send updates to replicas immediately when data items are updated, while a lazy

approach would delay update propagation for as long as possible until the system deems

it necessary to send updates.

CHAPTER I: Introduction 5

3. To develop and evaluate an update propagation algorithm for sending updates to replicas.

4. To develop a prototype implementation of our XML P2P data management framework as

a platform for evaluating our work.

1.3 Scope and Limitations

We limit the scope of this work by making the following simplifying assumptions:

• Peers in the P2P network are homogeneous. They all have the same processing power,

storage capacity and bandwidth capabilities. In addition, we assume that peers have an

infinite amount of storage space available to accommodate all replicas sent to them, as

we do not look at policies for deleting replicas when peers reach their maximum storage

capacity.

• To process XML document updates, mechanisms are required for detecting changes be

tween two versions of an XML document, representing update descriptions (deltas), and

applying update descriptions to older versions of a document. We do not look at algo

rithms for performing such processing. We merely assume that they exist in the system.

• The system allows there to be a delay between the time a document is updated and the

time the update is applied to a replica. Within this time period, the system does not

prevent the older version of a replica from being accessed. Ensuring strong consistency

would require locking mechanisms or quorum protocols [32, 34], an area that is well

beyond the scope of this work. If the latest version of replica is not available at the time

an access request is made, the system always tries to obtain the replica with the highest

possible version number.

• Only a peer that originally contributed an XML document to the network is allowed to

update it. If any peer was allowed to perform updates on any replica, then conflicts may

arise when concurrent updates occur. Detecting and resolving such conflicts is beyond

the scope of this work.

6 CHAPTER I: Introduction

1.4 Dissertation Outline

This dissertation is structured as follows. Chapter 2 introduces the P2P computing field, and

discusses how various P2P architectures affect data replication and replication location mech

anisms. Chapter 3 gives an overview of current research into P2P data replication, replica

location and update propagation techniques. Chapter 4 presents a survey of existing XML P2P

data management systems. Our proposed XML P2P data management framework is described

in chapter 5. It covers the fragmentation of XML documents, the location of XML fragments

in the network and the processing of document updates. It also outlines a simple distributed

XPath query processor that was used for evaluation purposes. Chapter 6 describes in detail our

proposed data replication and update propagation algorithms. Chapter 7 presents a prototype

P2P system that implements our XML P2P data management framework, as well as the replica

tion and update propagation algorithms. Chapter 8 describes experiments that were conducted

to evaluate the data replication and update propagation algorithms, and analyses the results

obtained. Finally, chapter 9 concludes this dissertation and highlights areas of future work.

Chapter 2

P2P Systems

In this chapter, we look at various P2P architectures and discuss how their designs affect data

replication and replica location mechanisms. This chapter serves two purposes:

I. To familiarise the reader with different P2P architectures; and

2. To justify our choice of using a separate data location catalogue for locating replicas in

the network as mentioned in section 1.1.2.

2.1 P2P Computing

In the traditional client/server model of distributed computing, there are two types of compo

nents: a central server (or group of central servers) and a group of clients. The clients send

requests to the server for access to certain services, while the server receives client requests,

processes them and returns the result to the clients. This model is completely centralised, as the

existence of the server is key to the successful operation of the network. The clients themselves

never interact with each other, nor are they even aware of each other's existence in the network.

Figure 2.1 shows an example of a typical client/server system.

The client/server model has three disadvantages. Firstly, the existence of a central server creates

a single point of failure in the network. If the server fails due to a system crash or a malicious

attack, the services offered by the server become unavailable to clients. Secondly, since the

server is fully responsible for all client requests, performance degrades as more clients are in

troduced to the network and the load on the server increases. Finally, the organisation that owns

7

8 CHAPTER 2: P2P Systems

Ser\ler

Figure 2.1: The client/server architecture. A central server (or group of servers) is fully responsible for
servicing client requests. The clients themselves never interact with each other.

the server bears all the administration and maintenance cost involved in operating the server.

Certainly, the availability of services and the scalability of the network can be improved by in

troducing more servers to the network and replicating services across all the servers. However,

this further increases the administrative burden.

The P2P model, on the other hand, extends the client/server model by delegating part or all

of the responsibility of the central servers to the clients in the network. Not only does this

help eliminate single points of failure in the network and improve scalability, but the cost of

administering and maintaining the network is shared by all participants in the network [3].

2.2 P2P Architectures

2.2.1 Overview

A P2P network consists of a set of nodes (the peers) that are logically interconnected in some

manner to form an overlay network. An overlay network is a network that is implemented on

top of an existing physical network infrastructure, typically spanning across private enterprise

network boundaries such as NAT gateways. Since the overlay network does not correspond to

the underlying network topology, the distance between two peers (in terms of the number of

hops between them) does not necessarily reflect the communication cost between them.

Figure 2.2 shows an example of an overlay network implemented on top of the Internet Protocol

OP) [86]. The dashed lines indicate the physical connections between the peers in the under

lying IP network, while the bold arrows represent the logical network connections between the

peers in the overlay network. Each peer is assigned a location-independent ID, which allows

CHAPTER 2: P2P Systems

local Area' Prr ... ate
""et~"QI·k

2:8 l.:1C 58 :6

local Area: Pn.ate
r-.et.."QI'k

Figure 2.2: An example of a P2P overlay network built on top of the Internet Protocol (IP)

Distributed Degree of Overlay Examples
Computing Decentralisation Network Structure

Model
Client/server Completely centralised Unstructured HTTP server

Unstructured N apster, Kazaa
Hybrid decentralised (super-peer) Loosel y -structured N/A

Structured N/A
P2P Unstructured Gnutella

Purely decentralised Loosely-structured Freenet
Structured Chord, CAN

Table 2.1: Classification of distributed systems

peers to be addressed in a consistent manner even when their physical locations change.

9

P2P overlay networks can broadly be classified in two ways: (1) by their structure, and (2) by

their degree of decentralisation. Taken together, both the structure and degree of decentralisa

tion of the overlay network affect the network topology, routing and searching algorithms used

by the system, and ultimately, the fault-tolerance, self-adaptability, performance and scalabil

ity of the P2P network [3]. Moreover, it determines the data replication and replica location

algorithms that can be used in the network.

We discuss the structure and decentralisation of overlay networks in the following two subsec

tions. Our classification of P2P systems is presented in table 2.1.

10 CHAPTER 2: P2P Systems

2.2.2 Overlay Network Structures

The structure of the overlay network refers to the manner in which the network is constructed:

whether it is created in an ad-hoc manner as peers enter and leave the network or determined by

specific rules. It also refers to how data items are placed in the network. A P2P overlay network

may be structured in three ways: it may be unstructured, structured or loosely-structured.

In llnstructured overlay networks, the placement of data items in the system is completely

unrelated to the topology of the overlay network [3]. There is no indication that certain peers

store certain data items. Therefore, in order to locate data in such networks, unstructured P2P

systems usually employ flood-based search mechanisms where search queries are propagated

throughout the network by recursively broadcasting them to all neighbouring peers [75].

Structured overlay networks, on the other hand, place data items at precise locations in the

network [3]. These networks are typically based on distributed consistent hashing schemes,

where each data item is associated with a key, and each peer is assigned a range of key values

corresponding to the data items it may store. Such structured overlay networks are essentially

one large distributed routing table, which provides a mapping between the data item identifier

and its location in the network. This distributed routing table is commonly called a distributed

hash table (DHT) [22,56,61,67].

Loosely-structured overlay networks also impose some form of structure on the network topol

ogy, but do not use consistent distributed hashing. Unlike structured overlay networks, the

location of data in the network is not completely determined by the network topology. Instead,

these networks typically cluster peers in the network into groups based on how "similar" peers

are. Similarity among peers may be determined by a number of arbitrary properties. Peers may

be clustered based on the type of data they store, how closely their data schemas match or how

geographically close they are. In order to locate data in loosely-structured overlay networks,

"routing hints" [3] are used to route queries to peers (or clusters of peers) which are believed to

store certain data.

2.2.3 The Degree of Decentralisation in Overlay Networks

The degree of decentralisation in an overlay network refers to how much the P2P system de

pends on certain centralised components to operate. In particular, it refers to the extent to which

the peers in the network accept server-like responsibilities. A P2P network may either be purely

decentralised or hybrid decentralised.

CHAPTER 2: P2P Systems II

In pllrely decentralised P2P systems, all peers perform exactly the same function. They act both

as clients and servers. Through their client interface, peers accept requests from application

users, and send those requests to remote peers in the network to initiate the exchange of content

or participate in some online collaborative activity. Through their server interface, they receive

requests from remote peers and then service the requests in some manner. Purely decentralised

P2P systems are true P2P systems; they do not rely on any centralised components whatsoever

in order to operate successfully. These type of P2P systems may have unstructured, structured

or loosely-structured overlay networks.

Figure 2.3: An example of a purely decentralised P2P system (with an unstructured overlay network).
No distinction is made between clients and servers. All peers perform the same role in the network.

Hybrid decentralised P2P systems, on the other hand, sti11largely depend on centralised com

ponents to coordinate resources and for the successful operation of the network. These type

of P2P systems have much in common with traditional client/server models, except that data

are stored on the clients themselves rather than a central location, and clients interact among

themselves to transfer data. The central server merely acts as a directory for finding data in the

network. Figure 2.4 shows the architecture of a hybrid decentralised P2P system. An example

of such a system is Napster [Ill.

Another class of hybrid decentralised P2P systems that are closer to purely decentralised P2P

systems are super-peer networks. In super-peer networks, certain peers called super-peers are

assigned additional roles in the network. These super-peers perform extra administrative duties

such as acting as local central directories and proxying requests through the network on behalf

of the regular peers. A peer is assigned the status of a super-peer either voluntarily, or automat

ically by the system based on its storage and bandwidth capabilities and processing power.

Since super-peer networks are more decentralised than the normal hybrid decentralised P2P sys

tems, some authors such as [3] refer to these as partially centralised P2P systems to differentiate

12

....
, ..•..

.. '

.... ' Peer-to-peer (ornrUricatlor
.....

\dlr€ct (or·tert tr':lI'sfer'

CHAPTER 2: P2P Systems

Cliel't-ser"H (on'rrurlcatICI'
I Query CCI'tert locatlOr.

Figure 2.4: The hybrid decentralised P2P architecture. The central server maintains information about
peers and data in the network and coordinates the interaction between the peers. The actual data transfer
takes place directly between the peers.

them from normal hybrid decentralised P2P systems. However, the fact that the super-peers act

as centralised components in the network, means that they can still be regarded as hybrid dec en

tralised P2P systems. The only real difference between normal hybrid decentralised P2P sys

tems and super-peer networks is that all normal hybrid decentralised P2P systems are based on

unstructured overlay networks, whereas super-peer networks may use either unstructured, struc

tured or loosely-structured overlay networks, or a combination. For example, an unstructured

overlay network could be used between the super-peers and the normal peers, and between the

normal peers themselves, whereas the connections between the super-peers could be arranged

in some structured manner. Figure 2.5 shows an example of a super-peer network, where the

super- and normal peers are connected in an unstructured manner, whereas the connections

between the super-peers form a structured ring topology.

2.3 The Implications of P2P Architectures on Data Replica

tion and Replica Location

Having discussed the various types of P2P overlay networks in terms of their structures and

degrees of decentralisation, we now look at how each P2P architecture affects data replication.

In particular, we determine whether they fulfill the following two requirements from section 1.1:

1. Support for wide-spread data replication to allow replicas to be placed on arbitrary peers

CHAPTER 2: P2P Systems 13

°e V Peer

0" """ .'
V ·,·······5uper

e .. · .. e
Peer

e······ e'peer Q

V Super •• , .•.•..•..•...•• "'--e-"p·e, e e 8 Peer .;e
e

Figure 2.5: An example of a super-peer network

in the network, rather than only a few specific peers;

2. Support for efficient data location to allow the system to quickly determine the location

of replicas in the network when propagating data updates

We look at each of the following types of P2P networks: unstructured, structured and loosely

structured P2P systems.

2.3.1 Unstructured P2P Systems

Unstructured P2P systems do not impose any rules on where data should be stored in the net

work. As a result, they are well-suited to wide-spread data replication, as the placement and

number of replicas in the network are not restricted. However, due to this unrestricted data

placement, the system has no global knowledge of where data are stored. Consequently, in

order to locate data, the system needs to do a complete search of the network. This is gener

ally performed using a broadcasting algorithm that floods the network with lookup messages

until data items of interest are found or the search times out. An example of this broadcasting

algorithm is the lookup mechanism used by the Gnutella protocol [75].

In Gnutella, lookups are performed by recursively sending lookup messages to each neighbour

ing peer. When these neighbouring peers receive the lookup messages, they forward it to each

of their neighbours which, in turn, forward it to each of their neighbours. This process contin

ues until the data is found. To prevent endless propagation of lookup messages in the network,

each message is assigned a time-to-live (TTL) value that is decremented at each hop. When the

TTL value reaches zero, the lookup message is removed from the network.

14 CHAPTER 2: P2P Systems

This broadcasting algorithm is illustrated in figure 2.6. In figure 2.6(a), peer A, sends a lookup

message to all of its immediate neighbours: peers B, C and D. During the next hop (fig

ure 2.6(b)), peers B, C and D forward the request to each of their immediate neighbours: B

sends it to E, D sends it to C, while C sends it to D, E, F, H and I. Note that the messages

that C and D send to each other will be dropped to avoid causing loops. Also, even though peer

A is an immediate neighbour of B, C and D, the message is not sent back to A. In figure 2.6(c),

the data is found at peer H, which responds with an appropriate reply message. This reply

message is routed along same path through the network as the original lookup message, but in

the opposite direction.

G

8

(a) (b)

8
8~ .. st'"il!lCr

Ex ... 8
_---:------8

8

(c) (d)

Figure 2.6: The Gnutella data location algorithm. The dashed lines represent the logical connections
between the peers in the network. The bold solid and dashed arrows indicate the flow of lookup and
lookup response messages, respectively.

The main problem with this data location algorithm is that it does not scale well. It incurs

a heavy load on the network due to the high bandwidth required to transmit all the lookup

messages. The larger the network, the greater the number of messages required to locate data.

Furthermore, the TTL value assigned to messages effectively imposes a horizon in the network

CHAPTER 2: P2P Systems 15

beyond which lookup messages cannot reach. If a replica exists at a location in the network

that requires (TTL + 1) message hops, then that replica will never be found. Therefore, while

unstructured P2P systems are good for wide-spread data replication, they are let down by the

inefficiency of their data location algorithms.

2.3.2 Structured P2P Systems

Structured P2P systems attempt to address the scalability issues of unstructured P2P networks

by placing data at precise locations in the network. Data lookup operations are much more

efficient, taking approximately O(logN) message hops through the network, where N is the

number of peers in the network [3].

Chord [67] is an example of a structured P2P protocol that is used to implemented DHTs. It

uniquely maps a set of data IDs (or keys) to a set of peers. Each peer in the network is assigned

a unique peer 10 and is arranged in a circular topology as shown in figure 2.7. A data lOt is

mapped to the peer with the smallest peer 10 greater than or equal to i. This peer is called the

successor of i. The successor of data 10 0 in figure 2.7, for example, is peer 2, since 2 is the

smallest 10 in the network greater than or equal to O.

Each Chord peer maintains a routing table called the finger table that consists of Tn = log2(N)

entries. Each entry in the finger table contains the 10 and address of a successor that follows

the peer in the circular topology. Theith entry in peer a's finger table is the smallest peer b that

is greater than or equal to (a + 2i)rn.od(2m). For example, in figure 2.7, the second entry in

peer 2's finger table refers to peer 5, since peer 5 has the smallest 10 greater than or equal to

(2 + 21)mod(i3) = -1.

Determining the location of a data item with an 10 cr in the network is equivalent to finding the

successor of.r. This is performed by first checking if .r is between the 10 of the current peer

and the 10 of the immediate successor, s. If it is, the lookup terminates, and peer s is returned.

Otherwise, the lookup request is forwarded to the peer in the finger table with the largest 10

preceding .r. This process repeats until the successor of .r if found. For example, assume a user

at peer 7 in figure 2.7 wishes to determine the location of a data item with 10 -1. The immediate

successor of peer 7 is peer 2. Since 4 is not between 7 and 2, peer 7 forwards the request to

peer 3, the peer in its finger table with the largest 10 preceding 10 -1. At peer 3, -1 is between 3

and 5. Since 5 is the smallest 10 greater than or equal to -1, the search terminates, and peer 5 is

returned.

16 CHAPTER 2: P2P Systems

Flrger table
Successor

0 2

1 2

2 3

7 ··0·

... s ···0

Flrger table

Successor

0 J

.... 1 5

2 7

.... 8 3

Finger table

Successor
.. ····· · ··0··· .. ···· .. · Flrger table

Successor

0 7 0 5
1 7 1 5

2 2 2 7

Figure 2.7: An example of a Chord P2P network

While systems like Chord provide efficient O(logJ\n data location mechanisms, they restrict

the placement of data in the network, and thus, do not support wide-spread data replication. In

our example, a data item with ID 4 may only be placed on peer 5 in the network. Otherwise,

the lookup algorithm will fail.

Dabek et al [21] suggest that data replication in Chord should be performed by placing a data

item not only on its immediate successor, but on its le· immediate successors in the ring, where

k is less than or equal to the size of the finger table, m. Therefore, if k is 2 in our example,

then a data item with ID 4 would be stored on peers 5 and 7 in figure 2.7. If the immediate

successor then departs the network, the data item will immediately be available on one of the

other k successors. The data item is also copied to the peer in the ring that becomes a new

successor of the data item. This way, a constant k number of replicas of a particular data item

is maintained in the network. For example, if J,; is 2 and peer 5 exits the network, then data item

4 will be copied to peer 2 so that it exists on both 7 and 2.

One problem with this replication approach, however, is that it requires data items to be copied

to peers whenever a new peer becomes one of the k successors. If the rate of peer joins and

departures is high, the k successors will constantly change, resulting in many data item transfers

being made in an attempt to maintain the k replicas. If the sizes of the data items are very large,

then the bandwidth cost incurred by all these transfers will be significant.

CHAPTER 2: P2P Systems 17

2.3.3 Loosely-Structured P2P Systems

Loosely-structured P2P systems can be regarded as a hybrid between unstructured and struc

tured P2P systems. They impose some structure on the network like structured P2P systems.

Yet, like unstructured P2P systems, the location of data in the network is not necessarily re

stricted by the network topology.

The data location mechanisms used in loosely-structured P2P systems are similar to those in un

structured P2P systems. However, the flood is constrained by only forwarding lookup messages

to specific neighbouring peers, rather than all neighbours. The decision for which neighbours

a lookup message should be forwarded to is based on a number of application-specific factors.

Some loosely-structured P2P systems such as [42] use indexing structures that summarise the

data stored at the peers reachable through the network links. These indexing structures provide

hints on where the lookup message should be propagated next.

While this data location algorithm is more scalable than the unconstrained flood in unstructured

P2P systems, it still has some limitations. Firstly, if the aforementioned indexing structures are

used as routing hints, then whenever data items are stored or deleted at a peer, the indexing

structures summarising that peer's data need to be updated as well. Propagating these index

updates incurs bandwidth costs and may take some time to reach all peers in the network. Also,

the indexing structures may only be probabilistic data structures. If they give false positives,

unnecessary paths in the network will be followed [42]. Finally, some loosely-structured P2P

systems such as FreeNet [20] assign TTL values to lookup messages. This has the same horizon

effect as in unstructured P2P systems, where peers beyond the horizon are unreachable.

2.4 Discussion

Looking at the various P2P architectures, we observe the following: there is a conflict between

support for 'rvide-spread data replication and support for efficient replica location.

On the one hand, we have unstructured P2P systems that allow data to be placed anywhere in the

network, and thus, fulfill our need for wide-spread data replication. However, the data location

algorithms used in those systems makes locating replicas in the network very inefficient. On the

other hand, we have structured P2P systems that provide more efficient O(logS) data lookups.

However, such systems restrict the placement of data on only a few specific peers in the network,

and thus, restrict the spread of replicas.

18 CHAPTER 2: P2P Systems

To solve this dilemma, we propose the use of a separate global data location index (or catalogue)

that maps the IDs of the replicas to the IDs of the peers in the network that store those replicas.

This is the approach taken in this dissertation to locate replicas. The idea is based on the replica

location mechanisms proposed in [10, 17 J, and is discussed in further detail in the following

chapter. The global data location catalogue may either be implemented as a web service or, if

complete decentralisation is desired, on top of a DHT. In this work, we are not concerned with

how the catalogue is implemented. Such implementation details are orthogonal to our work and

left for future research.

One consequence of using a global data location catalogue is that it allows the data replica

tion and update propagation algorithms proposed in this dissertation to work at a higher level,

without depending on the architecture of the underlying P2P network or its internal implemen

tation details. If an unstructured P2P system is used, the catalogue can be consulted to quickly

determine which peers in the network store a particular replica. If a structured P2P system is

used, the structured network itself could act as the catalogue, storing the pointers to peers with

replicas rather than storing the replicas itself.

Chapter 3

Existing P2P Replication, Location and

Update Propagation Techniques

This chapter presents some of the research that has been conducted into data replication and

update propagation techniques in P2P systems. Our discussion focuses on data replication,

replica location and update propagation.

3.1 Data Replication

In [55], a data replication strategy is described where each peer in the network maintains an

approximate model of the entire network. This model is used to determine the number of repli

cas to create, the time the replicas should be created and the location where the replicas should

be placed in order to maintain a desired user-specified data availability level. This approach

relies on a resource discovery service to find available storage in the network to place replicas,

and a tool to provide information about the current state of the system. The model consists of

four parameters: the probability that a peer is online, the ratio between the size of the data to

replicate and the available bandwidth, the cost of storing a data item at a particular peer, and the

accuracy of the replica location mechanism.

The number of replicas to create is computed as a function of the model parameters and the

desired level of data availability. Once this number has been calculated, the replica location

mechanism is used to determine the number of replicas currently in the network. If the number

of existing replicas is less than some threshhold, the system recreates the difference and inserts

it into the network.

19

20 CHAPTER 3: Existing P2P Replication, Location and Update Propagation Techniques

In order to determine where the newly created replicas should be placed, the resource discov

ery mechanism is used to obtain a set of candidate storage peers. These candidates must have

sufficient storage space available to store the replica, must have transfer times below a certain

threshhold, and must not already store a copy of the data to be replicated. The best candidates

are selected using a heuristic algorithm that seeks to maximise the difference between the repli

cation benefit and the replication costs. The replication benefit is the reduction in transfer time

from the candidate peer to potential requesters of the replica. The replication costs are the costs

of storing the replica at the candidate peer and the time to transfer the replica from the current

peer to the candidate peer.

To determine when replicas should be created, the authors propose performing periodic checks

to determine the number of replicas in the network. The frequency of these checks is altered

based on how often the checks reveal that more replicas should be created. If consecutive checks

show that more replicas need to be created, the frequency of the checks is increased, and vice

versa.

TotalRecall [7] also tries to dynamically adjust its replication strategy to ensure a user-specified

level of data availability. It continuously monitors the availability of the peers in the network

to measure two peer behavioural patterns: short-term and long-term (or permanent) peer depar

tures from the network.

Using the short-term peer departure measurements, TotalRecall tries to maintain a certain level

of data redundancy by creating additional copies of data in the network. The number of copies

to create is calculated as a function of the target data availability and the mean availability

of the peers in the network. To handle long-term or permanent peer departures, a data repair

process is used to reinsert redundant data back into the network onto new peers. Two data

repair processes are proposed: eager and lazy repair. Eager repair immediately repairs the loss

of data whenever peers leave the network. This ensures that the data redundancy level remains

constant. However, this results in high bandwidth costs, especially when peers constantly leave

the network. Furthermore, eager repair does not make any distinction between short-term and

long-term peer departures. Therefore, many repair procedures may unnecessarily be executed.

With lazy data repair, the repair process is delayed for as long as possible. This result in reduced

bandwidth costs. However, it requires that the availability and data of every peer in the network

be tracked in order to determine when repair processes should be initiated.

The problem of placing replicas in the network to optimise data availability is considered

in [25, 24]. The authors decompose the problem into two phases: initial placement and place

ment improvement. The initial placement phase is concerned with determining suitable loca-

CHAPTER 3: Existing P2P Replication, Location and Update Propagation Techniques 21

tions in the network to store newly created replicas. The placement improvement phase uses a

distributed hill-climbing algorithm to continually relocate replicas to improve data availability.

Placement improvement is performed by swapping replicas between two peers in the network

in order to bring the availability of the swapped replicas closer together. Three placement

improvement algorithms are proposed: RAND-RAND, MIN-RAND and MIN-MAX. In the

RAND-RAND algorithm, the replicas to swap are randomly selected by the peers. In MIN

RAND, one peer selects the minimum-availability replica from its data store, while the other

peer selects a replica randomly. Finally, in MIN-MAX, one peer selects minimum-availability

replica, while the other selects the maximum-availability replica.

Using simulations, it was shown that initially placing replicas on highly available peers in the

network skews the distribution of free space in the network. Greater storage costs are imposed

on high availability peers compared to lower availability peers. It also weakens the spread of

replicas throughout the network, because replicas are placed only on a relatively small number

of peers in the network. The authors thus conclude that replicas should initially be placed

at random locations in the network. With regard to placement improvement, MIN-MAX was

found to be the most efficient of the three hill-climbing algorithms, while RAND-RAND was

the most effective.

J unqueira et al [40 J also look at replica placement. They argue that replica placement algo

rithms should take the diversity in the network into account, and bias the placement of replicas

on peers that are "different". A peer is considered "different" based on a number of factors:

different geographical locations, different operating systems or software versions, and so on.

The rationale behind this approach is that the availability of "similar" peers may be correlated

in some manner. For example, if a large-scale attack on the network causes a peer to fail due to

some vulnerability in the software the peer is running, then there is a good chance that another

peer running the same software will fail as well. A model is developed in [40J to represent

diversity, and simulation results are reported. However, no empirical results for an actual P2P

system are provided.

3.2 Replica Location

The approach taken in this dissertation to locate replicas in the network is to maintain replica ID

to peer ID mappings in a globally accessible catalogue. There are various existing systems that

implement such a global catalogue. Giggle [17], which is part of the Globus Toolkit version

3 [10, 74], is one example.

22 CHAPTER 3: Existing P2P Replication, Location and Update Propagation Techniques

The Giggle framework consists of 2 indexing structures: a Local Replica Catalogue (LRC) and

a Replica Location Index (RLI). The LRC keeps information about replicas stored at a particular

peer. It maintains a table of logical-to-physical name mappings, where the logical name is the

data item ID and the physical name is the location of the data item in the network. Each RLI

keeps a collection of entries that map the logical names to LRC addresses. This allows the

information of one or more LRCs to be aggregated into a single index to support the lookup of

mappings from multiple LRC sites. Determining the location of a data item in the network thus

involves querying the RLI to obtain the addresses of LRC sites. Then, the LRCs are queried

to lookup the physical names corresponding to the logical name. RLI mappings are assigned

timeout values and must periodically be refreshed. This allows the system to automatically

remove RLI entries associated with failed or inaccessible LRC sites.

For increased reliability and load balancing, multiple (and possibly redundant) RLI sites are

deployed in a hierarchical manner. An example of this deployment is shown in figure 3.1.

P-RLS [10] is an extension of Giggle built on top of Chord. It attempts to eliminate the ad

ministration overhead involved in manually configuring a hierarchical network of RLI sites by

dynamically organising sites into a P2P overlay network. Like Giggle, P-RLS consists of a

network of LRCs and RLIs. However, RLIs are extended to operate as Chord peers. In order to

resolve a particular logical name, P-RLS uses the logical name as a key into the Chord network

to retrieve the addresses of LRC sites. The system then queries each of the returned LRCs to ob

tain the physical names corresponding to the logical name. P-RLS takes advantage of Chord's

successor node information to operate reliably when peers depart the network. Mappings are

replicated at the k successor nodes in the Chord ring as explained in section 2.3.2.

Boundary Chord [39] also uses Chord to manage its network of Replication Service Peers

(RSPs). RSPs are organised in a multi-ring topology based on the logical domain in which each

RSP resides. A logical domain is group of peers that belongs to a particular virtual organisation

participating in the network. Each RSP consists of a Local Replica Discovery (LRD) compo-

Figure 3.1: An example of the hierarchical deployment of RLI and LRC sites in Giggle

CHAPTER 3: Existing P2P Replication, Location and Update Propagation Techniques 23

nent, which stores logical-to-physical name mappings, and a Local Replica Index (LRI) com

ponent, which maintains logical-name-to-LRD mappings. Physical name lookups in Boundary

Chord is performed in the same manner as in P-RLS.

