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Abstract

XML P2P data management systems are P2P systems that use XML as the underlying data
format shared between peers in the network. These systems aim to bring the benefits of XML
and P2P systems to the distributed data management field. However, P2P systems are known
for their lack of central control and high degree of autonomy. Peers may leave the network
at any time at will, increasing the risk of data loss. Despite this, most research in XML P2P
systems focus on novel and efficient XML indexing and retrieval techniques. Mechanisms for
ensuring data availability in XML P2P systems has received comparatively little attention. This

project attempts to address this issue.

We design an XML P2P data management framework to improve data availability. This frame-
work includes mechanisms for wide-spread data replication, replica location and update prop-
agation. It allows XML documents to be broken down into fragments. By doing so, we aim
to reduce the cost of replicating data by distributing smaller XML fragments throughout the

network rather than entire documents.

To tackle the data replication problem, we propose a suite of selection and placement algorithms
that may be interchanged to form a particular replication strategy. To support the placement of
replicas anywhere in the network, we use a Fragment Location Catalogue, a global index that
maintains the locations of replicas. We also propose a lazy update propagation algorithm to

propagate updates to replicas.

Experiments show that the data replication algorithms improve data availability in our experi-
mental network environment. We also find that breaking XML documents into smaller pieces
and replicating those instead of whole XML documents considerably reduces the replication
cost, but at the price of some loss in data availability. For the update propagation tests, we
find that the probability that queries return up-to-date results increases, but improvements to the

algorithm are necessary to handle environments with high update rates.
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Chapter 1

Introduction

In recent years, research has been conducted to bring some of the benefits of peer-to-peer (P2P)
systems to the distributed data management field [5, 28, 35, 36, 37, 41, 51, 52, 59]. A P2P sys-
tem is a distributed computing system consisting of large populations of interconnected nodes
(or peers) that cooperate to directly share resources such as files, storage space, network band-
width or processing power. Unlike traditional distributed data management systems [12], P2P
systems are generally known for their lack of central control, low administration and deploy-
ment overhead, high degree of autonomy and heterogeneity, and their ability to self-adapt and

function in unstable network environments [3].

Peers in P2P systems use various data formats and schemas to describe their data. In order to
share data with others, a common format that is understood by all peers is needed. XML’s [93]
ability to represent any hierarchical or semistructured data, makes it an interesting option for
such data sharing in P2P environments. XML allows autonomous peers to interact despite the
differences in their data formats and schemas. Furthermore, the use of XML enables users to
pose queries using expressive query languages such as XPath [98] and XQuery [99], rather than

employing simple keyword-based searches.

Motivated by the benefits of XML, many researchers have begun investigating the use of XML
data in P2P data management systems [9, 42, 64, 65, 68]. Our survey of existing XML P2P data
management systems revealed that most of this research focuses on the efficient indexing and
retrieval of XML data in P2P networks. The problem of ensuring the availability of data when
peers depart the network has received comparatively little attention. Koloniari and Pitoura make

a similar observation in {43].

Ensuring data availability is an important problem in P2P systems. Peers may leave the network
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any time at will, resulting in data loss. Measurement traces of the Overnet P2P system by
Bhagwan et al [6] showed that over 20% of the total peer population entered and departed the
network every day. A similar trace by Saroui et al [63] on Napster [ 11] and Gnutelia [75] showed
that approximately 50% of the total peer population never remained online for more than one
hour. While these traces are for P2P filesharing systems where users are more interested in
sharing files for selfish purposes rather than being part of a community of integrated data stores,
it still gives a rough idea of how high the rate of peer departures from a P2P network may

become.

In this project, we investigate the data availability problem in XML P2P data management
systems. In particular, we study algorithms for replicating XML data to reduce the data loss in-
curred when peers depart the network. We propose a P2P framework in which XML documents
are fragmented into smaller pieces to reduce the transfer cost when replicating data. Finally, we
look at an update propagation algorithm for transmitting updates to replicas when the original

data items are updated.

1.1 Overview of Approach

In order to ensure data availability, we believe that a P2P system should fulfill three require-

ments:

1. Wide-spread Data Replication: The system must support the replication of data at arbi-
trary locations in the network to ensure data availability even after random peer depar-
tures or failures. The placement of replicas should not be limited to specific areas in the

network, as this may weaken the spread of replicas.

2. Replica Location: Once replicas have been created and distributed throughout the net-
work, there needs to be a mechanism to efficiently locate replicas when performing

queries or data updates.

3. Update Propagation: When a data item is updated, its replicas should be updated as
well. This update propagation may either be done eagerly or lazily. An eager approach
would send updates to replicas immediately when data items are updated, while a lazy
approach would delay update propagation for as long as possible until the system deems

it necessary to send updates.
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3. To develop and evaluate an update propagation algorithm for sending updates to replicas.

4. To develop a prototype implementation of our XML P2P data management framework as

a platform for evaluating our work.

1.3 Scope and Limitations

We limit the scope of this work by making the following simplifying assumptions:

e Peers in the P2P network are homogeneous. They all have the same processing power,
storage capacity and bandwidth capabilities. In addition, we assume that peers have an
infinite amount of storage space available to accommodate all replicas sent to them, as
we do not look at policies for deleting replicas when peers reach their maximum storage

capacity.

e To process XML document updates, mechanisms are required for detecting changes be-
tween two versions of an XML document, representing update descriptions (deltas), and
applying update descriptions to older versions of a document. We do not look at algo-

rithms for performing such processing. We merely assume that they exist in the system.

e The system allows there to be a delay between the time a document is updated and the
time the update is applied to a replica. Within this time period, the system does not
prevent the older version of a replica from being accessed. Ensuring strong consistency
would require locking mechanisms or quorum protocols [32, 34], an area that is well
beyond the scope of this work. If the latest version of replica is not available at the time
an access request is made, the system always tries to obtain the replica with the highest

possible version number.

e Only a peer that originally contributed an XML document to the network is allowed to
update it. If any peer was allowed to perform updates on any replica, then conflicts may
arise when concurrent updates occur. Detecting and resolving such conflicts is beyond

the scope of this work.
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1.4 Dissertation Outline

This dissertation is structured as follows. Chapter 2 introduces the P2P computing field, and
discusses how various P2P architectures affect data replication and replication location mech-
anisms. Chapter 3 gives an overview of current research into P2P data replication, replica
location and update propagation techniques. Chapter 4 presents a survey of existing XML P2P
data management systems. Our proposed XML P2P data management framework is described
in chapter 5. It covers the fragmentation of XML documents, the location of XML fragments
in the network and the processing of document updates. It also outlines a simple distributed
XPath query processor that was used for evaluation purposes. Chapter 6 describes in detail our
proposed data replication and update propagation algorithms. Chapter 7 presents a prototype
P2P system that implements our XML P2P data management framework, as well as the replica-
tion and update propagation algorithms. Chapter 8 describes experiments that were conducted
to evaluate the data replication and update propagation algorithms, and analyses the results

obtained. Finally, chapter 9 concludes this dissertation and highlights areas of future work.



Chapter 2

P2P Systems

In this chapter, we look at various P2P architectures and discuss how their designs affect data

replication and replica location mechanisms. This chapter serves two purposes:

1. To familiarise the reader with different P2P architectures; and

2. To justify our choice of using a separate data location catalogue for locating replicas in

the network as mentioned in section 1.1.2.

2.1 P2P Computing

In the traditional client/server model of distributed computing, there are two types of compo-
nents: a central server (or group of central servers) and a group of clients. The clients send
requests to the server for access to certain services, while the server receives client requests,
processes them and returns the result to the clients. This model is completely centralised, as the
existence of the server is key to the successful operation of the network. The clients themselves
never interact with each other, nor are they even aware of each other’s existence in the network.

Figure 2.1 shows an example of a typical client/server system.

The client/server model has three disadvantages. Firstly, the existence of a central server creates
a single point of failure in the network. If the server fails due to a system crash or a malicious
attack, the services offered by the server become unavailable to clients. Secondly, since the
server is fully responsible for all client requests, performance degrades as more clients are in-

troduced to the network and the load on the server increases. Finally, the organisation that owns
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Chert-server coraruricatior

Figure 2.1: The client/server architecture. A central server (or group of servers) is fully responsible for
servicing client requests. The clients themselves never interact with each other.

the server bears all the administration and maintenance cost involved in operating the server.
Certainly, the availability of services and the scalability of the network can be improved by in-
troducing more servers to the network and replicating services across all the servers. However,

this further increases the administrative burden.

The P2P model, on the other hand, extends the client/server model by delegating part or all
of the responsibility of the central servers to the clients in the network. Not only does this
help eliminate single points of failure in the network and improve scalability, but the cost of

administering and maintaining the network is shared by all participants in the network [3].

2.2 P2P Architectures

2.2.1 Overview

A P2P newwork consists of a set of nodes (the peers) that are logically interconnected in some
manner to form an overlay network. An overlay network is a network that is implemented on
top of an existing physical network infrastructure, typically spanning across private enterprise
network boundaries such as NAT gateways. Since the overlay network does not correspond to
the underlying network topology, the distance between two peers (in terms of the number of

hops between them) does not necessarily reflect the communication cost between them.

Figure 2.2 shows an example of an overlay network implemented on top of the Internet Protocol
(IP) [86]. The dashed lines indicate the physical connections between the peers in the under-
lying IP network, while the bold arrows represent the logical network connections between the

peers in the overlay network. Each peer is assigned a location-independent ID, which allows
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P-F55C-2664

P-D534-2342

P-E134-3A3F

P-345A-5995

P2P Overlay Network

Underlying Network Infrastructure (e.g. IP}

13715897218

tocal Area / Private
Netwiork

Irsecure
Public Network

192.168.1 9

Local Area : Private
Network

192 168 111
137 15897 .08

218.14C 58 16

Figure 2.2: An example of a P2P overlay network built on top of the Internet Protocol (IP)

Distributed Degree of Overlay Examples
Computing Decentralisation Network Structure
Model
Client/server Completely centralised Unstructured HTTP server
Unstructured Napster, Kazaa
Hybrid decentralised (super-peer) | Loosely-structured N/A
Structured N/A
P2P Unstructured Gnutella
Purely decentralised Loosely-structured Freenet
Structured Chord, CAN

Table 2.1: Classification of distributed systems

peers to be addressed in a consistent manner even when their physical locations change.

P2P overlay networks can broadly be classified in two ways: (1) by their structure, and (2) by
their degree of decentralisation. Taken together, both the structure and degree of decentralisa-
tion of the overlay network affect the network topology, routing and searching algorithms used
by the system, and ultimately, the fault-tolerance, self-adaptability, performance and scalabil-
ity of the P2P network [3]. Moreover, it determines the data replication and replica location

algorithms that can be used in the network.

We discuss the structure and decentralisation of overlay networks in the following two subsec-

tions. Our classification of P2P systems is presented in table 2.1.
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2.2.2 Overlay Network Structures

The structure of the overlay network refers to the manner in which the network 1s constructed:
whether it is created in an ad-hoc manner as peers enter and leave the network or determined by
specific rules. It also refers to how data items are placed in the network. A P2P overlay network

may be structured in three ways: it may be unstructured, structured or loosely-structured.

In unstructured overlay networks, the placement of data items in the system is completely
unrelated to the topology of the overlay network [3). There is no indication that certain peers
store certain data items. Therefore, in order to locate data in such networks, unstructured P2P
systems usually employ flood-based search mechanisms where search queries are propagated

throughout the network by recursively broadcasting them to all neighbouring peers [75].

Structured overlay networks, on the other hand, place data items at precise locations in the
network [3]. These networks are typically based on distributed consistent hashing schemes,
where each data item is associated with a key, and each peer is assigned a range of key values
corresponding to the data items it may store. Such structured overlay networks are essentially
one large distributed routing table, which provides a mapping between the data item identifier
and its location in the network. This distributed routing table is commonly called a distributed
hash table (DHT) [22, 56, 61, 67].

Loosely-structured overlay networks also impose some form of structure on the network topol-
ogy, but do not use consistent distributed hashing. Unlike structured overlay networks, the
location of data in the network is not completely determined by the network topology. Instead,
these networks typically cluster peers in the network into groups based on how *“similar” peers
are. Similarity among peers may be determined by a number of arbitrary properties. Peers may
be clustered based on the type of data they store, how closely their data schemas match or how
geographically close they are. In order to locate data in loosely-structured overlay networks,
“routing hints” [3] are used to route queries to peers (or clusters of peers) which are believed to

store certain data.

2.2.3 The Degree of Decentralisation in Overlay Networks

The degree of decentralisation in an overlay network refers to how much the P2P system de-
pends on certain centralised components to operate. In particular, it refers to the extent to which
the peers in the network accept server-like responsibilities. A P2P network may either be purely

decentralised or hybrid decentralised.
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In purely decentralised P2P systems, all peers perform exactly the same function. They act both
as clients and servers. Through their client interface, peers accept requests from application
users, and send those requests to remote peers in the network to initiate the exchange of content
or participate in some online collaborative activity. Through their server interface, they receive
requests from remote peers and then service the requests in some manner. Purely decentralised
P2P systems are true P2P systems; they do not rely on any centralised components whatsoever
in order to operate successfully. These type of P2P systems may have unstructured, structured

or loosely-structured overlay networks.

Figure 2.3: An example of a purely decentralised P2P system (with an unstructured overlay network).
No distinction is made between clients and servers. All peers perform the same role in the network.

Hybrid decentralised P2P systems, on the other hand, still largely depend on centralised com-
ponents to coordinate resources and for the successful operation of the network. These type
of P2P systems have much in common with traditional client/server models, except that data
are stored on the clients themselves rather than a central location, and clients interact among
themselves to transfer data. The central server merely acts as a directory for finding data in the
network. Figure 2.4 shows the architecture of a hybrid decentralised P2P system. An example

of such a system is Napster [11].

Another class of hybrid decentralised P2P systems that are closer to purely decentralised P2P
systems are super-peer networks. In super-peer networks, certain peers called super-peers are
assigned additional roles in the network. These super-peers perform extra administrative duties
such as acting as local central directories and proxying requests through the network on behalf
of the regular peers. A peer is assigned the status of a super-peer either voluntarily, or automat-

ically by the system based on its storage and bandwidth capabilities and processing power.

Since super-peer networks are more decentralised than the normal hybrid decentralised P2P sys-

tems, some authors such as [3] refer to these as partially centralised P2P systems to differentiate
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Figure 2.4: The hybrid decentralised P2P architecture. The central server maintains information about
peers and data in the network and coordinates the interaction between the peers. The actual data transfer
takes place directly between the peers.

them from normal hybrid decentralised P2P systems. However, the fact that the super-peers act
as centralised components in the network, means that they can still be regarded as hybrid decen-
tralised P2P systems. The only real difference between normal hybrid decentralised P2P sys-
tems and super-peer networks is that all normal hybrid decentralised P2P systems are based on
unstructured overlay networks, whereas super-peer networks may use either unstructured, struc-
tured or loosely-structured overlay networks, or a combination. For example, an unstructured
overlay network could be used between the super-peers and the normal peers, and between the
normal peers themselves, whereas the connections between the super-peers could be arranged
in some structured manner. Figure 2.5 shows an example of a super-peer network, where the
super- and normal peers are connected in an unstructured manner, whereas the connections

between the super-peers form a structured ring topology.

2.3 The Implications of P2P Architectures on Data Replica-

tion and Replica Location

Having discussed the various types of P2P overlay networks in terms of their structures and
degrees of decentralisation, we now look at how each P2P architecture affects data replication.

In particular, we determine whether they fulfill the following two requirements from section 1.1:

1. Support for wide-spread data replication to allow replicas to be placed on arbitrary peers
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Figure 2.5: An example of a super-peer network

in the network, rather than only a few specific peers;

2. Support for efficient data location to allow the system to quickly determine the location

of replicas in the network when propagating data updates

We look at each of the following types of P2P networks: unstructured, structured and loosely-

structured P2P systems.

2.3.1 Unstructured P2P Systems

Unstructured P2P systems do not impose any rules on where data should be stored in the net-
work. As a result, they are well-suited to wide-spread data replication, as the placement and
number of replicas in the network are not restricted. However, due to this unrestricted data
placement, the system has no global knowledge of where data are stored. Consequently, in
order to locate data, the system needs to do a complete search of the network. This is gener-
ally performed using a broadcasting algorithm that floods the network with lookup messages
until data items of interest are found or the search times out. An example of this broadcasting

algorithm is the lookup mechanism used by the Gnutella protocol [75].

In Gnutella, lookups are performed by recursively sending lookup messages to each neighbour-
ing peer. When these neighbouring peers receive the lookup messages, they forward it to each
of their neighbours which, in turn, forward it to each of their neighbours. This process contin-
ues until the data is found. To prevent endless propagation of lookup messages in the network,
each message is assigned a time-to-live (TTL) value that is decremented at each hop. When the

TTL value reaches zero, the lookup message is removed from the network.
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This broadcasting algorithm is illustrated in figure 2.6. In figure 2.6(a), peer A, sends a lookup
message to all of its immediate neighbours: peers B, C' and D. During the next hop (fig-
ure 2.6(b)), peers B, ' and D forward the request to each of their immediate neighbours: B
sends it to F, D sends it to C, while C' sends it to D, F, F', H and /. Note that the messages
that (' and D send to each other will be dropped to avoid causing loops. Also, even though peer
- is an immediate neighbour of B, C' and D, the message is not sent back to A. In figure 2.6(c),
the data is found at peer H, which responds with an appropriate reply message. This reply
message is routed along same path through the network as the original lookup message, but in

the opposite direction.

Desti-atior

(c) (d)

Figure 2.6: The Gnutella data location algorithm. The dashed lines represent the logical connections
between the peers in the network. The bold solid and dashed arrows indicate the flow of lookup and
lookup response messages, respectively.

The main problem with this data location algorithm is that it does not scale well. It incurs
a heavy load on the network due to the high bandwidth required to transmit all the lookup
messages. The larger the network, the greater the number of messages required to locate data.

Furthermore, the TTL value assigned to messages effectively imposes a horizon in the network
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beyond which lookup messages cannot reach. If a replica exists at a location in the network
that requires (77 L + 1) message hops, then that replica will never be found. Therefore, while
unstructured P2P systems are good for wide-spread data replication, they are let down by the

inefficiency of their data location algorithms.

2.3.2 Structured P2P Systems

Structured P2P systems attempt to address the scalability issues of unstructured P2P networks
by placing data at precise locations in the network. Data lookup operations are much more
efficient, taking approximately O(log/N) message hops through the network, where N is the

number of peers in the network [3].

Chord [67] is an example of a structured P2P protocol that is used to implemented DHTs. It
uniquely maps a set of data IDs (or keys) to a set of peers. Each peer in the network is assigned
a unique peer ID and is arranged in a circular topology as shown in figure 2.7. A data ID 7 is
mapped to the peer with the smallest peer ID greater than or equal to i. This peer is called the
successor of i. The successor of data ID O in figure 2.7, for example, is peer 2, since 2 is the

smallest ID in the network greater than or equal to 0.

Each Chord peer maintains a routing table called the finger table that consists of m = logy (V)
entries. Each entry in the finger table contains the ID and address of a successor that follows
the peer in the circular topology. The ith entry in peer a’s finger table is the smallest peer b that
is greater than or equal to (a + 2")mod(2™). For example, in figure 2.7, the second entry in
peer 2’s finger table refers to peer 5, since peer 5 has the smallest ID greater than or equal to
(2 +2YYmod(2%) = 4.

Determining the location of a data item with an ID x in the network is equivalent to finding the
successor of r. This is performed by first checking if x is between the ID of the current peer
and the ID of the immediate successor, s. If it is, the lookup terminates, and peer s is returned.
Otherwise, the lookup request is forwarded to the peer in the finger table with the largest ID
preceding . This process repeats until the successor of v if found. For example, assume a user
at peer 7 in figure 2.7 wishes to determine the location of a data item with ID 4. The immediate
successor of peer 7 is peer 2. Since 4 is not between 7 and 2, peer 7 forwards the request to
peer 3, the peer in its finger table with the largest ID preceding ID 4. At peer 3, 4 is between 3
and 5. Since 5 is the smallest ID greater than or equal to 4, the search terminates, and peer 5 is

returned.
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Figure 2.7: An example of a Chord P2P network

While systems like Chord provide efficient O(logN') data location mechanisms, they restrict
the placement of data in the network, and thus, do not support wide-spread data replication. In
our example, a data item with ID 4 may only be placed on peer 5 in the network. Otherwise,

the lookup algorithm will fail.

Dabek et al [21] suggest that data replication in Chord should be performed by placing a data
item not only on its immediate successor, but on its & immediate successors in the ring, where
k is less than or equal to the size of the finger table, m. Therefore, if A is 2 in our example,
then a data item with ID 4 would be stored on peers 5 and 7 in figure 2.7. If the immediate
successor then departs the network, the data item will immediately be available on one of the
other A successors. The data item is also copied to the peer in the ring that becomes a new
successor of the data item. This way, a constant & number of replicas of a particular data item
is maintained in the network. For example, if £ is 2 and peer 5 exits the network, then data item

4 will be copied to peer 2 so that it exists on both 7 and 2.

One problem with this replication approach, however, is that it requires data items to be copied
to peers whenever a new peer becomes one of the &k successors. If the rate of peer joins and
departures is high, the & successors will constantly change, resulting in many data item transfers
being made in an attempt to maintain the £ replicas. If the sizes of the data items are very large,

then the bandwidth cost incurred by all these transfers will be significant.
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2.3.3 Loosely-Structured P2P Systems

Loosely-structured P2P systems can be regarded as a hybrid between unstructured and struc-
tured P2P systems. They impose some structure on the network like structured P2P systems.
Yet, like unstructured P2P systems, the location of data in the network is not necessarily re-

stricted by the network topology.

The data location mechanisms used in loosely-structured P2P systems are similar to those in un-
structured P2P systems. However, the flood is constrained by only forwarding lookup messages
to specific neighbouring peers, rather than all neighbours. The decision for which neighbours
a lookup message should be forwarded to is based on a number of application-specific factors.
Some loosely-structured P2P systems such as [42] use indexing structures that summarise the
data stored at the peers reachable through the network links. These indexing structures provide

hints on where the lookup message should be propagated next.

While this data location algorithm is more scalable than the unconstrained flood in unstructured
P2P systems, it still has some limitations. Firstly, if the aforementioned indexing structures are
used as routing hints, then whenever data items are stored or deleted at a peer, the indexing
structures summarising that peer’s data need to be updated as well. Propagating these index
updates incurs bandwidth costs and may take some time to reach all peers in the network. Also,
the indexing structures may only be probabilistic data structures. If they give false positives,
unnecessary paths in the network will be followed [42]. Finally, some loosely-structured P2P
systems such as FreeNet [20] assign TTL values to lookup messages. This has the same horizon

effect as in unstructured P2P systems, where peers beyond the horizon are unreachable.

2.4 Discussion

Looking at the various P2P architectures, we observe the following: there is a conflict between

support for wide-spread data replication and support for efficient replica location.

On the one hand, we have unstructured P2P systems that allow data to be placed anywhere in the
network, and thus, fulfill our need for wide-spread data replication. However, the data location
algorithms used in those systems makes locating replicas in the network very inefficient. On the
other hand, we have structured P2P systems that provide more efficient O(logN') data lookups.
However, such systems restrict the placement of data on only a few specific peers in the network,

and thus, restrict the spread of replicas.
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To solve this dilemma, we propose the use of a separate global data location index (or catalogue)
that maps the IDs of the replicas to the IDs of the peers in the network that store those replicas.
This is the approach taken in this dissertation to locate replicas. The idea is based on the replica
location mechanisms proposed in [10, 17], and is discussed in further detail in the following
chapter. The global data location catalogue may either be implemented as a web service or, if
complete decentralisation is desired, on top of a DHT. In this work, we are not concerned with
how the catalogue is implemented. Such implementation details are orthogonal to our work and

left for future research.

One consequence of using a global data location catalogue is that it allows the data replica-
tion and update propagation algorithms proposed in this dissertation to work at a higher level,
without depending on the architecture of the underlying P2P network or its internal implemen-
tation details. If an unstructured P2P system is used, the catalogue can be consulted to quickly
determine which peers in the network store a particular replica. If a structured P2P system is
used, the structured network itself could act as the catalogue, storing the pointers to peers with

replicas rather than storing the replicas itself.
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Existing P2P Replication, Location and
Update Propagation Techniques

This chapter presents some of the research that has been conducted into data replication and
update propagation techniques in P2P systems. Our discussion focuses on data replication,

replica location and update propagation.

3.1 Data Replication

In [55], a data replication strategy is described where each peer in the network maintains an
approximate model of the entire network. This model is used to determine the number of repli-
cas to create, the time the replicas should be created and the location where the replicas should
be placed in order to maintain a desired user-specified data availability level. This approach
relies on a resource discovery service to find available storage in the network to place replicas,
and a tool to provide information about the current state of the system. The model consists of
four parameters: the probability that a peer is online, the ratio between the size of the data to
replicate and the available bandwidth, the cost of storing a data item at a particular peer, and the

accuracy of the replica location mechanism.

The number of replicas to create is computed as a function of the model parameters and the
desired level of data availability. Once this number has been calculated, the replica location
mechanism is used to determine the number of replicas currently in the network. If the number
of existing replicas is less than some threshhold, the system recreates the difference and inserts

1t into the network.

19
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In order to determine where the newly created replicas should be placed, the resource discov-
ery mechanism is used to obtain a set of candidate storage peers. These candidates must have
sufficient storage space available to store the replica, must have transfer times below a certain
threshhold, and must not already store a copy of the data to be replicated. The best candidates
are selected using a heuristic algorithm that seeks to maximise the difference between the repli-
cation benefit and the replication costs. The replication benefit is the reduction in transfer time
from the candidate peer to potential requesters of the replica. The replication costs are the costs
of storing the replica at the candidate peer and the time to transfer the replica from the current

peer to the candidate peer.

To determine when replicas should be created, the authors propose performing periodic checks
to determine the number of replicas in the network. The frequency of these checks is altered
based on how often the checks reveal that more replicas should be created. If consecutive checks
show that more replicas need to be created, the frequency of the checks is increased, and vice

versa.

TotalRecall [7] also tries to dynamically adjust its replication strategy to ensure a user-specified
level of data availability. It continuously monitors the availability of the peers in the network
to measure two peer behavioural patterns: short-term and long-term (or permanent) peer depar-

tures from the network.

Using the short-term peer departure measurements, TotalRecall tries to maintain a certain level
of data redundancy by creating additional copies of data in the network. The number of copies
to create is calculated as a function of the target data availability and the mean availability
of the peers in the network. To handle long-term or permanent peer departures, a data repair
process is used to reinsert redundant data back into the network onto new peers. Two data
repair processes are proposed: eager and lazy repair. Eager repair immediately repairs the loss
of data whenever peers leave the network. This ensures that the data redundancy level remains
constant. However, this results in high bandwidth costs, especially when peers constantly leave
the network. Furthermore, eager repair does not make any distinction between short-term and
long-term peer departures. Therefore, many repair procedures may unnecessarily be executed.
With lazy data repair, the repair process is delayed for as long as possible. This result in reduced
bandwidth costs. However, it requires that the availability and data of every peer in the network

be tracked in order to determine when repair processes should be initiated.

The problem of placing replicas in the network to optimise data availability is considered
in [25, 24]. The authors decompose the problem into two phases: initial placement and place-

ment improvement. The initial placement phase is concerned with determining suitable loca-
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tions in the network to store newly created replicas. The placement improvement phase uses a
distributed hill-climbing algorithm to continually relocate replicas to improve data availability.
Placement improvement is performed by swapping replicas between two peers in the network
in order to bring the availability of the swapped replicas closer together. Three placement
improvement algorithms are proposed: RAND-RAND, MIN-RAND and MIN-MAX. In the
RAND-RAND algorithm, the replicas to swap are randomly selected by the peers. In MIN-
RAND, one peer selects the minimum-availability replica from its data store, while the other
peer selects a replica randomly. Finally, in MIN-MAX, one peer selects minimum-availability

replica, while the other selects the maximum-availability replica.

Using simulations, it was shown that initially placing replicas on highly available peers in the
network skews the distribution of free space in the network. Greater storage costs are imposed
on high availability peers compared to lower availability peers. It also weakens the spread of
replicas throughout the network, because replicas are placed only on a relatively small number
of peers in the network. The authors thus conclude that replicas should initially be placed
at random locations in the network. With regard to placement improvement, MIN-MAX was
found to be the most efficient of the three hill-climbing algorithms, while RAND-RAND was

the most effective.

Junqueira et al [40] also look at replica placement. They argue that replica placement algo-
rithms should take the diversity in the network into account, and bias the placement of replicas
on peers that are “different”. A peer is considered “different” based on a number of factors:
different geographical locations, different operating systems or software versions, and so on.
The rationale behind this approach is that the availability of “similar” peers may be correlated
in some manner. For example, if a large-scale attack on the network causes a peer to fail due to
some vulnerability in the software the peer is running, then there is a good chance that another
peer running the same software will fail as well. A model is developed in [40] to represent
diversity, and simulation results are reported. However, no empirical results for an actual P2P

system are provided.

3.2 Replica Location

The approach taken in this dissertation to locate replicas in the network is to maintain replica ID
to peer ID mappings in a globally accessible catalogue. There are various existing systems that
implement such a global catalogue. Giggle [17], which is part of the Globus Toolkit version

3 [10, 74], is one example.
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The Giggle framework consists of 2 indexing structures: a Local Replica Catalogue (LRC) and
a Replica Location Index (RLI). The LRC keeps information about replicas stored at a particular
peer. It maintains a table of logical-to-physical name mappings, where the logical name is the
data item ID and the physical name is the location of the data item in the network. Each RLI
keeps a collection of entries that map the logical names to LRC addresses. This allows the
information of one or more LRCs to be aggregated into a single index to support the lookup of
mappings from multiple LRC sites. Determining the location of a data item in the network thus
involves querying the RLI to obtain the addresses of LRC sites. Then, the LRCs are queried
to lookup the physical names corresponding to the logical name. RLI mappings are assigned
timeout values and must periodically be refreshed. This allows the system to automatically

remove RLI entries associated with failed or inaccessible LRC sites.

For increased reliability and load balancing, multiple (and possibly redundant) RLI sites are

deployed in a hierarchical manner. An example of this deployment is shown in figure 3.1.

P-RLS [10] is an extension of Giggle built on top of Chord. It attempts to eliminate the ad-
ministration overhead involved in manually configuring a hierarchical network of RLI sites by
dynamically organising sites into a P2P overlay network. Like Giggle, P-RLS consists of a
network of LRCs and RLIs. However, RLIs are extended to operate as Chord peers. In order to
resolve a particular logical name, P-RLS uses the logical name as a key into the Chord network
to retrieve the addresses of LRC sites. The system then queries each of the returned LRC:s to ob-
tain the physical names corresponding to the logical name. P-RLS takes advantage of Chord’s
successor node information to operate reliably when peers depart the network. Mappings are

replicated at the & successor nodes in the Chord ring as explained in section 2.3.2.

Boundary Chord [39] also uses Chord to manage its network of Replication Service Peers
(RSPs). RSPs are organised in a multi-ring topology based on the logical domain in which each
RSP resides. A logical domain is group of peers that belongs to a particular virtual organisation

participating in the network. Each RSP consists of a Local Replica Discovery (ILRD) compo-

|LRC| |LRC} |LRC|

Figure 3.1: An example of the hierarchical deployment of RLI and LRC sites in Giggle
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nent, which stores logical-to-physical name mappings, and a Local Replica Index (LRI) com-
ponent, which maintains logical-name-to-LRD mappings. Physical name lookups in Boundary

Chord is performed in the same manner as in P-RLS.

Ripeanu and Foster describe an alternative P2P-based approach in [57]. In contrast to P-RLS
and Boundary Chord, their system does not route lookup queries through the network. Instead
Replica Location Nodes (RLNs) are organised into an unstructured P2P overlay network, where
each RLN distributes the collection of logical names for which it stores logical-to-physical name
mappings to all other RLNs in the network. Each RLN thus eventually gains an entire view
of the mappings stored in the network. To reduce bandwidth costs, the collections of logical
names that RLNs propagate are summarised using Bloom filters [8]. Bloom filters are compact
probabilistic data structures that are used to quickly determine whether a given element belongs

to a set. They are much smaller in size than the set they summarise.

Logical-to-physical lookups are performed as follows. When a RLN receives a lookup query,
it first checks if a mapping for the given logical name is stored locally. If so, the associated
physical name is returned. Otherwise, it checks the Bloom filter summaries it received from
remote RLNs to see which RLN in the network might store physical names corresponding to
the requested logical name. If such a remote RLN 1s found, the request is forwarded to that
RLN to obtain the physical name.

The advantage of this approach is that query latency is kept low. It requires at most one mes-
sage hop in the network to perform lookup queries. However, the cost of performing mapping
updates is high, as updates need to be propagated throughout the entire network to reach all
RLNs.

3.3 Update Propagation

In [23], a push-pull rumour-spreading algorithm is proposed to propagate updates to replicas.
During the push phase, updates are propagated throughout the network using a constrained
Gnutella-like flooding scheme, in which update information is recursively broadcast to a se-
lected number of neighbouring peers. During the pull phase, offline peers that rejoin the net-
work search for data updates in an attempt to synchronise their replicas with those stored in the
rest of the network. Multiple peers are contacted, and the update is pulled from the peer with the
most up-to-date copy. Due to the flooding scheme, the network overhead involved in pushing

updates through the network is significant, especially when data are frequently updated.
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Wang et al [70] propose an alternative approach using a bidirectional chain structure as shown
in figure 3.2. Each data item in the network has a logical replica chain composed of all the
peers in the network storing replicas of the data item. Each replica holder maintains a list of
the & nearest peers in the chain in both directions. These & peers are called probe peers. When
a data item has been updated, the updating peer pushes the update to its online probe peers.
The farthest online probe peer in the chain receiving the update then forwards the update to
all its online probe peers in the same direction through the chain. This process continues in a
recursive manner until the update has reached all the online peers in the chain. When an offline
peer rejoins the network, it synchronises its replicas with those in the rest of the network by

contacting an online probe peer and pulling updates from it.

Figure 3.2: The update propagation chain proposed in [70]. The arched arrows indicate the flow of
update messages from peer ¢ through the chain.

A similar technique is presented in [71] that uses a tree structure instead of a chain. An n-ary
tree is constructed for each data item in the network, where the root of the tree is the owner of
the data item, and the other nodes are the peers storing replicas of the data item. Whenever a

data update occurs, the update is propagated through the tree from the root to the leaf nodes.

One limitation of all update propagation techniques described in this section is that they do not
take the access frequencies of replicas in the network into account. Whenever an update occurs,
it is immediately propagated to all replica holders, even if the replicas stored there are accessed

very infrequently. This may result in unnecessary bandwidth costs.
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Managing XML Content in P2P Systems

In this chapter, we briefly describe the XML data format, and then discuss examples of existing
XML P2P systems.

4.1 XML - The eXtensible Markup Language

XML [93] is a markup language for describing and storing structured information. It is an open
standard recommended by the World Wide Web Consortium (W3C) [91], and has become the

de facto means of transferring data between heterogeneous systems on the Internet [88, 92].

Data in XML are described in plaintext documents using a vocabulary of tags (or elements).
This vocabulary is not predefined. Instead, users are responsible for specifying their own vo-
cabulary of tags to describe their data. This is often accomplished by defining a Document Type
Definition (DTD) [96] or an XML Schema [97], a set of rules that dictate the names, structure
and data types of the elements allowed an XML document. An example of an XML document

1s shown in figure 4.1.

4.2 Existing XML P2P Systems

In this section, we survey five existing XML P2P systems. We also briefly discuss the various

data replication and update mechanisms in these systems.

25
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<library>
<pooks>
<pook catalogId="JAQl" reserved="yes">
<title>A Beginners Guide to Java</title>
<author>J. Ava</author>
<year>2001</year>
</book>
<pook catalogId="GOF%4">
<title>Design Patterns for Dummies</title>
<author>G. 0. Five</author>
<year>199%4</year>
</book>
</pooks>
</library>

Figure 4.1: An example XML document

4.2.1 BRICKS

The BRICKS project [58] aims to integrate digital libraries across Europe in order to provide
location-transparent access to cultural information. It is built on top of a DHT, and stores XML
documents by splitting them into pieces and spreading the pieces amongst the peers in the
network. The XML pieces are grouped into sets, each with a unique set ID. These sets usually
contain related XML pieces, such as whole XML subtrees or siblings, where each XML piece

1s assigned an ID unique to that set.

In order to store data in the network, the set IDs are used as keys into the DHT, and the corre-
sponding sets are placed on the peers to which the keys map. To retrieve data, a reference to the
root element in the XML document needs to be known. This root reference is a cryptographic
hash of a symbolic name associated with the XML document. The pieces which make up the
XML document are then retrieved from all the peers on which they are stored, and combined.
Retrieving the pieces requires that a peer have knowledge of both the ID of the set in which the

desired piece is stored, as well as the ID of the desired XML piece within the set.

With regard to replication, BRICKS uses a modified read-one-write-all-available (ROWA-A) [66]
replication protocol to maintain data availability. Missing replicas are periodically recreated and
re-inserted into the network. The frequency of these re-insertion periods is determined by mea-
suring the average data availability in the network. If the average data availability is above a
certain threshhold, re-insertion periods are made less frequent. If the data availability is less

than the threshhold, the frequency is increased.

Versioning is used to support data updates. Whenever a data item is updated, its version number

is increased. It is then assumed that the data item with the highest version number is the latest
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version of the data item.

No experimental data replication and update results are provided.