Ripeanu and Foster describe an alternative P2P-based approach in [57]. In contrast to P-RLS

and Boundary Chord, their system does not route lookup queries through the network. Instead

Replica Location Nodes (RLNs) are organised into an unstructured P2P overlay network, where

each RLN distributes the collection oflogical names for which it stores logical-to-physical name

mappings to all other RLNs in the network. Each RLN thus eventually gains an entire view

of the mappings stored in the network. To reduce bandwidth costs, the collections of logical

names that RLNs propagate are summarised using Bloom filters [8]. Bloom filters are compact

probabilistic data structures that are used to quickly determine whether a given element belongs

to a set. They are much smaller in size than the set they summarise.

Logical-to-physical lookups are performed as follows. When a RLN receives a lookup query,

it first checks if a mapping for the given logical name is stored locally. If so, the associated

physical name is returned. Otherwise, it checks the Bloom filter summaries it received from

remote RLN s to see which RLN in the network might store physical names corresponding to

the requested logical name. If such a remote RLN is found, the request is forwarded to that

RLN to obtain the physical name.

The advantage of this approach is that query latency is kept low. It requires at most one mes

sage hop in the network to perform lookup queries. However, the cost of performing mapping

updates is high, as updates need to be propagated throughout the entire network to reach all

RLNs.

3.3 Update Propagation

In [23], a push-pull rumour-spreading algorithm is proposed to propagate updates to replicas.

During the push phase, updates are propagated throughout the network using a constrained

Gnutella-like flooding scheme, in which update information is recursively broadcast to a se

lected number of neighbouring peers. During the pull phase, offline peers that rejoin the net

work search for data updates in an attempt to synchronise their replicas with those stored in the

rest of the network. Multiple peers are contacted, and the update is pulled from the peer with the

most up-to-date copy. Due to the flooding scheme, the network overhead involved in pushing

updates through the network is significant, especially when data are frequently updated.

24 CHAPTER 3: Existing P2P Replication, Location and Update Propagation Techniques

Wang et al [70] propose an alternative approach using a bidirectional chain structure as shown

in figure 3.2. Each data item in the network has a logical replica chain composed of all the

peers in the network storing replicas of the data item. Each replica holder maintains a list of

the k nearest peers in the chain in both directions. These k peers are called probe peers. When

a data item has been updated, the updating peer pushes the update to its online probe peers.

The farthest online probe peer in the chain receiving the update then forwards the update to

all its online probe peers in the same direction through the chain. This process continues in a

recursive manner until the update has reached all the online peers in the chain. When an offline

peer rejoins the network, it synchronises its replicas with those in the rest of the network by

contacting an online probe peer and pulling updates from it.

Figure 3.2: The update propagation chain proposed in [70]. The arched arrows indicate the flow of
update messages from peer i through the chain.

A similar technique is presented in [71] that uses a tree structure instead of a chain. An n-ary

tree is constructed for each data item in the network, where the root of the tree is the owner of

the data item, and the other nodes are the peers storing replicas of the data item. Whenever a

data update occurs, the update is propagated through the tree from the root to the leaf nodes.

One limitation of all update propagation techniques described in this section is that they do not

take the access frequencies of replicas in the network into account. Whenever an update occurs,

it is immediately propagated to all replica holders, even if the replicas stored there are accessed

very infrequently. This may result in unnecessary bandwidth costs.

Chapter 4

Managing XML Content in P2P Systems

In this chapter, we briefly describe the XML data format, and then discuss examples of existing

XML P2P systems.

4.1 XML - The eXtensible Markup Language

XML [93] is a markup language for describing and storing structured information. It is an open

standard recommended by the World Wide Web Consortium (W3C) [91], and has become the

de facto means of transferring data between heterogeneous systems on the Internet [88, 92 J.

Data in XML are described in plaintext documents using a vocabulary of tags (or elements).

This vocabulary is not predefined. Instead, users are responsible for specifying their own vo

cabulary of tags to describe their data. This is often accomplished by defining a Document Type

Definition (DTD) [96] or an XML Schema [97], a set of rules that dictate the names, structure

and data types of the elements allowed an XML document. An example of an XML document

is shown in figure 4.1.

4.2 Existing XML P2P Systems

In this section, we survey five existing XML P2P systems. We also briefly discuss the various

data replication and update mechanisms in these systems.

25

26

<library>
<oooks>

CHAPTER 4: Managing XML Content in P2P Systems

<oook caLalogId="JAOl" reserved="yes">
<t~tle>A Beginners Guide to Java</Litle>
<author>J. Ava</author>
<year>200l</year>

</book>
<book caLalogId="GOF94">

<title>Design Patterns for Dur.~ies</LiL~e>
<author>G. o. Five</author>
<year>1994</year>

</book>
</books>

</liorary>

Figure 4.1 : An example XML document

4.2.1 BRICKS

The BRICKS project [58 J aims to integrate digital libraries across Europe in order to provide

location-transparent access to cultural information. It is built on top of a DHT, and stores XML

documents by splitting them into pieces and spreading the pieces amongst the peers in the

network. The XML pieces are grouped into sets, each with a unique set ID. These sets usually

contain related XML pieces, such as whole XML subtrees or siblings, where each XML piece

is assigned an ID unique to that set.

In order to store data in the network, the set IDs are used as keys into the DHT, and the corre

sponding sets are placed on the peers to which the keys map. To retrieve data, a reference to the

root element in the XML document needs to be known. This root reference is a cryptographic

hash of a symbolic name associated with the XML document. The pieces which make up the

XML document are then retrieved from all the peers on which they are stored, and combined.

Retrieving the pieces requires that a peer have knowledge of both the ID of the set in which the

desired piece is stored, as well as the ID of the desired XML piece within the set.

With regard to replication, BRICKS uses a modified read-one-write-all-available (ROWA-A) [66]

replication protocol to maintain data availability. Missing replicas are periodically recreated and

re-inserted into the network. The frequency of these re-insertion periods is determined by mea

suring the average data availability in the network. If the average data availability is above a

certain threshhold, re-insertion periods are made less frequent. If the data availability is less

than the threshhold, the frequency is increased.

Versioning is used to support data updates. Whenever a data item is updated, its version number

is increased. It is then assumed that the data item with the highest version number is the latest

CHAPTER 4: Managing XML Content in P2P Systems 27

version of the data item.

No experimental data replication and update results are provided.

4.2.2 XP2P

XP2P [9] is also built on top of a DHT. It extends Chord to support the lookup of XML frag

ments using linear path expressions ofthe form: sdi]llS2[J]l2 ... s,,[k], where 8" is a path expres

sion step, I" is either a child (I) or descendant (1/) axis, and [k] is an optional positional filter.

XML fragments are defined as XML subtrees that may contain special substitute elements in

place of missing child fragments.

To store an XML fragment in the system, XP2P hashes the path expression of the fragment into

the Chord virtual space, and then stores the fragment on the peer to which the path expression

is mapped. The path expression of an XML fragment is defined as the distinct linear absolute

path starting from the root of the XML document to the root fragment in the document. This is

illustrated in figure 4.2. If two distinct XML fragments have the same path expression, the path

expression is prefixed with the name of the originating document.

In addition to storing the content of the XML fragment, XP2P also stores a set of path expres

sions of related XML fragments. This set consists of the super-fragment path expression, as

well as several child-fragment path expressions. The super-fragment path expression is the path

expression of the XML fragment which is the ancestor of fragment being stored, whereas the

child-fragment path expressions are the path expressions of all the XML fragments of which

the fragment being stored is an ancestor. The related path expression set is used during data

lookups to link related XML fragments.

XP2P takes advantage of the Chord overlay network structure to replicate XML fragments for

increased reliability. In Chord, the peers are organised in a logical ring topology, where each

peer stores list of its I.. successors in the ring. Instead of storing a XML fragment only at a

peer's immediate successor, it is replicated at each of the k successors. However, as discussed

in section 2.3.2, this replication scheme restricts replicas to only a few specific peers, weakening

the spread of replicas through the network. Also, high bandwidth costs are incurred to maintain

replicas at the k successors when the rate of peer arrivals and departures is high.

No information is provided on how replicas are kept up-to-date when one or more of the k

successors depart the network and rejoin after the data updates have occurred.

28

.'autllors/author[1 ~

CHAPTER 4: Managing XML Content in P2P Systems

Patt' expressior ::: :autrors
s.uper-fragment path Expressior :::: foI/A

Crild-f! agrrent patr expressions:::: { iauthors:autror[1:, :autrors1authcr[2: 'publicatlof1s }

(a)

'a ut rors:, aut hod 2 : ... publlcat lars/books articles

~'(le[L

if 6 "e /alotrors.'author[2:.'publicatrorSlarticles:artrcle{ l::Journal

title year E

Path e)l.pressior ::: fautror SI author[2:lpublicatlons
Super-fragment path expressior ::: /CluthorSlauthor[2:

Child-fragment path expressiol"ls ::: { ;'autrors,'author[2:ipublicatior:s/oooks.
iauthcr siauthor[2::publicatlops:articles.'artlclel 1: ;Journal }

(b)

Figure 4.2: Determining the path expressions of XML fragments in XP2P. Each circle in the diagram
represents an element in the XML fragment. The filled circles are special substitute elements which
stand in place of missing child or super fragments.

4.2.3 XPeer

XPeer [65] uses a hierarchical unstructured super-peer architecture to facilitate distributed XML

query processing. Peers are organised into clusters based on the similarity of their data schemas.

Each cluster is managed by a single super-peer that is responsible for performing administration

tasks within the cluster. These tasks include query evaluation, maintaining schema information

of the peers in the cluster and tracking the arrivals and departures of peers. Peers become

super-peers on a voluntary basis, but still maintain their normal peer status.

Data in XPeer are represented as unordered forests of node-labelled trees, where each tree

is augmented with the location of the peer that stores it. The trees are assigned a freshness

parameter that indicates the last time an update was performed on the trees. Each peer exports a

CHAPTER 4: Managing XML Content in P2P Systems 29

Figure 4.3: The hierarchical unstructured super-peer architecture of XPeer. The circles represent the
peers in the network, while the rectangles indicate the super-peer clusters. The peer that is the parent of
all the peers in a cluster is the super-peer.

description of its data in the form of a tree-shaped DataGuide [33] that is automatically inferred

from the data using a tree search algorithm. This DataGuide contains each distinct path in the

XML documents stored by the peer, and is used to identify relevent data sources during query

compilation. The DataGuides for all the peers within a particular cluster are maintained by the

cluster super-peer, and are intergrated to form one DataGuide for the entire cluster. Figure 4.4

shows an example of a DataGuide for a single peer and an integrated DataGuide for the cluster.

r ~,,",c>
I oooks

/I\
title autrors Isbn

(a) An example of
a DataGuide ex
ported by a single
peer in a cluster

publlcatiors

books articles

title autrors isbr' title authors jOLJrra,

(b) An example of a DataGuide stored at the
super-peer. This DataGuide is the union of all
DataGuides of the peers in the cluster

Figure 4.4: Examples of the tree-shaped DataGuides used by XPeer. These DataGuides are used during
query compilation to find peers storing relevent data

XPeer uses the FLWR [99] core of XQuery as its query language, without the ORDER clause.

Query compilation is performed in two phases. In the first phase, the peer issuing the query

translates it into a location-free algebraic expression. This expression contains "holes" in the

places that indicate peer locations. During the second phase, the query is sent to the each super

peer, where the holes are replaced with the actual locations of the peers containing relevant

data. This is done by sending the query to the super-peer managing the cluster. This super-peer

matches the query with the integrated DataGuide for the cluster to find all the peers within the

30 CHAPTER 4: Managing XML Content in P2P Systems

cluster that store the desired data. Then, the super-peer sends the query to its parent super-peer

which, in turn, matches the query with the DataGuide for its cluster. This process continues until

the query has propagated up the entire network hierarchy to the root peer. Once this process

is complete, the query is sent back to the issuing peer, where it is executed. Query execution

involves applying common algebraic rewriting to the query, and splitting it into sub-queries that

are sent to the reI event peers.

Replication is performed within the clusters to balance the load and to exploit peers with large

computational resources. Even though data updates are allowed, there is no scheme to ensure

data consistency. Instead, replicas are assigned a time parameter that determines their lifetimes.

XPeer also incorporates operators in its query algebra that allow the user to specify how fresh

the replicas should be for them to be included in the query result [64].

4.2.4 Content-Based Multi-Level Bloom Filters

In l421, a loosely-structured XML P2P system is discussed. Each peer stores a set of XML

documents, where each document is represented as an unordered labelled tree.

A constrained flooding algorithm is used to locate data. The query is propagated through the

network by iteratively sending it to neighbouring peers that are believed to store relevant data.

In order to perform this constrained flood, each peer maintains a local index that summarises its

local data, as well as a merged index that summarise the data of all the peers that can be reached

through the links to neighbouring peers. To route a query, a peer first consults its local index

to see whether it matches the query. Then, it routes the query along the links whose merged

indices also match the query. This process continues until either a maximum number of hops

have been reached or until the query reaches a peer that has no merged index that matches the

query. In this case, the routing backtracks to the previous peer, who then propagates the query

through another link that matches the query and that has not been followed yet.

The indexing schema used in l42] is based on Bloom filters [81. Bloom filters provide an effi

cient and compact means of summarising the data stored by the peers in the network. Not only

are they much smaller than the XML documents which they summarise, but performing com

parison operations on Bloom filters is more efficient than performing comparison operations

on the XML documents themselves. In order to support the evaluation of XPath expressions,

multi-level Bloom filters are introduced. These multi-level Bloom filters preserve the hierarchi

cal relationships between the nodes in the XML document.

CHAPTER 4: Managing XML Content in P2P Systems 31

The disadvantage of using Bloom filters, however, is that they sometimes give false positives.

That is, they may incorrectly indicate a match. This results in paths in the network being

followed that lead to peers storing no relevant data.

Another limitation of this indexing approach is the high cost of performing data updates. When

ever an update occurs, not only does the local index need to be updated, but also all the merged

indices in the network that use the local index. This means that the peer performing the update

needs to propagate its local index throughout the network in a manner similar to a query. In an

attempt to improve the efficiency of propagating the updated local index, an update propaga

tion method is proposed in [44J where peers only propagate bits in the Bloom filter that have

changed rather than the entire Bloom filter.

4.2.5 Distributed XML Catalogues

A distributed catalogue framework for locating XML data sources is proposed in [30J. The

system uses the Chord overlay network to map XML element names to sets of data summaries.

These data summaries consist of two parts: a structural summary and a value summary.

The structural summary summarises the structure of the XML documents stored in the system.

It is a set of all possible unique path expressions that lead to a particular element in the XML

documents stored at a peer. For example, in figure 4.S(a), the structural summary for the author

element at peer Jh is the set, {I/ibrary/book, Ilibrarylarticle}. The value summary summarises

the actual contents of the XML documents. It is some domain-specific description of the XML

data, such as a value range (to support range queries) or a Bloom filter (to support equality

queries).

Whenever a peer joins the network, it inserts (key, data summary set) pairs into the system by

hashing the element names to keys in the Chord virtual space, and sending the data summaries

corresponding to the element names to the peers responsible for those keys. Each peer in the

network maintains a catalogue, such as a B+ tree [4], for storing the data summaries sent to

it. Figure 4.S(b) shows an example of how the data summaries for the path expressions in

figure 4.S(a) might be distributed in the network.

In order to locate data, the name of the element of interest is hashed into the Chord virtual key

space to derive the DHT lookup key. The query is then sent to the peer to which the DHT key

maps. The peer receiving this query matches the query to the data summaries in its catalogue

to determine the peers that store relevant XML documents. This list of peers is then returned to

DHT key
book

author

pnce
city

...

CHAPTER 4: Managing XML Content in P2P Systems

Peer Path expressions

Pl Ilibrarylbooklauthor
Ilibrary/article/author

...

P2 Ibookstorelbooklprice
Ibookstorelbooklauthor

...

P;l Ipeople/address/city
...

(a) A sample collection of path expres
sions for XML documents stored in the
network

DHT values
SumrnorYPl = {/library}

SurnrnorYp2 = {lbookstore}
SumrnarYPl = {/librarylbook, Ilibrary/article}

SmnmarYp2 = {lbookstorelbook}
SummorYp2 = {lbookstorelbook}
SummarYp:l = {/people/address}

...

Peer storing DHT values

P2

P:l

Pl
P2
...

(b) The contents of the DHT after inserting the data summaries for the path expressions in figure 4.S(a)

Figure 4.5: An example of how XML data in a P2P network are indexed using the distributed XML
catalogue approach proposed by [30]

the querying peer. Finally, the querying peer issues the query to each peer in the list to perform

the actual query processing on the XML documents.

When data are updated, the data summaries stored in the catalogues need to be updated as well.

This process is performed in the same manner as data insertions. Since the DHT keys of the

updated data summaries remain the same, an insertion simply overwrites the old data summary

entries in the catalogue. In order to handle data consistency issues, data updates are restricted

to the peer that created the data summaries (i.e. the owner of the data).

The system also employs a replication scheme. However, replication is performed on the data

summaries rather than the actual XML documents. Furthermore, replication is used for load

balancing rather than to increase data availability. Whenever a peer detects that queries for a

particular DHT key mapped to it exceed some limit, it replicates the data summaries corre

sponding to that key on one or more peers in the network. Then, it creates mappings in its

catalogue that point to the new locations of the data summaries. During data lookups, these

mappings are handed to the querying peer, and are used to query the new locations one after the

other in a round-robin fashion.

CHAPTER 4: Managing XML Content in P2P Systems 33

4.3 Discussion

In this chapter, we surveyed five existing P2P systems that use XML as their underlying data

format. We observe that all of these systems either do not consider data replication for main

taining data availability, or do not handle data replication in a way that fulfill our requirements

in section 1.1.

The DHT-based systems such as BRICKS and XP2P cannot store replicas at arbitrary locations

in the network, as the DHT restricts the spread of replicas. XPeer, being an unstructured net

work, could place replicas anywhere in the network. However, XPeer only performs replication

within super-peer clusters. Inter-cluster replication is not considered. The system proposed

in [42 J does not consider data replication issues, nor does [30].

In the following chapter, we present our own XML P2P framework. This framework was de

signed to meet our requirements in section 1.1.

Chapter 5

A P2P Framework for Replicated XML

Document Fragments

Before we could embark on our study of replication and update propagation algorithms, there

was a need to develop a XML P2P framework. This would allow for the evaluation of any

number of alternative replication strategies and update propagation techniques.

To make this possible, the core mechanisms and support structures in the framework had to be

identified and investigated. There were two objectives. Firstly (and most importantly), was the

definition and design of components that would enable us to meet our requirements identified in

section 1.1. That is, wide-spread data replication, replica location and update propagation. The

second goal was to find the most general approach for each component so that the framework

could serve as a base for future experimentation and be reused with different P2P architectures.

This chapter describes this framework. The following issues are discussed:

• System constraints. Issues considered here include the type of data each peer stores, the

data ownership and access rights (whether peers may update or delete data), as well as

how data items in the system are identified.

• The fragmentation of XML documents. This allows us to investigate the replication of

smaller XML document pieces in order to reduce replica transfer cost. Of primary interest

here is the manner in which XML documents are fragmented, and how fragments within

XML documents are identified and extracted.

• The location (~f replicas in the network.

34

CHAPTER 5, A P2P Fram~worl.: for R~lica(ed Xl\1L Thlcument ['ragments

'Meo " " .. - , .. ;'"

Repl;cated XML Document fr~gment. f,am~wo,k

,M, " .. ~"'
c. , .. ;", OUO ", " 0<"',, .. ~".t ~ , M,m, • ., .. ,

Figure 5.1 : An over-'iew of the ,eplicated XML docum ent fragmenls framework

35

• Update "umagemenl, \V~ specify (he how update, are appli~d to XML ,Iocum~nt:;. amI

what typ~s of Jocument update are ,uppor!~J_

• Q,,,'''' pma"'"ing, Whil~ lhis i, no(a focus of OUr work. support for basic Ji,lrii:>uteJ

qu~ry proce"illg is riescribed. The query pmce«jllg mechanisms pr~sellleJ illlhis chap

ter wcrc u,erito e\'alUal~ the r~plic~tion ~nd uprlate prop~g~tion ~lgoriThms_

All o\'er\'iew of the compoll ellts anri mechanisms provided ~y (he framework j, ,hown in flg

urc 5. 1. Replication tllJnagcmcnt is di,cussed in chaptcr 6.

5.1 System Constraints

I:::ac'h p"e, ill the network s(ores ~ coilectioll of XMI. Jocumellt,_ The OWller ofa Jo;:umelll j,

the peer th~t c011lributeri it to the lletwork. In addit ion to the,~ document.s. each peer m~y al.so

maillta!l1 a SC(of replicas. Thesc replicas arc XMI. documents or pieces of X"lI_ data (i,e X1>.lI.

fragments) lhat were ex(rac(eri from XML document:; and di:;tributed (hroughoutthc networ~,

The fragmentaTion of XMI. documcnts is ,Iisclls:;ed in section 5,2, In thi, :;ection. we simpl}'

r~fer to (he,e r~plicas as XMLjmgmenl.l',

Peers havc completc control oycr The X1>.lL fragments thcy store, They can dcletc thcm any

time at will. or further replicate Them if thc need arises, Howe"cr. !X'ers may not update X1>.lL

fragment', 01111' thc peer which own:; thc origin~l X"ll, document from which thc fragmcnts

wcre extracted may update Them. Allowing any peer in The neTwClfk tOllpdatc X1>.lL fragmenTs

may result in con~ic(:; if two or more !X'ers pcrform concurrent upd~(es on replicas of th~ same

fragmenL Rcsol\'ing the:;e contlicts is a challenging problem and is still an area of active rc-

36 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

search [27,46, 50]. Another restriction on peers is that they may not further fragment XML

fragments, as this would complicate updates.

Each XML fragment is assigned a unique 10. These IDs may be any identifier assigned by the

application. In our work, IDs are generated as follows:

id = hash(peerld + rootElementSame + R)

where peer I d is the 10 of the peer which owns the fragment, rootElementS (J me is the name

of the XML element that is the root of the unfragmented XML document, and R is an array

of randomly generated bytes. The function, hash(), is a cryptographic hash function such as

SHA-l [84] that, with very high probability, produces a unique output for every distinct input.

Concatenating the peer 10 and R to the input of the hash function ensures that the ID of the

fragment is globally unique throughout the system. The length of R is 20 bytes. This size

should be enough to minimise the possibility that two different fragments with the same root

element name on a particular peer receive the same 10.

In addition to the 10, each XML fragment is also assigned a version number to facilitate data

updates. This version number is incremented whenever the fragment is updated.

5.2 Fragmentation of XML Documents

When performing data replication, copying entire XML documents may be quite expensive,

especially when documents are large. It would be more efficient if only parts, or fragments, of

documents are extracted and replicated, rather than entire XML documents. This will result in

reduced networking cost when distributing replicas through the network. Furthermore, since

only document fragments are replicated, the replica creation algorithm can choose to replicate

only those parts of documents which are in demand, resulting in less unnecessary data being

circulated in the network. The decision what fragments to extract from the documents is made

by the replica creation algorithm, and is discussed in section 6.1.2. This section defines what

the term fragment means in this dissertation, and describes our XML fragmentation model.

Initially, our plan was to support arbitrary fragmentation. This would allow the replication

creation algorithm to extract specific pieces from XML documents for replication, excluding

any unnecessary parts. Figure 5.3 illustrates such an arbitrary fragmentation scheme on the

example XML document shown in figure 5.2. The circles drawn around the document nodes in

figure 5.3 indicate the fragments extracted from the document.

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments 37

Allowing fragmentation to be performed in this arbitrary manner means that fragments may

contain "holes". These holes are places in the fragment where elements present in the original

document were excluded. For example, in fragment jl in figure 5.3, there would be holes in

the positions occupied by elements b, hand i. Our solution to "fill" these holes was to insert

placeholder elements within the fragments to act as references to the missing elements. This is

reminiscent of the substitute elements mentioned in section 4.2.2 that are used in XP2P. These

placeholder elements would contain re f attributes whose values are the path expressions or

IDs of the subtree or fragment rooted at the missing element. Fragmentf] would then have the

structure shown in figure 5.4.

Whenever a query processor then encounters a placeholder element when traversing the doc

ument during query evaluation, it would use the reference to locate and retrieve the missing

fragment, or alternatively, ship the query to the peer storing the missing fragments for further

evaluation.

One problem with this arbitrary fragmentation approach, however, is that it incurs networking

overhead whenever a placeholder element is encountered. If the document is "finely" frag

mented, there would be many placeholder elements, resulting in a high network overhead. Other

issues such as ensuring that the references to missing fragments are correct when the original

XML document changes also presented a problem.

Therefore, instead of using an arbitrary fragmentation scheme, we opted for a simpler approach

in which we constrain the fragmentation to whole XML subtrees. Our definition of an XML

fragment as used in this dissertation is thus as follows:

XML fragment Given an XML document represented as a tree of nodes, t, with a root node,

1', an XML fragment, j, is a subtree of t rooted at some node n in t, where n is an XML

element node that is either a descendant of r or equal to r itself. An XML fragment is

thus either a subtree in an XML document or the entire XML document. The smallest

unit of fragmentation is a single XML element (a leaf node in t).

Figure 5.5 shows an example of how the sample document in figure 5.2 may be fragmented

using this fragmentation scheme. Limiting the fragmentation to whole subtrees does mean that

more data may be extracted from documents and replicated in the network, and thus involve

greater networking cost when transmitting replicas between peers. However, we believe that

this is the best approach, as it avoids the extra networking and computational overhead required

by a more arbitrary fragmentation scheme, while still offering the benefit of replicating smaller

XML fragments as opposed to replicating only entire XML documents.

38

<a>

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

<0>

<c>

<e><j><s/></j></e>
<f><k/></f>
<g><l/><m/><n/></g>

<h><o/><p/></h>
<i><q/><r/></i>

</c>
<d/>

Figure 5.2: An example XML document before fragmentation

11

Figure 5.3: Fragmenting the XML document in figure 5.2 using some arbitrary fragmentation scheme

<a>

<placeholder ref="f3"/>
<c>

</c>
<0/>

<placeholder ref="ref to subtree rooted at nUl>
<placeholder ref="fS"/>

Figure 5.4: XML fragmentation with placeholder elements. The fragment shown is fragment fl in
figure 5.3.

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

i1
.............. ~

"

!/::,::!1~\~-.J\~~.::' ,
i' ./ I I // \ ~<:: .. ;' / \ / / \ '<::::'"

'(I • (~-="-)).,:, ,(j ,>.)')
... " . .•.. ",•. '.",' ,.'

.......•.•..•. f4 --" "
.......... !?.........................

.....

. ...•.

\.

.. ..

Figure 5.5: Fragmenting the XML document in figure 5.2 by extracting whole subtrees

5.3 XML Fragment Path Expression Language

39

XML documents are fragmented using a Fragment Creator component. It receives a path ex

pression and an XML document as input, and extracts the subtree identified by the path expres

sion. This is illustrated in figure 5.6.

X.ML document

Fragment Creator Extractea Xt·1L subtree

XML subtree path expression

Figure 5.6: The Fragment Creator component

The path expression could be expressed in XPath. This would allow the system to use any

standard XPath query processing tool to perform the subtree extraction. However, using XPath

has two disadvantages. Firstly, XPath query processors depend on an in-memory model of the

entire XML document to operate [98]. This model is usually represented as a DOM tree 195].

If there is insufficient memory available to accommodate the DOM tree for the entire XML

document, subtree extraction will not be possible. Secondly, XPath query processors typically

traverse the XML document twice: once when the DOM tree is being constructed, and again

when traversing the DOM tree during query evaluation.

A more efficient approach than DOM is to extract the subtree on-the-fly as the XML document

is being parsed, without depending on an in-memory model of the document. SAX parsers [87]

are ideal for this. SAX parsers work by invoking callback procedures whenever certain events

40 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

(e.g. encountering start and end tags) occur. These callback procedures are implemented by

the application, allowing XML processing to occur on-the-fly as the document is being parsed.

Also, since SAX parsers do not build a document tree in memory, the memory requirement of

SAX parsers is very low.

However, the use of SAX also presents a problem: no information regarding the structure of the

XML document is kept and made available to the application. As a result, using complicated

XPath-like path expressions for addressing subtrees is not possible. Instead, a simpler path

expression language is required that allows a SAX-based Fragment Creator to extract subtrees

without knowing the document structure.

In this work, we use path expressions of the form

1 PI 1 P2/· . ·1 p"

where Pi is an integer indicating the position of an element at level i in the XML document tree.

Table 5.1 shows the path expressions for the example fragments 11 to 15 in figure 5.5.