4.2.2 XP2P

XP2P [9] is also built on top of a DHT. It extends Chord to support the lookup of XML frag-
ments using linear path expressions of the form: s [i]{;52[j]l2...s,[k], Where s,, is a path expres-
sion step, [, is either a child (/) or descendant (/) axis, and [£] is an optional positional filter.
XML fragments are defined as XML subtrees that may contain special substitute elements in

place of missing child fragments.

To store an XML fragment in the system, XP2P hashes the path expression of the fragment into
the Chord virtual space, and then stores the fragment on the peer to which the path expression
is mapped. The path expression of an XML fragment is defined as the distinct linear absolute
path starting from the root of the XML document to the root fragment in the document. This is
illustrated in figure 4.2. If two distinct XML fragments have the same path expression, the path

expression is prefixed with the name of the originating document.

In addition to storing the content of the XML fragment, XP2P also stores a set of path expres-
sions of related XML fragments. This set consists of the super-fragment path expression, as
well as several child-fragment path expressions. The super-fragment path expression is the path
expression of the XML fragment which is the ancestor of fragment being stored, whereas the
child-fragment path expressions are the path expressions of all the XML fragments of which
the fragment being stored is an ancestor. The related path expression set is used during data

lookups to link related XML fragments.

XP2P takes advantage of the Chord overlay network structure to replicate XML fragments for
increased reliability. In Chord, the peers are organised in a logical ring topology, where each
peer stores list of its A successors in the ring. Instead of storing a XML fragment only at a
peer’s immediate successor, it is replicated at each of the & successors. However, as discussed
in section 2.3.2, this replication scheme restricts replicas to only a few specific peers, weakening
the spread of replicas through the network. Also, high bandwidth costs are incurred to maintain

replicas at the A successors when the rate of peer arrivals and departures is high.

No information is provided on how replicas are kept up-to-date when one or more of the &

successors depart the network and rejoin after the data updates have occurred.
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Figure 4.2: Determining the path expressions of XML fragments in XP2P. Each circle in the diagram
represents an element in the XML fragment. The filled circles are special substitute elements which
stand in place of missing child or super fragments.

4.2.3 XPeer

XPeer [65] uses a hierarchical unstructured super-peer architecture to facilitate distributed XML
query processing. Peers are organised into clusters based on the similarity of their data schemas.
Each cluster is managed by a single super-peer that is responsible for performing administration
tasks within the cluster. These tasks include query evaluation, maintaining schema information
of the peers in the cluster and tracking the arrivals and departures of peers. Peers become

super-peers on a voluntary basis, but still maintain their normal peer status.

Data in XPeer are represented as unordered forests of node-labelled trees, where each tree
is augmented with the location of the peer that stores it. The trees are assigned a freshness

parameter that indicates the last time an update was performed on the trees. Each peer exports a
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Figure 4.3: The hierarchical unstructured super-peer architecture of XPeer. The circles represent the
peers in the network, while the rectangles indicate the super-peer clusters. The peer that is the parent of
all the peers in a cluster is the super-peer.

description of its data in the form of a tree-shaped DataGuide [33] that is automatically inferred
from the data using a tree search algorithm. This DataGuide contains each distinct path in the
XML documents stored by the peer, and is used to identify relevent data sources during query
compilation. The DataGuides for all the peers within a particular cluster are maintained by the
cluster super-peer, and are intergrated to form one DataGuide for the entire cluster. Figure 4.4

shows an example of a DataGuide for a single peer and an integrated DataGuide for the cluster.

publicatiors

Q publicatiors

O boaks books articles
book book article
O O O O
titie authors isbr title authors isbn title authors jourra:
(a) An example of (b) An example of a DataGuide stored at the
a DataGuide ex- super-peer. This DataGuide is the union of all
ported by a single DataGuides of the peers in the cluster

peer in a cluster

Figure 4.4: Examples of the tree-shaped DataGuides used by XPeer. These DataGuides are used during
query compilation to find peers storing relevent data

XPeer uses the FLWR [99] core of XQuery as its query language, without the ORDER clause.
Query compilation is performed in two phases. In the first phase, the peer issuing the query
translates it into a location-free algebraic expression. This expression contains "holes” in the
places that indicate peer locations. During the second phase, the query is sent to the each super-
peer, where the holes are replaced with the actual locations of the peers containing relevant
data. This is done by sending the query to the super-peer managing the cluster. This super-peer

matches the query with the integrated DataGuide for the cluster to find all the peers within the
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cluster that store the desired data. Then, the super-peer sends the query to its parent super-peer
which, in turn, matches the query with the DataGuide for its cluster. This process continues until
the query has propagated up the entire network hierarchy to the root peer. Once this process
is complete, the query is sent back to the issuing peer, where it is executed. Query execution
involves applying common algebraic rewriting to the query, and splitting it into sub-queries that

are sent to the relevent peers.

Replication is performed within the clusters to balance the load and to exploit peers with large
computational resources. Even though data updates are allowed, there is no scheme to ensure
data consistency. Instead, replicas are assigned a time parameter that determines their lifetimes.
XPeer also incorporates operators in its query algebra that allow the user to specify how fresh

the replicas should be for them to be included in the query result [64].

4.2.4 Content-Based Multi-Level Bloom Filters

In [42], a loosely-structured XML P2P system is discussed. Each peer stores a set of XML

documents, where each document is represented as an unordered labelled tree.

A constrained flooding algorithm is used to locate data. The query is propagated through the
network by iteratively sending it to neighbouring peers that are believed to store relevant data.
In order to perform this constrained flood, each peer maintains a local index that summarises its
local data, as well as a merged index that summarise the data of all the peers that can be reached
through the links to neighbouring peers. To route a query, a peer first consults its local index
to see whether it matches the query. Then, it routes the query along the links whose merged
indices also match the query. This process continues until either a maximum number of hops
have been reached or until the query reaches a peer that has no merged index that matches the
query. In this case, the routing backtracks to the previous peer, who then propagates the query

through another link that matches the query and that has not been followed yet.

The indexing schema used in [42] is based on Bloom filters [8]. Bloom filters provide an effi-
cient and compact means of summarising the data stored by the peers in the network. Not only
are they much smaller than the XML documents which they summarise, but performing com-
parison operations on Bloom filters is more efficient than performing comparison operations
on the XML documents themselves. In order to support the evaluation of XPath expressions,
multi-level Bloom filters are introduced. These multi-level Bloom filters preserve the hierarchi-

cal relationships between the nodes in the XML document.
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The disadvantage of using Bloom filters, however, is that they sometimes give false positives.
That is, they may incorrectly indicate a match. This results in paths in the network being

followed that lead to peers storing no relevant data.

Another limitation of this indexing approach is the high cost of performing data updates. When-
ever an update occurs, not only does the local index need to be updated, but also all the merged
indices in the network that use the local index. This means that the peer performing the update
needs to propagate its local index throughout the network in a manner similar to a query. In an
attempt to improve the efficiency of propagating the updated local index, an update propaga-
tion method is proposed in [44] where peers only propagate bits in the Bloom filter that have

changed rather than the entire Bloom filter.

4.2.5 Distributed XML Catalogues

A distributed catalogue framework for locating XML data sources is proposed in [30]. The
system uses the Chord overlay network to map XML element names to sets of data summaries.

These data summaries consist of two parts: a structural summary and a value summary.

The structural summary summarises the structure of the XML documents stored in the system.
It is a set of all possible unique path expressions that lead to a particular element in the XML
documents stored at a peer. For example, in figure 4.5(a), the structural summary for the author
element at peer py is the set, {/library/book, /library/article}. The value summary summarises
the actual contents of the XML documents. It is some domain-specific description of the XML
data, such as a value range (to support range queries) or a Bloom filter (to support equality

queries).

Whenever a peer joins the network, it inserts (key, data summary set) pairs into the system by
hashing the element names to keys in the Chord virtual space, and sending the data summaries
corresponding to the element names to the peers responsible for those keys. Each peer in the
network maintains a catalogue, such as a B+ tree [4], for storing the data summaries sent to
it. Figure 4.5(b) shows an example of how the data summaries for the path expressions in

figure 4.5(a) might be distributed in the network.

In order to locate data, the name of the element of interest is hashed into the Chord virtual key
space to derive the DHT lookup key. The query is then sent to the peer to which the DHT key
maps. The peer receiving this query matches the query to the data summaries in its catalogue

to determine the peers that store relevant XML documents. This list of peers is then returned to
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Peer Path expressions 1
P1 /library/book/author I
Nibrary/article/author

D2 /bookstore/book/price
/bookstore/book/author

p3 /people/address/city

|

(a) A sample collection of path expres-
sions for XML documents stored in the

network
DHT key DHT values Peer storing DHT values
book Summary,, = {/library} D2
Summary,, = {/bookstore }
author | Summary,, = {/library/book, /library/article} D3
Summary,, = {/bookstore/book }
price Summary,, = {/bookstore/book } 12} B
city Summary,, = {/people/address} i P2 J
|

(b) The contents of the DHT after inserting the data summaries for the path expressions in figure 4.5(a)

Figure 4.5: An example of how XML data in a P2P network are indexed using the distributed XML
catalogue approach proposed by [30]

the querying peer. Finally, the querying peer issues the query to each peer in the list to perform

the actual query processing on the XML documents.

When data are updated, the data summaries stored in the catalogues need to be updated as well.
This process is performed in the same manner as data insertions. Since the DHT keys of the
updated data summaries remain the same, an insertion simply overwrites the old data summary
entries in the catalogue. In order to handle data consistency issues, data updates are restricted

to the peer that created the data summaries (i.e. the owner of the data).

The system also employs a replication scheme. However, replication is performed on the data
summaries rather than the actual XML documents. Furthermore, replication is used for load
balancing rather than to increase data availability. Whenever a peer detects that queries for a
particular DHT key mapped to it exceed some limit, it replicates the data summaries corre-
sponding to that key on one or more peers in the network. Then, it creates mappings in its
catalogue that point to the new locations of the data summaries. During data lookups, these
mappings are handed to the querying peer, and are used to query the new locations one after the

other in a round-robin fashion.
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4.3 Discussion

In this chapter, we surveyed five existing P2P systems that use XML as their underlying data
format. We observe that all of these systems either do not consider data replication for main-
taining data availability, or do not handle data replication in a way that fulfill our requirements

in section 1.1.

The DHT-based systems such as BRICKS and XP2P cannot store replicas at arbitrary locations
in the network, as the DHT restricts the spread of replicas. XPeer, being an unstructured net-
work, could place replicas anywhere in the network. However, XPeer only performs replication
within super-peer clusters. Inter-cluster replication is not considered. The system proposed

in [42] does not consider data replication issues, nor does [30].

In the following chapter, we present our own XML P2P framework. This framework was de-

signed to meet our requirements in section 1.1.



Chapter 5

A P2P Framework for Replicated XML

Document Fragments

Before we could embark on our study of replication and update propagation algorithms, there
was a need to develop a XML P2P framework. This would allow for the evaluation of any

number of alternative replication strategies and update propagation techniques.

To make this possible, the core mechanisms and support structures in the framework had to be
identified and investigated. There were two objectives. Firstly (and most importantly), was the
definition and design of components that would enable us to meet our requirements identified in
section 1.1. That is, wide-spread data replication, replica location and update propagation. The
second goal was to find the most general approach for each component so that the framework

could serve as a base for future experimentation and be reused with different P2P architectures.

This chapter describes this framework. The following issues are discussed:

o System constraints. Issues considered here include the type of data each peer stores, the
data ownership and access rights (whether peers may update or delete data), as well as

how data items in the system are identified.

e The fragmentation of XML documents. This allows us to investigate the replication of
smaller XML document pieces in order to reduce replica transfer cost. Of primary interest
here is the manner in which XML documents are fragmented, and how fragments within

XML documents are identified and extracted.
e The location of replicas in the network.

34
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Figure 5.7: An overview of the replicated XML document tTugments tramework

o Update management. We specifly the how opdates are applied 1o XML documents, and

what types of document update are supported.

o Chiery processing. While this 1s not a focus of our work. support for basic distributed
query processing is deseribed. The query processing mechanisms presented in this chap-

ter were used to evaluate the replication and update propagation algorithims.

An overview of the components and mechanisms provided by the framework is shown in fig-

ure 5.1, Replication management 15 discussed in chapter 6,

5.1 System Constraints

Each peer i the network stores a collection of XML documents. The owner of a document is
the peer that contributed it to the network. In addition o these documents. each peer may also
maintain a sct of replicas. These replicas arc XML documents or picces of XMI. data (i.e XML
fragments) that were extracted from XML documents and distributed throughout the network,
The fragmentation of XMI. docuoments 15 discussed in section 5.2, In this section, we sunply
refer 1o these replicas as XML frugmeniy,

Feers have complete contral over the XML fragments they store, They can delete them any
timc at will, or further replicate them if the need arises, However, peers may not update XML
fragments, Only the peer which owns the original XMI. document from which the fragments
were extracted may update them, Allowing any peer in the network to update XML fragments
may result o conflicts if two or more peers porform concurrent updates on replicas of the same
fragment. Resolving these contlicts is a challenging problem and is still an arca of active re-
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search [27, 46, 50]. Another restriction on peers is that they may not further fragment XML

fragments, as this would complicate updates.

Each XML fragment is assigned a unique ID. These IDs may be any identifier assigned by the

application. In our work, IDs are generated as follows:
id = hash(peerld + rootElementName + R)

where peerld is the ID of the peer which owns the fragment, root Element Name 1s the name
of the XML element that is the root of the unfragmented XML document, and £ is an array
of randomly generated bytes. The function, hash(), is a cryptographic hash function such as
SHA-1 [84] that, with very high probability, produces a unique output for every distinct input.
Concatenating the peer ID and R to the input of the hash function ensures that the ID of the
fragment is globally unique throughout the system. The length of 7 is 20 bytes. This size
should be enough to minimise the possibility that two different fragments with the same root

element name on a particular peer receive the same ID.

In addition to the ID, each XML fragment is also assigned a version number to facilitate data

updates. This version number is incremented whenever the fragment is updated.

5.2 Fragmentation of XML Documents

When performing data replication, copying entire XML documents may be quite expensive,
especially when documents are large. It would be more efficient if only parts, or fragments, of
documents are extracted and replicated, rather than entire XML documents. This will result in
reduced networking cost when distributing replicas through the network. Furthermore, since
only document fragments are replicated, the replica creation algorithm can choose to replicate
only those parts of documents which are in demand, resulting in less unnecessary data being
circulated in the network. The decision what fragments to extract from the documents is made
by the replica creation algorithm, and is discussed in section 6.1.2. This section defines what

the term fragment means in this dissertation, and describes our XML fragmentation model.

Initially, our plan was to support arbitrary fragmentation. This would allow the replication
creation algorithm to extract specific pieces from XML documents for replication, excluding
any unnecessary parts. Figure 5.3 illustrates such an arbitrary fragmentation scheme on the
example XML document shown in figure 5.2. The circles drawn around the document nodes in

figure 5.3 indicate the fragments extracted from the document.
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Allowing fragmentation to be performed in this arbitrary manner means that fragments may
contain “holes”. These holes are places in the fragment where elements present in the original
document were excluded. For example, in fragment f1 in figure 5.3, there would be holes in
the positions occupied by elements b, h and i. Our solution to “fill” these holes was to insert
placeholder elements within the fragments to act as references to the missing elements. This is
reminiscent of the substitute elements mentioned in section 4.2.2 that are used in XP2P. These
placeholder elements would contain ref attributes whose values are the path expressions or
IDs of the subtree or fragment rooted at the missing element. Fragment f/ would then have the

structure shown in figure 5.4.

Whenever a query processor then encounters a placeholder element when traversing the doc-
ument during query evaluation, it would use the reference to locate and retrieve the missing
fragment, or alternatively, ship the query to the peer storing the missing fragments for further

evaluation.

One problem with this arbitrary fragmentation approach, however, is that it incurs networking
overhead whenever a placeholder element is encountered. If the document is “finely” frag-
mented, there would be many placeholder elements, resulting in a high network overhead. Other
issues such as ensuring that the references to missing fragments are correct when the original

XML document changes also presented a problem.

Therefore, instead of using an arbitrary fragmentation scheme, we opted for a simpler approach
in which we constrain the fragmentation to whole XML subtrees. Our definition of an XML

fragment as used in this dissertation is thus as follows:

XML fragment Given an XML document represented as a tree of nodes, ¢, with a root node,
r, an XML fragment, f, is a subtree of ¢ rooted at some node n in ¢, where n is an XML
element node that is either a descendant of r or equal to r itself. An XML fragment is
thus either a subtree in an XML document or the entire XML document. The smallest

unit of fragmentation is a single XML element (a leaf node in t).

Figure 5.5 shows an example of how the sample document in figure 5.2 may be fragmented
using this fragmentation scheme. Limiting the fragmentation to whole subtrees does mean that
more data may be extracted from documents and replicated in the network, and thus involve
greater networking cost when transmitting replicas between peers. However, we believe that
this is the best approach, as it avoids the extra networking and computational overhead required
by a more arbitrary fragmentation scheme, while still offering the benefit of replicating smaller

XML fragments as opposed to replicating only entire XML documents.



38 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

<a>
<p>
<e><i><s/></j></e>
<f><k/></f>
<g><1l/><m/><n/></g>
</b>
<c>
<h><o/><p/></h>
<i><qg/><r/></1i>
</c>
<d/>
</a>

Figure 5.2: An example XML document before fragmentation

Figure 5.3: Fragmenting the XML document in figure 5.2 using some arbitrary fragmentation scheme

<a>
<pliaceholder ref="£3"/>
<c>
<placeholder ref="ref_to_subtree_rooted_at_n"/>
<placeholder ref="f5"/>
</c>
<a/>
</a>

Figure 5.4: XML fragmentation with placeholder elements. The fragment shown is fragment f1 in
figure 5.3.
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Figure 5.5: Fragmenting the XML document in figure 5.2 by extracting whole subtrees

5.3 XML Fragment Path Expression Language

XML documents are fragmented using a Fragment Creator component. It receives a path ex-
pression and an XML document as input, and extracts the subtree identified by the path expres-

sion. This is illustrated in figure 5.6.

XML document

Fragment Creator p———3» Extracted XML subtree

XML subtree path expression ———3»

Figure 5.6: The Fragment Creator component

The path expression could be expressed in XPath. This would allow the system to use any
standard XPath query processing tool to perform the subtree extraction. However, using XPath
has two disadvantages. Firstly, XPath query processors depend on an in-memory model of the
entire XML document to operate [98]. This model is usually represented as a DOM tree [95].
If there is insufficient memory available to accommodate the DOM tree for the entire XML
document, subtree extraction will not be possible. Secondly, XPath query processors typically
traverse the XML document twice: once when the DOM tree is being constructed, and again

when traversing the DOM tree during query evaluation.

A more efficient approach than DOM is to extract the subtree on-the-fly as the XML document
is being parsed, without depending on an in-memory model of the document. SAX parsers [87]

are ideal for this. SAX parsers work by invoking callback procedures whenever certain events



40 CHAPTER 5: A P2P Framework for Replicated XML Document Fragments

(e.g. encountering start and end tags) occur. These callback procedures are implemented by
the application, allowing XML processing to occur on-the-fly as the document is being parsed.
Also, since SAX parsers do not build a document tree in memory, the memory requirement of

SAX parsers is very low.

However, the use of SAX also presents a problem: no information regarding the structure of the
XML document is kept and made available to the application. As a result, using complicated
XPath-like path expressions for addressing subtrees is not possible. Instead, a simpler path
expression language is required that allows a SAX-based Fragment Creator to extract subtrees

without knowing the document structure.

In this work, we use path expressions of the form

/pl/piz/"'/pn

where p; 1s an integer indicating the position of an element at level 7 in the XML document tree.

Table 5.1 shows the path expressions for the example fragments f1 to f5 in figure 5.5.

Fragmenti Path Expression
f1 | /1
2 | /11
ERE
f4 /172
fs | N

Table 5.1: Path expressions for the example fragments shown in figure 5.5

Using this path expression language, the Fragment Creator only needs to keep track of the level
and position of an element in the XML document while the document is being parsed. It does
not need any other information regarding the structure of the document. This path expression
language 1s also more concise than XPath. The implementation of a Fragment Creator is de-

scribed in section 7.4.

5.4 Locating XML Fragments in a P2P Network

Once fragments have been extracted and replicated through the network, there needs to be a
mechanism to find fragments during query processing or when performing updates. These
fragments may be placed anywhere in the network on any number of peers. To handle this,

we introduce a component called a Fragment Location Catalogue (FLC), based on the replica
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location systems by [10, 17] described in section 3.2. The reason for using such a catalogue for

locating fragments in the network were discussed in chapter 2.

Conceptually, the FL.C can be viewed as a global lookup table mapping the ID of a fragment
to the IDs of all the peers in the network that store that particular fragment. When a peer
receives a fragment from another peer, it inserts a ( fragmentId. peerld) entry into the FLC,
where fragmentld is the ID of the fragment, and peerd is the ID of the receiving peer. The
FLC may be implemented as either a central registry accessible through a web service, or in a

distributed manner on top of a P2P network such as a DHT.

<<query>:>

Fragment Location Catalogue

Fragment ID's} Peer ID's <<guery> > .
fl plL. p3

f2 pS3. p2. pl2, p3. pl

<<query>>

Figure 5.7: A conceptual view of the global Fragment Location Catalogue (FLC)

5.5 Update Management

When the original XML documents are updated, the replicas in the network need to be up-
dated as well in order to keep them consistent with the original data. This section describes
how updates are handled in the framework. The update propagation algorithm is discussed in

section 6.2,

5.5.1 The Fragmentation Table

The Fragmentation Table maintains information about the manner in which local XML docu-

ments at a peer have been fragmented. It allows the system to determine what fragments in the
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network need to be updated when the original XML document from which the fragments were
extracted has changed. The Fragmentation Table consists of two lists: a list of Document In-
formation Nodes (DINs) indexed by the IDs of the XML document from which fragments were
extracted, and a list of Fragment Information Nodes (FINs) indexed by the IDs of the extracted

fragments. Figure 5.8 shows a diagrammatic view of the Fragmentation Table.

Each DIN keeps fragmentation information specific to a particular XML document. It stores:

e A list of IDs of all the fragments extracted from the XML document; and

e A table of (pathExpression, FIN) mappings, where pathExpression is a path ex-
pression in the form described in section 5.3, and £ /N contains information about the

corresponding fragment.

Information pertaining to extracted fragments are stored in FINs. This is:

The ID of the extracted fragment;

The ID of the XML document in the local data store from which the fragment was ex-

tracted;

The path expression identifying the fragment in the XML document;

o A list of IDs of all the fragments that are ancestors of the extracted fragment; and

A list of IDs of all the fragments that are descendants of the extracted fragment.

An ancestor and descendant fragment is defined as follows.

Ancestor and descendant fragments If 7} and 75 are two subtrees in some XML document
D;, then T} is an ancestor of 75 if 75 is a subtree of 7. Conversely, if 75 is a subtree of
T,, then 75 is a descendant of 7T}.

An example of the information stored by the Fragmentation Table for fragments f1, f4 and f5

shown in figure 5.5 is given in figure 5.9.

By arranging the Fragmentation Table in this two-level structure, the system can obtain infor-

mation about extracted XML fragments in the following manner. If the system wants to obtain
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Document Information Node (DIN)

[ ml
[ Fragment ID List

Fragmentation Table
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Path Expressior 1

Document ID 1 »

Document ID 1 Path Expression 1

Document ID N L Path Expression X
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Fragment Information Node (FIN)
Fragment ID 1 ~
Fragment ID 2 ( Fragment ID
Document iD
Fragment ID M > Path Expression <
\, J ]
Ancestor List
Descendant List
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Figure 5.8: The Fragmentation Table

information about a particular extracted fragment when it only knows the ID of that fragment,
it can lookup the fragment in the FIN list. If the system wishes to determine what fragments
where extracted from a particular XML document, it can lookup the DIN for that document.
Finally, if the system wants to retrieve information about a particular fragment when given a
document ID and path expression, it can lookup the DIN for the document, and use its FIN list

to obtain the FIN mapped to the given path expression.

The Fragmentation Table is maintained locally on the peer which created the fragments. It is
populated whenever a fragment is extracted from an XML document. If no fragments were
extracted from an XML document, then there will be no entries in the Fragmentation Table

corresponding to that document.

5.5.2 Processing Document Updates

When a document has been updated, updates need to be propagated to the peers in the network
that store replicas affected by the update. To accomplish this, we define an Update Manager
component which, when given a list of fragments that have been created from a document, as
well as the old and new versions of the document, returns a list of IDs of all the fragments
that were updated, along with update descriptions (or deltas) that specify how each updated

fragment has changed. This Update Manager is shown in figure 5.10.
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Figure 5.9: An example of the information stored in the Fragmentation Table for fragments f1, f4 and
f5in figure 5.5

Note that our framework does not require the update descriptions to be expressed in any specific
format. Such details are entirely implementation-dependent. Since encoding update descrip-
tions is well beyond the scope of our work, we simply assume that it would be possible for a
peer receiving a series of update descriptions to derive the current version of a fragment by ap-
plying the update descriptions to the old version of the fragment. Examples of existing update
description formats that may be used with XML data are described in [14, 18, 19, 46, 49, 60].

In what follows, we briefly outline the manner in which document updates are processed.

5.5.2.1 Types of XML Fragment Update

We consider the following four classes of update which may apply to XML fragments. Note
that in this section, we make a distinction between an XML fragment and a (regular) XML

subtree. A fragment is a subtree that has been extracted from a document and replicated in the
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Figure 5.10: The Update Manager viewed as a black-box

network (and thus has a corresponding entry in the Fragmentation Table), whereas a subtree has

not been made into a fragment.

Subtree insertion: A subtree insertion occurs when a new subtree is added to a fragment.
Subtree deletion: A subtree deletion occurs when a subtree is removed from a fragment.

Content change: A content change occurs when the text content of an element in the fragment

is updated, or when an element’s attributes change.

This class of update can be further decomposed into the four types of update: value
updates, attribute insertions, attribute deletions and attribute value updates. However, in
this dissertation, we group them under one classification, because they do not affect the

element structure of the fragment whose content changed.

Fragment move: A fragment move occurs when a fragment is moved from one part of the
document to another. This may further result in two additional updates: a subtree insertion
into the fragment where the moved fragment was placed, and a subtree deletion from the
fragment where it had been. The additional two updates will not occur if the places where

the moved fragment was inserted and deleted were not fragments themselves.

Fragment moves only affect the path expression of the fragment, not its structure or con-
tent. This type of update is thus not propagated to peers storing replicas of the moved
fragment. The path expression as well as the ancestor and descendant information in the

Fragmentation Table are simply updated.

When updates are performed on fragments, other fragments in the document may be affected
by the update as well. In particular, inserting a new subtree into a fragment f means that the
subtree is also being inserted into all of f’s ancestors fragments. This bubbling-up of updates
may be explained with the aid of figure 5.11. Inserting a new subtree into fragment f3, means
that the subtree is also being inserted into fragments f2 and f1. The same occurs during subtree

deletions and content changes.

Updates may also bubble-down the document. This happens during a subtree deletion when the

subtree being deleted is a fragment itself. All the descendant fragments of that deleted fragment
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Figure 5.11: The bubbling of updates through an XML document. Inserting or deleting a subtree in
fragment {3, means that a subtree has been inserted or deleted in fragments f2 and f1 as well.

are then considered deleted as well. For example, if the subtree being deleted is rooted at f1 in
figure 5.11, then f2 and f3 are deleted as well.

Note that subtree insertions and deletions cause the path expressions of fragments to change. For
example, inserting a new element between elements b and c in figure 5.12, causes c’s path ex-
pression to change from /1/2 to /1/3. Whenever the Update Manager detects that a fragment’s

path expression has changed, it updates the path expression information in the Fragmentation

Table.
/a: (/1)
/ \
b :

: C
(/1/1) : (12}
x

Figure 5.12: An example of how a subtree insertion affects the path expression information

5.5.2.2 Outline of the Update Process

Now that we have described the types of update that may be applied to XML fragments, we
give a short high-level description of how the Update Manager might determine what fragments

in a document have been updated.

First, the ID of the XML document being updated is used as input to the Fragmentation Table
to lookup the IDs of all the fragments that have been extracted from that document. Then,
for each fragment ID, the corresponding fragment is identified in the old and new versions of
the document, and a comparison operation is performed to determine whether the fragment
has been updated. If so, the fragment is marked as updated, and a description of the update
is calculated and associated with the fragment. If the update was a subtree insertion, subtree

deletion or a content change, then all the ancestors of the fragment are marked as updated as
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well, and are associated with the update description. If the fragment itself was deleted, then
all the fragment’s descendants are also marked as deleted. If a fragment’s path expression has
changed as a result of a subtree insertion, subtree deletion or fragment move, the fragment’s

path expression information is updated in the Fragmentation Table.

Note that comparing XML documents in order to detect updates is an XML differencing and
tree matching problem that is beyond the scope of this work. Therefore, we do not look at
how the system determines what fragments in an XML document have been updated and how
they have been updated. We simply assume that an such algorithm is available to the system.
For an in-depth discussion on methods for detecting changes in XML documents, the reader is
encouraged to refer to [2, 13, 14, 15, 26, 38, 45, 46, 47, 48, 69].

55.23 Example

The following example illustrates how the update process works. Consider the XML document
in figure 5.13(a) expressed as a tree of nodes. This document has five fragments extracted from
it, labelled f1 to f5. The Fragmentation Table information for these five fragments is shown in

table 5.13(b). Now, assume the document has been updated in the following manner:

1. Subtree deletion: element e is deleted from f1. Fragment f1 is marked as updated and
a subtree deletion description is associated with it. Since f1 does not have any ancestor
fragments, the subtree deletion does not bubble-up the document and no other fragments

are marked as updated.

2. Subtree insertion: a new element r is inserted as a child of element a. Since a is not
part of a fragment that appears in the Fragmentation Table, no fragments are marked as
updated. The insertion does, however, affect f3’s path expression. Therefore, the path

expression for f3 in the Fragmentation Table is changed from /1/3to /1/4.

3. Content change: the text content of element k& is changed to some value 1. Since element
k is part of fragment f4, fragment f4 is marked as updated and a content change update
description is associated with it. The update bubbles-up to fragment f4’s ancestor frag-
ment, f1, which is also marked as updated and associated with the content change update

description.

4. Fragment move: element g, which is the root of fragment, f5, is unlinked from its pre-

vious parent, element ¢, and made a child of the newly inserted element . The path
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expression for fragment f5 is changed from /1/2/1 to /1/3/1 in the Fragmentation Ta-
ble. Since f5 was previously a subtree of fragment f2, f2 is marked as updated and a

subtree deletion description is associated with it.

The diagram in figure 5.13(c) shows the document after it has been updated. Figure 5.13(d) lists
the updated fragments along with their update descriptions. Fragment updates would now be
propagated to all replicas of fragments f1, f2 and f4 in the network, as dictated by the update

propagation algorithm used by the system.

5.6 Query Processing

In this section, we describe a simple distributed XPath query processor for our framework. Since
query evaluation is not the focus of our research, the purpose of the query processor was to
simply provide a means of finding data in the network so that we could test the data replication
and update propagation algorithms proposed in this dissertation. As a result, efficiency was

sacrificed for simplicity.

5.6.1 Design Considerations

In designing the query processor, the following challenges were encountered:

1. Dealing with fragmented data. In our framework, XML data are fragmented and dis-
tributed throughout the network. The query processor needs to be able to find peers in the
network storing fragments relevant to a particular query. While the Fragment Location
Catalogue provides a means to determine the locations of fragments, it does not capture
any path information. It merely acts a table of fragment ID to peer ID mappings. Conse-
quently, there is no way to determine based on the information in the Fragment Location

Catalogue what fragments in the network a given XPath query expression applies to.

2. Support for branch queries. When evaluating branch queries, certain paths in the XML
document will be excluded from the result. For example, the query /a/b/ @x="y’]/c re-
quests only the elements, ¢, whose parents, b, have « attributes with a value y. Some peers
may return empty query result sets if the fragments they store do not have such branches.
Sending queries to such peers would only result in unnecessary networking cost and in-

crease query latency. It would be more efficient if, before sending queries to peers for
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(a) The document structure before the update

Fragment ID | Path Expression | Ancestors | Descendants
f1 /11 - 4
2 /12 - £5
3 /1/3 - -
f4 17172 fl -
£5 /17271 2 -

(b) The Fragmentation Table information for the five fragments in fig-
ure 5.13(a)

(¢) The document structure after the update

Fragment ID | Update Descriptions
fl subtreeDelete(e)
textUpdate(k, ©)
2 subtreeDelete(g)
4 textUpdate(k, v)

(d) The updated fragments and their update
descriptions

Figure 5.13: An example of a document update.
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evaluation, the system could determine whether peers are likely to return a non-empty

query result set.
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5.6.2 The Fragment Path Index

In order to tackle the challenges described in section 5.6.1, we introduce another global lookup
table into the framework, the Fragment Path Index (FPI). The FPI is a table that maps the root
element name of an XML document to a list of ( fragmentld. fragmentSummary) tuples,
where fragmentld is the ID of a fragment extracted from a document with that root element,
and fragmentSummary is a field that summarises the structure and/or the content of the
tfragment. The fragmentSummary allows the system to quickly determine whether a given
path exists in a fragment without actually looking at the fragment itself. In our work, we do not
prescribe how summary fields are calculated, only that such a mechanism be present. Possible
XML summarisation techniques that may be used in conjunction with this work are described
in [1, 16, 29, 53, 54, 68].

The FPI may be implemented as a completely separate entity in the system or as an extension

of the Fragment Location Catalogue. Figure 5.14 shows a conceptual view of the FPI.

<<guery>>

{ Fragment Path Index )

Root Element | FPI Tuples <<query>>
B EE—
<fl, summary(fli>

fdocl <f12, summary(f12}>
<f3, summary{f3}>

<f32, summary(f32}>
<f2, summary(f2}>

. — )

<<Query>>

idoc2

«cquery>>

Figure 5.14: A conceptual view of the global Fragment Path Index (FPI)

5.6.3 Query Processing Algorithm

Using the FPI, the query processor may perform query evaluation as follows. When a peer re-

ceives aquery of the form /a/b/c/../n, it retrieves the list of ( fragmentId. fragmentSummary)

tuples corresponding to the root element name, a, from the FPI. This list is then pruned by
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eliminating all tuples corresponding to fragments that do not need to be traversed during query
evaluation. This is achieved by comparing the query expression to the fragmentSummary
field in each tuple. If, based on the fragmentSummary field, it is determined that the query

will not be satisfied by the corresponding fragment, that tuple is removed.

Next, the locations of the fragments are determined by performing lookup operations on the
Fragment Location Catalogue using the fragmentld fields in the tuples. The query is then
sent to all peers returned by the Fragment Location Catalogue at the same time. The peers that
receive the query, evaluate it on the fragments in their local data stores, and return the result
to the querying peer. After all the results have been collected by the querying peer, or after a

certain timeout has expired, the results are returned to the user.

Pseudocode for this query processor is presented in figure 5.15. To perform the actual query

evaluation on locally stored XML fragments, any standard XPath query tool may be used.

procedure processQuery(queryExpression):

1

2 rootilement := get root element name from queryiIxpression
3 tuplelist := get tuples from FPI that map to the root element
4

5 // Prune the tuple list by removing tuples whose summaries
6 // don’t match the query expression.

7 prurnedTuplelist := new list

8 foreach tuple in tuplelist do:

9 if tuple.fragmentSummary.matches (queryixpression) do:
10 prunedTuplelist.add(tuple)

H end if

12 end foreach

13

14 // Send the guery to the peers.

15 peers = get peers that store fragments from FLC

16 foreach peer in peers do:

17 send queryExpression to peer

18 end foreach

19

20 results := wait until results arrive or timeout expires
21 results := remove duplicates from resuits

22 return results

23 end procedure

Figure 5.15: The query processing algorithm in pseudocode

5.6.4 Query Processor Limitations

The query processor has the following limitations:
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o The large size of the FPI tuple list. The size of the tuple list returned by a lookup operation

on the FPI can be very large, especially when there are many XML documents in the
network with the same root element name. The larger the size of the tuple list, the greater

the network cost when transferring this list to the querying peer.

One way in which the size of the tuple list returned to the querying peer can be reduced is
to perform the tuple list pruning operation within the FPI rather than at the querying peer.
This requires extra processing within the FPI. However, the cost of this extra processing

is outweighed by the cost of transferring large tuple lists.

No support for queries starting with a descendant axis. The FPI uses XML document root
element names as lookup keys. The querying peer determines these root element names
by extracting it from the query expression. However, this forces queries to start with a
child axis (e.g. /a/b/.../z). Queries starting with a descendant axis such as //b/.../z
cannot be evaluated, because the root element name is not specified in the query expres-

sion.

A solution to this problem would be to retrieve all the tuples from the FPI. However, this

approach is infeasible when the FPI has many entries.

The quality of the fragment summaries. The query processor is also limited by how
well the fragmentSummary fields in the FPI tuples summarise XML fragments. If
the fragmentSummary incorrectly indicates that a fragment satisfies the query expres-
sion (i.e. a false positive), then unnecessary networking cost will be incurred when query

messages are sent to peers that will simply return empty result sets.

5.7 Summary

This chapter introducted our P2P framework for replicated XML document fragments. This

framework defines components and mechanisms for fragmenting XML documents for replica-

tion, locating XML fragments in a P2P network, handling XML fragment updates, as well as

performing distributed XML query processing.