Fragment Path Expression
fl /1
f2 /1/1

f3 /1/1/3
f4 /1/2

f5 /1/2/2

Table 5.1: Path expressions for the example fragments shown in figure 5.5

Using this path expression language, the Fragment Creator only needs to keep track of the level

and position of an element in the XML document while the document is being parsed. It does

not need any other information regarding the structure of the document. This path expression

language is also more concise than XPath. The implementation of a Fragment Creator is de

scribed in section 7.4.

5.4 Locating XML Fragments in a P2P Network

Once fragments have been extracted and replicated through the network, there needs to be a

mechanism to find fragments during query processing or when performing updates. These

fragments may be placed anywhere in the network on any number of peers. To handle this,

we introduce a component called a Fragment Location Catalogue (FLC), based on the replica

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments 41

location systems by [10, 17] described in section 3.2. The reason for using such a catalogue for

locating fragments in the network were discussed in chapter 2.

Conceptually, the FLC can be viewed as a global lookup table mapping the ID of a fragment

to the IDs of all the peers in the network that store that particular fragment. When a peer

receives a fragment from another peer, it inserts a (fragment! d. peer! d) entry into the FLC,

where fragment! d is the ID of the fragment, and peer! d is the ID of the receiving peer. The

FLC may be implemented as either a central registry accessible through a web service, or in a

distributed manner on top of a P2P network such as a DHT.

Fragment Location Catalogue

«query» 8 0(;) Peer
Fragment ID's Peer ID's

fl pI. p3

12 p53. p2. p12, p3, pI

Figure 5.7: A conceptual view of the global Fragment Location Catalogue (FLC)

5.5 Update Management

When the original XML documents are updated, the replicas in the network need to be up

dated as well in order to keep them consistent with the original data. This section describes

how updates are handled in the framework. The update propagation algorithm is discussed in

section 6.2.

5.5.1 The Fragmentation Table

The Fragmentation Table maintains information about the manner in which local XML docu

ments at a peer have been fragmented. It allows the system to determine what fragments in the

42 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

network need to be updated when the original XML document from which the fragments were

extracted has changed. The Fragmentation Table consists of two lists: a list of Document In

formation Nodes (DINs) indexed by the IDs of the XML document from which fragments were

extracted, and a list of Fragment Information Nodes (FINs) indexed by the IDs of the extracted

fragments. Figure 5.8 shows a diagrammatic view of the Fragmentation Table.

Each DIN keeps fragmentation information specific to a particular XML document. It stores:

• A list of IDs of all the fragments extracted from the XML document; and

• A table of (pathKr:pre88ion, FIN) mappings, where pathKr:pression is a path ex

pression in the form described in section 5.3, and F I S contains information about the

corresponding fragment.

Information pertaining to extracted fragments are stored in FINs. This is:

• The ID of the extracted fragment;

• The ID of the XML document in the local data store from which the fragment was ex

tracted;

• The path expression identifying the fragment in the XML document;

• A list of IDs of all the fragments that are ancestors of the extracted fragment; and

• A list of IDs of all the fragments that are descendants of the extracted fragment.

An ancestor and descendant fragment is defined as follows.

Ancestor and descendant fragments If T] and T2 are two subtrees in some XML document

D;, then Tl is an ancestor of T2 if T2 is a subtree of T1 . Conversely, if T'2 is a subtree of

T1 , then T2 is a descendant of T] .

An example of the information stored by the Fragmentation Table for fragments fl, 1!t and 15
shown in figure 5.5 is given in figure 5.9.

By arranging the Fragmentation Table in this two-level structure, the system can obtain infor

mation about extracted XML fragments in the following manner. If the system wants to obtain

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments 43

Document Information Node (DIN)

Fragmentation Table I Fragment 10 List I
DIN List FIN List

Document 10 1 , Pate Expressior 1

Document 10 1 Path Expression 1

Document 10 N Path Expression X

FIN List

Fragment 10 1
Fragment Information Node (FIN)

Fragment 10 2 Fragmert 10

Document 10

Fragment 10 M Path Expression ..--
Ancestor List

Descendant List

Figure 5.8: The Fragmentation Table

information about a particular extracted fragment when it only knows the ID of that fragment,

it can lookup the fragment in the FIN list. If the system wishes to determine what fragments

where extracted from a particular XML document, it can lookup the DIN for that document.

Finally, if the system wants to retrieve information about a particular fragment when given a

document ID and path expression, it can lookup the DIN for the document, and use its FIN list

to obtain the FIN mapped to the given path expression.

The Fragmentation Table is maintained locally on the peer which created the fragments. It is

populated whenever a fragment is extracted from an XML document. If no fragments were

extracted from an XML document, then there will be no entries in the Fragmentation Table

corresponding to that document.

5.5.2 Processing Document Updates

When a document has been updated, updates need to be propagated to the peers in the network

that store replicas affected by the update. To accomplish this, we define an Update Manager

component which, when given a list of fragments that have been created from a document, as

well as the old and new versions of the document, returns a list of IDs of all the fragments

that were updated, along with update descriptions (or deltas) that specify how each updated

fragment has changed. This Update Manager is shown in figure 5.10.

44 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

DIN FIN

1 fl 1 12 1 f3 1 141 15 1 fl

dl
FIN List

.11 , :1

il;l

ilili3
12 I f3 I 14l 15

;1;2

/1/2/2 FIN

"
14

dl
Fragmentation Table

...... ;1:2 ~
011'; List 11

dl 15

FIN

FIN List ~ 15
15 ,

dl

14
il!2.12

13 I fl 14
12

fl

Figure 5.9: An example of the information stored in the Fragmentation Table for fragments fl, f4 and
f5 in figure 5.5

Note that our framework does not require the update descriptions to be expressed in any specific

format. Such details are entirely implementation-dependent. Since encoding update descrip

tions is well beyond the scope of our work, we simply assume that it would be possible for a

peer receiving a series of update descriptions to derive the current version of a fragment by ap

plying the update descriptions to the old version of the fragment. Examples of existing update

description formats that may be used with XML data are described in [14, 18, 19,46,49,60].

In what follows, we briefly outline the manner in which document updates are processed.

5.5.2.1 Types of XML Fragment Update

We consider the following four classes of update which may apply to XML fragments. Note

that in this section, we make a distinction between an XML fragment and a (regular) XML

subtree. A fragment is a subtree that has been extracted from a document and replicated in the

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

Old version of XML document

New version of XML document

Fragmentation Table

Update Manager

10's of updated fragments

Update descriptions (deltasl
for updated fragments

Figure 5.10: The Update Manager viewed as a black-box

45

network (and thus has a corresponding entry in the Fragmentation Table), whereas a subtree has

not been made into a fragment.

Subtree insertion: A subtree insertion occurs when a new subtree is added to a fragment.

Subtree deletion: A subtree deletion occurs when a subtree is removed from a fragment.

Content change: A content change occurs when the text content of an element in the fragment

is updated, or when an element's attributes change.

This class of update can be further decomposed into the four types of update: value

updates, attribute insertions, attribute deletions and attribute value updates. However, in

this dissertation, we group them under one classification, because they do not affect the

element structure of the fragment whose content changed.

Fragment move: A fragment move occurs when a fragment is moved from one part of the

document to another. This may further result in two additional updates: a subtree insertion

into the fragment where the moved fragment was placed, and a subtree deletion from the

fragment where it had been. The additional two updates will not occur if the places where

the moved fragment was inserted and deleted were not fragments themselves.

Fragment moves only affect the path expression of the fragment, not its structure or con

tent. This type of update is thus not propagated to peers storing replicas of the moved

fragment. The path expression as well as the ancestor and descendant information in the

Fragmentation Table are simply updated.

When updates are performed on fragments, other fragments in the document may be affected

by the update as well. In particular, inserting a new subtree into a fragment 1 means that the

subtree is also being inserted into all of f's ancestors fragments. This bubbling-up of updates

may be explained with the aid of figure 5.11. Inserting a new subtree into fragment 13, means

that the subtree is also being inserted into fragments 12 and 1l. The same occurs during subtree

deletions and content changes.

Updates may also bubble-down the document. This happens during a subtree deletion when the

subtree being deleted is a fragment itself. All the descendant fragments of that deleted fragment

46 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

Figure 5.11: The bubbling of updates through an XML document. Inserting or deleting a subtree in
fragment f3, means that a subtree has been inserted or deleted in fragments f2 and fI as well.

are then considered deleted as welL For example, if the subtree being deleted is rooted at f1 in

figure 5,11, then J2 and J3 are deleted as welL

Note that subtree insertions and deletions cause the path expressions of fragments to change. For

example, inserting a new element between elements band c in figure 5.12, causes c's path ex

pression to change from /1/2 to /1/3. Whenever the Update Manager detects that a fragment's

path expression has changed, it updates the path expression information in the Fragmentation

Table.

(/1/1) (/1/2)

x

Figure 5.12: An example of how a subtree insertion affects the path expression information

5.5.2.2 Outline of the Update Process

Now that we have described the types of update that may be applied to XML fragments, we

give a short high-level description of how the Update Manager might determine what fragments

in a document have been updated.

First, the ID of the XML document being updated is used as input to the Fragmentation Table

to lookup the IDs of all the fragments that have been extracted from that document. Then,

for each fragment ID, the corresponding fragment is identified in the old and new versions of

the document, and a comparison operation is performed to determine whether the fragment

has been updated. If so, the fragment is marked as updated, and a description of the update

is calculated and associated with the fragment. If the update was a subtree insertion, subtree

deletion or a content change, then all the ancestors of the fragment are marked as updated as

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments 47

well, and are associated with the update description. If the fragment itself was deleted, then

all the fragment's descendants are also marked as deleted. If a fragment's path expression has

changed as a result of a subtree insertion, subtree deletion or fragment move, the fragment's

path expression information is updated in the Fragmentation Table.

Note that comparing XML documents in order to detect updates is an XML differencing and

tree matching problem that is beyond the scope of this work. Therefore, we do not look at

how the system determines what fragments in an XML document have been updated and how

they have been updated. We simply assume that an such algorithm is available to the system.

For an in-depth discussion on methods for detecting changes in XML documents, the reader is

encouraged to refer to [2, 13, 14,15,26,38,45,46,47,48,691.

5.5.2.3 Example

The following example illustrates how the update process works. Consider the XML document

in figure 5.13(a) expressed as a tree of nodes. This document has five fragments extracted from

it, labelled .11 to .15. The Fragmentation Table information for these five fragments is shown in

table 5.13(b). Now, assume the document has been updated in the following manner:

1. Subtree deletion: element e is deleted from .11. Fragment f1 is marked as updated and

a subtree deletion description is associated with it. Since 11 does not have any ancestor

fragments, the subtree deletion does not bubble-up the document and no other fragments

are marked as updated.

2. SlIbtree insertion: a new element r is inserted as a child of element a. Since a is not

part of a fragment that appears in the Fragmentation Table, no fragments are marked as

updated. The insertion does, however, affect f3's path expression. Therefore, the path

expression for 13 in the Fragmentation Table is changed from 11/3 to Ill-t

3. Content change: the text content of element k is changed to some value t'. Since element

", is part of fragment 14, fragment .14 is marked as updated and a content change update

description is associated with it. The update bubbles-up to fragment .14 's ancestor frag

ment, 11, which is also marked as updated and associated with the content change update

description.

4. Fragment move: element g, which is the root of fragment, .f.5, is unlinked from its pre

vious parent, element c, and made a child of the newly inserted element r. The path

48 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

expression for fragment f5 is changed from /1/2/1 to /1/3/1 in the Fragmentation Ta

ble. Since f5 was previously a subtree of fragment f2, f2 is marked as updated and a

subtree deletion description is associated with it.

The diagram in figure 5.13(c) shows the document after it has been updated. Figure 5.13(d) lists

the updated fragments along with their update descriptions. Fragment updates would now be

propagated to all replicas of fragments fl, f2 and f 4 in the network, as dictated by the update

propagation algorithm used by the system.

5.6 Query Processing

In this section, we describe a simple distributed XPath query processor for our framework. Since

query evaluation is not the focus of our research, the purpose of the query processor was to

simply provide a means of finding data in the network so that we could test the data replication

and update propagation algorithms proposed in this dissertation. As a result, efficiency was

sacrificed for simplicity.

5.6.1 Design Considerations

In designing the query processor, the following challenges were encountered:

1. Dealing with fragmented data. In our framework, XML data are fragmented and dis

tributed throughout the network. The query processor needs to be able to find peers in the

network storing fragments relevant to a particular query. While the Fragment Location

Catalogue provides a means to determine the locations of fragments, it does not capture

any path information. It merely acts a table of fragment 10 to peer 10 mappings. Conse

quently, there is no way to determine based on the information in the Fragment Location

Catalogue what fragments in the network a given XPath query expression applies to.

2. Support for branch queries. When evaluating branch queries, certain paths in the XML

document will be excluded from the result. For example, the query /alb[@x= 'y' J/c re

quests only the elements, c, whose parents, b, have.r attributes with a value y. Some peers

may return empty query result sets if the fragments they store do not have such branches.

Sending queries to such peers would only result in unnecessary networking cost and in

crease query latency. It would be more efficient if, before sending queries to peers for

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

....•. """"

(a) The document structure before the update

Fragment ID Path Expression Ancestors Descendants
fl /1/1 - f4
f2 /1/2 - f5
f3 /1/3 - -

f4 /1/1/2 fl -

f5 /1/211 f2 -

(b) The Fragmentation Table information for the five fragments in fig
ure 5.13(a)

fl/~a~~.
. I: I "\ 1 .. / /\

. ./.... ~.' l . I I \\

/.···/i~··f: ... \! i /\ '! ... /'!\'
t(k I 'm \/ \..... q .. / (! \)
\.~ .. " / -

"', "........ ..•..• fS

(c) The document structure after the update

Fragment ID Update Descriptions
fl subtreeDelete(e)

textUpdate(k, t')

f2 subtreeDelete(g)
f4 textUpdate(k, r)

(d) The updated fragments and their update
descriptions

Figure 5.13: An example of a document update.

49

evaluation, the system could determine whether peers are likely to return a non-empty

query result set.

---- - - -----

50 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

5.6.2 The Fragment Path Index

In order to tackle the challenges described in section 5.6.1, we introduce another global lookup

table into the framework, the Fragment Path Index (FPI). The FPI is a table that maps the root

element name of an XML document to a list of (fragment!d. fragmentSumrnary) tuples,

where fragment! d is the ID of a fragment extracted from a document with that root element,

and fragmentSlllnmary is a field that summarises the structure and/or the content of the

fragment. The fragmentSummary allows the system to quickly determine whether a given

path exists in a fragment without actually looking at the fragment itself. In our work, we do not

prescribe how summary fields are calculated, only that such a mechanism be present. Possible

XML summarisation techniques that may be used in conjunction with this work are described

in [1,16,29,53,54,68].

The FPI may be implemented as a completely separate entity in the system or as an extension

of the Fragment Location Catalogue. Figure 5.14 shows a conceptual view of the FPI.

Fragment Path Index

Root Element FPI Tuples

<11. summarylfl!>
idoel <f12, summaryif12J>

d3, summarylf3»

Idoe2
<f32, summary(f32»
<f2, summarylf2»

«query» 8 Peer

Figure 5.14: A conceptual view of the global Fragment Path Index (FPI)

5.6.3 Query Processing Algorithm

U sing the FPI, the query processor may perform query evaluation as follows. When a peer re

ceives a query of the form I albl c/../n, it retrieves the list of (fragment! d. fragmentSwnmary)

tuples corresponding to the root element name, a, from the FPI. This list is then pruned by

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments 51

eliminating all tuples corresponding to fragments that do not need to be traversed during query

evaluation. This is achieved by comparing the query expression to the jragmentSvmmary

field in each tuple. If, based on the jragmentSwnmary field, it is determined that the query

will not be satisfied by the corresponding fragment, that tuple is removed.

Next, the locations of the fragments are determined by performing lookup operations on the

Fragment Location Catalogue using the j rogmentI d fields in the tuples. The query is then

sent to all peers returned by the Fragment Location Catalogue at the same time. The peers that

receive the query, evaluate it on the fragments in their local data stores, and return the result

to the querying peer. After all the results have been collected by the querying peer, or after a

certain timeout has expired, the results are returned to the user.

Pseudocode for this query processor is presented in figure 5.15. To perform the actual query

evaluation on locally stored XML fragments, any standard XPath query tool may be used.

procedure processQuery(queryExpression) :
2 roo~Element := get root elemen~ name from queryExpression
3 ~~pleList := get tuples from FPI that ~ap ~o the root element
4
5 II Prune the tuple list by removing tup~es w~ose summaries
6 II don't match the query expression.
7 pru~edTupleList := new list
8 foreach tuple in tupleList do:
9 if ~uple.fragmentSummary.matches(queryExpression) do:

10 prunedTupleList.add(tuple)
II end if
12 end foreach
13
14 II Send the query to the peers.
15 peers = ge~ peers that store fragments fro~ FLC
16 foreach peer in peers do:
17 send queryExpression to peer
18 end foreach
19
20 resul~s := wait until resul~s arrive or timeout expires
21 results := remove duplicates from resu~~s
22 return results
23 end procedure

Figure 5.15: The query processing algorithm in pseudocode

5.6.4 Query Processor Limitations

The query processor has the following limitations:

52 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

• The large si~e of the FPI tuple list. The size of the tuple list returned by a lookup operation

on the FPI can be very large, especially when there are many XML documents in the

network with the same root element name. The larger the size of the tuple list, the greater

the network cost when transferring this list to the querying peer.

One way in which the size of the tuple list returned to the querying peer can be reduced is

to perform the tuple list pruning operation within the FPI rather than at the querying peer.

This requires extra processing within the FPI. However, the cost of this extra processing

is outweighed by the cost of transferring large tuple lists.

• No support for queries starting with a descendant axis. The FPI uses XML document root

element names as lookup keys. The querying peer determines these root element names

by extracting it from the query expression. However, this forces queries to start with a

child axis (e.g. I albj. . ./ z). Queries starting with a descendant axis such as I Ibj. .. 1 z

cannot be evaluated, because the root element name is not specified in the query expres

sion.

A solution to this problem would be to retrieve all the tuples from the FPI. However, this

approach is infeasible when the FPI has many entries.

• The quality of the fragment summaries. The query processor is also limited by how

well the fragment Svrnmary fields in the FPI tuples summarise XML fragments. If

the fragmentSvmmary incorrectly indicates that a fragment satisfies the query expres

sion (i.e. a false positive), then unnecessary networking cost will be incurred when query

messages are sent to peers that will simply return empty result sets.

5.7 Summary

This chapter introducted our P2P framework for replicated XML document fragments. This

framework defines components and mechanisms for fragmenting XML documents for replica

tion, locating XML fragments in a P2P network, handling XML fragment updates, as well as

performing distributed XML query processing.

Each peer in the network stores a collection of whole XML documents, as well as a set of XML

fragments it received from remote peers. An XML fragment is defined as either a subtree in

an XML document or the whole XML document itself. When fragmenting XML documents,

path expressions of the form I P1/ P2j..,/ Pn are used to identify subtrees, where Pi is an integer

indicating the position of an element at level i in the document.

CHAPTER 5: A P2P Framework for Replicated XML Document Fragments 53

The Fragment Location Catalogue (FLC) is used to locate fragments distributed throughout the

network. It acts as a global lookup table that maps the ID of an XML fragment to all the peers

in the network storing that particular fragment.

The Fragmentation Table maintains information about the manner in which local XML doc

uments at a peer have been fragmented. The Update Manager uses the Fragmentation Table

to identify all the XML fragments that have been affected by an update, and returns a list of

descriptions specifying how each updated fragment has changed.

The Fragment Path Index (FPI) is a global lookup table that maps the root element name of an

XML document to a list of (fragmentId. jragmentSummory) tuples. The Query Processor

uses the FPI to determine where queries should be sent in the network. Query evaluation on

XML fragments is performed using a standard XPath query processing tool.

Chapter 6

Replication Management and Update

Propagation Algorithms

This chapter presents the replication and update propagation algorithms for the XML P2P

framework proposed in chapter 5.

6.1 Replication Management

6.1.1 Overview

In this work, data replication is divided into two phases: replica selection and replica placement.

During the replica selection phase, the system determines what XML fragments in the local data

store should be replicated, how many copies of the selected fragments should be created in the

network, and when replication should occur. During replica placement, the system identifies

tvhere in the network replicas should be placed. By splitting replication management into two

phases, the selection and placement of replicas can function independently, making it possible

to replace just a selection algorithm or just a placement algorithm.

This dissertation investigates three heuristic replica selection algorithms:

• Random Replica Selection (RRS)

• Most-Frequently Accessed Replica Selection (MFA)

54

CHAPTER 6: Replication Management and Update Propagation Algorithms 55

• Most-Recently Accessed Replica Selection (MRA)

We also look at four heuristic replica placement algorithms:

• Random Replica Placement (RRP)

• Counter-based Replica Placement (CRP)

• Counter-State Replica Placement (CSRP)

• Average Uptime Replica Placement (AURP)

These replica selection and placement algorithms are described in sections 6.1.2 and 6.1.3,

respectively.

In order to handle data replication, we define a Replication Manager component, consisting of

three subcomponents: a Replica Selector, which implements the replica selection algorithm, a

Replica Placer, which implements the replica placement algorithm, and a Replicator, which

performs the transfer of replicas between peers in the network. Figure 6.1 shows how these

components fit together.

ID's of peers
on which

fragments
were placed

I

Replica Selector
Input Parameters

,

,,,
Replica Selector

Fragments /
to replicate !

~

Replication Manager

I I

I Selected Fragments Queue I
Fragme·~·;~'··"'" ,../
to replicate ..•• ,.

i£
I
I

.•.. ~

Replicator

Replication messages
to peers

Replica Placer
Input Pararreters

"'
,,,

Replica Placer

.. "" ID's of peers
on which to

place fragments

I
I

I

Figure 6.1: The design of the Replication Manager component

Fragments
to replicate

56 CHAPTER 6: Replication Management and Update Propagation Algorithms

The Replication Manager subcomponents interact as follows. The Replica Selector identifies

a set of fragments to replicate based on its input parameters, and places it on a queue shared

between it and the Replicator. This triggers the Replicator to retrieve fragments from the queue

and invoke the Replica Placer to generate a list of peers in the network to which the replicas

should be sent. The Replicator then issues a replication request message to each peer identified

by the Replica Placer, which, in turn, respond with either a replica accept or replica deny

message. If a replica accept message is received, the Replicator establishes a connection with

the peer in order to transfer the fragment. If a replica deny message is received, the replica

transfer to that peer is cancelled. Peers may decide to deny a replica based on a number of

factors, such as insufficient space, high load, etc.

The selection and placement of replicas may not always be independent. In some cases, the

identification of peers on which replicas should be stored depends on what fragments were

selected. For example, a replica strategy may require that certain fragments be sent to certain

peers in the network. To accommodate this, the Replicator passes the fragments it obtained

from the shared queue to the Replica Placer when the Replica Placer is invoked. This gives the

Replica Placer the option of basing its placement decisions on the fragments selected.

The actions of the Replica Selector may also depend on the previous outputs of the Replica

Placer. For instance, the Replica Selector may keep track of where fragments were sent so that

it can re-queue fragments for replication when those peers depart the network. Therefore, after

every successful replica transfer, the Replicator informs the Replica Selector where the replica

was sent.

6.1.2 Replica Selection Algorithms

All the replica selection algorithms proposed in this dissertation work roughly as follows. Dur

ing every replica selection period, t, a collection of XML fragments is selected for replication.

For each selected fragment, the number of copies of the fragment to create is determined. The

fragment is then queued for replication.

There are various ways in which the number of copies may be calculated. In this work, the

maximum number of copies allowed in the network, Tn, is specified at system start-up. The

number of copies, r, to create during a selection interval is

r=rn~k

CHAPTER 6: Replication Management and Update Propagation Algorithms 57

where k is the number of current copies determined using the Fragment Location Catalogue.

The replica selection process is outlined in pseudocode in figure 6.2. Each replica selection

algorithm provides a different implementation of the proce s s () procedure. The interval, t,

between replica selection periods is a fixed parameter specified at start-up.

procedure selectReplicas():
2 ~ := get maximum allowed replicas
3 while stop != true do:
4 se~ectedFragments := process()
5 foreach fragment in selectedFragments do:
6 k := FLC.lookup(fragment) .length
7 if k < m do:
8 r := m - k

9 queueForReplication(fragment, r)
10 end if
11 end foreach
12 sleep(t)
13 end while
14 end procedure

Figure 6.2: The basic structure of the replica selection algorithm

6.1.2.1 Random Replica Selection (RRS)

The Random Replica Selection (RRS) algorithm has two variants: one that only replicates entire

XML documents (i.e. no fragmentation), and one that replicates both entire XML documents

and XML fragments. We describe the former first.

Random Replica Selection Without Fragmentation (RRS-F)

During each replica selection interval, n documents are randomly selected from the data store,

where n is a randomly generated integer between I and the total number of documents.

Random Replica Selection With Fragmentation (RRS+F)

This algorithm is an extension of RRS-F. Whenever a locally-owned XML document is se

lected for replication, a randomly selected subtree in the document is extracted and queued for

replication.

The subtree to extract is selected by traversing the XML document to generate a list of all the

possible path expressions from the root of the document to every other element in the docu

ment, and then randomly selecting a path expression from this list. This path expression along

58 CHAPTER 6: Replication Management and Update Propagation Algorithms

with the XML document are then passed to the Fragment Creator so that the subtree may be ex

tracted. For example, consider the sample XML document in figure 6.3. The list of all possible

path expressions is {II. /1/1, /1/2. /1/2/1, /1/2/2}. Assume /1/2 is chosen from the list at

random. Then, the subtree rooted at element c in figure 6.3 will be extracted from the document

and replicated.

it (/1)

/~
b c (,11/2)

(/1/1)

/~
d e

\.11/2/1) (/1/2/2)

Figure 6.3: Generating the path expressions for each element in an XML document. The path expres
sions are shown in brackets next to each element.

6.1.2.2 Most-Frequently Accessed Replica Selection (MFA)

The Most-Frequently Accessed Replica Selection (MFA) algorithm aims to increase the avail

ability of those fragments that are in high demand in the network. It maintains a table of access

information objects (AIOs), where each AIO stores the ID of the XML document that was ac

cessed, the path expression of the subtree in the document that was accessed, and a counter

indicating the number of times the subtree in the document was accessed. The access informa

tion table is sorted in descending order of access count.

During every selection interval, n XML fragments are selected for replication by obtaining the

top n AIOs from the access information table, and retrieving the fragments specified from the

data store. In this project, the value n is a fixed parameter configured by the user.

Like the RRS algorithm, the MFA algorithm has two variants: one that only selects whole

XML documents for replication, and another that selects both whole XML documents and XML

fragments extracted from documents. In the MFA algorithm without fragmentation (MFA-F),

the path expression stored in the AIO will always represent the root of the XML document,

regardless of what subtree in the document was accessed. There will thus always be one AIO in

the access information table for each document accessed in the system. In the MFA algorithm

with fragmentation (MFA+F), the path expression in the AIO is the reference to the actual

subtree accessed in an XML document. Therefore, there may be many AIOs for a particular

document in the access table, as the system needs to keep track of the access counts for each

accessed subtree separately.

CHAPTER 6: Replication Management and Update Propagation Algorithms 59

An example of the information stored in the access information table is given in figure 6.4.

Assume that a peer stores the two XML documents in figure 6.4(a), and that queries evaluated

at the peer access the elements in the following order: b. h. I. a. j. h. Each row in the access

tables in figures 6.4(b) and 6.4(c) represents one Ala. Now, if the number of fragments to

select, n, is 3, then documents d1 and d2 will be selected for replication when no fragmentation

is performed, whereas subtrees /1/2 and /1/3/2 from document d2 and /1/1 from document

d 1 will be selected if fragmentation is enabled.

a

/~
b c

/~
d e k

XML Document ID d 1 xr~L Documert ID d2

(a) Sample XML documents

XML Document ID Path Expression Access Count
d2 /1 4

dl /1 2

(b) The access information table when no fragmentation is per
formed

XML Document ID Path Expression Access Count
d2 /1/2 2
dl /1/1 1
d2 /1/3/2 1
dl /1 1

d2 /1/2/1 1

(c) The access information table when fragmentation is enabled

Figure 6.4: An example of the information stored in the MFA algorithm's access information tables.
The elements in figure 6.4(a) are accessed in the following order: b. 11 .1. Q. j. h.

In order to determine what specific subtrees in the XML documents were accessed by queries,

the Replica Selector interacts with the XPath Query Processor as follows. Whenever a query

is evaluated on a locally stored XML document, the Query Processor passes the XPath query

result, along with the ID of the document on which the query was evaluated, to the Replica

Selector. XPath query results may either be expressed as a set of DaM tree nodes, a string,

a number or a boolean value [98]. In this work, only queries that return DaM tree nodes are

considered. Each of these DaM nodes is a root of a subtree accessed by the query. The Replica

Selector first moves up the DaM tree from the DaM node in the result set to the root of the

60 CHAPTER 6: Replication Management and Update Propagation Algorithms

document. Then, it travels down the tree in reverse, calculating the position of each node along

the path relative to its siblings.