Each peer in the network stores a collection of whole XML documents, as well as a set of XML

fragments it received from remote peers. An XML fragment is defined as either a subtree in

an XML document or the whole XML document itself. When fragmenting XML documents,

path expressions of the form /p; /p»/.../p, are used to identify subtrees, where p; is an integer

indicating the position of an element at level ¢ in the document.
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The Fragment Location Catalogue (FLC) is used to locate fragments distributed throughout the
network. It acts as a global lookup table that maps the ID of an XML fragment to all the peers

in the network storing that particular fragment.

The Fragmentation Table maintains information about the manner in which local XML doc-
uments at a peer have been fragmented. The Update Manager uses the Fragmentation Table
to identify all the XML fragments that have been affected by an update, and returns a list of

descriptions specifying how each updated fragment has changed.

The Fragment Path Index (FPI) is a global lookup table that maps the root element name of an
XML document to a list of ( fragmentld. fragmentSummary) tuples. The Query Processor
uses the FPI to determine where queries should be sent in the network. Query evaluation on

XML fragments is performed using a standard XPath query processing tool.



Chapter 6

Replication Management and Update
Propagation Algorithms

This chapter presents the replication and update propagation algorithms for the XML P2P

framework proposed in chapter 5.

6.1 Replication Management

6.1.1 Overview

In this work, data replication is divided into two phases: replica selection and replica placement.
During the replica selection phase, the system determines what XML fragments in the local data
store should be replicated, how many copies of the selected fragments should be created in the
network, and when replication should occur. During replica placement, the system identifies
where in the network replicas should be placed. By splitting replication management into two
phases, the selection and placement of replicas can function independently, making it possible

to replace just a selection algorithm or just a placement algorithm.

This dissertation investigates three heuristic replica selection algorithms:

e Random Replica Selection (RRS)

e Most-Frequently Accessed Replica Selection (MFA)

54
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e Most-Recently Accessed Replica Selection (MRA)

We also look at four heuristic replica placement algorithms:

Random Replica Placement (RRP)

Counter-based Replica Placement (CRP)

e Counter-State Replica Placement (CSRP)

Average Uptime Replica Placement (AURP)

These replica selection and placement algorithms are described in sections 6.1.2 and 6.1.3,

respectively.

In order to handle data replication, we define a Replication Manager component, consisting of
three subcomponents: a Replica Selector, which implements the replica selection algorithm, a
Replica Placer, which implements the replica placement algorithm, and a Replicator, which
performs the transfer of replicas between peers in the network. Figure 6.1 shows how these

components fit together.

Replica Selector Replica Placer
Input Parameters input Parameters
Replication Manager
L i
Replica Selector Replica Placer
ID's of peers Fragments | ;
f::g‘:‘:!ﬁ:‘s to replicate § £ Fragments
were placed 4 ID's of peers to replicate
Selected Fragments Queue S onwhich to
7 place fragments
Fragments.."'-..'
to replicate
Replicator

v

Replication messages
to peers

Figure 6.1: The design of the Replication Manager component
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The Replication Manager subcomponents interact as follows. The Replica Selector identifies
a set of fragments to replicate based on its input parameters, and places it on a queue shared
between it and the Replicator. This triggers the Replicator to retrieve fragments from the queue
and invoke the Replica Placer to generate a list of peers in the network to which the replicas
should be sent. The Replicator then issues a replication request message to each peer identified
by the Replica Placer, which, in turn, respond with either a replica accept or replica deny
message. If a replica accept message is received, the Replicator establishes a connection with
the peer in order to transfer the fragment. If a replica deny message is received, the replica
transfer to that peer is cancelled. Peers may decide to deny a replica based on a number of

factors, such as insufficient space, high load, etc.

The selection and placement of replicas may not always be independent. In some cases, the
identification of peers on which replicas should be stored depends on what fragments were
selected. For example, a replica strategy may require that certain fragments be sent to certain
peers in the network. To accommodate this, the Replicator passes the fragments it obtained
from the shared queue to the Replica Placer when the Replica Placer is invoked. This gives the

Replica Placer the option of basing its placement decisions on the fragments selected.

The actions of the Replica Selector may also depend on the previous outputs of the Replica
Placer. For instance, the Replica Selector may keep track of where fragments were sent so that
it can re-queue fragments for replication when those peers depart the network. Therefore, after
every successful replica transfer, the Replicator informs the Replica Selector where the replica

was sent.

6.1.2 Replica Selection Algorithms

All the replica selection algorithms proposed in this dissertation work roughly as follows. Dur-
ing every replica selection period, £, a collection of XML fragments is selected for replication.
For each selected fragment, the number of copies of the fragment to create is determined. The

fragment is then queued for replication.

There are various ways in which the number of copies may be calculated. In this work, the
maximum number of copies allowed in the network, m, is specified at system start-up. The

number of copies, r, to create during a selection interval is

r=m-—=k
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where k is the number of current copies determined using the Fragment Location Catalogue.

The replica selection process is outlined in pseudocode in figure 6.2. Each replica selection
algorithm provides a different implementation of the process () procedure. The interval, ¢,

between replica selection periods is a fixed parameter specified at start-up.

procedure selectReplicas{():

w2 —

m := get maximum allowed replicas
while stop != true do:
4 selectedFragments := process|()
5 foreach fragment in selectedbfragments do:
6 k := FLC.lookup(fragment) .length
7 if k¥ < m do:
8 r :=m - k
9 queueForReplication(fragment, r)
10 end if
11 end foreach
12 sleep (t)
13 end while

14 end procedure

Figure 6.2: The basic structure of the replica selection algorithm

6.1.2.1 Random Replica Selection (RRS)

The Random Replica Selection (RRS) algorithm has two variants: one that only replicates entire
XML documents (i.e. no fragmentation), and one that replicates both entire XML documents
and XML fragments. We describe the former first.

Random Replica Selection Without Fragmentation (RRS-F)

During each replica selection interval, n documents are randomly selected from the data store,

where n is a randomly generated integer between 1 and the total number of documents.
Random Replica Selection With Fragmentation (RRS+F)

This algorithm is an extension of RRS-F. Whenever a locally-owned XML document is se-
lected for replication, a randomly selected subtree in the document is extracted and queued for

replication.

The subtree to extract is selected by traversing the XML document to generate a list of all the
possible path expressions from the root of the document to every other element in the docu-

ment, and then randomly selecting a path expression from this list. This path expression along
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with the XML document are then passed to the Fragment Creator so that the subtree may be ex-
tracted. For example, consider the sample XML document in figure 6.3. The list of all possible
path expressions is {/1,/1/1,/1/2,/1/2/1,/1/2/2}. Assume /1/2 is chosen from the list at
random. Then, the subtree rooted at element ¢ in figure 6.3 will be extracted from the document

and replicated.

a i71)

b/ \c -
11171) / \
d

e
(/1/2{1} (/1/2/2)

Figure 6.3: Generating the path expressions for each element in an XML document. The path expres-
sions are shown in brackets next to each element.

6.1.2.2 Most-Frequently Accessed Replica Selection (MFA)

The Most-Frequently Accessed Replica Selection (MFA) algorithm aims to increase the avail-
ability of those fragments that are in high demand in the network. It maintains a table of access
information objects (AIOs), where each AIO stores the ID of the XML document that was ac-
cessed, the path expression of the subtree in the document that was accessed, and a counter
indicating the number of times the subtree in the document was accessed. The access informa-

tion table is sorted in descending order of access count.

During every selection interval, n XML fragments are selected for replication by obtaining the
top n AIOs from the access information table, and retrieving the fragments specified from the

data store. In this project, the value 7 is a fixed parameter configured by the user.

Like the RRS algorithm, the MFA algorithm has two variants: one that only selects whole
XML documents for replication, and another that selects both whole XML documents and XML
fragments extracted from documents. In the MFA algorithm without fragmentation (MFA-F),
the path expression stored in the AIO will always represent the root of the XML document,
regardless of what subtree in the document was accessed. There will thus always be one AIO in
the access information table for each document accessed in the system. In the MFA algorithm
with fragmentation (MFA+F), the path expression in the AIO is the reference to the actual
subtree accessed in an XML document. Therefore, there may be many AlIOs for a particular
document in the access table, as the system needs to keep track of the access counts for each

accessed subtree separately.
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An example of the information stored in the access information table is given in figure 6.4.
Assume that a peer stores the two XML documents in figure 6.4(a), and that queries evaluated
at the peer access the elements in the following order: b.h.[l.a.j. h. Each row in the access
tables in figures 6.4(b) and 6.4(c) represents one AIO. Now, if the number of fragments to
select, n, is 3, then documents d1 and d2 will be selected for replication when no fragmentation

is performed, whereas subtrees /1/2 and /1/3/2 from document d2 and /1/1 from document

SN T
A A

XML Document iD: d1 XML Document iD d2

d1 will be selected if fragmentation is enabled.

f

(a) Sample XML documents

XML Document ID | Path Expression | Access Count
d2 /1 4
dl /1 2
(b) The access information table when no fragmentation is per-
formed
XML Document ID | Path Expression | Access Count
d2 /1/2 2
dl /1/1 1
d2 /1/3/2 1
dl /1 1
d2 e /1/2/1 1

(¢) The access information table when fragmentation is enabled

Figure 6.4: An example of the information stored in the MFA algorithm’s access information tables.
The elements in figure 6.4(a) are accessed in the following order: b. h.l.a. j. h.

In order to determine what specific subtrees in the XML documents were accessed by queries,
the Replica Selector interacts with the XPath Query Processor as follows. Whenever a query
is evaluated on a locally stored XML document, the Query Processor passes the XPath query
result, along with the ID of the document on which the query was evaluated, to the Replica
Selector. XPath query results may either be expressed as a set of DOM tree nodes, a string,
a number or a boolean value [98]. In this work, only queries that return DOM tree nodes are
considered. Each of these DOM nodes is a root of a subtree accessed by the query. The Replica
Selector first moves up the DOM tree from the DOM node in the result set to the root of the
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document. Then, it travels down the tree in reverse, calculating the position of each node along

the path relative to its siblings.

For example, if node A in figure 6.4(a) is in the result set, then its path expression is calculated
by first moving from k to the root f along the path & — ¢ — f. Then, going down the DOM tree
from f to k, the positions of f, 7 and k relative to their siblings in the DOM tree are calculated.
These positions are 1, 3 and 1, respectively. The path expression for node & is thus /1/3/1.

This path expression is then entered into the access information table.

6.1.2.3 Most-Recently Accessed Replica Selection (MRA)

The MFA algorithm tries to ensure the availability of XML fragments that are in high demand.
However, it may perform poorly when data request patterns change rapidly. The Most-Recently
Accessed Replica Selection (MRA) algorithm, on the other hand, tries to adapt quickly to re-
quest pattern changes by selecting the most recently requested fragments for replication. It
works exactly the same as the MFA algorithm, except that, instead of maintaining access coun-
ters, it moves AlOs to the top of the access table whenever the corresponding fragments are

accessed in the system.

Using the same example from figure 6.4, the access information tables for the MRA algorithm
will look like those shown in figure 6.5. If the number of fragments to select, n, is 3, then
documents d1 and d2 will be selected for replication when no fragmentation is performed,
while subtrees /1/2 and /1/2/1 from document d2 and /1 from document d1 will be selected

when fragmentation is enabled.

6.1.3 Replica Placement Algorithms

The replica placement algorithms all take as input a list of peer IDs from which they select
peers on which to place replicas. This list only contains the IDs of peers that are believed
to be online. The replica placement algorithms thus depend on two other components in the
system to operate: a Peer Discovery component that discovers new unseen peers in the network,
and a Peer Pinger that periodically pings each discovered peer and notifies the Replica Placer
whether peers are online or offline. Simple implementations of the Peer Discovery and Pinger

components are described in section 7.9.

Each replica placement algorithm works roughly as follows. Whenever a fragment has been
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(a) Sample XML documents

XML Document ID | Path Expression
d2 /1
dl /1 B
(b) The access information table when no frag-
mentation is performed

XML Document ID | Path Expression
d2 /1/2
d2 /1/2/1
dl /1
d2 /1/3/2
dl /11

(c) The access information table when fragmen-
tation is enabled

Figure 6.5: An example of the information stored in the MRA algorithm’s access information tables.
The elements in figure 6.5(a) are accessed in the following order: b. h. 1. a. j. h.

selected for replication, the Replicator passes the fragment to the Replica Placer, along with
a number, r, indicating the number of copies of the fragment to create in the network. The
Replica Placer then selects r peers from the list of online peers according to some algorithm.
If r 1s greater than the number of online peers, then all the peers in the online list are returned.
If there are no peers that are believed to be online, then no peers are returned by the Replica
Placer, and the replication process is cancelled. The algorithms for selecting peers from the

online list is presented in the following sections.

6.1.3.1 Random Replica Placement (RRP)

The Random Replica Placement (RRP) algorithm is the simplest replica placement algorithm.
The peers on which replicas should be placed are randomly selected from the list of online

peers.
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Peer Peer Status Counter
tiylto |t | ta |5 |t | t7 | ts | tg | tig Value
a 1 1yttt 1ry10¢t1|1 1 8
b ojo(of1,17]0[0]0]0] O 0
c 1| 1]0,0]0/011]1 ] 4
d 2 A T D T O 0 I A 1 6
e 11 |oj1r|try1ry01110}|O0 2
f Ol 1 (01701 ]0,0]011 1

Table 6.1: An example of how peer counters are calculated in the CRP algorithm. A 1 in the Peer Status
column, indicates an online peer at ping interval ¢; (where 1 < ¢ < 10); a 0 indicates an offline peer.

6.1.3.2 Counter-based Replica Placement (CRP)

The Counter-based Replica Placement (CRP) algorithm maintains a counter for each known
peer in the network. Whenever a peer is detected as online by the Peer Pinger component,
the counter for that peer is incremented. Whenever a peer is detected as offline, the counter is
decremented. Peers with high counter values are selected by the CRP algorithm as destinations
for replicas. By biasing its placement decisions toward such peers, the CRP algorithm tries to

increase data availability by placing replicas on peers that are frequently online.

Table 6.1 demonstrates how the counter values are calculated for six example peers, a to f,
after 10 time intervals, ¢, to t;9. During each time interval, ¢;, the Peer Pinger notifies the CRP
algorithm whether a peer is online or offline. An online peer is indicated by a 1 in the table,
while an offline peer is indicated by a 0. The counter values for peers « to f after time interval
tipare 8, 0,4, 6,2 and 1, respectively.

When requested to identify r peers on which to place replicas, the CRP algorithm does not
simply select the r peers with the highest counter values. This would result in high load on
peers with high counter values, as the top r peers would always be selected as replica stores.
Instead, to help balance load and increase the spread of replicas throughout the network, the
CRP algorithm determines the median counter value, and then randomly selects r peers whose
counters are greater than or equal to the median. Returning to the example in table 6.1, if 2
peers are to be selected, then any 2 peers in the set {c, d. a} may be chosen, rather than just the
top 2, ¢ and d.

6.1.3.3 Counter-State Replica Placement (CSRP)

One drawback of the CRP algorithm is that it does not take the online-offline behaviour of the

peers in the network into consideration. A peer that frequently enters and leaves the network
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Peer Peer Status Counter | No. State Score
t1 { to | t3 | t4 | t5 l te ‘ tz | ts | to | t1o Value Changes

a Tl 11 frjrjofrlt]1 8 3 2.67
b oj(ojoj1|t1rjo10j0l0] O 0 2 0
C 1 1 0O/]0]01]0 | 1 i 1 4 3 1.33
d 1 0 1 1 1 1 1 0 1 1 6 5 1.2
e r1iy1jo0ojtj1|1r;01110]|0 2 6 0.33
f oOof1r/0/17011]0;01]O0 ] 1 7 0.14

Table 6.2: An example of how peer scores are calculated in the CSRP algorithm

may at some point have the same counter value as another more stable peer that has just re-
cently been discovered. Ideally, replica placement should be biased towards stable peers so that
data availability can be maintained. The Counter-State Replica Placement (CSRP) algorithm
attempts to overcome this drawback. It is an extension of the CRP algorithm which, in addition
to maintaining counter values for peers, records the number of times the peers have changed
state from offline to online or from online to offline. It then calculates a score for each peer by
dividing the counter value by the number of state changes. The higher the score, the greater
the chance that a peer will be chosen as a replica store. As in the CRP algorithm, the peers are
chosen by randomly selecting those peers that have scores greater than or equal to the median

score.

Table 6.2 shows a modified version of the example given in table 6.1. A state change occurs
whenever the peer status goes from 1 to 0 or from 0 to 1. A 1 in the table for time ¢, counts as
a state change from O to 1, as all peers are considered to be initially offline. Using the CSRP
algorithm, peers a to f will have the scores 2.67, 0, 1.33, 1.2, 0.33 and 0.14, respectively. Note
that peers a and c are now seen to be more stable compared to peer d, for example, which

changes state more.

6.1.3.4 Average Uptime Replica Placement (AURP)

The Average Uptime Replica Placement (AURP) algorithm operates in the same manner as the
CRP and CSRP algorithms. However, instead of maintaining counters or scores, it calculates

the average uptime for each peer and uses that to make its placement decisions.

The average uptime of a peer is calculated by dividing the total time a peer is online by its
number of online sessions. An online session is the period from the time a peer joins the
network until the time a peer departs the network. The formula for calculating the average

uptime is:
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v
Lt —
aveUptimeTime = ;%—)

where t; and ¢; are the start and end times of the k" online session, and .V is the number of

online sessions.

For instance, consider the diagram in figure 6.6 showing the timeline for a particular peer. The

average uptime of that peer is calculated as follows:

(ta —t1) + (ts — t3)

aveUptimeTime =

[N}

If the peer’s 2 online sessions lasted for 5 and 3 time units, respectively, its average uptime will

be 4 time units.

Offline Online Offline Online Offline

tl t2 t3 t4

Figure 6.6: Calculating the average uptime of a peer

Table 6.3 shows the average uptimes for peers a to f from the previous examples in tables 6.1
and 6.2. If each block in the Peer Status column is equivalent to 1 time unit, then the uptimes
for peers a to f will be 4.5, 2, 3, 2.67, 2 and | time unit(s), respectively. The median is 2.33

time units. Thus, peers a, ¢ and d would be eligible for selection.

Peer Peer Status Average
ty | to | ts |ty | ts | te | t7 | ts | tg | tio | Uptime
a 1 1 1 1 1 11011 1 1 4.5
b 00011 1107000 0 2
c 1 11010101011 1 1 1 3
d 11011 1 ! 1 1101 1 2.67
e 1 |01 1 1010 0 2
f of{1,0(17,0}1{0;0;0 1 1

Table 6.3: An example of how the average uptimes of peers are calculated in the AURP algorithm.
Each ping interval ¢; (where 1 < 7 < 10) in this example represents | time unit.
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6.2 Update Propagation

After an XML document has been updated by the document owner as described in section 5.5,
a “pull” mechanism is used to propagate updates to replicas. That is, all the peers holding
replicas of fragments extracted from that document are notified by the owner peer when an
update occurs. The replica holders retrieve the updates from the owner when needed. This
is in contrast to a “push” model where updates are immediately sent to replicas whenever an
update occurs. The rationale behind a pull mechanism is that it is unnecessary to send updates
to peers if the replicas stored at those peers are accessed infrequently. By delaying the transfer

of updates, networking overhead can be reduced.