For example, if node k in figure 6.4(a) is in the result set, then its path expression is calculated

by first moving from k to the root J along the path k - i - J. Then, going down the DOM tree

from J to k, the positions of J, i and k relative to their siblings in the DOM tree are calculated.

These positions are 1,3 and 1, respectively. The path expression for node k is thus /1/3/l.
This path expression is then entered into the access information table.

6.1.2.3 Most-Recently Accessed Replica Selection (MRA)

The MFA algorithm tries to ensure the availability of XML fragments that are in high demand.

However, it may perform poorly when data request patterns change rapidly. The Most-Recently

Accessed Replica Selection (MRA) algorithm, on the other hand, tries to adapt quickly to re

quest pattern changes by selecting the most recently requested fragments for replication. It

works exactly the same as the MFA algorithm, except that, instead of maintaining access coun

ters, it moves AIOs to the top of the access table whenever the corresponding fragments are

accessed in the system.

Using the same example from figure 6.4, the access information tables for the MRA algorithm

will look like those shown in figure 6.5. If the number of fragments to select, n, is 3, then

documents ell and d2 will be selected for replication when no fragmentation is performed,

while subtrees /1/2 and /1/2/1 from document d2 and /1 from document d1 will be selected

when fragmentation is enabled.

6.1.3 Replica Placement Algorithms

The replica placement algorithms all take as input a list of peer IDs from which they select

peers on which to place replicas. This list only contains the IDs of peers that are believed

to be online. The replica placement algorithms thus depend on two other components in the

system to operate: a Peer Discovery component that discovers new unseen peers in the network,

and a Peer Pinger that periodically pings each discovered peer and notifies the Replica Placer

whether peers are online or offline. Simple implementations of the Peer Discovery and Pinger

components are described in section 7.9.

Each replica placement algorithm works roughly as follows. Whenever a fragment has been

CHAPTER 6: Replication Management and Update Propagation Algorithms

a

/~
b c

/~,
d e k

XML Document ID. dl XML Document ID d2

(a) Sample XML documents

XML Document ID Path Expression
d2 /1
dl /1

(b) The access infonnation table when no frag
mentation is performed

XML Document ID Path Expression
d2 /1/2
d2 /1/2/1
dl /1
d2 /1/3/2
dl /1/1

(c) The access information table when fragmen
tation is enabled

61

Figure 6.5: An example of the information stored in the MRA algorithm's access information tables.
The elements in figure 6.S(a) are accessed in the following order: b. h.l. Q. j. h.

selected for replication, the Replicator passes the fragment to the Replica Placer, along with

a number, r, indicating the number of copies of the fragment to create in the network. The

Replica Placer then selects r peers from the list of online peers according to some algorithm.

If,. is greater than the number of online peers, then all the peers in the online list are returned.

If there are no peers that are believed to be online, then no peers are returned by the Replica

Placer, and the replication process is cancelled. The algorithms for selecting peers from the

online list is presented in the following sections.

6.1.3.1 Random Replica Placement (RRP)

The Random Replica Placement (RRP) algorithm is the simplest replica placement algorithm.

The peers on which replicas should be placed are randomly selected from the list of online

peers.

62 CHAPTER 6: Replication Management and Update Propagation Algorithms

Peer
Peer Status Counter

tj t2 t;l t4 to t6 t7 ts tg tlO Value
a I I I I I I 0 I I I 8

b 0 0 0 I I 0 0 0 0 0 0
c I I 0 0 0 0 I I I I 4
d I 0 I I I I I 0 I I 6
e I I 0 I I I 0 I 0 0 2
f 0 I 0 I 0 I 0 0 0 I I

Table 6.1 : An example of how peer counters are calculated in the eRP algorithm. A 1 in the Peer Status
column, indicates an online peer at ping interval ti (where 1 <;: i <;: 10): a 0 indicates an offline peer.

6.1.3.2 Counter-based Replica Placement (CRP)

The Counter-based Replica Placement (CRP) algorithm maintains a counter for each known

peer in the network. Whenever a peer is detected as online by the Peer Pinger component,

the counter for that peer is incremented. Whenever a peer is detected as offline, the counter is

decremented. Peers with high counter values are selected by the CRP algorithm as destinations

for replicas. By biasing its placement decisions toward such peers, the CRP algorithm tries to

increase data availability by placing replicas on peers that are frequently online.

Table 6.1 demonstrates how the counter values are calculated for six example peers, a to f,

after 10 time intervals, tj to tw. During each time interval, ti, the Peer Pinger notifies the CRP

algorithm whether a peer is online or offline. An online peer is indicated by a 1 in the table,

while an offline peer is indicated by a O. The counter values for peers a to f after time interval

flO are 8, 0, 4,6,2 and 1, respectively.

When requested to identify T peers on which to place replicas, the CRP algorithm does not

simply select the T peers with the highest counter values. This would result in high load on

peers with high counter values, as the top T peers would always be selected as replica stores.

Instead, to help balance load and increase the spread of replicas throughout the network, the

CRP algorithm determines the median counter value, and then randomly selects l" peers whose

counters are greater than or equal to the median. Returning to the example in table 6.1, if 2

peers are to be selected, then any 2 peers in the set {c, d. a} may be chosen, rather than just the

top 2, (J and d.

6.1.3.3 Counter-State Replica Placement (CSRP)

One drawback of the CRP algorithm is that it does not take the online-offline behaviour of the

peers in the network into consideration. A peer that frequently enters and leaves the network

CHAPTER 6: Replication Management and Update Propagation Algorithms 63

Peer
Peer Status Counter No. State

Score
tl t2 i:, t4 t- t6 t7 ts tg tlO Value Changes a

a I I 1 1 I I 0 1 1 1 8 3 2.67
b 0 0 0 1 I 0 0 0 0 0 0 2 0
c I I 0 0 0 0 I I I 1 4 3 1.33
d 1 0 I I I I I 0 I I 6 5 1.2
e I 1 0 I I I 0 1 0 0 2 6 0.33
f 0 I 0 1 0 I 0 0 0 1 I 7 0.14

Table 6.2: An example of how peer scores are calculated in the CSRP algorithm

may at some point have the same counter value as another more stable peer that has just re

cently been discovered. Ideally, replica placement should be biased towards stable peers so that

data availability can be maintained. The Counter-State Replica Placement (CSRP) algorithm

attempts to overcome this drawback. It is an extension of the CRP algorithm which, in addition

to maintaining counter values for peers, records the number of times the peers have changed

state from offline to online or from online to offline. It then calculates a score for each peer by

dividing the counter value by the number of state changes. The higher the score, the greater

the chance that a peer will be chosen as a replica store. As in the CRP algorithm, the peers are

chosen by randomly selecting those peers that have scores greater than or equal to the median

score.

Table 6.2 shows a modified version of the example given in table 6.1. A state change occurs

whenever the peer status goes from 1 to 0 or from 0 to 1. A 1 in the table for time tl counts as

a state change from 0 to 1, as all peers are considered to be initially offline. Using the CSRP

algorithm, peers a to f will have the scores 2.67, 0, l.33, l.2, 0.33 and 0.14, respectively. Note

that peers a and c are now seen to be more stable compared to peer d, for example, which

changes state more.

6.1.3.4 Average Uptime Replica Placement (AURP)

The Average Uptime Replica Placement (AURP) algorithm operates in the same manner as the

CRP and CSRP algorithms. However, instead of maintaining counters or scores, it calculates

the average uptime for each peer and uses that to make its placement decisions.

The average uptime of a peer is calculated by dividing the total time a peer is online by its

number of online sessions. An online session is the period from the time a peer joins the

network until the time a peer departs the network. The formula for calculating the average

uptime is:

64 CHAPTER 6: Replication Management and Update Propagation Algorithms

where ti and tj are the start and end times of the J,Jh online session, and .v is the number of

online sessions.

For instance, consider the diagram in figure 6.6 showing the timeline for a particular peer. The

average uptime of that peer is calculated as follows:

(t2 - t j) + (t" - t:3)
aL'eUptimeTime = --------

2

If the peer's 2 online sessions lasted for 5 and 3 time units, respectively, its average uptime will

be 4 time units.

Offline Online Offline Online Offline

tl t2 t3 t4

Figure 6.6: Calculating the average uptime of a peer

Table 6.3 shows the average uptimes for peers a to f from the previous examples in tables 6.1

and 6.2. If each block in the Peer Status column is equivalent to I time unit, then the uptimes

for peers a to f will be 4.5, 2, 3, 2.67, 2 and I time unites), respectively. The median is 2.33

time units. Thus, peers a, c and d would be eligible for selection.

Peer
Peer Status Average

tj t2 t:~ t4 ts tG t7 til tg tlO Uptime
a 1 I I 1 I 1 0 1 I 1 4.5

b 0 0 0 1 1 0 0 0 0 0 2

c I 1 0 0 0 0 1 I I 1 3
d 1 0 1 I 1 1 I 0 1 I 2.67

e I 1 0 I 1 1 0 1 0 0 2

f 0 I 0 1 0 I 0 0 0 I I

Table 6.3: An example of how the average uptimes of peers are calculated in the AURP algorithm.
Each ping interval ti (where 1 ::; i ::; 10) in this example represents I time unit.

CHAPTER 6: Replication Management and Update Propagation Algorithms 65

6.2 Update Propagation

After an XML document has been updated by the document owner as described in section 5.5,

a "pull" mechanism is used to propagate updates to replicas. That is, all the peers holding

replicas of fragments extracted from that document are notified by the owner peer when an

update occurs. The replica holders retrieve the updates from the owner when needed. This

is in contrast to a "push" model where updates are immediately sent to replicas whenever an

update occurs. The rationale behind a pull mechanism is that it is unnecessary to send updates

to peers if the replicas stored at those peers are accessed infrequently. By delaying the transfer

of updates, networking overhead can be reduced.

Update propagation consists of two phases: an update notification phase and an update retrieval

phase. These phases are discussed in the following sections.

6.2.1 Update Notification

When an XML fragment has been marked as updated by the Update Manager, the peers storing

replicas of that fragment are looked up in the Fragment Location Catalogue. For each peer

returned by the Fragment Location Catalogue, an update notification message is created and

added to a queue. These update notification messages specify the ID and current version of the

updated fragment. If the fragment was deleted during a document update, then instead of the

version number, a flag indicating the deletion is specified.

The update notification messages are retrieved from the queue by an update notification process

that sends the messages to the replica holders. When a replica holder receives an update noti

fication, it either marks the replica in its data store as stale or deletes it, depending on whether

the fragment was changed or deleted at the owner. It then responds to the owner peer with an

update notification acknowledgement message. If this update notification acknowledgement is

not received by the owner after a certain timeout period has expired, the replica holder is con

sidered offline. The owner peer then re-adds the update notification message to the queue so

that it may be re-sent at a later stage.

66 CHAPTER 6: Replication Management and Update Propagation Algorithms

6.2.2 Update Retrieval

The update retrieval phase is initiated whenever a replica holder attempts to access a stale replica

in its data store. It sends an update request message to the owner peer, specifying the ID and

version number of the stale replica. Upon receiving the update request message, the owner

establishes a connection with the replica holder, and sends it update descriptions that may be

applied in sequence to the stale replica in order to produce the latest version of the fragment.

These update descriptions are generated whenever an XML document is updated as described

in section 5.5.2. Sending update descriptions rather than the actual updated fragment results in

less network traffic. After the replica holder applies the update descriptions to its stale replica,

the update retrieval process terminates.

If the owner peer does not establish a connection with the replica holder after a certain time

has expired, the replica holder resends the update request message. If the owner still does not

respond after a certain number of retries, it is considered offline. In this case, the replica holder

attempts to retrieve a more up-to-date version of the fragment from another replica holder in

the network. A version request message is sent to each peer returned by the Fragment Location

Catalogue in order to determine what version each peer holds. An update request message is

sent to the peer with the highest version number greater than that of the replica holder. The

update retrieval process then proceeds in the same manner as before. If this update retrieval is

unsuccessful, then the peer with the next highest version number greater than that of the replica

holder is tried, and so on. If no peer with a higher version number is found, the Update Retrieval

phase terminates.

Note that the owner peer will be included in the list of peers returned by the Fragment Location

Catalogue. Therefore, if the owner peer rejoins the network shortly after the replica holder

determined it to be offline, it will be contacted first, since it will have the highest version of the

fragment.

To allow peers to retrieve updates from other replica holders, peers do not discard update de

scriptions after use. Instead, update descriptions are kept in the data store in case they are

needed by other replica holders in the network. Since different replica holders may have differ

ent initial versions of an XML fragment, and thus hold different update description sequences,

simply retrieving update descriptions from a replica holder may not always be sufficient for

obtaining a later version of an XML fragment. In this case, an entire copy of an XML fragment

is retrieved from a replica holder rather than just the update descriptions.

CHAPTER 6: Replication Management and Update Propagation Algorithms 67

6.3 Summary

This chapter presented the replication and update propagation algorithms proposed in this dis

sertation.

Replication is divided into two sub-problems: replica selection and replica placement. Replica

selection is performed by selecting n XML fragments for replication during every selection

interval, t. The number of copies, T, to create of each fragment is calculated by subtracting the

current number of copies in the network from the maximum number of copies, Tn, allowed in

the network. The number of copies currently in the network is determined using the Fragment

Location Catalogue. Random Replica Selection (RRS) selects n XML fragments to replicate at

random. Most-frequently Accessed Replica Selection (MFA) maintains an access information

table sorted in decreasing access count order, and selects the n fragments corresponding to the

top n entries in the access information table. Most-recently Accessed Replica Selection (MRA)

is similar to MFA, but moves access information table entries to the top of the table whenever

the corresponding fragments are accessed.

Replica placement algorithms select T peers on which to place replicas from a list of on

line peers. Random Replica Placement (RRP) selects the r peers randomly. The Counter

based Replica Placement (CRP), Counter-State Replica Placement (CSRP) and Average Uptime

Replica Placement (AURP) algorithms rank peers according to their online-offline behaviour,

and randomly select the r peers whose ranks are greater than or equal to the median rank.

Update propagation is performed in two phases. During the update notification phase, replica

holders are notified of XML fragment updates. During the update retrieval phase, replica hold

ers retrieve and apply the updates.

Chapter 7

Prototype Implementation

This chapter discusses the development of a prototype XML P2P system that implements the

framework presented in chapter 5. This prototype was used to evaluate the replication and

update propagation algorithms described in chapter 6.

The prototype uses the simplest possible implementations for all framework components. For a

production environment these components would be individually customized or replaced. The

advantage of the framework is that each such component can be implemented and optimized

independentl y.

,....-
Replicated XML Document FragrY'er"ts Framewcrk

XML Document XML Fragment Update Management Ouery Processing Replication Management

Fragmentation location

I
XML Fragment

I
Peer

Data Creator
Update Milrager Replication Mal~ager Discover;

Store and

1=:1 I
Update

I
Plnger DIStributed XML

I Replica Selector I Propagator
Query Processor

IXMl~1 II Fragrr.ent Locatior I I Fragrrentatron Table
I fragrrent Pate I I Replica Placer I Catalogue

Irdex

'---

P2P Manager

Figu re 7.1: An overview of the components in the prototype

7.1 Overview

The prototype consists of nine components, as shown in figure 7.1. These are:

68

CHAPTER 7: Prototype Implementation 69

• A P2P Manager that handles the P2P network communications.

• An XML Data Store that manages the storage of XML documents and fragments.

• A Fragment Creator that extracts subtrees from XML documents.

• An implementation of the Fragment Location Catalogue proposed in section 5.4.

• An implementation of the Fragmentation Table in described in section 5.5.1.

• An Update Manager that handles document updates and performs update propagation.

• A Query Processor for evaluating simple XPath expressions. This component also in

cludes an implementation of the Fragment Path Index.

• Peer Discovery and Pinger components used by the replica placement algorithms.

• A Replication Manager that is responsible for replicating data throughout the network.

Each component is described in the sections that follow. The prototype was implemented in

Java to take advantage of the functionality provided by the J2SE l771 development framework

and various widely available open-source Java-based toolkits.

7.2 The P2P Manager

The XML P2P prototype requires the following P2P network functionality:

1. Peers in the network need to be addressed using globally unique IDs. These IDs should

be persistent and independent of the peer IP addresses to allow peers to be addressed

in a consistent manner even when they depart and rejoin the network or when their IP

addresses change.

2. Messages in the network should be routed between peers using the peer ID as the desti

nation, rather than the IP address.

3. Higher level components in the system need to be informed whenever messages are sent

and received, and when connections to remote peers are established and lost. This will en

able system components to perform any application-specific processing when such events

occur.

70 CHAPTER 7: Prototype Implementation

The Rest of the System

P2P Manager

I P2P ,o .. bstractlon layer I
I 1.

I FreePastry P2P Implementation J l .. ~.~.~~.h.~~.~.~.p .. I.~~:~~~.~.~~~:~~.J
Figure 7.2: The design of the P2P Manager component

Creating such a P2P network implementation from scratch would take too much effort and was

beyond the scope of our work. Therefore, we decided to use FreePastry [72] for our prototype.

FreePastry is an open-source implementation of Pastry [61], a structured P2P routing protocol.

It meets the aforementioned requirements as follows.

1. Each peer in FreePastry is assigned a globally unique ID that is generated using some

application-specific algorithm.

2. A message in FreePastry is routed to a peer with an ID that is numerically closest to a

given ID. This allows a message to be sent using the peer ID as a destination, rather than

an IP address.

3. FreePastry informs higher-level system components via callback methods whenever mes

sages at a peer are received and when neighbouring peers enter and leave the network.

In our prototype, peer IDs in the FreePastry network are generated using a pseudorandom num

ber generator that produces random arrays of 20 bytes in length. This is done whenever a peer

joins the network for the first time. After an ID has been generated for a peer, it is saved in the

system, so that it may be reused whenever a peer leaves and rejoins the network at a later stage.

In this way, peers retain their IDs across network sessions.

To allow for greater flexibility, an abstraction layer was built on top of FreePastry. This makes

it possible to replace FreePastry with another P2P network implementation if a more efficient

and reliable implementation is required at a later stage. This abstraction layer is illustrated in

figure 7.2. It consists of interfaces that provide operations common to all P2P network im

plementations. These interfaces are described in detail in section A.l of Appendix A with an

accompanying UML class diagram.

CHAPTER 7: Prototype Implementation 71

7.3 The XML Data Store

The XML Data Store component manages the storage of XML data at a peer. For simplicity,

the implementation in this prototype stores data directly on the file system. However, as in the

case of the P2P Manager component, this file system-based implementation is hidden behind

an abstraction layer, making it possible to replace this implementation with a more efficient

version at a later stage.

fragmentZ

Figure 7.3: The directory structure of the XML data store

Figure 7.3 shows the structure of the directory in which the XML data are stored. All doc

uments, whether local documents or fragment replicas, are kept in one top-level data di

rectory as XML files. These XML files are named according to the ID of the XML frag

ments stored within them. For example, if the ID of a fragment (in hexadecimal format) is

IBOOD24A4710A03S1FDC9F2BSED99E32C8CF6SB9, then that fragment will be stored

in a file called IBOOD24A4710A03S1FDC9F2BSED99E32C8CF6SB9 .xml in the data

directory.

In addition to the XML files, a met a . xml file is maintained that stores the following meta

information about the XML fragments in the data directory:

• The XML fragment ID encoded in base64 [85] .

• The name of the XML fragment. This is a user-specified string that is used to conveniently

refer to an XML fragment in the system, rather than using to the XML fragment ID.

72 CHAPTER 7: Prototype Implementation

For example, an XML document containing contact information might have the name,

"address book".

• The name of the XML file in which the fragment is stored relative to the top-level data

directory.

• The ID of the peer that owns the XML fragment. This is encoded in base64. For local

XML documents, the value of this field is the ID of the local peer.

• The name of the XML document root element. This field allows the system to retrieve

XML fragments from the data store based on the root element name when performing

query processing. Note that this is not the name of the XML fragment root element, but

the root element of the XML document from which the XML fragment was extracted.

• A flag indicating whether the XML fragment is an entire XML document or a subtree.

• The XML fragment version number. This value starts at 0, and is increased each time the

XML fragment is updated.

• A flag indicating whether the XML fragment is the latest version. This is used by the Up

date Manager component when marking fragment replicas as stale during update propa

gation. For local XML documents, this flag will always be true.

An example meta. xml file is shown in figure 7.4.

When performing document updates, the system needs to keep track of all the previous versions

of an XML fragment so that replica holders may retrieve the most up-to-date version during

update propagation. This is done by storing at the peer which owns the document, all the deltas

(i.e. update descriptions) that may be applied to older versions in order to construct the current

version. These deltas are stored in the upda t e s directory below the top-level da t a directory.

Within the updates directory, there is a directory for each fragment that was updated. These

directories store collections of delta files, where each delta file is given an integer filename

corresponding to the version of the fragment which it produces when applied to the previous

version of the fragment. The delta filenames range from 1 to n, where n is the current version

of a fragment. If a peer requesting an up-to-date version of an XML fragment holds version i.

of that fragment, then deltas (i + 1) to n would be retrieved from the data store and sent to the

peer.

In addition to the delta files, a file called latest is also stored in the updates directory for

each fragment. This file contains a single integer indicating the current version number.

,C,','""e,',' ,,'_-,' ,',',I',I,c,I,y,p',-,I,m,I,YI,y,m,1, ",0, ',i,c," __ 73

Figu", 75 ,h",n the content, of ~n exampk d~t~ 'tor~ dir~c1C>ry.

7.4

"t a,e<.c.ents·'
":: " . 9~e_'_ t " 1 _ " r:,.USSIJ,:oUlJ r :i,:', eX ,. ~~t.ls j J 1,1). - "

M.~~ _ "S:'.o~ ",.",'-09 "

c','''~r - " i ~ "~~:l.Xkbkn 3~YLc:"q;,~a:, t tAG~- "

root ~ "cat a ~o'!"

~sDoC'C"ec_t"oot " tLe " />

"Hsicn_ " Il "

1 _ " 9 ',,,', r M~~', ',~ ',dl~ ,,>S~ nc'. ',I,~_ "

n,'_~~ _ " ,. ~s1..) ~~n1. "
r ~~n,'~~ _ "',:i~',,':i1-;9AIl 1,,9':4 ;'i:-:',~"'~IE-:aA;:9.x~~ "