Update propagation consists of two phases: an update notification phase and an update retrieval

phase. These phases are discussed in the following sections.

6.2.1 Update Notification

When an XML fragment has been marked as updated by the Update Manager, the peers storing
replicas of that fragment are looked up in the Fragment Location Catalogue. For each peer
returned by the Fragment Location Catalogue, an update notification message is created and
added to a queue. These update notification messages specify the ID and current version of the
updated fragment. If the fragment was deleted during a document update, then instead of the

version number, a flag indicating the deletion is specified.

The update notification messages are retrieved from the queue by an update notification process
that sends the messages to the replica holders. When a replica holder receives an update noti-
fication, it either marks the replica in its data store as stale or deletes it, depending on whether
the fragment was changed or deleted at the owner. It then responds to the owner peer with an
update notification acknowledgement message. If this update notification acknowledgement is
not received by the owner after a certain timeout period has expired, the replica holder is con-
sidered offline. The owner peer then re-adds the update notification message to the queue so

that it may be re-sent at a later stage.
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6.2.2 Update Retrieval

The update retrieval phase is initiated whenever a replica holder attempts to access a stale replica
in its data store. It sends an update request message to the owner peer, specifying the ID and
version number of the stale replica. Upon receiving the update request message, the owner
establishes a connection with the replica holder, and sends it update descriptions that may be
applied in sequence to the stale replica in order to produce the latest version of the fragment.
These update descriptions are generated whenever an XML document is updated as described
in section 5.5.2. Sending update descriptions rather than the actual updated fragment results in
less network traffic. After the replica holder applies the update descriptions to its stale replica,

the update retrieval process terminates.

If the owner peer does not establish a connection with the replica holder after a certain time
has expired, the replica holder resends the update request message. If the owner still does not
respond after a certain number of retries, it is considered offline. In this case, the replica holder
attempts to retrieve a more up-to-date version of the fragment from another replica holder in
the network. A version request message is sent to each peer returned by the Fragment Location
Catalogue in order to determine what version each peer holds. An update request message is
sent to the peer with the highest version number greater than that of the replica holder. The
update retrieval process then proceeds in the same manner as before. If this update retrieval is
unsuccessful, then the peer with the next highest version number greater than that of the replica
holder is tried, and so on. If no peer with a higher version number is found, the Update Retrieval

phase terminates.

Note that the owner peer will be included in the list of peers returned by the Fragment Location
Catalogue. Therefore, if the owner peer rejoins the network shortly after the replica holder
determined it to be offline, it will be contacted first, since it will have the highest version of the

fragment.

To allow peers to retrieve updates from other replica holders, peers do not discard update de-
scriptions after use. Instead, update descriptions are kept in the data store in case they are
needed by other replica holders in the network. Since different replica holders may have differ-
ent initial versions of an XML fragment, and thus hold different update description sequences,
simply retrieving update descriptions from a replica holder may not always be sufficient for
obtaining a later version of an XML fragment. In this case, an entire copy of an XML fragment

1s retrieved from a replica holder rather than just the update descriptions.
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6.3 Summary

This chapter presented the replication and update propagation algorithms proposed in this dis-

sertation.

Replication is divided into two sub-problems: replica selection and replica placement. Replica
selection is performed by selecting n XML fragments for replication during every selection
interval, ¢. The number of copies, r, to create of each fragment is calculated by subtracting the
current number of copies in the network from the maximum number of copies, m, allowed in
the network. The number of copies currently in the network is determined using the Fragment
Location Catalogue. Random Replica Selection (RRS) selects n XML fragments to replicate at
random. Most-frequently Accessed Replica Selection (MFA) maintains an access information
table sorted in decreasing access count order, and selects the n fragments corresponding to the
top n entries in the access information table. Most-recently Accessed Replica Selection (MRA)
is similar to MFA, but moves access information table entries to the top of the table whenever

the corresponding fragments are accessed.

Replica placement algorithms select r peers on which to place replicas from a list of on-
line peers. Random Replica Placement (RRP) selects the r peers randomly. The Counter-
based Replica Placement (CRP), Counter-State Replica Placement (CSRP) and Average Uptime
Replica Placement (AURP) algorithms rank peers according to their online-offline behaviour,

and randomly select the r peers whose ranks are greater than or equal to the median rank.

Update propagation is performed in two phases. During the update notification phase, replica
holders are notified of XML fragment updates. During the update retrieval phase, replica hold-

ers retrieve and apply the updates.
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Prototype Implementation

This chapter discusses the development of a prototype XML P2P system that implements the
framework presented in chapter 5. This prototype was used to evaluate the replication and
update propagation algorithms described in chapter 6.

The prototype uses the simplest possible implementations for all framework components. For a
production environment these components would be individually customized or replaced. The

advantage of the framework is that each such component can be implemented and optimized

independently.
Replicated XML Document Fragments Framework
XML Document XML Fragment Update Management Query Processing Replication Management
Fragmentation Location
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7.1 Overview

Figure 7.1: An overview of the components in the prototype

The prototype consists of nine components, as shown in figure 7.1. These are:

68
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e A P2P Manager that handles the P2P network communications.

e An XML Data Store that manages the storage of XML documents and fragments.

e A Fragment Creator that extracts subtrees from XML documents.

¢ An implementation of the Fragment Location Catalogue proposed in section 5.4.

e An implementation of the Fragmentation Table in described in section 5.5.1.

e An Update Manager that handles document updates and performs update propagation.

o A Query Processor for evaluating simple XPath expressions. This component also in-

cludes an implementation of the Fragment Path Index.
e Peer Discovery and Pinger components used by the replica placement algorithms.

o A Replication Manager that is responsible for replicating data throughout the network.

Each component is described in the sections that follow. The prototype was implemented in
Java to take advantage of the functionality provided by the J2SE [77] development framework

and various widely available open-source Java-based toolkits.

7.2 The P2P Manager
The XML P2P prototype requires the following P2P network functionality:

1. Peers in the network need to be addressed using globally unique IDs. These IDs should
be persistent and independent of the peer IP addresses to allow peers to be addressed
in a consistent manner even when they depart and rejoin the network or when their IP

addresses change.

2. Messages in the network should be routed between peers using the peer ID as the desti-

nation, rather than the IP address.

3. Higher level components in the system need to be informed whenever messages are sent
and received, and when connections to remote peers are established and lost. This will en-
able system components to perform any application-specific processing when such events

occur.



70 CHAPTER 7: Prototype Implementation

The Rest of the System
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Figure 7.2: The design of the P2P Manager component

Creating such a P2P network implementation from scratch would take too much effort and was
beyond the scope of our work. Therefore, we decided to use FreePastry {72] for our prototype.
FreePastry is an open-source implementation of Pastry [61}, a structured P2P routing protocol.

It meets the aforementioned requirements as follows.

1. Each peer in FreePastry is assigned a globally unique ID that is generated using some

application-specific algorithm.

b

A message in FreePastry is routed to a peer with an ID that is numerically closest to a
given ID. This allows a message to be sent using the peer ID as a destination, rather than

an IP address.

3. FreePastry informs higher-level system components via callback methods whenever mes-

sages at a peer are received and when neighbouring peers enter and leave the network.

In our prototype, peer IDs in the FreePastry network are generated using a pseudorandom num-
ber generator that produces random arrays of 20 bytes in length. This is done whenever a peer
joins the network for the first time. After an ID has been generated for a peer, it is saved in the
system, so that it may be reused whenever a peer leaves and rejoins the network at a later stage.

In this way, peers retain their IDs across network sessions.

To allow for greater flexibility, an abstraction layer was built on top of FreePastry. This makes
it possible to replace FreePastry with another P2P network implementation if a more efficient
and reliable implementation is required at a later stage. This abstraction layer is illustrated in
figure 7.2. It consists of interfaces that provide operations common to all P2P network im-
plementations. These interfaces are described in detail in section A.1 of Appendix A with an

accompanying UML class diagram.
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7.3 The XML Data Store

The XML Data Store component manages the storage of XML data at a peer. For simplicity,
the implementation in this prototype stores data directly on the file system. However, as in the
case of the P2P Manager component, this file system-based implementation is hidden behind
an abstraction layer, making it possible to replace this implementation with a more efficient

version at a later stage.

ﬁdata
—Dmeta.xml
‘Dfragmentl.xm\
“Dfragmentz.xml

_DfragmentNAme
—ﬁupdates

fragmentA

1

2

n

latest

—ﬁfragmentz

Figure 7.3: The directory structure of the XML data store

Figure 7.3 shows the structure of the directory in which the XML data are stored. All doc-
uments, whether local documents or fragment replicas, are kept in one top-level data di-
rectory as XML files. These XML files are named according to the ID of the XML frag-
ments stored within them. For example, if the ID of a fragment (in hexadecimal format) is
1B00D24A4710A0351FDCOF2B5ED99E32C8CF65B9, then that fragment will be stored
in a file called 1B00D24A4710A0351FDCOF2B5EDI9E32C8CF65BY . xml in the data

directory.

In addition to the XML files, a meta.xml file is maintained that stores the following meta

information about the XML fragments in the dat a directory:

e The XML fragment ID encoded in base64 [85].

e The name of the XML fragment. This is a user-specified string that is used to conveniently

refer to an XML fragment in the system, rather than using to the XML fragment ID.
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For example, an XML document containing contact information might have the name,
“address book™.

e The name of the XML file in which the fragment is stored relative to the top-level data

directory.

e The ID of the peer that owns the XML fragment. This is encoded in base64. For local
XML documents, the value of this field is the ID of the local peer.

e The name of the XML document root element. This field allows the system to retrieve
XML fragments from the data store based on the root element name when performing
query processing. Note that this is not the name of the XML fragment root element, but

the root element of the XML document from which the XML fragment was extracted.
¢ A flag indicating whether the XML fragment is an entire XML document or a subtree.

e The XML fragment version number. This value starts at 0, and is increased each time the
XML fragment is updated.

¢ A flag indicating whether the XML fragment is the latest version. This is used by the Up-
date Manager component when marking fragment replicas as stale during update propa-

gation. For local XML documents, this flag will always be t rue.

An example meta .xml file is shown in figure 7.4.

When performing document updates, the system needs to keep track of all the previous versions
of an XML fragment so that replica holders may retrieve the most up-to-date version during
update propagation. This is done by storing at the peer which owns the document, all the deltas
(i.e. update descriptions) that may be applied to older versions in order to construct the current
version. These deltas are stored in the updates directory below the top-level data directory.
Within the updates directory, there is a directory for each fragment that was updated. These
directories store collections of delta files, where each delta file is given an integer filename
corresponding to the version of the fragment which it produces when applied to the previous
version of the fragment. The delta filenames range from 1 to n, where n is the current version
of a fragment. If a peer requesting an up-to-date version of an XML fragment holds version ¢
of that fragment, then deltas (¢ + 1) to n would be retrieved from the data store and sent to the

peer.

In addition to the delta files, a file called Latest is also stored in the updates directory for

each fragment. This file contains a single integer indicating the current version number.
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Figure 7.5 shows the contents of an example data store divectory,
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Figure 7.4: An example meta.xml file in the XML dara store divectory
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Figure 7.5: The contents of an example XML data store directory

7.4 The Fragment Creator

The Fragment Creator is responsible for extracting fragments from XMI. documents, When
given g path expression in the form (pgfpe /o py,. where p, denows the position of an element
in the document tree relative Lo its siblings. it traverses g given XML document. and writes the
subtree idendfied by the path expression to a temporary fle. This is done using a SAX XMI.

parser, $o that frigment extraction can be done efficiently and on-the-fly.
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value: 1 value: 2 value 1
childrenSeen: 0 childrenSeen 0 childrenSeen 0

Figure 7.6: The path expression, /1/2/1, represented as a list of Pat hStep objects

The Fragment Creator accepts three input arguments: the XML document from which the frag-
ment should be extracted, the path expression of the subtree in the XML document to extract,
and the ID that should be assigned to the extracted fragment.

When the Fragment Creator is invoked, it parses the path expression, and loads it into memory
as a PathExpr object. This PathExpr object contains a list of PathStep objects, where
each PathStep represents p; in the path expression. The value field in the PathStep
object is the position of the element in the XML document tree relative to its siblings. The
childrenSeen field indicates the number of child elements that have been processed. Fig-
ure 7.6 shows how the path expression, /1/2/1, would be represented as a list of PathStep
objects. The PathStep at the end of the list is known as the current step.

During the fragment extraction process, the Fragment Creator maintains two path expressions:
the target expression and the current expression. The target expression is the path expression of
the subtree in the XML document that should be extracted, while current expression is the path
expression of the element that is currently being processed in the XML document. The current

expression’s Pat hStep list is calculated as follows.

e Whenever a start tag is encountered in the document, a new Pat hStep object is created.
If the PathStep list is empty, the value field of the newly created PathStep object
is set to 1. Otherwise, it is set to the value of the current step’s childrenSeen field
plus 1. In both cases, the childrenSeen field of the new PathStep objectis set to 0.
After the new PathStep has been initialised, it is pushed onto the PathStep list. The
resulting list of PathStep objects then represents the path expression of the element

whose start tag was just reached.

e Whenever an end tag is encountered in the document, the last PathStep in the list is

popped, and the childrenSeen field of the current step is incremented.

In order to determine whether the element currently being processed is part of the subtree that
should be extracted from the document, the Fragment Creator checks whether the target expres-
sion is a prefix of the current expression or if the current expression is a prefix of the target
expression. If either condition is true, the current element is outputted to a temporary file that

stores the extracted fragment.
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The fragment extraction process is best explained with an example. Consider the sample XML
document in figure 7.7(a). If the path expression of the fragment to extract is /1/2/1, then the
subtree rooted at element e should be extracted. Figure 7.7(c) shows how the Fragment Creator

processes the XML document:

e When the « element’s start tag is encountered, the current expression’s PathStep list
is empty. A new PathStep object is created with value of 1 and a childrenSeen
value of 0. The PathStep list now represents the path expression, /1. Since /1 is a

prefix of the target path expression, /1/2/1, element a is outputted.

e When element b is reached, a new PathStep object is created. Since the PathStep
list is not empty, the value of the new PathStep is set to the value of the current
step’s childrenSeen field plus 1. The current step’s childrenSeen value is 0, so
the value of the new PathStepissetto 1. The new PathStep is pushed onto the list,
resulting in the path expression, /1/1. Since /1/1 is not a prefix of the target expression,

/1/2/1, and since the target expression is not a prefix of /1/1, element b is not outputted.

e When the XML parser exits from element b, the PathStep at the end of the current
expression’s PathStep list is popped. The childrenSeen field of the current step is

then incremented to 1.

e Atthe start of element ¢, anew PathStep is created. Since the value of the current step’s
childrenSeen field is 1, the value of the new PathStep is set to 2. The resulting
path expression is /1/2, which is a prefix of the target expression, /1/2/1. Therefore,

element ¢ is outputted.

e At the start of element ¢, the current expression is the path expression /1/2/1, which is a

prefix of /1/2/1, so element e is outputted.

e Atelement g, the path expression is /1/2/1/1. This is not a prefix of the target expression
/1/2/1. However, the target expression is a prefix of /1/2/1/1. Therefore, g is outputted.

e Element h is also outputted, as the target expression, /1/2/1, is a prefix of element g’s
path expression, /1/2/1/2.

e When the XML parser reaches element f, the PathStep list represents the path ex-
pression, /1/2/2. Since this is not a prefix of the target expression, and since the target

expression is not a prefix of /1/2/2, element f is ignored.

e Element d is also ignored, since its path expression is /1/3.
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Once the XML document has been traversed, the fragment produced by the Fragment Creator
has the structure shown in figure 7.7(b). Notice how elements b, f and d are omitted. Also notice
how element e is not the root of the extracted fragment, but is enclosed within its ancestor
elements, ¢ and a. This is to allow the Query Processor to evaluate queries directly on the
extracted fragment. If element e was not enclosed by ¢ and «, then evaluating a query such as

Ja/c/e/g on the extracted fragment would return no result.



<a»
<b/>
<C>
<e>
<g/>
<h/>
<le>
<fi>
<>
<df>
</a>
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f

(a) A sample XML document

Enter a
Enter b
Leave b
Enter c
Enter e
Enter g
Leave g
Enter h
Leave h
Leave e
Enter f
Leave f
Leave c
Enterd
Leave d

Leave a

value: 1
childrenSeen: 0

(/1)

value: 1
childrenSeen: 0

ﬁ:

value: 1
childrenSeen: 0

value: 1
childrenSeen: 1

(/1)

value: 1
childrenSeen: 1

value: 2
childrenSeen: 0

<a>»
<C>
<ex
<gi>
<h/>
<je>
< (0>
<fa»

(b) The extracted fragment with path /1/2/1

(/1/1)

(/1/2)

value: 1
childrenSeen: 1

value: 2
childrenSeen: G

value: 1

childrenSeen: 0 (/1/2/1)

value: 1
childrenSeen: 1

T

value: 2
childrenSeen: 0

T

(/1/2/1/1)

value: 1 value: 1
childrenSeen: Q childrenSeen: 0

value: 1
childrenSeen: 1

:F

value: 2
childrenSeen: 0

value: 1 (/1/2/1)

childrenSeen: 1

value: 1
childrenSeen: 1

-
.

value: 2
childrenSeen: 0

(/1/2/1/2)

value: 1 value: 2
childrenSeen: 1 childrenSeen: 0

value: 1
childrenSeen: 1

e
EF

value: 2

childrenSeen: 0

value: 1 (/1/2/1)

chitdrenSeen: 2

value: 1
childrenSeen: 1

value: 2
childrenSeen: 1

(/1/2)

value: 1
childrenSeen: 1

i
1

value: 2
childrenSeen: 1

value: 2
childrenSeen: 0

(/1/2/2)

value: 1
childrenSeen: 1

5

value: 2
childrenSeen: 2

value: 1
childrenSeen: 2

(/1)

value: 1
chiidrenSeen. 2

e

value: 3
childrenSeen: 0

value: 1
childrenSeen: 3

(/1)

(/1/2)

(/1/3)

(¢) The contents of the current expression’s PathStep list as the sample XML document is

parsed

Figure 7.7: An example of how the Fragment Creator processes an XML document
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7.5 The Fragment Location Catalogue

The Fragment Location Catalogue (FLC) component allows the system to determine the loca-
tion of XML fragments in the network by mapping XML fragment IDs to peer ID lists. As
mentioned in section 5.4, the FLC may be implemented as either a separate web service or on

top of a P2P network using, for example, a DHT.

The FreePastry library that the prototype uses includes an implementation of Past (62], a DHT
that uses the Pastry P2P routing protocol. Our first attempt at implementing the FLC used this
Past implementation. However, it was soon discovered that the Past implementation does not
handle the mapping of multiple peer IDs to one fragment ID correctly. Another approach would
have been to implement our own DHT on top of FreePastry. However, this is beyond the scope
of our work. Therefore, for this prototype, the FLC was implemented using a simple relational
database that is globally accessible to all peers in the network. An abstraction layer hides the
actual implementation from the rest of the system behind a generic interface. As a result, the
system does not know whether the FLC is implemented as a web service, DHT or relational

database, and thus, an alternative implementation can easily be accommodated.

Figure A.3 in Appendix A shows a UML diagram of the FLC implementation.

7.6 The Fragmentation Table

The Fragmentation Table is maintained as a simple XML file that closely follows the structure
shown in figure 5.8. An example of this XML file for the sample document in Figure 7.8 is

presented in figure 7.9.

A <fragment> element represents a Fragment Information Node. Its attributes, id, doc—
ument and path, store the fragment ID, the ID of the XML document from which the frag-
ment was extracted, and the path expression identifying the fragment in the XML document,
respectively. Each <fragment> element may also optionally have <descendants> and

<ancestors> child elements.

A <document > element represents a Document Information Node, and consists of a list of

<fragment > elements specifying the fragments extracted from a document.
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Figure 7.8: A sample XML document and its fragments

<fragmentationTable>
<fragments>
<fragment id="f1" document="dl" patn="/1">
<descendants>
<descendant id="f2"/>
<descendant 1d="f3"/>
</descendants>
</fragment>
<fragment id="f2" document="di" path="/1/1">
<ancestors>
<ancestor ig="f1"/>
</ancestors>

<descendants>
<descendant id="f3"/>
</descendants>
</fragment>
<fragment 1d="f3" document="dl" path="/1/1/2">
<ancestors>
<ancestor id="fl1"/>
<ancestor id=":I2"/>
</ancestors>
</fragment>
</fragments>
<documents>

<document id="dl">
<fragment id="f1"/>
<fragment 1id="f2"/>
<fragment id="f3"/>
</document>
</documents>
</fragmentationTable>

Figure 7.9: The Fragmentation Table XML file for the sample document in figure 7.8
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7.7 The Update Manager

The Update Manager processes XML document updates and performs update propagation as
described in sections 5.5 and 6.2, respectively. It is implemented as an extension of the XML
Data Store component using the Decorator design pattern [31]. In this way, update management
is performed transparently to higher-level system components. Whenever a higher-level system
component invokes an update, retrieval or deletion operation on the XML Data Store, the Up-
date Manager intercepts the invocation, performs any necessary update management tasks, and
then passes control to the XML Data Store to complete the operation. Requests for all other
data store operations simply pass straight through the Update Manager to the underlying XML
Data Store. Figure A.4 in Appendix A shows a UML class diagram of the Update Manager.

Since detecting document updates and handling update descriptions is not the focus of this
work, the prototype simulates this functionality. Whenever an update is performed, the IDs of
all the fragments extracted from a given document are retrieved from the Fragmentation Table.
Then, for each fragment ID, if a pseudorandom number generator returns a value greater than
0.9, a delta for the corresponding fragment is created. This delta does not actually describe how

a fragment was updated. It merely indicates a version number increase.

When transferring updates to remote peers, the Update Manager does not use the P2P layer
(and thus the FreePastry library). Instead, it establishes direct TCP connections to remote peers

outside the P2P network. This is done for the following reasons:

1. FreePastry uses Java-object serialisation to transfer messages between peers [73]. A
message is represented as a Java object (the Message interface in figure A.1 in Ap-
pendix A) that is converted to a stream of bytes before it is routed through the network.
When the message is received at the destination, it is reconstructed from the stream of
bytes into a Java object. This means that in order to send an update to a remote peer, the
entire update would first need to be loaded into memory and stored within a Message
object before it can be sent. If the update is larger than the amount of memory available,

the system would be unable to send updates.

This problem could be resolved by breaking the update into smaller chunks and sending
each chunk individually. However, this would complicate update transfers, as additional
measures would be required to ensure that all chunks arrive at the destination successfully

and in the right order.

2. FreePastry uses a single connection to transfer Java-object messages [73]. This connec-
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tion 1s used to transfer both protocol maintenance and application-level messages. Send-
ing large Message objects would thus stall other messages waiting to be sent, resulting

in poor network performance.

The data sent via the direct connection are depicted in figure 7.10.
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Figure 7.10: The data sent to remote peers when transferring updates via a direct connection

7.8 The Query Processor

The Query Processor consists of three parts:
e The actual query processor that evaluates queries on XML fragments stored in the XML
data store;

e A network interface that allows the Query Processor to receive queries from remote peers

for evaluation; and

¢ An implementation of the Fragment Path Index (FPI) described in section 5.6.2.

A UML class diagram of the Query Processor is shown in figure A.5 in Appendix A.

The Query Processor first initiates the processing of queries on locally stored XML fragments

using the standard Java XPath query processor. Then, it sends queries to remote peers for



82 CHAPTER 7: Prototype Implementation

evaluation. Since evaluating queries on the network may take an arbitrary amount of time, a

callback interface 1s provided to enable non-blocking query processing.

A listener interface is also provided by the prototype. This interface takes three input arguments:
the query string, the XML fragment on which the query was evaluated, and the query result.
Unlike the callback interface, which is called only when a specific query was processed, the
listener is called whenever any query was processed. This allows the Most-Frequently Accessed
and Most-Recently Accessed Replica Selection algorithms (see sections 6.1.2.2 and 6.1.2.3) to
hook into the Query Processor component, so that they may determine what specific subtrees in

local XML fragments were accessed.

The FP1 is used by the Query Processor to determine what fragments in the network a particular
query should be evaluated on. It maps the names of XML document root elements hashed
using SHA-1 to (fragmentld, fragmentSummary) tuples, where fragmentld is the ID of
a XML fragment in the network and fragmentSwmmary is a data structure that summarises
the structure and/or content of the XML fragment. Since calculating XML fragment summaries
is beyond the scope of this work, the prototype uses dummy fragmentSummary objects that
always return boolean true when checking whether a particular path expression exists within

the corresponding fragments.

The UML class diagram for this prototype’s FPI implementation is given in figure A.6 in Ap-
pendix A. The design is identical to that of the FLC. An abstraction layer hides the actual
implementation from the rest of the system behind generic interfaces, so that higher-level com-
ponents do not know whether the FPI is implemented as a web service, DHT or using a re-
lational database. The prototype stores ( fragmentld, fragmentSummary) tuples in a rela-
tional database that is globally accessible to all peers in the network. Like the FLC, this is the

simplest way of abstracting over this implementation detail.

7.9 The Peer Discovery and Pinger Components

The replica placement algorithms described in section 6.1.3 require a list of online peers from
which to select destinations for replicas. In order to construct this list, a mechanism is needed
that will search the network for new unseen peers. The Peer Discovery component provides this

service.

Whenever the Peer Discovery component discovers unseen peers in the network, it informs the

rest of the system about the discovered peers. Since the implementation of a peer discovery
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mechanism may be specific to a particular P2P network protocol, and since such an implemen-
tation is beyond the scope of this work, the prototype instead uses a mock implementation.
Before an experiment is conducted with the prototype, the IDs of all the peers in the network
are generated and added to a globally accessible relational database. Then, at system start-up,

the a list of peer IDs is retrieved from the database and handed to the rest of the system.

Once the system knows what peers are in the network, it needs to periodically probe the peers
to determine whether they are online or offline. This responsibility lies with the Peer Pinger
component. The Peer Pinger maintains a list of all the peers discovered by the Peer Discovery
component. During every probe period, it iterates through the list of peers, sending each peer in
the list a Ping message. If the Peer Pinger receives a Pong response, that peer is considered

online. If no Pong is received within a particular time period, the peer is considered offline.

7.10 'The Replication Manager

The Replication Manager implements the replication algorithms described in section 6.1. A
UML class diagram for it is presented in figure A.8 in Appendix A, along with a description of

how the various classes and interfaces interact.

Like the Update Manager component, the Replication Manager does not transfer replicas to
remote peers using the P2P layer, as XML fragments may be too large to load into memory
as Java objects. Instead, it establishes direct TCP connections to remote peers outside the P2P
network, and transfers replica messages in the format shown in figure 7.11. To help reduce

networking cost when sending replicas, XML fragments are compressed using GZIP [83].
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Figure 7.11: The data sent to remote peers when transferring replicas via a direct connection

7.11 Summary

This chapter describes a prototype P2P XML data management system that implements the
framework presented in chapter 5 and the replication and update propagation algorithms dis-

cussed in chapter 6.

The FreePastry library was used to provide the P2P functionality. Appropriate interfaces for all
components in the framework were developed to abstract over implementation details and to
identify the minimum functionality required by each component. The simplest approach was
then used for each implementation, resulting in a complete system that is easy to enhance and

experiment with.

The prototype described in this chapter was used during the project experiments to test the
replication and update propagation algorithms. These experiments are discussed in the follow-

ing chapter.



Chapter 8

Experimental Evaluation

This chapter describes evaluation of the data replication and update propagation algorithms
proposed in chapter 6. The data replication algorithms were evaluated by considering differ-
ent combinations of replica selection and placement algorithms to see which performed best
under two different network conditions. The update propagation algorithm was evaluated by

measuring how often queries returned up-to-date results.

The experimental setup and method are first described. Then, the results obtained during the

experiments are presented and analysed.

8.1 Experimental Setup

8.1.1 Network Environment

Experiments were performed on a cluster consisting of 13 identical computers interconnected
via gigabit ethernet links. Each computer had a 3GHz Intel Pentium 4 processor with a cache

size of IMB, 512MB of main memory, and approximately 1GB of swap space.

ModelNet [80] was installed on the cluster. ModelNet is a wide-area network emulator that
enables the evaluation of unmodified network applications in realistic large-scale Internet-like
networking scenarios. ModelNet creates and runs multiple instances of a networking applica-
tion on each cluster machine, where each instance represents a virtual node (i.e. a peer) in the

ModelNet network.

85
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MaodeINet requires 2 types of physical computers o operate: emulator machines and host na-
chimes, Host machines run the virtwal nodes. Emulater machimes subject network packets 1o
delays. losses, gqueneing, congestion and bandwidith constraints according o some network
topology specification. This emulation occurs transparently o the apphication and m real-time,
aiving the application the illusion that 11 1s participating in a real wide-atea distribuied environ-

nmient. The application itself is completely unaware of the existence ol ModelNet.

For this project, 12 cluster machines were set aside as ModelNet hast machines, while | acted
as i ModelNer emuolator, All the host miachones ran wdenuical Lunux installations, while FreeBSD
4.1 | wis used lor the emulator machine, To oblain the best possible emnulation results, the cmu-
lutor's operating svstem kernel was configured with a ¢lock rate of 10,000H:, as recommended
by the ModeliNet documentation [79]. In addition to these 13 muchines, another computer was
used 1o host a relational database storing FLC and FPI mappings, as nientioned in sections 7.3

and 7.8, respectively. A diagram of this setup 1§ shown in figure 8.1,

12 Mazeliet -iest |
fLrned

1 3bies Serito~

FLC and FA
datatgsp serye

Mirdedh e Frdgnor
(Fre=z32 2110

Figure 8.1: The expenmentat network setup

In all the experiments, the same ModelNet parameters were used. A 5000 node Autonpmous
System (AS) level network with 100 clients {peers) and 25 stubs way generated using the Inet
Topolegy Generator [76] and ModelNet's Znet2xr ] wol. The client-stub link bandwidth was
sel o 10Mbps, while stub-stub. stub-transit and transit-transit links were set o 100bps. All
links in the network were assigned a delunlt ModelNet latency and queue lenoth. The link

delavs were antoniaticall v generated based on node distance.
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8.1.2  Test Documents

A collection of 93 sample XML documents was used, Same of these documents were synthet-
wcally gencrated, while others were extracts of documents taken trom |81, 82, 89, 90, 94|, A
histogram showing the document size distribution is presented in figure 8.2, The smallest docu-
ment wias 515 B in siee, while the largest document was 1491.61 KB, The st documents werc
kept intentionally small, as inigal runs of the experiments resulied in oul-of-memory crrors
when performing query processing on large XML documents, These out-of-memaory issucs
were caused by runming up to @ instances of the prototype on each ModelNer host machine
concurrently, which put increasing strain on system resources as the XML document sizes in-
creased, Since the expernimicnts did not evaluate the efficieney of the replication and updare
propagation algorithms, using small XML documents was deemed sufficient.
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Figure B.2: The file size distribution of the test XML docoments

Peers were assigned XML documents from the sample collection in a round-robin tashion, such
that. at the start of each experiment, 93 peers i the network each had one XML document in
thelr data stores, while the remaning & peers had none, The same peers were always assigned
the same XML documents before cach experiment,
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8.1.3 Test Queries

During each experiment, a set of queries was posed on the system. These queries were generated
from the collection of sample XML documents, such that each query returned a non-empty

result set and its results were known before-hand.

The query generation process is outlined in figure B.1 of Appendix B. For each XML document
in the sample collection, a set of queries was generated. Each query in this set was evaluated
on the XML document. If the queries returned non-empty result sets, they were added to a list
of candidate queries. Once all the documents had been processed, a query script was generated
from the list of candidate queries. This query script was executed by the prototype to pose
queries on the system during the experiments. It specified the time a query should be evaluated,
the query that should be evaluated and the peer in the network that should submit the query for
evaluation. The queries in the script were selected at random from the candidate query list. The

time between the queries was generated using a Poisson process.

The query script consisted of 300 queries, posed at an average of 3 queries per minute. The
total run-time of the script (i.e. the time required to execute all 300 queries per experiment)
was therefore approximately 1 hour 40 minutes. A single peer that was guaranteed to be online

during the experiments (the boot peer) was chosen as the query submitter for all queries.

8.1.4 Peer Online-Offline Behaviour

The algorithms were tested using two peer online-offline behavioural models: a real-world
model based an existing P2P network and a synthetically generated model using a Poisson

process.

The real-world model was obtained by recording the times peers entered and departed a Direct-
Connect P2P network. DirectConnect is a hybrid decentralised P2P filesharing system similar
to Napster, in which peers connect to a central hub that accepts and evaluates queries on be-
half of peers, and maintains information about the peers in the network. To perform these time
measurements, the open-source Linux DC++ [78] DirectConnect client was modified. The Di-
rectConnect hub informs clients whenever peers in the network connect or disconnect from the

hub. The modified client captured these events and recorded the times at which they occurred.

The measurement trace was conducted on a DirectConnect network operated at the University
of Cape Town from 16 August 2007 until 25 August 2007, for a period of 9 days, 6 hours and 42
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minutes. Only the first 105 minutes of the measurement trace data was used for the experiments.
This was long enough to allow all queries in the query script to execute. Furthermore, since the
size of the ModelNet network was fixed to 100 virtual nodes, only the times for 100 peers were
taken from the measurement trace. Figure 8.3 shows the changes in the size of the network for
the real-world model during the experiments. The network gradually decreased in size until it
reaches approximately 62% of its initial size after 66 minutes. Its size then remained relatively
stable.

For the Poisson-generated behavioural model, the peer arrival and departure rates were both set
to an average of 1 peer per minute. In contrast to the real-world case, the network population
size in this model remained relatively high, with slight variations over the course of the test

runs. This is shown in figure 8.4.

Both the real-world and Poisson-generated models were encoded as scripts that specified the
type of event (whether an arrival or departure), the time an arrival or departure occurred and the

peer that entered or departed the network. The prototype was extended to execute this script.
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Figure 8.3: Changes in the network population size using the real-world peer online-offline behavioural
model
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Figure 8.4: Changes in the network population size using the Poisson-generated peer online-offline
behavioural model. The average rates of peer arrivals and departures were both set to I peer per minute.

8.2 Data Replication Algorithm Evaluation

The data replication algorithm experiments were designed to determine the following:

1. The difference in data availability in a system that performs data replication compared to

a system that does not replicate data;

2. How well a system that replicates XML fragments performs compared to a system that

only replicates whole XML documents;
3. Which replica selection algorithms performs best in the experimental environment; and

4. Which replica placement algorithms performs best in the experimental environment.

In all of the above cases, the various data replication approaches were evaluated against each

other by considering data availability and replication cost.
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8.2.1

Method

8.2.1.1 Overview

A test

was performed for every combination of replica selection and placement algorithm, with

and without fragmentation, for both the real-world and Poisson-generated peer online-offline

behavioural models. The tests were also conducted with replication disabled. Each test run

consisted of the following steps:

. Each peer was assigned XML documents as described in section 8.1.2. Any documents

or replicas in the peers’ data stores remaining from previous test runs were deleted. This

ensured that peers had the same initial documents at the start of each test run.

. The FLC and FPI database tables were populated from the data in the peers’ data stores.

Any existing table entries from previous test runs were removed, so that each test run had
the same initial FLC and FPI setup.

. One hundred instances of the prototype were started on top of the ModelNet network.

After 10 seconds, the boot peer was automatically brought online by the peer online-
offline behavioural model script, so that it could create a new FreePastry ring. The boot

peer was the entry-point into the network for the other 99 peers.

Five seconds after the boot peer created the FreePastry ring, the other 99 peers were

brought online, as specified in the peer online-offline behavioural model script.

. After 5 minutes, the boot peer started executing the query script.

. Once all 300 queries in the script were evaluated, all 100 prototype instances were shut-

down. The data availability and the replication cost were calculated. The manner in which

these measurements were taken is explained in the following sections.

During all the test runs, the maximum number of copies of a particular XML fragment or

document allowed in the network, 1, was set to 10. The replica selection interval, 7, was set to

5 minutes. For the MFA and MRA replica selection algorithms, the top » entries in the access

information tables that correspond to the number of fragments to replicate during a selection

interval was set to 20.
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8.2.1.2 Measuring the Data Availability

The data availability was determined by calculating the number of queries that returned com-
plete results, the number of queries that returned incomplete (or partial) results, and the number

of queries that returned no results.

A query result is considered complete if all possible XML trees matching the query were re-
turned. This would be the situation if all the relevant XML trees existed in the network at the
time the query was evaluated. A result is considered partial if only some of the XML trees
matching the query were returned. The missing XML trees would have been due to some of
the data being unavailable at the time the query was evaluated. An example of a complete and
partial query result is shown in figure 8.5. A complete result for a query /a/b would return
the XML trees in figure 8.5(b), while a partial result may look like figure 8.5(c). A result is
considered missing if no XML trees were returned for a particular query at all. In this case, all

data pertaining to that query were unavailable at the time the query was evaluated.