0" -"_e e_ " 'iq 5>1." ,. X~~'x'-:U:-<n8 e;: _C _ A·c'il) ,. yl.' _ "
root - "'·.~t~,·."

~~~oc·_~.enL_<oot - " r~h~" .'> 

Figure 7.4: An example m"ta,xml fi le in the XML da,a , ,,,r,, di,""ctory 

• o>O" .... 'w" .. '."'" .. ", •• ,,.,,"',,... ~ 
' ... ",,,,,,,,, .. ,,,,,,,,,.,,.,,,,,,,,,,,",,,,,,,,,, ... 
. -.v." '''' "'" ' ... ,,"" "",!o"""'""",," .... ,,,",, 

, II 0,.," .. ' '''',,.,.,,,, .... ',, .. ,''"',,,,,. ... 
• II ",.,.."",,,,,,,,, .. ,.,,,,,. "' """'"""" 

,,,," 

Figure 7.5: TI", ,'ontent, of an exampl~ XML data 'to .... direc,,\ry 

The Fragment Creator 

Th~ Fragment Cr~~1C>r i, re'pon,ihle for ~xtracting fragment~ from XMI. doc,'m~nt', ""hcn 

given ~ p~,h ~xpr~"ion in the form ,/)' 1,/)!-,,/ --,/1'" . "h~re 1', denm~, the position of an clem~n! 

in lh~ document lr~e r~l~liv~ to it, ,ihl ing', il tr~ve"e, ~ giwn X Ml , document. ~nd write, ,he 

,utm~~ i <kmifi~d hy ,he ]J;)th ex pre"ionto a (~mp'>rJr:' fik Thi' i, done ",ing ~ SAX X\tl . 

pm,er, \0 lh~t fragment ~x!radion ~an lX don~ emci~mly and on-the-fly_ 



74 CHAPTER 7: Prototype Implementation 

Figure 7.6: The path expression, /1/2/1, represented as a list of PathStep objects 

The Fragment Creator accepts three input arguments: the XML document from which the frag

ment should be extracted, the path expression of the subtree in the XML document to extract, 

and the ID that should be assigned to the extracted fragment. 

When the Fragment Creator is invoked, it parses the path expression, and loads it into memory 

as a PathExpr object. This PathExpr object contains a list of PathStep objects, where 

each PathStep represents Pi in the path expression. The value field in the PathStep 

object is the position of the element in the XML document tree relative to its siblings. The 

chi ldrenSeen field indicates the number of child elements that have been processed. Fig

ure 7.6 shows how the path expression, /1/2/1, would be represented as a list of PathStep 

objects. The PathStep at the end of the list is known as the current step. 

During the fragment extraction process, the Fragment Creator maintains two path expressions: 

the target expression and the current expression. The target expression is the path expression of 

the subtree in the XML document that should be extracted, while current expression is the path 

expression of the element that is currently being processed in the XML document. The current 

expression's PathStep list is calculated as follows . 

• Whenever a start tag is encountered in the document, a new PathStep object is created. 

If the PathStep list is empty, the value field of the newly created PathStep object 

is set to 1. Otherwise, it is set to the value of the current step's childrenSeen field 

plus I. In both cases, the childrenSeen field of the new PathStep object is set to O. 

After the new PathStep has been initialised, it is pushed onto the PathStep list. The 

resulting list of PathStep objects then represents the path expression of the element 

whose start tag was just reached . 

• Whenever an end tag is encountered in the document, the last Pat h Step in the list is 

popped, and the chi ldrenSeen field of the current step is incremented. 

In order to determine whether the element currently being processed is part of the subtree that 

should be extracted from the document, the Fragment Creator checks whether the target expres

sion is a prefix of the current expression or if the current expression is a prefix of the target 

expression. If either condition is true, the current element is outputted to a temporary file that 

stores the extracted fragment. 



CHAPTER 7: Prototype Implementation 75 

The fragment extraction process is best explained with an example. Consider the sample XML 

document in figure 7.7(a). If the path expression of the fragment to extract is /1/2/1, then the 

subtree rooted at element e should be extracted. Figure 7.7(c) shows how the Fragment Creator 

processes the XML document: 

• When the a element's start tag is encountered, the current expression's PathStep list 

is empty. A new PathStep object is created with value of 1 and a childrenSeen 

value of o. The PathStep list now represents the path expression, /1. Since /1 is a 

prefix of the target path expression, /1/2/1, element a is outputted. 

• When element b is reached, a new PathStep object is created. Since the PathStep 

list is not empty, the value of the new PathStep is set to the value of the current 

step's childrenSeen field plus I. The current step's childrenSeen value is 0, so 

the value ofthe new PathStep is set to I. The new PathStep is pushed onto the list, 

resulting in the path expression, /1/1. Since /1/1 is not a prefix of the target expression, 

/1/2/1, and since the target expression is not a prefix of /1/1, element b is not outputted. 

• When the XML parser exits from element b, the PathStep at the end of the current 

expression's PathStep list is popped. The childrenSeen field of the current step is 

then incremented to I. 

• At the start of element c, a new PathStep is created. Since the value of the current step's 

childrenSeen field is 1, the val ue of the new PathStep is set to 2. The resulting 

path expression is /1/2, which is a prefix of the target expression, /1/2/1. Therefore, 

element c is outputted. 

• At the start of element e, the current expression is the path expression /1/2/1, which is a 

prefix of /1/2/1, so element e is outputted. 

• At element g, the path expression is /1/2/1/1. This is not a prefix of the target expression 

/1/2/1. However, the target expression is a prefix of /1/2/1/1. Therefore, 9 is outputted. 

• Element h is also outputted, as the target expression, /1/2/1, is a prefix of element g's 

path expression, /1/2/1/2. 

• When the XML parser reaches element f, the PathStep list represents the path ex

pression, /1/2/2. Since this is not a prefix of the target expression, and since the target 

expression is not a prefix of /1/2/2, element f is ignored. 

• Element d is also ignored, since its path expression is /1/3. 



76 CHAPTER 7: Prototype Implementation 

Once the XML document has been traversed, the fragment produced by the Fragment Creator 

has the structure shown in figure 7.7(b). Notice how elements b, f and d are omitted. Also notice 

how element e is not the root of the extracted fragment, but is enclosed within its ancestor 

elements, c and o. This is to allow the Query Processor to evaluate queries directly on the 

extracted fragment. If element e was not enclosed by c and a, then evaluating a query such as 

/ (J / c/ p) 9 on the extracted fragment would return no result. 



CHAPTER 7: Prototype Implementation 

<a" iI 

<.b/> 

/I~ <c> 
<e" 

<91" 
bed 

<hi> /~ </e> 
<f;" e 

<Ie> /'\ <d!" 
</a> 

9 h 

(a) A sample XML document 

Enter a 

Enter c 

Leave a 

<a" 
<C" 

<e" 
<g/> 
<hi" 

</e> 
</C> 

<fa> 

(b) The extracted fragment with path /1/2/1 

(/1/1) 

(/1/2/1/1) 

(/1/2/1/2) 

(/1/2/1) 

(/1/2/2 ) 

(/1/3 ) 

(c) The contents of the current expression's P a thStep list as the sample XML document is 
parsed 

Figure 7.7: An example of how the Fragment Creator processes an XML document 

77 



78 CHAPTER 7: Prototype Implementation 

7.5 The Fragment Location Catalogue 

The Fragment Location Catalogue (FLC) component allows the system to determine the loca

tion of XML fragments in the network by mapping XML fragment IDs to peer ID lists. As 

mentioned in section 5.4, the FLC may be implemented as either a separate web service or on 

top of a P2P network using, for example, a DHT. 

The FreePastry library that the prototype uses includes an implementation of Past [62], a DHT 

that uses the Pastry P2P routing protocol. Our first attempt at implementing the FLC used this 

Past implementation. However, it was soon discovered that the Past implementation does not 

handle the mapping of multiple peer IDs to one fragment ID correctly. Another approach would 

have been to implement our own DHT on top of FreePastry. However, this is beyond the scope 

of our work. Therefore, for this prototype, the FLC was implemented using a simple relational 

database that is globally accessible to all peers in the network. An abstraction layer hides the 

actual implementation from the rest of the system behind a generic interface. As a result, the 

system does not know whether the FLC is implemented as a web service, DHT or relational 

database, and thus, an alternative implementation can easily be accommodated. 

Figure A.3 in Appendix A shows a UML diagram of the FLC implementation. 

7.6 The Fragmentation Table 

The Fragmentation Table is maintained as a simple XML file that closely follows the structure 

shown in figure 5.8. An example of this XML file for the sample document in Figure 7.8 is 

presented in figure 7.9. 

A <fragment> element represents a Fragment Information Node. Its attributes, id, doc

ument and path, store the fragment ID, the ID of the XML document from which the frag

ment was extracted, and the path expression identifying the fragment in the XML document, 

respectively. Each <fragment> element may also optionally have <descendants> and 

<ancestors> child elements. 

A <document> element represents a Document Information Node, and consists of a list of 

<fragment> elements specifying the fragments extracted from a document. 



CHAPTER 7: Prototype Implementation 

11 .............................. 

............ 

•·••·••••··•••• •• " •• " •••••••••••••••••.• H •••••••• ·····,. 

..............•.. 
. .......... . 

.' 

..... 

Figure 7.8: A sample XML document and its fragments 

<fragmentationTable> 
<fragments> 

<fragment id="fl" document="dl" path="/l"> 
<descendants> 

<descendant ~d="f2"/> 
<descendant id="f3"/> 

</descendants> 
</fragment> 
<fragment id="f2" docu~ent="dl" path="/l/l"> 

<ancestors> 
<ancestor id="fl"/> 

</ancestors> 
<descendants> 

<descendant id="f3"/> 
</descendants> 

</fragment> 
<fragment id="f3" doccment="dl" path="/1/1/2"> 

<ancestors> 
<ancestor id="fl"/> 
<ancestor id="f2"/> 

</ancestors> 
</fragment> 

</fragments> 
<documents> 

<document id="dl"> 
<fragment id="fl"/> 
<fragment id="f2"/> 
<fragment id="f3"/> 

</document> 
</documents> 

</fragmentationTable> 

Figure 7.9: The Fragmentation Table XML file for the sample document in figure 7.8 

79 



80 CHAPTER 7: Prototype Implementation 

7.7 The Update Manager 

The Update Manager processes XML document updates and performs update propagation as 

described in sections 5.5 and 6.2, respectively. It is implemented as an extension of the XML 

Data Store component using the Decorator design pattern [31]. In this way, update management 

is performed transparently to higher-level system components. Whenever a higher-level system 

component invokes an update, retrieval or deletion operation on the XML Data Store, the Up

date Manager intercepts the invocation, performs any necessary update management tasks, and 

then passes control to the XML Data Store to complete the operation. Requests for all other 

data store operations simply pass straight through the Update Manager to the underlying XML 

Data Store. Figure AA in Appendix A shows a UML class diagram of the Update Manager. 

Since detecting document updates and handling update descriptions is not the focus of this 

work, the prototype simulates this functionality. Whenever an update is performed, the IDs of 

all the fragments extracted from a given document are retrieved from the Fragmentation Table. 

Then, for each fragment ID, if a pseudorandom number generator returns a value greater than 

0.9, a delta for the corresponding fragment is created. This delta does not actually describe how 

a fragment was updated. It merely indicates a version number increase. 

When transferring updates to remote peers, the Update Manager does not use the P2P layer 

(and thus the FreePastry library). Instead, it establishes direct TCP connections to remote peers 

outside the P2P network. This is done for the following reasons: 

1. FreePastry uses lava-object serialisation to transfer messages between peers [73]. A 

message is represented as a Java object (the Message interface in figure A.I in Ap

pendix A) that is converted to a stream of bytes before it is routed through the network. 

When the message is received at the destination, it is reconstructed from the stream of 

bytes into a Java object. This means that in order to send an update to a remote peer, the 

entire update would first need to be loaded into memory and stored within a Message 

object before it can be sent. If the update is larger than the amount of memory available, 

the system would be unable to send updates. 

This problem could be resolved by breaking the update into smaller chunks and sending 

each chunk individually. However, this would complicate update transfers, as additional 

measures would be required to ensure that all chunks arrive at the destination successfully 

and in the right order. 

2. FreePastry uses a single connection to transfer lava-object messages [73]. This connec-



CHAPTER 7: Prototype Implementation 81 

tion is used to transfer both protocol maintenance and application-level messages. Send

ing large Me s s age objects would thus stall other messages waiting to be sent, resulting 

in poor network performance. 

The data sent via the direct connection are depicted in figure 7.10. 

Fragmert 10 Length 
(481 

Fragn'ert 10 

Latest VerslOl' Flag 
{l BJ 

No deltas 
(4 B\ 

Delta 1 Lengtr 
(~ 8) 

Delta 1 

Delta [1 Lel'gtr 
1481 

Delta r 

I'deltas 

Figure 7.10: The data sent to remote peers when transferring updates via a direct connection 

7.8 The Query Processor 

The Query Processor consists of three parts: 

• The actual query processor that evaluates queries on XML fragments stored in the XML 

data store; 

• A network interface that allows the Query Processor to receive queries from remote peers 

for evaluation; and 

• An implementation of the Fragment Path Index (FPI) described in section 5.6.2. 

A UML class diagram of the Query Processor is shown in figure A.5 in Appendix A. 

The Query Processor first initiates the processing of queries on locally stored XML fragments 

using the standard Java XPath query processor. Then, it sends queries to remote peers for 



82 CHAPTER 7: Prototype Implementation 

evaluation. Since evaluating queries on the network may take an arbitrary amount of time, a 

callback interface is provided to enable non-blocking query processing. 

A listener interface is also provided by the prototype. This interface takes three input arguments: 

the query string, the XML fragment on which the query was evaluated, and the query result. 

Unlike the callback interface, which is called only when a specific query was processed, the 

listener is called whenever any query was processed. This allows the Most-Frequently Accessed 

and Most-Recently Accessed Replica Selection algorithms (see sections 6.1.2.2 and 6.1.2.3) to 

hook into the Query Processor component, so that they may determine what specific subtrees in 

local XML fragments were accessed. 

The FPI is used by the Query Processor to determine what fragments in the network a particular 

query should be evaluated on. It maps the names of XML document root elements hashed 

using SHA-l to (JragmentId, fragmentSwmnary) tuples, where fragmentId is the ID of 

a XML fragment in the network and fragmentSl1mmary is a data structure that summarises 

the structure and/or content of the XML fragment. Since calculating XML fragment summaries 

is beyond the scope of this work, the prototype uses dummy fragmentSl1rnmary objects that 

always return boolean true when checking whether a particular path expression exists within 

the corresponding fragments. 

The UML class diagram for this prototype's FPI implementation is given in figure A.6 in Ap

pendix A. The design is identical to that of the FLC. An abstraction layer hides the actual 

implementation from the rest of the system behind generic interfaces, so that higher-level com

ponents do not know whether the FPI is implemented as a web service, DHT or using a re

lational database. The prototype stores (JragmentId. fragmentSummary) tuples in a rela

tional database that is globally accessible to all peers in the network. Like the FLC, this is the 

simplest way of abstracting over this implementation detail. 

7.9 The Peer Discovery and Pinger Components 

The replica placement algorithms described in section 6.1.3 require a list of online peers from 

which to select destinations for replicas. In order to construct this list, a mechanism is needed 

that will search the network for new unseen peers. The Peer Discovery component provides this 

service. 

Whenever the Peer Discovery component discovers unseen peers in the network, it informs the 

rest of the system about the discovered peers. Since the implementation of a peer discovery 



CHAPTER 7: Prototype Implementation 83 

mechanism may be specific to a particular P2P network protocol, and since such an implemen

tation is beyond the scope of this work, the prototype instead uses a mock implementation. 

Before an experiment is conducted with the prototype, the IDs of all the peers in the network 

are generated and added to a globally accessible relational database. Then, at system start-up, 

the a list of peer IDs is retrieved from the database and handed to the rest of the system. 

Once the system knows what peers are in the network, it needs to periodically probe the peers 

to determine whether they are online or offline. This responsibility lies with the Peer Pinger 

component. The Peer Pinger maintains a list of all the peers discovered by the Peer Discovery 

component. During every probe period, it iterates through the list of peers, sending each peer in 

the list aPing message. If the Peer Pinger receives a Pong response, that peer is considered 

online. If no Pong is received within a particular time period, the peer is considered offline. 

7.10 The Replication Manager 

The Replication Manager implements the replication algorithms described in section 6.1. A 

UML class diagram for it is presented in figure A.8 in Appendix A, along with a description of 

how the various classes and interfaces interact. 

Like the Update Manager component, the Replication Manager does not transfer replicas to 

remote peers using the P2P layer, as XML fragments may be too large to load into memory 

as Java objects. Instead, it establishes direct TCP connections to remote peers outside the P2P 

network, and transfers replica messages in the format shown in figure 7.11. To help reduce 

networking cost when sending replicas, XML fragments are compressed using GZIP [83]. 



84 

Fragmert 10 lE)·qtr 
r:~ 8: 

Fragrrert 10 

Fragn,er't I\arre LergtJ
(4 B: 

Fragrr>er:t r..,an'€ 

0 .. ., rer 10 lergtt
(4 B', 

Owner 10 

Fragfl'lert'VerslOr 
i88: 

Docur'r€f't Root Flag 
(1 B) 

Latest Versior' Flag 
(1 B: 

Compressed 
Fragmert Contert Lergtr 

(4 B: 

(on,pressed 
Fragrr:el't Contert 

CHAPTER 7: Prototype Implementation 

Figure 7.11: The data sent to remote peers when transferring replicas via a direct connection 

7.11 Summary 

This chapter describes a prototype P2P XML data management system that implements the 

framework presented in chapter 5 and the replication and update propagation algorithms dis

cussed in chapter 6. 

The FreePastry library was used to provide the P2P functionality. Appropriate interfaces for all 

components in the framework were developed to abstract over implementation details and to 

identify the minimum functionality required by each component. The simplest approach was 

then used for each implementation, resulting in a complete system that is easy to enhance and 

experiment with. 

The prototype described in this chapter was used during the project experiments to test the 

replication and update propagation algorithms. These experiments are discussed in the follow

ing chapter. 



Chapter 8 

Experimental Evaluation 

This chapter describes evaluation of the data replication and update propagation algorithms 

proposed in chapter 6. The data replication algorithms were evaluated by considering differ

ent combinations of replica selection and placement algorithms to see which performed best 

under two different network conditions. The update propagation algorithm was evaluated by 

measuring how often queries returned up-to-date results. 

The experimental setup and method are first described. Then, the results obtained during the 

experiments are presented and analysed. 

8.1 Experimental Setup 

8.1.1 Network Environment 

Experiments were performed on a cluster consisting of 13 identical computers interconnected 

via gigabit ethemet links. Each computer had a 3GHz Intel Pentium 4 processor with a cache 

size of 1MB, 512MB of main memory, and approximately 1GB of swap space. 

ModelNet [80] was installed on the cluster. ModelNet is a wide-area network emulator that 

enables the evaluation of unmodified network applications in realistic large-scale Internet-like 

networking scenarios. ModelNet creates and runs multiple instances of a networking applica

tion on each cluster machine, where each instance represents a virtual node (i.e. a peer) in the 

ModelNet network. 

85 



It\.·\!'TER R. E"l"'rimental Evaluatioll 

:\loJcINet requires 2 types of phy,ical cOIllPll1er, to op.r~te: clllul~tor lll;lChi nes ~nd host 111"

chines. Host Jllachincs run the virtualnoocs. Emulator machillC' ,ubjcct network packeh to 

dd~)" losse" 'lLL~ueillg. cOllge'lion alld bandwidlh conslraints occording to SOIllC network 

topology spec'llicatioll. This emuiatioll oCCur, tran'parelltly to the application alld in real-time. 

givil1g the appllcatlOll the illusion that it i, paTli~ipating in a real wide-area dIstributed en\'iron

mem_ The ~ppl ic~ti()l1 ibelr is complete! y Ul1aware of the e,i,knl'e of :\toJdl\el. 

"or this project. 12 duster llhlChines were -..:t ~,idc as ~lodel:-':et hoq machin~ s. whil~ I ~cted 

as a :\1odell\~l ~mulator. All the host Jllachines ran identical Lillux Illstallations. while FreeBSD 

4_ 11 wa_, u,ed for the emulator TIla~hille. To obtainlhe be,t po,sibl~ emulation results, the Cmu

lator"s operating _system kerne l wa, cOllflgured wilh a clo::k rate of 1O.OOOHL, a_, recomlllCnded 

by lh" r>.loJell\et JocuJnelltation l791. In addition to the,e 13 lIla~hines, all{)[h~r COJllplLter was 

used t(} hmt a relatiOl1al datahase 'toring FLC alld Fl'f mapping" 'IS JllelltioIl~d III ,~nions 7_5 

and 7_~, re,peclively_ A diagram or thi, setup is ,hoWIl in figure R_I . 

".."..«< ""'" 
fl",,' -, 

IIII 

~ ................ 1'-"",.", -

""""'d.h~ 

'"H''' 'll, 
III 

Figu re 8.1: The ~xfX'rirnC"lal nelwork ,elup 

In ~II the experiments, lhe s"me r>.lmJeIl\et p~ram.teTh were used_ A 5()()() node Autonomous 

Sy'tem (AS) leveilletwork with 100 cliem, (peers) ~l1d 25 _,tuh, wa, geller~ted u,ing the lnet 

lopology Genenttor [71i ] ami ),,1ode l:-':et's ~net2xrr.l l"()1. The cI~nt-slllh lillk handwidth was 

,el to 10)"1hp', while 'lllh-stlLb. ,tub-lransil and tran,il-lnm"t lillk< were ,et to IlXIbp' . All 

lillks in lhe network were assigned a defau lt M<XidNel latency alld 'll!eue length_ The link 

delay_' were alltoJllatic'al ly generated ha,ed OIlllOde di,taoce_ 



CIiAPTl'.~ ~: E~pcrimental Livalumion 

H.1.2 Test Document." 

A collection of 95 s,mlple X:'1L documents W,IS used. Some of (hese dOCUmell(S were ,y"(het

leally generated, whilc others wcrG Gxtraets of documents wken Irom 181. 82. 89. 90. 9.+1. A 

ni,wgram ,nowing (ne J'I(;lLmenl ,iLe Ji,(ribution i, prG,enteJ in figurG 8.2. The wl~lkst Joeu

lnenl wa., 515 I:l in ,iLc. while thc largG'( document wa, 1 .. 91.61 KB. The (e,( JocumGnts WWG 

kep( inkntionally ,mall, as initial nm, of (nc cxpcrimem, rG",ltGJ In out-of-memory errors 

wnen performing 'l""ry pnx;""ing on large X\lL Jo" uml'nh. Tne,e out-of-memory i"uc, 

wer~ "lu,~J fly running up 10 9 in,wnL~' oj th~ prototype on ,,~("h \1odelN~1 ho,t ,"achin" 

concurrently. which put increJsillg 't"lin 011 'yqem re,ourcc, ,I' (he Xi\-lL documem , ilC' ill

neasGd. Since the experimGnts did not e\"allhl(e t11G efticiGncy olth~ replicJtion and updm~ 

pwpagation algorithm" u,ing ,mall X\lL documGnts wru; JeemGJ sufticiGnt. 

Figure 8.2: The file ,ize di'tribmion of {he le,{ Xl>lL d''-'lllnent; 

Pccrs wGrc assigneJ X\1L Jocuml'nts from (he sample collection in a rounJ-robin fashion. such 

that. at the start 01 e,lch experimGnt. 95 pcas in (he network each had one XML dOCUmell( in 

their dalJ s(ores. while thG remaining 5 pccrs haJ none. The SJmG peGrs \\erG always assigned 

the s,lme XML docum~nts before Gach experiment. 



88 CHAPTER 8: Experimental Evaluation 

8.1.3 Test Queries 

During each experiment, a set of queries was posed on the system. These queries were generated 

from the collection of sample XML documents, such that each query returned a non-empty 

result set and its results were known before-hand. 

The query generation process is outlined in figure B.I of Appendix B. For each XML document 

in the sample collection, a set of queries was generated. Each query in this set was evaluated 

on the XML document. If the queries returned non-empty result sets, they were added to a list 

of candidate queries. Once all the documents had been processed, a query script was generated 

from the list of candidate queries. This query script was executed by the prototype to pose 

queries on the system during the experiments. It specified the time a query should be evaluated, 

the query that should be evaluated and the peer in the network that should submit the query for 

evaluation. The queries in the script were selected at random from the candidate query list. The 

time between the queries was generated using a Poisson process. 

The query script consisted of 300 queries, posed at an average of 3 queries per minute. The 

total run-time of the script (i.e. the time required to execute all 300 queries per experiment) 

was therefore approximately I hour 40 minutes. A single peer that was guaranteed to be online 

during the experiments (the boot peer) was chosen as the query submitter for all queries. 

8.1.4 Peer Online-Offline Behaviour 

The algorithms were tested using two peer online-offline behavioural models: a real-world 

model based an existing P2P network and a synthetically generated model using a Poisson 

process. 

The real-world model was obtained by recording the times peers entered and departed a Direct

Connect P2P network. DirectConnect is a hybrid decentralised P2P filesharing system similar 

to Napster, in which peers connect to a central hub that accepts and evaluates queries on be

half of peers, and maintains information about the peers in the network. To perform these time 

measurements, the open-source Linux DC++ [78J DirectConnect client was modified. The Di

rectConnect hub informs clients whenever peers in the network connect or disconnect from the 

hub. The modified client captured these events and recorded the times at which they occurred. 

The measurement trace was conducted on a DirectConnect network operated at the University 

of Cape Town from 16 August 2007 until 25 August 2007, for a period of 9 days, 6 hours and 42 



CHAPTER 8: Experimental Evaluation 89 

minutes. Only the first 105 minutes of the measurement trace data was used for the experiments. 

This was long enough to allow all queries in the query script to execute. Furthermore, since the 

size of the ModelNet network was fixed to 100 virtual nodes, only the times for 100 peers were 

taken from the measurement trace. Figure 8.3 shows the changes in the size of the network for 

the real-world model during the experiments. The network gradually decreased in size until it 

reaches approximately 62% of its initial size after 66 minutes. Its size then remained relatively 

stable. 

For the Poisson-generated behavioural model, the peer arrival and departure rates were both set 

to an average of I peer per minute. In contrast to the real-world case, the network population 

size in this model remained relatively high, with slight variations over the course of the test 

runs. This is shown in figure 8.4. 

Both the real-world and Poisson-generated models were encoded as scripts that specified the 

type of event (whether an arrival or departure), the time an arrival or departure occurred and the 

peer that entered or departed the network. The prototype was extended to execute this script. 

is 
o 40 
z 

20 

°0~----~20~----4~0~--~6~0----~80~--~1~OO~--~120 
Time(min) 

Figure 8.3: Changes in the network popUlation size using the real-world peer online-offline behavioural 
model 



90 

o 
o 40 
z 

20 

CHAPTER 8: Experimental Evaluation 

°0~----~20~----4~0----~6~0----~80~--~1~00~--~120 
Time (min) 

Figure 8.4: Changes in the network population size using the Poisson-generated peer online-offline 
behavioural model. The average rates of peer arrivals and departures were both set to I peer per minute. 

8.2 Data Replication Algorithm Evaluation 

The data replication algorithm experiments were designed to determine the following: 

1. The difference in data availability in a system that performs data replication compared to 

a system that does not replicate data; 

2. How well a system that replicates XML fragments performs compared to a system that 

only replicates whole XML documents; 

3. Which replica selection algorithms performs best in the experimental environment; and 

4. Which replica placement algorithms performs best in the experimental environment. 

In all of the above cases, the various data replication approaches were evaluated against each 

other by considering data availability and replication cost. 



CHAPTER 8: Experimental Evaluation 91 

8.2.1 Method 

8.2.1.1 Overview 

A test was performed for every combination of replica selection and placement algorithm, with 

and without fragmentation, for both the real-world and Poisson-generated peer online-offline 

behavioural models. The tests were also conducted with replication disabled. Each test run 

consisted of the following steps: 

1. Each peer was assigned XML documents as described in section 8.1.2. Any documents 

or replicas in the peers' data stores remaining from previous test runs were deleted. This 

ensured that peers had the same initial documents at the start of each test run. 

2. The FLC and FPI database tables were populated from the data in the peers' data stores. 

Any existing table entries from previous test runs were removed, so that each test run had 

the same initial FLC and FPI setup. 

3. One hundred instances of the prototype were started on top of the ModelNet network. 

4. After 10 seconds, the boot peer was automatically brought online by the peer online

offline behavioural model script, so that it could create a new FreePastry ring. The boot 

peer was the entry-point into the network for the other 99 peers. 

5. Five seconds after the boot peer created the FreePastry ring, the other 99 peers were 

brought online, as specified in the peer online-offline behavioural model script. 

6. After 5 minutes, the boot peer started executing the query script. 

7. Once all 300 queries in the script were evaluated, all 100 prototype instances were shut

down. The data availability and the replication cost were calculated. The manner in which 

these measurements were taken is explained in the following sections. 

During all the test runs, the maximum number of copies of a particular XML fragment or 

document allowed in the network, Tn, was set to 10. The replica selection interval, t, was set to 

5 minutes. For the MFA and MRA replica selection algorithms, the top n entries in the access 

information tables that correspond to the number of fragments to replicate during a selection 

interval was set to 20. 



92 CHAPTER 8: Experimental Evaluation 

8.2.1.2 Measuring the Data Availability 

The data availability was determined by calculating the number of queries that returned com

plete results, the number of queries that returned incomplete (or partial) results, and the number 

of queries that returned no results. 

A query result is considered complete if all possible XML trees matching the query were re

turned. This would be the situation if all the relevant XML trees existed in the network at the 

time the query was evaluated. A result is considered partial if only some of the XML trees 

matching the query were returned. The missing XML trees would have been due to some of 

the data being unavailable at the time the query was evaluated. An example of a complete and 

partial query result is shown in figure 8.5. A complete result for a query /o/b would return 

the XML trees in figure 8.S(b), while a partial result may look like figure 8.S(c). A result is 

considered missing if no XML trees were returned for a particular query at all. In this case, all 

data pertaining to that query were unavailable at the time the query was evaluated. 

The number of complete, partial and missing query results were determined as follows: 

• Before all the experiments, the complete query results for all the test queries were cal

culated by evaluating the test queries on the collection of test documents. The results 

of these queries were then recorded. These query results are what the test queries are 

expected to return if all data were available in the network throughout the test runs. 

• During each test run, whenever a query was processed at a peer, the query being processed 

was logged to file, along with the IDs of the XML documents and fragments on which the 

query was evaluated. The actual query results were not logged, as the additional file 110 

would result in unnecessary load on the system. Peers also did not return query results 

to the querying peer to avoid any performance loss incurred by the serialisation, transfer 

and deserialisation of query results. 

• After each test run, the queries were re-evaluated on the XML documents and fragments 

as specified in the log files using a standard XPath query processing tool. The query 

results for each query were then collected from the peers and merged, so that they could 

be compared with the expected query results to determine whether they were complete, 

partial or missing. 

There were two challenges when comparing the actual query results to the expected query re

sults. Firstly, since we were dealing with XML data, equivalent XML trees may look different. 



CHAPTER 8: Experimental Evaluation 

<a> 
<b name="bl"> 

<c/> 
<!b> 
<b> 

<c/> 
<d/> 

</b> 
<fa> 

<a> 
<b name="b2" I> 
<d> 

<e/> 
</d> 

<!a> 

(a) Sample XML fragments distributed in the network 

<b name="bl"> 
<c/> 

</b> 
<b> 

<c/> 
<di> 

</b> 
<b name="b2" i> 

(b) The complete result for query / a / b 

<b name="bl"> 
<c/> 

</b> 
<b> 

<c/> 
<d/> 

</b> 

(c) A partial result for query /a/b 

Figure 8.5: The difference between a complete and partial query result 

93 

For instance, consider the two XML documents in figure 8.6. They express the same informa

tion, but are formatted differently. Performing a simple string comparison to determine whether 

the actual results are equal to the expected results would not work. Secondly, since the system 

replicates data, the query results from the test runs may contain duplicates (the replicas). The 

identification and removal of these duplicates from the query results would normally be per

formed by a query processor. However, this was not the case in the current system, as query 

processing was not the focus of this work. The presence of duplicates further complicated the 

comparison procedure. 



94 

<a> 
<b name="bl"> 

Some text 
<ib> 
<b> 

<c/> 
<d!> 

<ib> 
<fa> 

CHAPTER 8: Experimental Evaluation 

<a> 
<b name="bl">Some text<ib> 
<b><c/> 

<d/> 
<ib> 

<fa> 

Figure 8.6: Two XML documents expressing the same information, but formatted differently 

Comparison was thus performed by creating a fingerprint list for each query result. Each fin

gerprint in the list corresponded to a XML tree in the query result. This was done for both 

the expected and actual query result. Using the fingerprint lists, one can determine whether an 

XML tree appearing in the expected query result also appears in the actual query result. If all 

the fingerprints for the expected query result also appear in the fingerprint list for the actual 

query result, then the actual result is complete. If only some of the fingerprints for the expected 

query result could be found in the actual query result's fingerprint list, then the actual result is 

partial. If there are no fingerprints for the actual query result, then no data pertaining to that 

query existed in the network at the time, and a miss occurred. This procedure was repeated for 

each query in the test query set. The number of complete, partial and missing results for each 

test run were then recorded. Figure 8.7 illustrates how the comparison was performed using the 

fingerprint lists. 

In order to generate the fingerprints, the XML trees in the query results were first converted into 

string representations. These strings were formatted in a manner such that any two XML trees 

expressing the same information, would produce the same string, even if they were originally 

formatted differently. The fingerprints were then obtained by calculating the MD5 hashes of 

the strings produced. Figures B.3 and BA in Appendix B present the fingerprint generation 

algorithm in pseudocode. 

8.2.1.3 Measuring the Replication Cost 

The replication cost is taken as the average amount of replica data transferred per peer. This was 

measured by wrapping the Java Input St ream and Output St ream objects provided by the 

socket over which the data was transferred, and logging the amount of data that were sent and 

received. After the test runs, the total amount of data transferred by each peer was calculated. 

The replication cost was then taken as the average amount of data transferred per peer. 



CHAPTER 8: Experimental Evaluation 

Expected query result 
fingerprint list 

A 

B - ..... ......... 

c 
"'-- .. -- .. _-

"'''- .. 

Actual query nesult 
fingerprint list 

A 

A 

.. - .... B 

D - .... -----.-.-~~:--------- D 
", 

'-. C 

D 

A 

B 

(a) A complete query result 

Expected query result 
fingerprint list 

Actual query result 
fingerpnl't list 

A ------------------------~ 
B ------------------------~ 
c 

D 

-------- )( 

.. _----- )( 

(b) A partial query result 

Expected query result 
fingerprint list 

A ----- ____ )( 

B .-------)( 

C .. ______ )( 

D ----- ___ )( 

Actual query result 
fingerprint list 

(c) A missing query result 

95 

Figure 8.7: Comparing the query result fingerprint lists to determining whether a query result is com
plete, partial or missing 



96 CHAPTER 8: Experimental Evaluation 

8.2.2 Results and Analysis 

This section discusses the results obtained during the data replication test runs. First, we look 

at the results for the real-world peer online-offline behavioural model. Then, the Poisson

generated model results are presented. 

8.2.2.1 Real-World Peer Online-Offline Behavioral Model 

The results for all these test runs are presented in table 8.1. The number of complete, partial 

and missing query results for each test run is shown, along with the average amount of replica 

data transferred per peer. The suffixes applied to the replica selection algorithm names in the 

table indicate whether fragmentation was enabled or not. If fragmentation was enabled, a "+F" 

is appended to the replica selection algorithm name. Otherwise, a "-F" is appended. 

Replication vs No Replication 

In all cases, replication improved data availability. Without replication, 92 out of 300 queries re

turned complete query results, while 34 queries returned nothing. Enabling replication caused 

the number of complete query results to rise. The highest increase was for the MRA-F/RRP 

test run, which gave 244 complete query results, an improvement of approximately 165%. 

MFA+F/CSRP gave the lowest improvement with a 40% increase. 

Enabling replication also decreased the number of missing query results across all the test 

runs. RRS-FIRRP achieved the greatest decrease with a 35% drop, while MRA-F/AURP only 

achieved a 6% decrease. 

Fragmentation vs No Fragmentation 

Figured 8.8 to 8.10 show bar charts of the results in table 8.1, comparing the results for a system 

that replicates XML fragments with those obtained for a system that only replicates whole XML 

documents. 

As shown in figure 8.8, disabling fragmentation resulted in a greater number of complete query 

results in all cases. This was expected, as replicating whole XML documents means that more 

data are replicated, which in turn, results in greater data availability. However, we are interested 

in determining by how much the data availability for a non-fragmenting system exceeds that of 

a fragmentation-enabled system. When RRS was used, the number of complete query results 

was on average approximately 24% higher in a non-fragmenting system. When MFA and MRA 



CHAPTER 8: Experimental Evaluation 97 

Replica Replica No. No. No. Ave. Replica 
Selection Placement Complete Partial Missing Data Transferred 

Algorithm Algorithm Query Query Query Per Peer 
Results Results Results (MB) 

N/A N/A 92 174 34 0 
RRS-F RRP 152 134 14 4.19 
RRS+F RRP 192 96 12 8.65 
RRS-F CRP 149 126 25 3.35 
RRS+F CRP 192 95 13 7.57 
RRS-F CSRP 142 134 24 2.83 
RRS+F CSRP 192 95 13 9.28 
RRS-F AURP 149 134 17 5.52 
RRS+F AURP 168 113 19 9.35 
MFA-F RRP 139 130 31 7.12 
MFA+F RRP 206 74 20 10.03 
MFA-F CRP 136 137 27 11.28 
MFA+F CRP 217 64 19 12.60 
MFA-F CSRP 129 147 24 9.55 
MFA+F CSRP 215 60 25 10.52 
MFA-F AURP 134 139 27 10.38 
MFA+F AURP 216 54 30 12.07 
MRA-F RRP 179 96 25 8.48 
MRA+F RRP 244 40 16 18.80 
MRA-F CRP 179 96 25 8.24 
MRA+F CRP 240 44 16 20.36 
MRA-F CSRP 180 98 22 7.91 
MRA+F CSRP 243 40 17 18.66 
MRA-F AURP 169 99 32 7.58 
MRA+F AURP 242 43 15 20.60 

Table 8.1: The results for the data replication experiments when using the real-world peer online-offline 
behavioural model 

were used, the number of complete query results were approximately 60% and 37% higher, 

respectively. 

The number of missing query results is compared in figure 8.9. One would expect fewer misses 

when fragmentation is disabled. However, this is not always the case. In the RRSI AURP, 

MFA/CSRP and MFAI AURP test runs, enabling fragmentation actually resulted in fewer misses, 

although not by a considerable margin. Furthermore, the difference between the number of 

misses varies greatly across the test runs. There is no obvious indication of a pattern emerging 

when enabling or disabling fragmentation. This is most likely due to the dynamics of the P2P 

network and the varying load on the cluster machines that could have affected the number of 

missing results obtained during the experiments. 



" CJlAPH ~ K: Expcnmcll1aJ E,~l u3I ion 

-
m 

m ''-

! ," 
• ' . 
I 
! • • • 

• "'..,AI' .......... ....... ..,..... _COP _...-
..... _ ... ~~ .... _ "-" C_ .....- ... c ..... 

Figure S.8: Comparing t"" n"m~' of cOnlple\e QUolI)' rc,ult, ,*, 'm>-xl "h~" tr.~'''''nla'''J" " ,'n"blffi 
(,nd dl>abled 

• 
• 
• 

" ' 

" 

'J , ,,.......-, 1_""" 
. ''''' .... ~- ...... 

"OC'"' "" ..... 1tO .... ~ .. ""."""" ,,'~'""'" ..... ...-,,_ ,."c,... ....... ""'0_ ...... " ""'0_ 

F .gure 8,9 : C"mp"'in~ lllt """,br, (If m""lIg Q"e,~' '",uit- ,*',.,,,,,<1 '" h<-o fr..~mcma\ .... n ;1 en""j~d 
~nd <I,,.:,b~d 

The rephc:lIIun cus" 3n' l'ompared in figure 8 10. !h npcc"-d. di-.ablmg rr:lj!nlcnla'i(m al· 

'.:a)~ rc,ulted In grea.CT n:ph<::llion 00-.1. a~ "'''11: <ilta a.-e trlln~rcrrC<l ",h ... n rcphuung ",hole 

X M I. document •. Hov.'e'cr. the d,fr~r"n<.·" in ('''' ,edric< "hen lI<ing diff~,em r.:pllca 5<.'1e<.'uon 

JIS"rirhm', For {he RRS and :\jRA ilj!vn lhuh, the replicati"" CO'. dccl~a >e> nil ~,crag~ by 

apf'!'",lnJld Y 5Yk and 5~\t . rC>p',c t" cl}, lr ur>.: "ere to choose h.:twccn ~ f r~Sl1lem Ill!; and a 

!l<'n·fragme111ing '}'tem b~>cd un thi s. t h~n a rr' l!;m~miLlg 'y'tern :.cern, pretcr.1blc, Tb~ large 

drup in rt!p li ca!iOLl CO,! i, a I"air trad';:·u rl" for a ~(yk and 27% drop ill the Ll umb.:r nl CQ n1plGk 



ClIAPTER II ' B.pcri rlll'nlal E\"lIlu3nOIl 

i • 
I • , 
• • " I 
~ 
; " • 
I • , 
I 
I • l 

u . __ __ 

•.. -----"""'"'" • 

_ClIP _..... w4iCW ............. ~ ............ """.... _c"'. ...._ •• ""'" ...... ~ " .. ,_ 

Figure 6. 10: 
d .. :tbkd 

~ .... -.. -
~ 

~ -i • 
• • ,. 

• 
, - ":",,, .... - .... , .. ,,' ...... ~.. , ........... 

_ •• ' ""~C"'" ...... ~" "'.c",,· "" .. U· ...... w .. 

Figure 8.11 : Coml\lring th e IOlal ~uml>t.·I · or ~"try re.ult, obu; lI00 .. hen f"Jm~mal' o<\ " oniob lc:d and 
d;o;o~k<.l 

qU<"f ~ I"CMlll!>. r<">p.-..1i\·d y. Wh,," ''''np. (he t-.· I E~ ~lgOl·i(hm. h()\lo·c,,:cr. the rt'pltCaUoll ~(ool) 

,j, 1.>Jl;' I» J "",O~i,"ald~ Ifi 'i TIll' detle~,~ mip.hl be 100 ' ''", 10 JU>li f~ ~ )7<:} 10» '" Ih~ 

numbc1 of OO1npl Cl<' r~lll1>. I" Ihl' ro, ...... " nun- fr~8m~ rtli ng .'~"t"'m m'ghl be 11fC 1~ 1 ~1'1" 10 a 

f! Jgmemah"'l·cn.:.blcJ ') , t~m. 

rig ulc S, I I compares the tOlal !\umn"r "r q ue r) r",ull, returned durin g the Ie' l n UlS (thc numocr 

uf cumplete quci y rC, u It, pi u, th e number of pani,,1 r~,uI ls) . Th i, i, of ; ntcre,l to appli c.ltitlm 

lhal m:l y nOlll<',e"ari ly rcqui rc com ple le qucr)' r~,u l b _ A, s"own_ I "~re " nn upp.reci~bl c dile 



100 _____________ ~C,H,A,','~','~8 __ §:"p"riIll~mal Evaju~ll()ll 

'" 
~ 

~ 

i m 

i 
'" ! 

0 , 
" 

" 
0 

'''' ." ".' , 

Figure 8.12: Comparing I be 'Hlmbc, of "ompieto '1"C'Y rc,ulh t>1:>l~in"d whon ",ing difkR"1 "''Plica 
S<'ie,{ion algorithm' 

[ere nee bel" een the number of quer}' result, "btained when embling fragmentalion cOIllpared 

to (hose "hLa;ned when di,ublmg fragmentalion. III ,orne ('a,e,. the lOl;.i1 number of 'l""ry re

,ult, are even higher when tragmentalion j, ellubbl, Illost likdy due lo the dynamic, of the 

running 'y'tem a, memi()ll~d earlier. Ther<lfore, for "pplical;om in which any <juel)' re,ull j, 

acccplahk regardless wherher The result is complete or nOl, a fragmenting sys!cm would nlw~ys 

be preferable ((> n 11011-fragment i ng sys!cm due 10 the dccrca,cd replication cost. Unfortunately. 

figure 1\. 11 doc> not indicatc how compictc thc qUCI) rc,ull, arc, One cannot SCC, for in>tancc, 

'" helh~r re,ult> are I % complete or 99% ~oJllpl<lte. '" hich Jllay be a faclor in <leci<ling '" hether 

10 opt for fragmentalion or not 

Replica Selecti01! AiKorithm Em/uatioll 

Figure R.12 compare" Ihe rlumher of complete quer), result, ohLa.ined for 1m, three repli<'a "C~ 

kction algorithm', In each c~,e. MRA yielded the highe't numher of complete query re,ulb, 

follow~d hy either RRS or MFA, depending on whether fragmentation w~, enabled or no!. 

""'hcn fragmentation was enahled. RRS p~rformed bell~r than .'I-1FA, Tbis seems eoumcr-illluiti'e 

One ,\<)uld expectthc ~cce~s-ha,ed ~lgorithmi> to alway, yield a grcatcl' numocr of complete 

que!)' r~sult" a, therc is some intelligencc involved when determining what data to repliu(c, 

lIowever, (hi, wa' nOllhc case, The arc (hree rcai>fm~ for thi ,. firstly, RRS h~s a head-slart 

at replicating daLa. In conira,! to the acce<s-b,cd algori(hm" !m, RRS algorithm ,Wrts l'cpli

caling dam trom thc fifi>t rcplica >;election Lntervai, whereai> the acce~s-ba>;ed algorithms have 

to wait uniil qllCf]~, have becn procc5'cd in ordcr (0 have into['lnation tor dcciding what data 



C!J..\PTER R: E.'perin",ntal Evaluation '0' 

" 
• 
, 
, 

i , 
• 
0 
0 " 

" 
• 
, 

- ,..-, - ,-" 
R,o''' "'"' .... "' "">0< '''''' 

Figure 8 .1 3; Comparing the number 01 m;"ing 'l'Je'Y rc,ulh Whell u';"g di flcn:rll 'cphca ,clcc,i"" 
alg(}rithm> 

[(l replicate Secondly, althollgh the 1>1['1\ algorilhm rcplicate, data ba'<Cd on acce,' hi,lOry, the 

test queries I'ere submitlcli at ranliom. Therc WitS no particular query aCl'C<S paltcrn: il I'as 

a, lflhe qllery pa1lern Was wn,tamly changing. Finally. kca",c RRS IS complelely random, 

it might have selected complet~ X!>.ll documents for rephcalion. whereas tl'" MFA algorithm 

only reph('ated .,mall fragment'. All the.,e fadors togetJJ.>r contrinutcli to the lower complete 

'luery re.,ult, mum. 

Th~ \1FA algorithm only oLl1performed RRS when fragm ~ntati'}]1 Wa' di'abl"d. In thi .' ca,e, 

11", random nalme of RRS caLl,ed it 10 replicate IO() mLlch Llnnece'.'~ry dM~ compared to .~lFA. 

looking mlhe numkr at missing qu~ry results In figLLrc 8. 13. there is no cvidcnce to suggcst 

lhat onc replim selection algonthm resllits '" a great~r Illlmr.,r of misses than anOlher. 

The replll'ation W,t i, compar~d In figure K 14. In all cases, RRS comumeli Ie.' .' bandwiJth 

tl'l;ln the ll('c~ ,,-b~sed algorithm,_ \Vn.,n fragmentalion wa, enabl~ d, it r~,ult~d m ';7% lower 

replicati,m msttl"tll '>IFA amI 51Y1 I(}wer than MRA. Wh~n fragm~nt~tion "'a.' di'alll"d, lhe 

redul,ti,,,, in cost was on ~wr~g" 25"k, th~t of \1 FA ~nd 56% th~t (}f \1RA. The ,,,dLl(',,d (''''I 

'" h"n u., ing RR S ,eem, l'OLLm~r -imuitive at Ii,,!. becau,e the ,electi'lll of what d~ta to replicate 

i., mmpldely random. H",';e,-"r, thi, cmt redunion m~y he explained by ('(lll."dering 1)0'" the 

thr~e replica selection algorithm' op.;ratc. The al'l'e,,-na,eJ algorithm, repll('ate the fragmcnts 

corrcsponding to the top Ii cntriGS in the acccss informauon tanh lnlhe experiments, a val"e 

or 20 was used ['or " . The RRS algorithm, on the other hand, randomly seleCls J,; documcnts 

hom a peer's dol1a 'tore, where 1 ::; ~' :::: 8 , and ~ is IOC number of X"-]L docLlmems in the 



i " 
i 
~ ,. 

I , 
j 
• 
f 
• 
• , 

________ -'C,'"".,,','C".R R: E,\perimental Evaluation 

"' ... " 'R" " 

Figure 8.14; Comparing the amounl or replica <lma lrarderreJ when u,ing differ.m replica ~lection 

algorithm, 

peer', data ,tore. If ., 1:; small (le:;:; than 20), then the RRS will. 111 g~ncral. replicate Ie." cial" 

than the acce",· bas~d algorithm:;, re:;ulting in a lower r~plieiltion CO", rhe reduction in coM i, 

l!reater when fml!melltatioJl IS ellabled. t-.:cause the ;;iz.05 or th~ access information table' for the 

",,,:e"-ha,ed all!orithm, ~'[ow large vcry quickly compared to the number of documcnt:; in thc 

d"ta ,lore (an emry e.\iSb ill the accc," illformation table for each ,ubtre~ acccIscd at a peer). 

Comparing th~ r~pliciltion LOst' for the a'''''',,-ha,ed algorithm,_ we fH\d thatl\-'IRA COlhume, 

Ie,s band" idth than :MI'A when fragmentation i, en"blcd, whi Ie the nppo,ite ,eems true" I",n 

iragmentation i;; di:;ablcd. One exception \0 thi, i, when RRP is used with fragmenl"tioll en

abled. In this easc,MI'A re:;ults in I~.'s co'tthan ~!RA Thi, i, mmtlilely due to the random 

Jlature of the placem~nt algorithm, ,,·hieh could h,n e had an efkct on the co,L 

Rep/i,·" PI"cemellt Algorithm Em/""/;o,, 

Figur~., 8.15 and 8 II> compare the number complete "nd mlSsing <juery results. re'peCli\'dy, 

wh~n using ditkrent replica placement algorithms. rhere is 110 evidence that illciJc"tes th"t OJ)<' 

plac~ment algorithm prm ,de., great~r ciata availahility than another. Funhermore, as hgure ~.17 

'h''''s_ the Choice or replica pbl'emenl all!orithm Joe, n01 a[feClthe replication co,1. 

The .,imilarity in resulh obtained for the placemem algorilhms can he attnbuted to the [l<'er 

online-offtille beh""iour. rhe network rem.in.< fairly 't"hle "fler liD minutes. as can be seen in 

ligure 8.3. The ]X'ers rcmaining in the nemorl after the mitial population sin decrease exhibit 

w ry simibr behaviour. If lhere w", a !!Cealer ,,"nation in the peer popubtion .,ize m· er the 



10., 

.:oursc of the- IC.,( ru/b. th" ,h ff~",n~.., In fl"rfonn~"ce hetween the , .. riou~ [>la(:111(:1I1 al~orul"n, 

nught haw be"n mor<' <" ·,,./<'nl. 

. ' . 
• 
• 

_H ." 
".~ ~ ..... ,"""--

Figure 8.1 5: Comparing th . numl><t "f eMII,lele q uc'~ ",ult, obtained "h,n u';n~ ,111 1 ,wn' rq, h,a 
pla.:e'Mnl alg""t),m, 

• 
• • 

" ... ~. , ........ -..... 
Figure 8. 16: . nmp.:mng 'h" numher of """,nK 4 ...... } ,.."ult. ,,·he"Tl U""K <1,11"1"\.111 r,·pl>c~ pL:lc....,..ru 
.1t"nlhlTt> 



I"" CHAPTER R: E"perim~m~ l l:.valuation 

" • , 
i " i 
" I • 
; 
• " , 
i " , , , 
! • 
" t 0 .. "-' 

Figure 8.17: C"mp. ring lnc amlunl "I" ,"p li ca daLa lramkrrcd WhCll mill;: diffcrClll ,"pI,,·a placeT""rll 

algorithm' 

802.2.2 Poissoll-Ge-lle-r31e-d Pl'f"r Online-Oft1ille- Behavioural )Iode-l 

The re,ult, ohtained for this behavioural rnode! are very 'imJlar to those for the real-world 

model. These are presented in tahle 8.2. 

Replicul;,m v.f No R~pli{"(lliu" 

A, before. performi ng data r~plication re,ulled in grea ler data availahllity. \Vhenever replic·a

tion was enabled. the numher of complete query results wa \ higher than" hen replication was 

di sabled The highest increase was expe rienced during the MRA-fIAURP test run. whi ch gave 

an increase of approx i matel)' 550. whi le the lowest increase occurred duri ng the \ ·1 fAICSRP 

and MfAIAL"RP tc,t rUn,. which both ga'·c LJlCrcascs of approximately 4<;f . 

The llumber of mi'''"!, ljuery result, wa., al,o l",'er when using rep lica!]on. with the excep

tiOll of I"" test rUllS: r..IFA-I'!AlJRP and MRA-FIRRP. In these two te,t rum. the number of 

mi"e' is actual ly higher than that of the nOll-repl ical i ng tesl run. The only explanation for thi, 

une,peclc!l re, uit i, that ntra load on the cluster machines negatively affccted the s(abili(y of 

thc running prototype. Smcc thi, negativc relult wa, only obse-rve!l for the !\lh\ ami r..IRA 

algonthm •. (hc Clilnl load could be due (0 thc additional wor\;' performcd by tho,e algorithms 

tl> maintain their acccss information tables. which coul!l ha,c hindcl~d sy.(cm perfomlancc 

Thc extra lo.1d could also ha,'c ,temmed from the ne\\,or\;. ellVlfOnmelll. Peers en lCr alld lcave 

(he nCll.ork more frequcntly in thc POiSsoll-!'cncrntcd mO!lclthan in the real-world mO!lcl. The 



CHAPTER 8: Experimental Evaluation 105 

Replica Replica No. No. No. Ave. Replica 
Selection Placement Complete Partial Missing Data Transferred 

Algorithm Algorithm Query Query Query Per Peer 
Results Results Results (MB) 

N/A N/A 183 104 13 0 
RRS-F RRP 215 77 8 3.28 

RRS+F RRP 240 55 5 10.93 
RRS-F CRP 224 66 10 6.70 

RRS+F CRP 239 57 4 7.57 
RRS-F CSRP 227 67 6 3.61 

RRS+F CSRP 259 33 8 10.54 

RRS-F AURP 243 50 7 7.29 

RRS+F AURP 251 46 3 7.83 
MFA-F RRP 194 97 9 9.67 

MFA+F RRP 265 25 10 12.74 
MFA-F CRP 195 95 10 9.52 

MFA+F CRP 260 36 4 13.77 
MFA-F CSRP 191 98 11 8.70 
MFA+F CSRP 271 20 9 13.41 
MFA-F AURP 191 95 14 8.60 

MFA+F AURP 270 21 9 15.87 
MRA-F RRP 205 81 14 9.68 

MRA+F RRP 269 21 10 25.99 
MRA-F CRP 226 67 7 8.61 

MRA+F CRP 271 22 7 24.76 

MRA-F CSRP 220 72 8 9.82 

MRA+F CSRP 270 21 9 24.65 
MRA-F AURP 216 77 7 10.12 

MRA+F AURP 284 10 6 26.05 

Table 8.2: The number of query results and amount of replica data transferred 

system might therefore require more work in order to maintain the structure of the network in 

the face of the increased activity, placing further strain on system resources. 

Fragmentation vs No Fragmentation 

In all the tests, disabling fragmentation yielded a greater number of complete query results than 

enabling fragmentation. On average, the number of complete query results was approximately 

8% higher when RRS was used, while it was approximately 28% and 21 % higher when MFA 

and MRA were used, respectively. When considering the total number of query results returned 

(the number of complete plus partial query results), no appreciable difference between a frag

menting and non-fragmenting system can be found. As for the number of missing query results, 

disabling fragmentation caused fewer misses most of the time as expected, but there are some 

cases in which fewer misses were obtained for a fragmenting system. This was experienced 



106 CHAPTER 8: Experimental Evaluation 

in the real-world model as well, and is due to the dynamics of the running system. Finally, 

fragmentation resulted in a lower replication cost than a non-fragmenting system as expected. 

On average, a 39% drop in cost was obtained when RRS was used, a 34% drop was obtained 

when MFA was used, while a 62% decrease was experienced when MRA was used. 

Replica Selection Algorithm Evaluation 

The difference between the three replica selection algorithms in terms of the number of com

plete query results was not as great as that observed in the real-world case. This is due to the 

relatively high network size maintained during the test runs. When fragmentation was disabled, 

the algorithms rank the same as before. MRA performed the best, followed by MFA, and then 

RRS. However, when fragmentation was enabled, RRS performed the best. This is different 

than in the real-world case, in which RRS ranked second-best. 

With regard to replication cost, the results are similar to the real-world experiments. When frag

mentation was disabled, MFA resulted in the highest replication cost by a considerable margin: 

on average approximately 84% more than MFA and 179% more than RRS. RRS always resulted 

in the lowest replication cost, approximately 32% lower than MFA. When fragmentation was 

enabled, the access-based algorithms resulted in similar cost. Sometimes MFA had less cost 

than MRA, while at other times, MRA had less cost than MFA. RRS had the lowest cost again, 

approximately 43% less than MFA and 45% less than MRA. 

Replica Placement Algorithm Evaluation 

The replica placement algorithms gave similar results for the number of complete query re

sults and the replication cost, despite the Poisson-generated behavioural model having greater 

variations in the network size over the course of the test runs than the real-world model. Noth

ing suggests that one algorithm performs better than another. There might still have been too 

many similar behaving peers in the network for there to be a noticeable difference between the 

placement algorithms. 



CHAPTER 8: Experimental Evaluation 107 

8.3 Update Propagation Algorithm Evaluation 

The update propagation algorithm experiment measured the percentage of XML fragment ac

cesses that returned the up-to-date results for various XML fragment update frequencies. 

8.3.1 Method 

8.3.1.1 Overview 

For simplicity, the experiments did not involve real XML document updates. Instead, updates 

were simulated by simply incrementing XML fragment version numbers. 

The times at which updates took place and the peers that performed updates were specified in an 

update script similar to the query script described in section 8.1.3. The times between updates 

were generated using a Poisson process, while the peers performing the updates were randomly 

selected from a list of online peers as specified in the online-offline behavioural model script. 

Peers performed updates by randomly selecting a locally-owned XML document in their data 

stores. Then, a pseudorandom number generator was used to determine which fragments ex

tracted from the selected document were updated. 

The experiment consisted of the following steps: 

1. A network of 100 instances of the prototype was started in the same manner as described 

in steps I to 6 in section 8.2.1.1. 

2. Approximately 5 minutes after the 100 instances were brought online, the update script 

was executed at each peer. 

3. After all test queries were evaluated on the system, the 100 instances were shutdown. The 

percentage of up-to-date fragments accessed by the queries were then calculated. 

These steps were repeated for various update frequencies, with the update propagation algo

rithm enabled and disabled. The replication strategy was fixed to Random Replica Selection 

with Random Replica Placement. Only the real-world peer online-offline model was used. 



108 CHAPTER 8: Experimental Evaluation 

8.3.1.2 Calculating the Percentage of Up-to-date XML Fragments 

During the experiment, each peer maintained an update log and an access log. Whenever a peer 

updated a local document, it logged the time of the update, the IDs of the fragments that were 

affected by the update, as well as the new versions of the fragments. Whenever a fragment was 

accessed, the access time, fragment ID, fragment version and the query ID were logged. 

After the experiment, the update logs for all the peers were merged into one log. The same was 

done for the access logs. Then, for each entry in the merged access log, the merged update log 

was checked to see whether an update for the fragment was made and whether the version of 

the accessed fragment is the latest version. After all the access log entries were processed, the 

percentage of latest version fragments was calculated and recorded. 

Note that if one peer accessed the latest version of a fragment while another accessed an older 

version during the same query, then only the latest version access was used in the calculation. 

The old version access was ignored. The rationale behind this is that a query processor aggre

gating the results sent by peers would be able to identify different versions of the same fragment 

in the result set and discard any old versions if a newer version is present. 

8.3.2 Results and Analysis 

A plot of the percentage of up-to-date XML fragments for various update frequencies is shown 

in figure 8.18. As expected, the update propagation algorithm resulted in a higher number of 

latest version accesses than a system without an update propagation mechanism. 

However, the difference between an update propagation enabled system and a system without 

update propagation is not as great as we had hoped, especially for high update rates. This could 

be as a result of the manner in which fragment accesses are handled in the prototype. The 

update retrieval phase of the update propagation algorithm is initiated whenever a peer attempts 

to access a fragment that has been marked stale. Instead of waiting for the update to arrive, 

the peer immediately returns the stale fragment, as the update retrieval process may take an 

arbitrary amount of time to complete. This reduces the percentage of latest version fragments 

returned in the query results. Another reason for the low percentage could be that replica holders 

initiate the update retrieval process too late. By the time updates are requested, peers storing 

later versions of the fragment might have already left the network. 

For systems in which low updates rates are the norm (less than 5 updates per minute), the cur-



CH."PTER 8: Experimental E\ia.h.".'.m.'"-____________________ ~I.lJ9~ 

IOC~ ___ U"',., """"'0_ ... .-. 

\ 
. u """" ,,,~ .. _ 

• 
• .n 

'\" 
, h" , . n ~,,, • 

i • .~ 

• 
I " '~." . ., • .~ 1t • • • , 

" "I' ..F.'! , ... 

1 n n ~" • " " • >IF "." ~. ". 
, 

" 
, 

0 " 
, " " " • " " 

,. 
c"",,, f, .. --. .. (",,,, •• , ,,"'"') 

Figure 8 .1 8 : Comparing the pcrcenl"g" of up l<,·dwc r'"g""n" acccs",d In ~n upJaI~ propagalion 
~nabled illld di sab le d 'ys tem for \ aryi ng updale rates 

r~nt up<latc propa~alion "I~orilhm may be sufticient. Howevcr. for systems lhal cxpect grcatcr 

updat~ rat~s. a mor~ '''phislinlleu ~Ig()fi lhm may be rC<.jlLireu. 

~ .4 Summary 

This chaplcr prescJlted experimcJlls coooucled to evaluatc Ihc data replicatioJl and update prop· 

~~" lion algori lhm" 

The ua!a rcp! Lcalion experimcnts wcre conducted (0 determine the follow i ng ' (I) the difference 

In data a\·ailabllity in a syslcm that performs d~ta rep lication compared 10 a ~y'\em that does 

not replicate data. (2) how we ll a ,y<lem that replicate, X~l L fragment' compare, to a ,ystem 

that only replicate, whole XML document'. (3) wh ich replica ,eleclion algorithm perform' 

be ,t under the experimental tletwork conditio',,- and (4) wh ich rep lica placement al gorithm 

perform, be,\ in the cxpe( lmental network environment . rhc, c exper imenls were perfOlm~d 



110 CHAPTER 8: Experimental Evaluation 

for various combinations of replica selection and placement algorithms in a network of peers 

whose behaviours were modelled on that of a real P2P system as well as generated using a 

Poisson process. 

With replication enabled, the number of complete query results showed an increase of between 

40% and 165% for the real-world P2P model, and an increase of between 4% and 55% for the 

Poisson-generated model. 

When comparing a system that fragments XML documents to one which does not, it was found 

that replicating whole XML documents resulted in a greater number of complete query results. 

When RRS was used, the number of complete query results were on average 24% higher in the 

real-world case for a non-fragmenting system than a fragmentation-enabled one, while for MFA 

and MRA, it was 60% and 37% higher, respectively. In the Poisson-generated model, these 

increases were 8%, 28% and 21 % higher for RRS, MFA and MRA, respectively. However, 

enabling fragmentation resulted in a lower replication cost. A decrease of between 16% and 

59% in replication cost was obtained in the real-world case, while a 34% to 62% decrease in 

cost was seen for the Poisson case. 

Looking at the replica selection algorithms, MRA yielded the highest number of complete query 

results when fragmentation was disabled, followed by MFA and then RRS. This was observed 

in both the real-world and Poisson-generated network models. However, when fragmentation 

was enabled, the replica selection algorithms ranked differently. In the real-world case, MRA 

performed the best, followed by RRS and then MFA. In the Poisson-generated case, RRS ranked 

the highest, followed by MRA and then MFA. In terms of replication cost, the RRS always 

performed the best of the three replica selection algorithms. 

Finally, comparing the replica placement algorithms, no appreciable difference was observed 

that suggested that one placement algorithm performed better than another. 

The update propagation experiment looked at the percentage of XML fragment accesses for 

which the latest versions were returned. This experiment was conducted on a system with 

update propagation enabled and then repeated on a system with update propagation disabled. 

Enabling update propagation increased the percentage of latest versions accessed, but not by as 

big a margin as we had hoped. The low increase can be attributed to the system returning stale 

fragments as soon as they are accessed rather than waiting for the update retrieval process to 

complete and updates to arrive. It could also be due to the late initiation of the update retrieval 

process. 



Chapter 9 

Conclusions and Future Work 

This project investigated the data replication and update propagation problem in XML P2P 

systems as a means of improving data availability in the face of peer departures. A survey of 

existing XML P2P systems revealed that this problem has not yet received much attention from 

the research community. Current systems instead focus on novel P2P XML indexing and query 

processing techniques. We believe that in order to properly support data replication and update 

propagation in a P2P system, such mechanisms need to be engineered into the system early in 

the design process. To this end, we designed a XML P2P data management framework that 

incorporates such mechanisms and components. 

In section 1.1, we identified three mechanisms that a P2P system must provide to ensure data 

availability: wide-spread data replication, replica location and update propagation. 

To support wide-spread data replication, our XML P2P framework was designed to sit on top 

of any P2P network implementation. By decoupling it from the underlying network, it does not 

depend on the network structure or the routing algorithms used. As a result, data items are not 

limited to specific locations in the network as they would be in structured P2P systems. We also 

proposed various data replication strategies for the framework by dividing the data replication 

problem into replica selection and replica placement, and allowing selection and placement 

algorithms to be changed independently. Our experiments showed that whatever combination 

of selection and placement algorithm were used, the availability of data in the network increased 

compared to a system without any data replication. 

The framework also allows for the reduction of replication cost by accommodating the frag

mentation of XML documents into smaller pieces and replicating those instead of whole XML 

documents. We found that this resulted in considerable cost reduction at the price of some 

111 



112 CHAPTER 9: Conclusions and Future Work 

data availability loss. However, the cost reduction is large enough to justify the drop in data 

availability. 

To support the location of replicas in the network, the framework defines a Fragment Location 

Catalogue (FLC) that maps replica IDs to peer IDs. This further helps separate the framework 

from the underlying P2P network and facilitates wide-spread data replication. The FLC may be 

implemented as either a web service or built into the network (e.g. in the form of a DHT). 

Finally, to tackle the update propagation requirement, we proposed a lazy update propagation 

algorithm that sends updates to peers in a two-stage process. Experiments showed that this 

algorithm increases the probability that data returned by queries are up-to-date, although the 

percentage of up-to-date data returned was not as high as we would like it to be, especially for 

high update rates. We also described how updates are handled in the framework, covering topics 

such as XML document update types, identifying what fragments extracted from documents 

have changed, and representing updates as deltas. 

Having looked at all three issues - wide-spread data replication, replica location and update 

propagation - our framework meets our initial requirements defined in this dissertation, and we 

have accomplished what we set out to achieve. We have not only proposed data replication and 

update propagation algorithms, but also presented an entire solution for an XML P2P data man

agement system, and developed an evaluation system that facilitates further experimentation. 

This work therefore serves as a good base for future research in the field. 

Future Work 

There are still a number of issues that could be addressed in future. This section highlights 

some of these. 

1. Investigating more replica selection techniques. During the data replication experiments, 

Random Replica Selection (RRS) performed well compared to the access-based approaches, 

especially Most-Frequently Accessed Replica Selection (MFA). As mentioned in sec

tion 8.2.2.1, one of the reasons for this is that RRS had a head-start at replication data, 

whereas the access-based algorithms had to wait for queries to be posed on the system 

before having information on what fragments to replicate. While testing could have com

pared the approaches only after the system had been running sufficiently long, this result 

does raise an important issue. Future work on replica selection techniques could look at 



CHAPTER 9: Conclusions and Future Work 113 

combining RRS and the access-based algorithms, so that replication can take place be

fore the access information tables of the access-based algorithms are filled. An adaptive 

selection mechanism could also be employed that changes the replica selection algorithm 

depending on the current system conditions. For example, initially, RRS could be used 

while there is still insufficient information available on the query pattern. Then, the mech

anism could switch to the MFA algorithm when the query pattern has become predictable, 

or to the Most-Recently Accessed Replica Selection (MRA) algorithm if the query pattern 

is sporadic. Lastly, more heuristics for selecting fragments could be investigated, such as 

taking the size of fragments into account or using more sophisticated access pattern anal

yses and prediction techniques. 

2. Investigating more replica placement techniques. The current replica placement algo

rithms base their placement decisions on the past behaviour of the peers in the network. 

More sophisticated algorithms could be introduced to predict the behaviour of the peers 

t time units into the future. The current placement algorithms could also be improved 

by only taking into account the last m time units. This might prevent the peers' earlier 

behaviour from overshadowing their current behaviour. 

3. Improving the update propagation algorithm. Update propagation could be improved by 

performing periodic checks on the data store contents and initiating the update retrieval 

process as necessary, so that updates can be retrieved sooner. These periodic checks will, 

of course, introduce extra bandwidth costs that need to be investigated, as peers would 

make more update retrieval requests in the network. An adaptive approach could be 

used to control the frequency of these periodic checks. If a peer receives an increasing 

number of update notifications, the frequency of the checks could be increased, and vice 

versa. The update propagation algorithm could also be compared with an eager update 

propagation algorithm. Our reason for using a lazy approach over an eager algorithm that 

immediately propagates updates to peers was to reduce the bandwidth cost involved in 

transferring updates. The extent to which the lazy approach reduces this cost still needs 

to be investigated. 

4. Experiment with different FLC implementations. In this work, any bandwidth and perfor

mance cost associated with the retrieval of information from the FLC has been ignored. 

Future work in this area could look at various implementation approaches, such as using a 

web service or DHT. The costs involved could then be measured to determine what effect 

they have on the data replication and update propagation algorithms, and on the overall 

performance of the system. 

5. Experiment with more network scenarios. This work assumed an infinite amount of stor-



114 CHAPTER 9: Conclusions and Future Work 

age space at peers. As a result, the effects of limited storage space on the data replication 

algorithms are not known. Different replica eviction policies could also be used to see 

what effect they have on the algorithms. In addition to this, experiments could be con

ducted with more query patterns and peer online-offline behaviour models. In particular, 

it would be interesting to see how well the system copes with random network splits and 

failures in which large parts of the network are suddenly taken offline. 



Appendix A 

Low-Level Prototype Implementation 

Details 

This section describes the low-level implementation details of the prototype XML P2P data 

system discussed in chapter 7. A UML class diagram is presented for each component, along 

with a brief description of how the classes and interfaces interact. 

115 



116 

A.I 

APPEl\"D IX A : L(",-L~v~ll'mlOlype Imp]ementJrion l)ctJi]s 

The P2P .\1anager 

" 

"" 

-- -""-",,",,,,", _;>-.. •• -.-.",,:; OJ 

... 
" 

•. , ... ".~ , ,~,",',-~"i',"'-'-~-~"~~"-~-" --,.,,<~., ~. _m.,. ",~_, ,~, 
","."."' ..... .....,,,."',,; ~. 
""~"m "~''''''''',m' ""',, .,,, ' 

'~; 

-:-.• ~.;;'~~" 
v '. ' •.• :oJ 

Figure A.1: UML cia" diagram of'hc 1'21' \l,mager component 



ApPE:'>JDIX A: Low-Level Prototype Implementation Details 117 

The P2P Manager component consists of the following generic interfaces. These interfaces 

provide operations common to all P2P network implementations: 

ID represents the ID of a peer or data item in the system. 

Node maintains all the information about a remote peer in the network. It has operations to 

return the ID of the remote peer and to check whether a remote peer is online. 

Message represents the actual message that is transferred between peers in the network. 

NetworkListener receives notifications whenever the following network events occur: 

• When the peer joins and leaves the network; 

• When messages are sent and received; 

• When messages are forwarded by a peer en route to their destinations; and 

• When connections to remote peers are established or broken. 

NetworkManager implements the P2P networking mechanisms and routing algorithms. It 

the main interface through which the all higher level components in the system interact 

in order to use the P2P Manager component. Operations are provided to join and leave 

the network, send messages, and to retrieve the local peer ID and list of neighbour peers. 

The Net workManager is also the entity in the P2P Manager that notifies Net work

Li stener implementations of network events. 

The lightly shaded package in figure A.l is the abstraction layer, the dark shaded package is 

the FreePastry library, while the un shaded package is the "glue" between the abstraction layer 

and the FreePastry library. F reePastryID and FreeP ast ryNode are adapter classes l31] 

that adapt Id and NodeHandle in the FreePastry library, respectively, to the corresponding 

interfaces in the abstraction layer. The FreePastryMessage class encapsulates Message 

objects so that they may be handed to the FreePastry routing layer. The FreePastryNet

workManager adapts the Application interface in the FreePastry library to the Net

workManager interface to expose the FreePastry functionality to higher-level components 

in the system. Finally, the FreePastryNodeIDFactory implements the peer ID genera

tion algorithm mentioned previously, and is used by the FreePastryNetworkManager to 

obtain the local peer ID. 



11" 

A.2 

APP ENDIX A. Low-Le,e] ProlOlype Implementalion Delail, 

The Fragment Creator 

"" ... "-~,, 
,,-,,",."'~ 

""'" 
'''''''-

'"'~''''''''''''''"''': -_-,,,,i.,,.m,, 

•:;;;;;~,:=-"",,,,,,c-_l===:,::-·-'A""~": "~-''' ","" : ~" , ~""'~,"'." ! ,,,~,,.,,,,, .. , ,~"',',' ." • ., 
" ~ ~""n""'" ,,.. ,- , ,' . 

. ",,,,,,.,, ,.1<." 

.,,,~'" ,,,.<,, """' .,,~ 
~,,'''''''-'i', ~" 
_-d=.~:: ,." 
"""'''-,,:~ '"y. ".,~. '~'" ",--. ~''' .• ", "-,."",,. "'" ,"""'-..... ~ ~'" U"~"'''''''' ,",-, ~"~. ,," 
~,~~~.", ",.n ,~,. -'C. _'>'to, ... :,~, 
~,-_"",. '~H .". " ~", "" ,," 

"'''''' 

Figure A.2: U,,1L c]a" diagram of the Fmgn",m Cr~ator com!,,""'"l 

The I,' rc'g:ne ~. t:';:::e Cl t L'::: is the main int~rfac~ in Ihe Fragment Creator componenl. It provide, 

a ":::,, il. t "I,' L=.g:n",,". t {i mel~od '" ~ic~ is called by lhe ., ySlem lO perform l~e frai<ment ex lral:

lion. T~e S i:n:;;·l'" r il. :;r11"~. t ~ r" il. t 'c· r cia" implement' the, r il. :;rrr'" n t C r "" to r inlerbce 

and l~e SAX -ba,ed fr~gmelll exlr~nion algorit~m It u,e, the n1L, : l",:c d nell" r d~,,_ which 

implement' a number of ('allbad me lhod, that are invoked by the SAX p~"cr whenevcr ccrtain 

parh of lhe XMI. document are encountered while the doc ument i, being pa"cd. 



AI'I'EKDIX A: Low-L~vd l'rolotype Implemenlittion De"'"""il., ____________ 1 ,I ,<) , 

A.3 The Fragment Location Catalogue 

" ,,~I._. ---------c"'""" ",",,C,',,~-------- 1 
, ,_ .... "" .. _ .... _ ".".....'K .. _ _ ~' ~. ___ I 

" __ "''''''"''''' • _'~ .,' -,.","" ~,,_"~~~"hy,', ~, """' .,.~ .. ,.: .H,",,',., '"'~, ", "",*' ~", ~ • 
.. __ '_ , .... ~ m'. " "';, ,,,,",k, , "'-... _~,,"" ,<>l, "'" ""p'''"_'"~:_' _'_''''''',,, ,,,,, ,, "', _ ", :~~ "'" 
.,~-'-;' , ..... ", ~,_,k ~,«"~" ~<,_ ", ... ""c,,,,,, ,_"~, _~-~~ " "'-~'-oc~"'-'_"'_"'" • _"",, yO ..... 

I ,,_.o(',-,--,~ ~,""'" ~], -",,-k , , "-""".~,"'~,>....., - "''' '-~''OC~'''''-'''''ro,",',,,-~,~, "', ««,*, ~[t, ~, 
,,"~ .... , , .. -,v~, co, <0""-, ~,~,,,,,,,,""~': ,' " """,' . '.~'mwn'-", .. '" , ~, C', ""co" 'Ott, "'" ........ "'",_'A, -", " ..... '"-~''''.''''-~'K''' ',~ " "p".~.~ ..... """"'"""",, •• ,,~, '"""",""" 
. Ww .. , ... ~'''' ~u. '" , .... ' ,,,_ "~~,, c ..... ': N' " "'_~'-~~""'_"'~"'-=-"" .'" ~< . "'" ~'r" """ -H"'-~"~ ~ ,II ......... , ,..--.",,,,,,-,,,,,,-,;, ,~< ,"'m.",--... m,; .... 

• 
''''' >",':' »""II 

...--" ..... ",,1.0<"'_ .. - . , ......... ~~ .... I· ......... , ........ , ~ .. ~,,~--~ , l~:~~~-~j~~~~,~.~=_~,~lx:'~~~' C.ub,,,. ,,,,.,..,.,u;,,, • "", ""..-.-.L~.,''''~ .-.,. '> _~";,, "~,,,' 
... '._-- , 

"" : ----. 

r'-" f "" 

Figu re A.3: UML class diagram of the Fragment Location C",alogu~ 

The ;':-" gleen t La Ca t ~ 0 ~_ C a ~_ il lo 'C",", imerfa("e provide, meth,)(h 10 imen, ret ricve ~nd re

rrwwe X:\1L fmgmenl ID [0 peer ID Ii,t mappings_ Fr,'gone- l T,,,"a ~~ ,,n ::: c.L,,~a<T~ e Im

plcmell1~tions are rClpon,ible [or the FlC-'re("ific logic 'Uc'h ~, nctwork c()mmullic~tion ~nd 

c ~ching, Thcy do [lOt h~tJd1e the actual ,torage of the mapping.,_ hhte~d. this r~'pomihility 

is t~ct()red illlo ~ ['r"9:uent Locilt~ onSt or"g", mlerf"c~ . Thi, ~llow, lhe FLC-spcciflc 

log ic amlrhc logic th~t m<!ffi!ges the ,tomge o[ the mapping., to v~ry independenlly_ Addition

~Il y, it a ll"'''' th~ _'~m.: slor~gc m<och~nism' to be reused m diffcrcIIt F r "g:u'" n t Loc a. ~_ i o ~_ -

Cata _ "q ~e impkmcnWtions, For ins[~nce. ~ DHT-ba,ed FLC "ould implemem the P21' 

('(>nlm((nic'alion logic' 'l:t<:cific to ~ p~rtic\llar P2P protocol, bUl may ((se a ''' il"w,,,,nt Lo ca. -



120 ApPENDIX A: Low-Level Prototype Implementation Details 

t ionStorage implementation backed by a relational database to actually store the mappings 

locally. 

The operations in the FragmentLocationCatalogue interface were designed to be non

blocking. Once they are called, they do not block until the operation completes. To enable 

such non-blocking method invocation, a FragmentLocationCallback interface was in

troduced. The FragmentLocationCallback interface contains methods that are called 

by FragmentLocationCatalogue implementations upon completion of the correspond

ing operations in the FragmentLocationCatalogue interface. FragmentLocation

Callback objects are passed to FLC operations as method arguments. 



APPENDIX A: Low·t.,."d Prololype Implernen"'""'"i,,"",, ,""","",,,i l,,,'--___________ ,1,,2~1 

A.4 The Update l\lallager 

--

,·,,,'f,,,,,, '''00 _ _ 

.~",,,,,-, ",-. -,,; "" 
_,,,~,,w.,.~, 'O"'''_ ''~' 
• <"","" ,-crt" ,,». ""-",,,,"" 
." ... "",._'''. ~".~, 

" 

." 

'C''''''''''''''-'- " ''''',...-"",,,: ~. 
.,., .... -:> •• '" 
.,~,·' · '..u'H'Y'·~"' ,,., 

- .J """f,,,,,, . ,,,_c« .. _ .. __ , 
,-"" .. ~, 

~----- ,,--,,~ .. --, 
'''''.''''''' 

-_ .. 
f",-c"~' D 
-~'"", ",' , 

Figure A .4: eMI. d a" di .grW[l or [he UpJalC .\bn'g'" CCKTljJOT>CJlt 

The CO'·"".T.f'lC"~."gf':c cia" implements the xr-~r.:;a·.dS·.o:e i nterfac~. '0 That ir prov;d~' 

the ,arne set of opt'ralions to hi gher- lew1 system com ponent'_ Wilhi n the L"pc.a l elC"-,, "'1e r 

c l~" is ~ ,-cfeTl'nce to an X~j~Dal,,-S".()fe instance, The L"?c."-te~j"llager delegate, <lala 

'tor~ ope,-~tion' to thi s XEL::,,-:d St C):e instance unce it has completed its own "urI-:, 

The x:: i ;' f intelf~cc is used by the U?d"- t e~ja "age r 10 dderminc "hal XML fragmcnt, in 

an XMl. documenl haw been updated, 11 provide> a COIT.p"-re () mClhuJ. whi,h tah, as mrlll 

the old and new version of ~n XML d<>cumcnl. ~nd return, an arr~y uf ::e~ t" objects. une for 

each updated f'-~grnenl found;n the document, The De~t"- ubjecls describe hu" a fragmenl 

wa, updated. Th~ XD~" f in le rl-~ce i, ~ho re'ponsiblc fo r applying De 1-:,,-, to X/l-ll ftagments 

to generate the new version of a fra.\!lnenl . Thi s is done using the :ner'1e I) methud. which 

receive, lhe ol<l w,-,ion of rhe X\Il. ,klcu'ncnl ~nd ~n ~rr~y of Delta ohjccts as input. and 

retllrn, l~ !le\\i ver,ion of the XML document. 



, ,"2"2~ ___________ ,A"""",","",,,,A,, ,Lcocww:,L,,'vcl ProtOtype [mpl~menlali"n l)et~i b 

A,S The Query Processor 

Q=i ,D,,,",,,, '"",'"" ,,,""'''''' 

' ~,~",~, .. ~ .. -c":§'§'"~'''';::' ~ I :, "'-"-"., "'~~''''-*j''''_ 

, . .. 
" -, .. ~,-... -
,~.~. ".~y; ,"'""'- " 
,~,.y.-.,.. ·".n"''' .... 
• -m,,"" __ "'" "~":' "" 
"~" "'~''''''_''«M co. ",y,,, ' .... "',"'.'" ."" " " ''-''''". ,''':0 .• ' x ".,.,. A.~"I_;y,· -,," 

c,_,~~""'".~ -,,,~
_~""; ""'0."" ..... 
'roo ~,"""""'''''.,, 

) 

,." "-"-'~"''''''''.' 
_'''M''''':_·'''~~'_._-_ 

-,,«,~'" 
~,.,; ~'" 

...... "N ........ " ... 
..,.,,,. ~ 

I ..... ""~" ·· ... ' -:. "" .. _., ... 
'." _ct· "''' .• 

The QlIcry Procc""r i, n;presented hy the ::;ue ''!:c> 'oce~~CI' interface. This mterface has 

lWO methods fO I c\'~luming qUe-ric>: eva 1 ua ~_" (I ami .,.-," I u" l.<' ~<a I I Y () The c;" ~ -

lJa L '" (:' method performs qUGry <walu;uion On X\lL [r~gm~m, in th e n~lwork as tle;.cribctl m 

,eel ;"n 5.6.2. Thc :':'1c.lua""c_cc,'llly () melhod on ly perform., query processing on local 

X"lL fra~ments. It i ~ c~lIetl t>y the cvc.lu,::.t.e () rnGlhod to perform loc~1 quc,)' process ing. 

I 



ApPENDtX A' l_ow-l,evel PrototYP" Implementaliun Detail, 123 

It is alsu imoked whelle'~r a qucry from a remote peer is recej"ed_ Guery-:>,eeeu;e,

(il.~lbil.c;k obj~cb are pa"ed tu lh~ cvalua":c (J and cViOlua":G~Ue3~ly" I method, uS 

urgumel111, and u '" notified by lh~ oJlle :::yP :::eo c;" 2 S eo::: of query res lLlts via callback mCl hods, 

The q _e ry-:> ,e ce.O ,; eo i) mell,,)(! in the oJ"" :::y-:>:::eo c;" 2 S eo::: Li S t", ne::: int~rface IS ('ailed 

by the ;"~G ry P::: uee ~.O e r wl'ICneve r a '-joery wu' proce"e<i on any locally stored X/o,IL frag

m~nt. 

Th~ ::;uc :::yP :::eocc." ~ eo::: ,Su c.-u r class Tepre'~nts the Query Processor component \ network 

in i~rfa(·e. Ii ""erride, lh~ ,"G2~a;JG:';'ueu~-'-Gd(i method in the .":O."~r3el:<e~,.'or:{

List",n",::: cia" to capiure oJ"":::y~:U5."iO'JUS rccci\'cd trom n.;mote peen. and pas>es the 

yu~rie, ,pe~ified in Lho,e oJlle:::y~:"52iO':i"'S to the uv,,~~a":cLGcal~y() method ill th~ 

Quer,!Proces.oer interface, The Q-.:",ryPr0ces5",re;",rv"r r~('ei , ~ s qlLer}' rcsults from 

tn.: G LJ e ,y-:> re ce.O ,; ()::: hy implement ing Lh~ Qll'" r vP nY;e 2 5 eo :::~: "" ~ Lou c;k IIltafac~, Onc~ 

it receive, a yuery ,,,sulL it s~nd, a ::;"" ry"", S-.: ~ t~:" 5 s il. ':1" u,in~ th~ N", t "'-G r :zl·:""" ;JCr 

to the remote peer from which it received the yu~ry 

The functionality ofthc ["PI i, separated Lnto a ':"c.c,"F,enl.-:>"l.hT'_riex und a "'rilqrr.enl

P "" T. he; ~_ eo r il. ':1" inlerfa('e to allow WI-specific lugic mldt h~ logic Ihat manages the stoT"ge of 

lh~ FPI mappin~ ' 10 va,), independelllly, Th~ XI':LFriOg,""~_~_SurrniOry intcrf;1ce r~prc,ent:; 

the jro'llflriltSurmfwrll daLa slructure in the \fl'a'llllrHtId,j'r-,,-qInClltSI1f1m,"r,l/) tuple. It 

hus two meth()(k e '.,-- 3 ~ _ 3 l.e I) "nd s e ,i iI ~ i z e ': i _ rhe "V ill",," t '" I) method Lak6 lhe 

query string u' an "rgumem. and retum, a f><)()le~n value indi('alin~ ",hdh~r ~ non-~mply r~

suit ,et cou ld he returned iftn.: given que')' i, ~va lu~ted on the XML frugmenl ,ununari,ed by 

the XXLF ra qrr.e ,_ l S _"'TO 'v ohj ecl. Tile .0 e ri ,,1 ' .".e I': metl".u con\'em th~ XET.F c' ""

'TlGIlt ,Su'T,,-,a:::y object to an array of bytc, for ltorage. Since cakulating XML fragment <tltn

maries is beyond the scope of thi s work, 1 h~ prototype uscs th~ Nu ~ lXIILF r" 'TTlG":: ,S UJu:lc.ry 

clas,. which always rCllLrns ": r ~G !Tom its cv iOl ua:: G :) method. regardless of tile value of the 

arg lLmenl. The 5'" r iiO 1 i ~'" ( :1 melh,.u of ll~ NullX~:LF::: iOgF'''" t e; UFL"l'.iOry alway s rCilLrns 

an elllply array, 



124 .'I,PPL\"DIX A: Low-Level PrOlolypc lmpl~menlali o n Detai l, 

-~, .. ,. II)".".~-."". , ""'" ',"" 
_~''''''' "'. ,,,,-... ,.,. II) ,," .,.,c." 00. ,H" ~'" '' ,~ .,,,-_ .. ,, ~, 
~~T .~",~~;I~~. "'" 

"'''H'~'_' ,,_'""' ... t ... ~_ 

", 

""'''~'' • ",' ·.-.,-.r." ... ",·, .... ; ',," 
."..,...,,,,. 00. ,._~~. 00: '" 
-",.~ ~, 

"~:~, ~ ,.""~,,"'" .. _~ ,,.,·~"'''·.'"'l 

"'''''~'.' ,,--, .. """"~ ... 
"'r·"",· ... .,.~"". :0, .• ~. "" .• " ~ .• ,.",.~, "-OJ "'r·"_" _.""",. :0, , .• ~. ".~-,rt,~-",-., .• ). '>." 
.,,,rt,,_,,,,,~·,, ~ . ,,, ..... ,,. ~) .. ~, 
_I,e.· ~'T""':"'·:O. , ..... "".:0: ,., 
.,"""~,,.."'" ~"' ~ ' .. ".-,,1<> "'". "" 
"'r·'~""_'·~"'" ~: .. ~" 
"'O~-.OO .. "",. 00. HTI ._ .. , ..... ~"',~,,~). ~" 

I 
- .~ ..... ~ 
_~_. ,'; »c,,,,..o,;, _ ., 

Figure A.6: liML da" diagram "I'thc I'ragmcntl'alh Imkx 



APFE;\Il[\..\; Low-Levd Prototype IInp lem~nt~li(\n [)etail, 

A.6 The Peer Discover and Pinger Components 

•• 

,,-,.,: "" 
.,' ,~I".» ...,"""-. 

.. ;;_.~,,~~ ">"'''''«,' .. 'W; "" 

"' ... , 

~~_~'"~H-XS'_:-:-}~~_ .. ~---"'''~ "~I" " ",~"""<_,, .. ,.",m_' 
-,-.,~~,-.",,~, '''''"--.""'",,,,,,,"-
_"«~"~_" ~"'-..J _,,_ "',~> -" .... , .. ,....,:,~, .. -'-
- , ....... q~.""')~" 

•• 

•• 0 

Figure A.7: UML cb" diagram of lhoe PceL" Disc..:>'"r), "oJ Pillge, "OO1PO""11I' 

" 
~ -, 

The Fee r'D: ,;cc 'oJe r' in (~rf"ce repre~enh th e peer d i"cwery mech,mj~m. h inform, the 'y«em 

of d;,covereu peer;; hy calling the pee : ,;F'cunj' ) method in the Pee rT! i ,;co\le ry: _ 5-

~ e 0", r' inteli"olce. The nc_ L ~;-'~ seFee: n: sc:)ve r'v cla% is a mock implementation of the 

Fe8r-D: ,;cove ry mechanism lh~1 nhlintaim" li st ofpccr IP, In" dawb"se, 

The P",,,,rPir_g2" dass impleme nt> th~ P"''''rDis"o'i",,,y=-~s~''''''''r illinfac~_ It inform, 

th~ ,y,teIll of a peer', onhne/ofninc ,lalU' Ill' invo ki ng the p",,,, r0nli ,,,,, i: and 0:-",,,, r 0 f 

f ~ine () melh,xh in the p",,,,,,p ing"'r=-~s~ "'r_"' r imerrac~, re,pediwly. 



126 

A.7 

ApPEl\'DIX A: Low-Lnd PrOlOtyjX: impkmcntation Details 

The ReJ>lication .\iI,mager 

.'"'~''''''. --'-

~'b«--, 
."m ~~", 

I'''~ ",-,,,,,",. 
I .",,,, . "". "'_"~~V' 

".", "', 

.'.'~.'''''' . . -......... 
'''''''''>( ,.,.-",', "" .. ,,.,,,,,<> •. ",- ,,',," _,.-.c '" 
'"'".hooJ 

"'~". ",~ 

. """bb.""k.:..,·. 
"',"",' _-.,. , 

" , 
"::':'$c~., __ .""",·"b" " , 

, 
P ... """", 

I """--~-" ........... c>··~_,· .. ~ 

Figure A.8 : lI1>·lL ob" diagram of Ill< Repli,'wioo Man"gcr oomponent 

The .1\1;3L: aCl."1ep I 'c aSe . eCl<:,r cI~" implemenb the Rep. i caSe I eC~G r i nterf~ce 

~ nd maim:)in, a replica queue onto wil ich fr~gme nb ,elected for replic~li on ~re placed. All tile 

replic~ ,eleclion ~Igor itilm' di,cu"ed in ,eclion 6,1 ,2 ~re implemented a,., !\b~ ~ rac L Rep I i -

c",Selec-:o:- subclasses thm ovclTid~ th~ abstract prcce.53 () mcthod, rragm~nts SclCCl~d 

for rcp]ic~lion arc rcprescnted as C1.e,>lic",.:::'o objec1s, ~ach holding a reference 10 1h~ se

lec ted fragment and a number indica1ing how m~ny copie, of 1ile .,e]eC1ed fragmenl ,il0l11d 

be cre'tled in tile nelwork Tile,e "1epl icaL, - 0 ohject' are re turned by the p:'oce,;~ () 

m~th"ds implemented by the !\b~L racl."1e?I' caSe . eCV)r ,ubd~"e, and are added to 

lh~ r~p!ica l]u~u~ in lh~ Ab3r.r.=.c~.Fep~ica~iel"c~.cr cla.I', 



ApPENDIX A: Low-Level Prototype Implementation Details 127 

using the nextReplica () method in the ReplicaSelector. When a replica has been 

successfully transferred to a remote peer, the ReplicationManager calls the replicaS

ent () method to inform the ReplicaSelector where the replica was sent. 

The Abst ractReplicaP lacer class implements the Repl icaP lacer interface and stores 

the list of online peers from which the replica placement algorithms select peers to which repli

cas should be sent. The replica placement algorithms discussed in section 6.1.3 are implemented 

as AbstractReplicaP lacer subclasses that implement the getPeers () method in the 

ReplicaPlacer interface. This method is called by the ReplicationManager to re

trieve the IDs of the peers on which a given replica should be placed. 

The AbstractReplicaP lacer receives notifications of online and offline peers from the 

PeerP inger class in figure A.7 by implementing the PeerP ingerListener interface. 



Appendix B 

Procedures Used During Experimental 

Evaluation 

This section presents the procedures and algorithms used for measurement gathering during the 

experimental evaluation in chapter 8. 

128 



ApPENDIX B: Procedures Used During Experimental Evaluation 

candidateQueries := new list 
2 
3 foreach xmlDoc in xmlDocCollection do: 
4 q~eries := generate xmlDoc XPath queries 
5 foreach query in queries do: 
6 resu~tSet := evaluate query on xmlDoc 
7 if resultSet is not empty do: 
8 add query to candidateQueries 
9 end if 

10 end foreach 
II end foreach 
12 
13 n := no. queries to pose on system 
14 for i : = 0 to n do: 
15 query := select random query from candidateQ~eries 
16 query~ime := generate time using Poisson process 
17 output queryTime , query and sub~itting peer 
18 end for 

Figure B.1: Pseudocode for generating the set of test queries 

<qGery> 
2 <step> 
3 <axis> 
4 <predicate-list> 
5 <predicate> 
6 <element-predicate> 
7 <attr-predicate> 
8 <element-name> 
9 <attriDute-name> 

'I' <element-name> <step>x 
<axis> <element-name> <predicate-list>? 
, I I , I I I 

, [' <predicate>' or' x <predicate> 'l' 
<element-predicate> <attr-predicate> 
<element-name> ,=, <alphanumeric-string> 
'@' <attr-name> '=' <alphan~meric-string> 

<alphanumeric-string> 
<alphanumeric-string> 

Figure B.2: BNF notation for the form of the XPath queries used in the experiments 

129 



130 ApPENDIX B: Procedures Used During Experimental Evaluation 

procedure fingerprint (Element element) 
2 string := serialize (element) 
3 return mdShash(string) 
4 end procedure 
5 
6 procedure serialize(Element element): 
7 string := '$' + element.getNodeName() 
8 
9 II Process element attributes 

10 string := string + serializeElementAttributes(element) 
II 
12 II Process child elements and text nodes 
13 nodeList := element.getChildNodes() 
14 if nodeList.length() > 0: 
15 string := string + "<" 
16 chi~drenProcessed := 0 
17 foreach node in nodeList: 
18 if node is an element node: 
19 if childrenProcessed > 0: 
20 string : = string + "," 
21 end if 
22 string := string + serialize(node) 
23 childrenProcessed := childrenProcessed + 1 

24 else if node is a text node: 
25 text := node.getNodeValue() .trim() 
26 if text .length () > 0: 
27 if childrenProcessed > 0: 
28 
29 
30 
31 
32 
33 
34 

end 
end if 

end foreach 

string := string + 

end if 
string := string + text 

" " , 

childrenProcessed childrenProcessed + 1 
if 

35 string .- string + ">" 
36 end if 
37 
38 return string 
39 end procedure 

Figure B.3: The XML tree fingerprinting algorithm used for comparing XML trees as described in 
section 8.2.1.2 



ApPENDIX B: Procedures Used During Experimental Evaluation 

procedure serializeElementAttributes(Eleme~t element) 
2 scring := "" 
3 
4 actributesList := element.getAttributes() 
5 if attributesList.length() > 0: 
6 stri~g := string + "I" 
7 for i := 0 to attributesList.length() 
8 attribute := attributesList[iJ 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

string .- string + attribute.getName() T "=" 
string := string + attribute.getValue() 
if i < attributesList.length() .. 

string 
end if 

end foreach 

.- string + 

string 
end if 

string + "}" 

return string 
end procedure 

" IT , 

Figure 8.4: Serializing XML element attributes to strings for fingerprinting in figure B.3 

131 



Appendix C 

List of Acronyms 

AIO Access Information Object 

AURP Average Uptime Replica Placement 

CRP Counter-based Replica Placement 

CSRP Counter-State Replica Placement 

DHT Distributed Hash Table 

DIN Document Information Node 

FIN Fragment Information Node 

FLC Fragment Location Catalogue 

FPI Fragment Path Index 

MFA Most-Frequently Accessed Replica Selection 

MFA-F Most-Frequently Accessed Replica Selection Without Fragmentation 

MFA+F Most-Frequently Accessed Replica Selection With Fragmentation 

MRA Most-Recently Accessed Replica Selection 

MRA-F Most-Recently Accessed Replica Selection Without Fragmentation 

MRA+F Most-Recently Accessed Replica Selection With Fragmentation 

P2P Peer-to-Peer 

132 



ApPENDIX C: List of Acronyms 

RRP Random Replica Placement 

RRS Random Replica Selection 

RRS-F Random Replica Selection Without Fragmentation 

RRS+F Random Replica Selection With Fragmentation 

XML eXtensible Markup Language 

133 



Bibliography 

[1] ABOULNAGA, A., ALAMELDEEN, A. R., AND NAUGHTON, J. F. Estimating the selec
tivity of xml path expressions for internet scale applications. In Proceedings of the 27th 
International Conference on Very Large Data Bases (San Francisco, CA, USA, 2001), 
Morgan Kaufmann Publishers Inc., pp. 591-600. 

[2] AL-EKRAM, R., ADMA, A., AND BAYSAL, O. diffx: an algorithm to detect changes in 
multi-version xml documents. In Proceedings of the 2005 conference of the Centre for 
Advanced Studies on Collaborative research (2005), IBM Press, pp. 1-11. 

[3] ANDROUTSELLIS- THEOTOKIS, S., AND SPINELLIS, D. A survey of peer- to-peer content 
distribution technologies. ACM Comput. Surv. 36,4 (2004), 335-371. 

[4] BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered in
dexes. Acta Informatica J (1972),173-189. 

[5] BERNSTEIN, P., GIUNCHIGLIA, F., KEMENTSIETSIDIS, A., MYLOPOULOS, J., SER
AFINI, L., AND ZAIHRAYEU, I. Data management for peer-to-peer computing: A vision. 
In Proceedings of the Workshop on the Web and Databases (WebDB) (2002). 

[6] BHAGWAN, R., SAVAGE, S., AND VOELKER, G. M. Understanding availability. In Pro
ceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS '03) (2003). 

[7] BHAGWAN, R., TATI, K., CHENG, y'-C., SAVAGE, S., AND VOELKER, G. M. Total 
recall: system support for automated availability management. In Proceedings of the J st 
conference on Symposium on Networked Systems Design and Implementation (Berkeley, 
CA, USA, 2004), USENIX Association, pp. 25-25. 

[8] BLOOM, B. H. Space/time trade-offs in hash coding with allowable errors. Communica
tions of the ACM 13, 7 (1970),422-426. 

[9] BONIFATI, A., MATRANGOLO, U., CUZZOCREA, A., AND JAIN, M. Xpath lookup 
queries in p2p networks. In Proceedings of the 6th annual ACM international workshop 
on Web information and data management (New York, NY, USA, 2004), ACM Press, 
pp.48-55. 

[101 CAl, M., CHERVENAK, A., AND FRANK, M. A peer-to-peer replica location service 
based on a distributed hash table. In Proceedings of the 2004 ACMIIEEE Conference on 
Supercomputing (Washington, DC, USA, 2004), IEEE Computer Society, p. 56. 

134 



BIBLIOGRAPHY 135 

[11] CARLSSON, B., AND GUSTAVSSON, R. The rise and fall of napster - an evolutionary 
approach. In Proceedings of the 6th International Computer Science Conference on Active 
Media Technology (London, UK, 2001), Springer-Verlag, pp. 347-354. 

l12] CERI, S., AND PELAGATTI, G. Distributed Databases: Principles and Systems. 
McGraw-Hill, Inc., USA, 1984. 

[13] CHAWATHE, S. S., AND GARCIA-MoLINA, H. Meaningful change detection in struc
tured data. In Proceedings of the 1997 ACM SIGMOD international conference on Man
agement of data (New York, NY, USA, 1997), ACM, pp. 26-37. 

l14] CHAWATHE, S. S., RAJARAMAN, A., GARCIA-MoLINA, H., AKD WmOM, J. Change 
detection in hierarchically structured information. In Proceedings of the 1996 ACM SIG
MOD international conference on Management of data (New York, NY, USA, 1996), 
ACM, pp. 493-504. 

[15] CHEK, Y., MADRIA, S., AND BHOWMICK, S. Diffxml: Change detection in xml data. 
Database Systems for Advanced Applications 297312004 (February 2004), 289-301. 

[16] CHEN, Z., JAGADISH, H. v., KORN, F., KOUDAS, N., MUTHUKRISHNAN, S., NG, 
R. T., AKD SRIVASTAVA, D. Counting twig matches in a tree. In Proceedings of the 
17th International Conference on Data Engineering (Washington, DC, USA, 2001), IEEE 
Computer Society, pp. 595-604. 

ll7J CHERVENAK, A., DEELMAN, E., FOSTER, I., GUY, L., HOSCHEK, W., IAMNITCHI, 
A., KESSELMAN, C., KUNSZT, P., RIPEANU, M., SCHWARTZKOPF, B., STOCKINGER, 
H., STOCKIl\iGER, K., AND TIERNEY, B. Giggle: a framework for constructing scalable 
replica location services. In Proceedings of the 2002 ACMIIEEE Conference on Super
computing (Los Alamitos, CA, USA, 2002), IEEE Computer Society Press, pp. 1-17. 

[18] CHIEN, S.- Y., TSOTRAS, V. J., AND ZANIOLO, C. Copy-based versus edit-based version 
management schemes for structured documents. In Eleventh International Workshop on 
Research Issues in Data Engineering on Document Management for Data Intensive Busi
ness and Scientific Applications (Washington, DC, USA, 2001), IEEE Computer Society, 
pp.95-102. 

[19] CHIEK, S.- Y., TSOTRAS, V. J., AND ZANIOLO, C. Version management of xml doc
uments. In Selected papers from the Third International Workshop WebDB 2000 on The 
World Wide Web and Databases (London, UK, 2001), Springer-Verlag, pp. 184-200. 

[20] CLARKE, I., MILLER, S. G., HONG, T. W., SANDBERG, 0., AKD WILEY, B. Protecting 
free expression online with freenet. IEEE Internet Computing 6, 1 (2002),40-49. 

[21] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. Wide
area cooperative storage with cfs. In Proceedings of the Eighteenth ACM Symposium on 
Operating Systems Principles (New York, NY, USA, 2001), ACM Press, pp. 202-215. 

[22J DABEK, F., ZHAO, B., DRUSCHEL, P., KUBIATOWICZ, J., AKD STOICA, I. Towards 
a common api for structured peer-to-peer overlays. Lecture Notes in Computer Science 
2735 (2003), 33-44. 



136 BIBLIOGRAPHY 

[23] DATTA, A., HAUSWIRTH, M., AND ABERER, K. Updates in highly unreliable, replicated 
peer-to-peer systems. In Proceedings of the 23rd International Conference on Distributed 
Computing Systems (Washington, DC, USA, 2003), IEEE Computer Society, p. 76. 

[24] DOUCEUR, J., AND WATTENHOFER, R. Large-scale simulation of replica placement al
gorithms for a serverless distributed file system. In Proceedings of the Ninth International 
Symposium in Modeling, Analysis and Simulation of Computer and Telecommunication 
Systems (MASCOTS '01) (Washington, DC, USA, 2001), IEEE Computer Society, p. 311. 

[251 DOUCEUR, J., AND WATTENHOFER, R. Optimizing file availability in a secure serverless 
distributed file system. 20th IEEE Symposium on Reliable Distributed Systems 00 (2001), 
4-13. 

[26J FLESCA, S., MANCO, G., MASCIARI, E., AND PONTIERI, L. Fast detection of xm1 
structural similarity. IEEE Transactions on Knowledge and Data Engineering 17, 2 
(2005), 160-175. Student Member-Andrea Pugliese. 

[27] FOSTER, J. N., GREENWALD, M. B., KIRKEGAARD, c., PIERCE, B. C., AND 
SCHMITT, A. Exploiting schemas in data synchronization. Journal of Computer and 
System Sciences 73,4 (2007), 669-689. 

[28] FRA~CONI, E., KUPER, G., LOPATENKO, A., AND ZAIHRAYEU, I. Queries and up
dates in the codb peer to peer database system. In Proceeedings of the 30th International 
Conference on Vel}' Large Databases (VLDB) (2004), pp. 1277-1280. 

[29] FREIRE, J., HARITSA, J. R., RAMANATH, M., ROY, P., A:"o!D SIMEON, J. Statix: mak
ing xml count. In Proceedings of the 2002 ACM SIGMOD international conference on 
Management of data (New York, NY, USA, 2002), ACM, pp. l81-19l. 

[30J GALANIS, L., WANG, Y., JEFFREY, S. R., AND DEWITT, D. J. Locating data sources 
in large distributed systems. In Proceedings of the 29th International Conference on Vel}' 
Large Data Bases (VLDB) (Berlin, Germany, 2003). 

[31] GAMMA, E., HELM, R., JOHNSON, R., AND VUSSIDES, J. Design Patterns: Elements 
of Reusable Object-Oriented Software, 1 st ed. Addison-Wesley Professional Computing 
Series. Addison-Wesley, Reading, Massachusetts, 1995. 

[32] GIFFORD, D. K. Weighted voting for replicated data. In Proceedings of the seventh 
ACM symposium on Operating systems principles (New York, NY, USA, 1979), ACM, 
pp. 150-162. 

[33] GOLDMAN, R., AND WIDOM, J. Dataguides: Enabling query formulation and optimiza
tion in semistructured databases. In Proceedings of the 23rd International Conference 
on Vel}' Large Databases (VLDB) (Athens, Greece, August 1997), Morgan Kaufmann, 
pp.436-445. 

[34] GRAY, J., HELLAND, P., O'NEIL, P., AND SHASHA, D. The dangers of replication 
and a solution. In Proceedings of the 1996 ACM SIGMOD international conference on 
Management of data (New York, NY, USA, 1996), ACM, pp. 173-182. 



BIBLIOGRAPHY 137 

[35] GRIBBLE, S., HALEVY, A., IVES, Z., RODRIG, M., AND SUCIU, D. What can databases 
do for peer-to-peer? In Proceedings of the 4th International Workshop on the Web and 
Databases (WebDB) (2001). 

[36] HALEVY, A. Y., IVES, Z. G., MADHAVAN, J., MORK, P., SUCIU, D., AND TATARINOV, 
I. The piazza peer data management system. IEEE Transactions on Knowledge and Data 
Engineering 16, 7 (2004), 787-798. 

[37] HUEBSCH, R., HELLERSTEIN, J. M., LANHAM, N., LOO, B. T., SHENKER, S., AND 
STOICA, I. Querying the internet with pier. In Proceedings of the 29th international 
conference on Very large data bases (2003), VLDB Endowment, pp. 321-332. 

[38] JACOB, J., SACHDE, A., AND CHAKRAVARTHY, S. Cx-diff: a change detection algo
rithm for xml content and change visualization for webvigil. Data & Knowledge Engi
neering 52,2 (2005), 209-230. 

[39] JiN, H., WANG, c., AND CHEN, H. Boundary chord: A novel peer-to-peer algorithm for 
replica location mechanism in grid environment. In Proceedings of the 8th International 
Symposium on Parallel Architectures,Algorithms and Networks (Washington, DC, USA, 
2005), IEEE Computer Society, pp. 262-267. 

[40] JUNQUEIRA, F., BHAGWAN, R., MARZULLO, K., SAVAGE, S., A]\.'D VOELKER, G. M. 
The phoenix recovery system: rebuilding from the ashes of an internet catastrophe. In 
Proceedings of the 9th conference on Hot Topics in Operating Systems (Berkeley, CA, 
USA, 2003), USENIX Association, pp. 73-78. 

[41] KEME]\.'TSIETSIDIS, A., ARENAS, M., AND MILLER, R. J. Mapping data in peer-to-peer 
systems: semantics and algorithmic issues. In Proceedings of the 2003 ACM SIGMOD 
international conference on Management of data (New York, NY, USA, 2003), ACM 
Press, pp. 325-336. 

[42] KOLONIARI, G., PETRAKIS, Y., AND PITOURA, E. Content-based overlay networks for 
xml peers based on multi-level bloom filters. In Proceedings of the International VLBB 
Workshop on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P) 
(2003). 

[43] KOLOJ\'IARI, G., AND PITOURA, E. Peer-to-peer management of xml data: issues and 
research challenges. SIGMOD Rec. 34,2 (2005), 6-17. 

[44] KOLONIARI, G., AND PITOURI, E. Coontent-based routing of path queries in peer-to
peer systems. Lecture Notes in Computer Science 2992 (2004), 29-47. 

[45] LEE, K.-H., CHOY, y'-C., AND CHO, S.-B. An efficient algorithm to compute differ
ences between structured documents. IEEE Transactions on Knowledge and Data Engi
neering 16,8 (2004), 965-979. 

[46J LINDHOLM, T. Xml three-way merge as a reconciliation engine for mobile data. In 
Proceedings of the 3rd ACM international workshop on Data engineering for wireless 
and mobile access (New York, NY, USA, 2003), ACM, pp. 93-97. 



138 BIBLIOGRAPHY 

[47] LINDHOLM, T., KANGAS HARJU, J., AND TARKOMA, S. Fast and simple xml tree differ
encing by sequence alignment. In Proceedings of the 2006 ACM symposium on Document 
engineering (New York, NY, USA, 2006), ACM, pp. 75-84. 

[48J MARIAI'\, A. Detecting changes in xml documents. In Proceedings of the 18th Interna
tional Conference on Data Engineering (Washington, DC, USA, 2002), IEEE Computer 
Society, p. 41. 

[49] MARIAN, A., ABITEBOUL, S., COBENA, G., AND MIGNET, L. Change-centric man
agement of versions in an xml warehouse. In Proceedings of the 27th International Con
ference on Vel}' Large Data Bases (San Francisco, CA, USA, 2001), Morgan Kaufmann 
Publishers Inc., pp. 581-590. 

[50] MASCOLO, c., CAPRA, L., ZACHARIADIS, S., AND EM~ERICH, W. Xmiddle: A 
data-sharing middleware for mobile computing. Wireless Personal Communications 21, 1 
(2002),77-103. 

[51] NG, W. S., 001, B. c., TAN, K.-L., AND ZHOU, A. Peerdb: A p2p-based system for 
distributed data sharing. In Proceedings of the 19th International Conference on Data 
Engineering (2003), pp. 633-644. 

[52] Oar, B. c., SHU, Y., AND TAN, K. L. Web technologies and applications. DB-Enabled 
Peers for Managing Distributed Data (2003), 596-596. 

[53] POLYZOTIS, N., AND GAROFALAKIS, M. Structure and value synopses for xml data 
graphs. In Proceedings of the 28th international conference on Vel)' Large Data Bases 
(2002), VLDB Endowment, pp. 466-477. 

[54] POLYZOTIS, N., AND GAROFALAKIS, M. Xcluster synopses for structured xml content. 
In Proceedings of the 22nd International Conference on Data Engineering (ICDE'06) 
(Washington, DC, USA, 2006), IEEE Computer Society, p. 63. 

[55] RANGANATHAI'\, K., IAMNITCHI, A., AND FOSTER, I. Improving data availability 
through dynamic model-driven replication in large peer-to-peer communities. In Pro
ceedings of the 2nd IEEEIACM International Symposium on Cluster Computing and the 
Grid (Washington, DC, USA, 2002), IEEE Computer Society, p. 376. 

[56] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. A 
scalable content-addressable network. In Proceedings of the 2001 conference on Appli
cations, technologies, architectures, and protocols for computer communications (SIG
COMM) (New York, NY, USA, 2001), ACM Press, pp. 161-172. 

[57] RIPEANU, M., AND FOSTER, I. A decentralized, adaptive replica location mechanism. In 
Proceedings of the 11 th IEEE International Symposium on High Performance Distributed 
Computing HPDC-I 1 20002 (HPDC'02) (Washington, DC, USA, 2002), IEEE Computer 
Society, p. 24. 

[58] RISSE, T., AND KNEZEVIC, P. A self-organizing data store for large scale distributed 
infrastructures. 21st International Conference on Data Engineering Workshops (ICDEW) 
o (2005), 1211. 



BIBLIOGRAPHY 139 

[59] RODRfGUEZ-GIANOLLI, P., KEMENTSIETSIDIS, A., GARZETTI, M., KIRINGA, I., 
JrA;\TG, L., MASUD, M., MILLER, R. J., AND MYLOPOULOS, J. Data sharing in the 
hyperion peer database system. In Proceedings of the 31st international conference on 
Vel}' large data bases (2005), VLDB Endowment, pp. 1291-1294. 

[60] ROI\'NAU, S., SCHEFFCZYK, J., AND BORGHOFF, U. M. Towards xml version control of 
office documents. In Proceedings of the 2005 ACM symposium on Document engineering 
(New York, NY, USA, 2005), ACM, pp. 10-19. 

[61] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, decentralized object location, 
and routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science 2218 
(2001). 

[62] ROWSTRON, A., AND DRUSCHEL, P. Storage management and caching in past, a large
scale, persistent peer-to-peer storage utility. In Proceedings of the eighteenth ACM sympo
sium on Operating systems principles (New York, NY, USA, 2001), ACM Press, pp. 188-
201. 

[63] SARon.:, S., GUMMADI, K. P., AND GRIBBLE, S. D. Measuring and analyzing the 
characteristics of napster and gnutella hosts. Multimedia Systems 9, 2 (2003), 170-184. 

[64] SARTIA;\TI, c. A query algebra for xml p2p databases. In Proceedings of the 13th inter
national World Wide Web conference on Alternate track papers & posters (New York, NY, 
USA, 2004), ACM Press, pp. 258-259. 

[65] SARTIANI, c., MANGHI, P., GHELLI, G., AND CONFORTI, G. Xpeer: A self-organizing 
xml p2p database system. Lecture Notes in Computer Science 3268 (Jan 2004), 456-465. 

[66] SILBERSCHATZ, A., KORTH, H. F., AND SUDARSHAN, S. Database System Concepts, 
4th ed. McGraw-Hill, 2002. 

[67] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. 
Chord: A scalable peer-to-peer lookup service for internet applications. In SIGCOMM 
'01: Proceedings of the 2001 conference on Applications, technologies, architectures, 
and protocols for computer communications (New York, NY, USA, 2001), ACM Press, 
pp. 149-160. 

[68] WA;\TG, W., JIANG, H., Lu, H., AND Yu, J. X. Bloom histogram: path selectivity esti
mation for xml data with updates. In Proceedings of the Thirtieth international conference 
on Vel}' large data bases (2004), VLDB Endowment, pp. 240-251. 

[69] WANG, Y., DEWITT, D. J., AND CAl, J.-Y. X-diff: An effective change detection 
algorithm for xml documents. icde 00 (2003),519. 

[70] WA;\TG, Z., DAS, S. K., KUMAR, M., AND SHEN, H. Update propagation through 
replica chain in decentralized and unstructured p2p systems. In Proceedings of the Fourth 
1nternational Conference on Peer-to-Peer Computing (P2P '04) (Washington, DC, USA, 
2004), IEEE Computer Society, pp. 64-71. 



140 BIBLIOGRAPHY 

[7IJ WATA:-JABE, T., HARA, T., KIDO, Y., AND NISHIO, S. An update propagation strategy 
for delay reduction and node failure tolerance in peer-to-peer networks. In Proceedings of 
the 21 st International Conference on Advanced Information Networking and Applications 
Workshops (Washington, DC, USA, 2007), IEEE Computer Society, pp. 103-108. 

[72] Freepastry website. http://freepastry.rice.edu. 

[73] Freepastry tutorial. http://freepastry.orglFreePastry/tutoria1lindex.html. 

[74] Globus toolkit website. http://www.globus.org/toolkit. 

[751 Gnutella protocol specification wiki. http://gnutella-specs.rakjar.de/index.php/Main~age. 

[76] Inet topology generator. http://topology.eecs.umich.edulineti. 

[77] J2se. http://java.sun.com/javase/. 

[78] Linux dc++ website. http://linuxdcpp.berlios.de. 

179] Modelnet howto. http://modelnet.ucsd.edu/howto.html. 

[801 Modelnet. http://modelnet.ucsd.edu. 

[81] The mondial database. http://www.dbis.informatik.uni-goettingen.de/Mondiall. 

[82] National vulnerability database cve feeds. http://nvd.nist.gov/download.cfm. 

[83] Rfc 1952: Gzip file format specification version 4.3. http://www.ietforglrfc/rfc1952.txt. 

[84] Rfc 3174: Us secure hash algorithm 1 (shal). http://www.ietforg/rfclrfc3174.txt. 

[851 Rfc 4648: The base16, base32, and base64 data encodings. 
http://tools.ietforg/html/rfc4648. 

[86] Rfc 791: Internet protocol. http://www.ietforg/rfc/rfc791.txt. 

[87] Simple api for xml (sax). http://www.saxproject.org/. 

[88] Soap version 1.2 primer. http://www.w3.orgITRIsoap12-partO. 

[89] Uniprot: The universal protein resource. http://www.uniprot.org. 

[90] UW XML data repository. http://www.cs.washington.edulresearch/xmldatasets/. 

[911 World wide web consortium (w3c). http://www.w3.org. 

[92] Web services description language (wsdl). http://www.w3.org/2002/ws/desc. 

193] Extensible markup language (xml). http://www.w3.org/XML. 

[94] Xml binary characterization working group test data. 
http://www.w3.orgIXMLlBinaryI2005/03/test-data. 



BIBLIOGRAPHY 141 

[95] XML Document Object Model (DaM). http://www.w3.orgIDOM. 

[96] XML document type definitions (DTD). 
20060816/#dt-doctype. 

http://www.w3.org/TRl2006/REC-xml-

[97] XML schema. http://www.w3.org/XMLlSchema. 

[98] Xml path language (xpath) version l.0. http://www.w3.org/TRIxpath. 

[99] XQuery 1.0: An XML Query Language. http://www.w3.org/TRlxquery/. 