The number of complete, partial and missing query results were determined as follows:

e Before all the experiments, the complete query results for all the test queries were cal-
culated by evaluating the test queries on the collection of test documents. The results
of these queries were then recorded. These query results are what the test queries are

expected to return if all data were available in the network throughout the test runs.

e During each test run, whenever a query was processed at a peer, the query being processed
was logged to file, along with the IDs of the XML documents and fragments on which the
query was evaluated. The actual query results were not logged, as the additional file /O
would result in unnecessary load on the system. Peers also did not return query results
to the querying peer to avoid any performance loss incurred by the serialisation, transfer

and deserialisation of query results.

e After each test run, the queries were re-evaluated on the XML documents and fragments
as specified in the log files using a standard XPath query processing tool. The query
results for each query were then collected from the peers and merged, so that they could
be compared with the expected query results to determine whether they were complete,

partial or missing.

There were two challenges when comparing the actual query results to the expected query re-

sults. Firstly, since we were dealing with XML data, equivalent XML trees may look different.
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<a>
<b name="bl">
<Ci> <ax
<ib> <b name="b2" />
<b> <d>
<Ci> <ef>
<di> </d>
<{b> </a>
<fa>

(a) Sample XML fragments distributed in the network

<b name="pl">
<O

<>

<b>
<¢/>
<gi>

<fbo>

<b name="b2" />

(b) The complete result for query /a/b

<b name="bl">
<Ci>

<ib>

<b>
<(Cf>
<df>

<ib>

(c) A partial result for query /a/b

Figure 8.5: The difference between a complete and partial query result

For instance, consider the two XML documents in figure 8.6. They express the same informa-
tion, but are formatted differently. Performing a simple string comparison to determine whether
the actual results are equal to the expected results would not work. Secondly, since the system
replicates data, the query results from the test runs may contain duplicates (the replicas). The
identification and removal of these duplicates from the query results would normally be per-
formed by a query processor. However, this was not the case in the current system, as query
processing was not the focus of this work. The presence of duplicates further complicated the

comparison procedure.
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<a>
<b name="bl"> <a>
'Some text <b name="b1">Some text</b>
<ib> <b><ci>
<b> <di>
<Ci> </b>
<d/> <fa>
</b> ‘
Zfa>

Figure 8.6: Two XML documents expressing the same information, but formatted differently

Comparison was thus performed by creating a fingerprint list for each query result. Each fin-
gerprint in the list corresponded to a XML tree in the query result. This was done for both
the expected and actual query result. Using the fingerprint lists, one can determine whether an
XML tree appearing in the expected query result also appears in the actual query result. If all
the fingerprints for the expected query result also appear in the fingerprint list for the actual
query result, then the actual result is complete. If only some of the fingerprints for the expected
query result could be found in the actual query result’s fingerprint list, then the actual result is
partial. If there are no fingerprints for the actual query result, then no data pertaining to that
query existed in the network at the time, and a miss occurred. This procedure was repeated for
each query in the test query set. The number of complete, partial and missing results for each
test run were then recorded. Figure 8.7 illustrates how the comparison was performed using the

fingerprint lists.

In order to generate the fingerprints, the XML trees in the query results were first converted into
string representations. These strings were formatted in a manner such that any two XML trees
expressing the same information, would produce the same string, even if they were originally
formatted differently. The fingerprints were then obtained by calculating the MDS5 hashes of
the strings produced. Figures B.3 and B.4 in Appendix B present the fingerprint generation

algorithm in pseudocode.

8.2.1.3 Measuring the Replication Cost

The replication cost is taken as the average amount of replica data transferred per peer. This was
measured by wrapping the Java Input St reamand Output St ream objects provided by the
socket over which the data was transferred, and logging the amount of data that were sent and
received. After the test runs, the total amount of data transferred by each peer was calculated.

The replication cost was then taken as the average amount of data transferred per peer.
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Figure 8.7: Comparing the query result fingerprint lists to determining whether a query result is com-
plete, partial or missing
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8.2.2 Results and Analysis

This section discusses the results obtained during the data replication test runs. First, we look
at the results for the real-world peer online-offline behavioural model. Then, the Poisson-

generated model results are presented.

8.2.2.1 Real-World Peer Online-Offline Behavioral Model

The results for all these test runs are presented in table 8.1. The number of complete, partial
and missing query results for each test run is shown, along with the average amount of replica
data transferred per peer. The suffixes applied to the replica selection algorithm names in the
table indicate whether fragmentation was enabled or not. If fragmentation was enabled, a “+F”

is appended to the replica selection algorithm name. Otherwise, a “-F” is appended.
Replication vs No Replication

In all cases, replication improved data availability. Without replication, 92 out of 300 queries re-
turned complete query results, while 34 queries returned nothing. Enabling replication caused
the number of complete query results to rise. The highest increase was for the MRA-F/RRP
test run, which gave 244 complete query results, an improvement of approximately 165%.

MFA+F/CSRP gave the lowest improvement with a 40% increase.

Enabling replication also decreased the number of missing query results across all the test
runs. RRS-F/RRP achieved the greatest decrease with a 35% drop, while MRA-F/AURP only

achieved a 6% decrease.
Fragmentation vs No Fragmentation

Figured 8.8 to 8.10 show bar charts of the results in table 8.1, comparing the results for a system
that replicates XML fragments with those obtained for a system that only replicates whole XML

documents.

As shown in figure 8.8, disabling fragmentation resulted in a greater number of complete query
results in all cases. This was expected, as replicating whole XML documents means that more
data are replicated, which in turn, results in greater data availability. However, we are interested
in determining by how much the data availability for a non-fragmenting system exceeds that of
a fragmentation-enabled system. When RRS was used, the number of complete query results

was on average approximately 24% higher in a non-fragmenting system. When MFA and MRA
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Replica Replica No. I Neo. [ No. Ave. Replica
Selection | Placement | Complete | Partial | Missing | Data Transferred
Algorithm | Algorithm Query Query | Query Per Peer
Results Results | Results (MB)
N/A N/A 92 174 34 0
RRS-F RRP 152 134 14 4.19
RRS+F RRP 192 96 12 8.65
RRS-F CRP 149 126 25 3.35
RRS+F CRP 192 95 13 7.57
RRS-F CSRP 142 134 24 2.83
RRS+F CSRP 192 95 13 9.28
RRS-F AURP 149 134 17 5.52
RRS+F AURP 168 113 19 9.35
MFA-F RRP 139 130 31 7.12
MFA+F RRP 206 74 20 10.03
MFA-F CRP 136 137 27 11.28
MFA+F CRP 217 64 19 12.60
MFA-F CSRP 129 147 24 9.55
MFA+F CSRP 215 60 25 10.52
MFA-F AURP 134 139 27 10.38
MFA+F AURP 216 54 30 12.07
MRA-F RRP 179 96 25 8.48
MRA+F RRP 244 40 16 18.80
MRA-F CRP 179 96 25 8.24
MRA+F CRP 240 44 16 20.36
MRA-F CSRP 180 98 22 7.91
MRA+F CSRP 243 40 17 18.66
MRA-F AURP 169 99 32 7.58
| MRA+F | AURP 242 43 15 20.60

Table 8.1: The results for the data replication experiments when using the real-world peer online-offline
behavioural model

were used, the number of complete query results were approximately 60% and 37% higher,

respectively.

The number of missing query results is compared in figure 8.9. One would expect fewer misses
when fragmentation is disabled. However, this is not always the case. In the RRS/AURP,
MFA/CSRP and MFA/AURP test runs, enabling fragmentation actually resulted in fewer misses,
although not by a considerable margin. Furthermore, the difference between the number of
misses varies greatly across the test runs. There is no obvious indication of a pattern emerging
when enabling or disabling fragmentation. This is most likely due to the dynamics of the P2P
network and the varying load on the cluster machines that could have affected the number of

missing results obtained during the experiments.
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Figure B.8: Comparing the number of complete query results obtined when fragimentation is vnabled
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Figure 8.9: Comparing the number of missing query results ohigned when fragmentation is enabled
and disabled

The replicatiun custs are compared in hgure 8.10. As expected, disabhing ragmentation al-
ways resulted in greater replication cost, as more data are ransferred when replicating whole
XMI. documents. However, the difference in cost varies when using different replica selection
algorithms. For the RRS and MRA algorithins, the replication cost decreases on average by
approximately 55% and 59%, respectively, If une were 1o choose between a fragmenting and a
non-fragmenting system basced on this, then a [rigmenting system scems preterable, The large

drop in replicarion cost is a fair trade-off for a 20% and 27% drop in the number of complete
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Figure B.11: Companing the total number of query results obtained when fragmentation i« enabled and

drsahled

query resulls. respectively. When using the MFA ulgorithm. however, the replication cost only
drops by approximately 16%. This decrease might be twe low to justify 4 375 loss in the
number of complete resalts. In this cuse. u non-fragmenting system might be preferable o a

fragmentation-cnabled system

Figure 8, 1| compares the toal number of query results returned during the test runs (the aumber
of complete query results plus the number of partial resulis). This is of inerest to applications

that may net necessarily require complete query results. As shown. there is no appreciable dif-
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[erence between the number of guery results obtamed when enabling frapmentation compared
to those oblained when disabling fragmentation. In some cases, the total number of guery re-
sults are even higher when fragmentation 1y enabled, most likely due o the dynamics of the
running system as mentioned earlier. Therefore, for applications in which any gquery resull is
acceptable. regardless wherher the result is complete or not, a fragmenting svstent would always
he preferable o a non-fragmenting svstem doe to the decreased replication cost. Unfortunately,
fgure 8 11 does not indicate how complete the gquery results are, One cannot see, for instance,
whether resulls are 1% complete or 99% complete, which may be a factor in deciding whether
o opl for fragmentation or nod.

Replica Selection Algorithm Evaluation

Figure 8.12 compares the number of complete query results oblained for the three replica se-
lection algorithms, In each case. MRA yielded the highest number of complete query results,

followed hy either RRS or MFA, depending on whether fragmentation was enabled or not.

When frapmentation was enabled. RRS performed better than MEA, This seems counter-iniiitive
One would ¢xpect the access-based algorithms to always vield a greater number of complete
query results, as there is some intelligence involved when determining what data to replicarc,
However, this was not the case, The arc three reasons for this. Firstly, RRS has a head-start
at replicating data. In conlrast to the access-hused algorithms, the KRS algorithm starts repli-
cating data from the fiest replica selection interval, whereas the access-based algorithms have

to wait unlil quenes have been processed in order ro have intformation for deciding what data
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Figure 8.13: Comparing the number of missing query resulls when using different replica seilection
alogonthms

to replicate. Secondly, although the MEA algorichm replicates data based on access history, the
test quernes were submitted al random. There was no particular query access pallern: it was
as 1 the guery paltern was constattly changing. Finally, because RRS 15 completely random.
it might bave selected complete XML documents for replication, whergas the MEA algonthm
only rephicated small fragments. All these factors logether comtributed 1o the lower complete

guery resulls count.

The MFA algorithm only outperformed RRS when fragmentation was disabled. In this case,

the random nature of RRS caused it to replicate too much unnecessary data compared 1o MFEA.

Looking al the number of missing query results in figure 8,13, there 15 no evidence o suggesl

that one replica selection algorithm results in 4 grealer number of misses than another

The replication cost 15 compared in figure 8. 14, 1n all cases. RRS consumed less bandwidth
than the access-based algorithms. When fragmentation was enabled, it resulted in 57% lower
replication cost than MEA and 504 lower than MRA. When fragmentation was disabled. the
reduction in cost was on average 253% that of MFA and 56% that of MRA. The reduced cost
when using RRS seems counler-intuitive at first, because the selection of what data o replicate
iy completely random. However, this cost reduction may be explained by considering how the
three replica selection ulgorithms operate, The access-based algorithms replicate the fragments
corresponding (o the top o enwies I the aceess information table, In the experiments, a value
of 20 was used for i, The RES alrorithm. on the ather hand, rundomly selects & documents
from a peer’s data store, where 1 < & < &, and & is the number of XML documents in the
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peer’s daty store, If & is small (less than 203, then the RRS will, in general. rephicate less data
Lthan the access-based algorithms, resulting in a lower replication cost. The reduction in cost ix
gredter when [ragmentation 15 enabled. because the sizes of the access information tables for the
sccess-based algorithms srow large very quickly compared to the sumber of documents in the

duta store {an entry exists in the access information table [or each subtree accessed at a peer),

Comparing the replication costs for the access-based algorithms, we find that MRA consumes
less bandwidth than MEA when fragmentation is enabled, while the opposite seems true when
fragmentation is disabled. One exception 1o this is when RRP is used with fragmentation en-
abled. In this case, MIA results in Tess cost than MRA. This 1s most likely due to the random

nature of the placement algorithm. which could have had an effect on the cosL
Replica Placement Alporithm Evaluation

Figures 8.15 and 8.16 compare the number complete and missing guery results. respectively,
when using different replica placement algorithms. There is no evidence thar indicates that one
placement algorithm provides areater data availability than another. Furthermore, as figure 8,17

shows. the choice of replica placement algorithm does not atfect the replication cost.

The similarity in results obtained tor the placement algarithms can be attributed to the peer
online-otfline behaviour. The network remains tuily stable after 66 minutes. as can be seen in
figure 8.3. The peers remaining in the network atter the mitial population size decrease exhibit

very similar behaviour. T there was g grealer vanation in the peer population size over the
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course of the west runs, the difference in performance between the various placement algonthims

might have been more evidenl
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8.2.2.2  Poisson-Generated Peer Online-0OiHine Behavioural Model

The results obtained for this behavioural model are very similar 1 those Tor the real-world

model. These are presented in table 8.2,
Replicativn vs No Replication

Ay before. performing data replication resulted in greater data availability. Whenever replica-
tion was enabled, the number of complete query results was highes than when seplication was
disabled. The highest increase was experienced during the MRA-F/AURP test run, which gave
an increase of approximately 55%, while the lowest increase occurred dusing the MEA/CSRP
and MEAAURP test sons, which both pave incrcases of approximately 45,

The number of missmg query results was also lower when using replication, with the excep-
1o of two test runs: MEA-F/AURP and MREA-F/RREP In these 1w tes! runy, the number of
misses is actually higher than that of the non-replicating test run. The only explanation for this
unexpected resull 15 tha cxura load on the cluster machines negatively affected the stability of
the runmng prodotype. Sinee this nezative resull was only observed for the MEA and MEA
algonithms. the extra load could be due w the additional work performed by those algorithms
1 maintain their access intormation wables, which could have hindesed system performance
The extra load could also have stemmed [rom the network environment. Peers enter and leave

the network mode frequently in the Posson-eenerated moded than in the real-world model, The
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Replica Replica No. No. No. Ave. Replica
Selection | Placement | Complete | Partial | Missing | Data Transferred
Algorithm | Algorithm Query Query | Query Per Peer
Results Results | Results (MB)
N/A N/A 183 104 13 0
RRS-F RRP 215 77 8 3.28
RRS+F RRP 240 55 5 10.93
RRS-F CRP 224 66 10 6.70
RRS+F CRP 239 57 4 7.57
RRS-F CSRP 227 67 6 3.61
RRS+F CSRP 259 33 8 10.54
RRS-F AURP 243 50 7 7.29
RRS+F AURP 251 46 3 7.83
MFA-F RRP 194 97 9 9.67
MFA+F RRP 265 25 10 12.74
MFA-F CRP 195 95 10 9.52
MFA+F CRP 260 36 4 13.77
MFA-F CSRP 191 98 11 8.70
MFA+F CSRP 271 20 9 13.41
MFA-F AURP 191 95 14 8.60
MFA+F AURP 270 21 9 15.87
MRA-F RRP 205 81 14 9.68
MRA+F RRP 269 21 10 25.99
MRA-F CRP 226 67 7 8.61
MRA+F CRP 271 22 7 24.76
MRA-F CSRP 220 72 8 9.82
MRA+F CSRP 270 21 9 24.65
| MRA-F AURP 216 77 7 10.12
| MRA+F AURP 284 10 | 6 2605 |

Table 8.2: The number of query results and amount of replica data transferred

system might therefore require more work in order to maintain the structure of the network in

the face of the increased activity, placing further strain on system resources.
Fragmentation vs No Fragmentation

In all the tests, disabling fragmentation yielded a greater number of complete query results than
enabling fragmentation. On average, the number of complete query results was approximately
8% higher when RRS was used, while it was approximately 28% and 21% higher when MFA
and MRA were used, respectively. When considering the total number of query results returned
(the number of complete plus partial query results), no appreciable difference between a frag-
menting and non-fragmenting system can be found. As for the number of missing query results,
disabling fragmentation caused fewer misses most of the time as expected, but there are some

cases in which fewer misses were obtained for a fragmenting system. This was experienced
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in the real-world model as well, and is due to the dynamics of the running system. Finally,
fragmentation resulted in a lower replication cost than a non-fragmenting system as expected.
On average, a 39% drop in cost was obtained when RRS was used, a 34% drop was obtained

when MFA was used, while a 62% decrease was experienced when MRA was used.
Replica Selection Algorithm Evaluation

The difference between the three replica selection algorithms in terms of the number of com-
plete query results was not as great as that observed in the real-world case. This is due to the
relatively high network size maintained during the test runs. When fragmentation was disabled,
the algorithms rank the same as before. MRA performed the best, followed by MFA, and then
RRS. However, when fragmentation was enabled, RRS performed the best. This is different

than in the real-world case, in which RRS ranked second-best.

With regard to replication cost, the results are similar to the real-world experiments. When frag-
mentation was disabled, MFA resulted in the highest replication cost by a considerable margin:
on average approximately 84% more than MFA and 179% more than RRS. RRS always resulted
in the lowest replication cost, approximately 32% lower than MFA. When fragmentation was
enabled, the access-based algorithms resulted in similar cost. Sometimes MFA had less cost
than MRA, while at other times, MRA had less cost than MFA. RRS had the lowest cost again,
approximately 43% less than MFA and 45% less than MRA.

Replica Placement Algorithm Evaluation

The replica placement algorithms gave similar results for the number of complete query re-
sults and the replication cost, despite the Poisson-generated behavioural model having greater
variations in the network size over the course of the test runs than the real-world model. Noth-
ing suggests that one algorithm performs better than another. There might still have been too
many similar behaving peers in the network for there to be a noticeable difference between the

placement algorithms.
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8.3 Update Propagation Algorithm Evaluation

The update propagation algorithm experiment measured the percentage of XML fragment ac-

cesses that returned the up-to-date results for various XML fragment update frequencies.

8.3.1 Method

8.3.1.1 Overview

For simplicity, the experiments did not involve real XML document updates. Instead, updates

were simulated by simply incrementing XML fragment version numbers.

The times at which updates took place and the peers that performed updates were specified in an
update script similar to the query script described in section 8.1.3. The times between updates
were generated using a Poisson process, while the peers performing the updates were randomly

selected from a list of online peers as specified in the online-offline behavioural model script.

Peers performed updates by randomly selecting a locally-owned XML document in their data
stores. Then, a pseudorandom number generator was used to determine which fragments ex-

tracted from the selected document were updated.

The experiment consisted of the following steps:

1. A network of 100 instances of the prototype was started in the same manner as described
in steps 1 to 6 in section 8.2.1.1.

2. Approximately 5 minutes after the 100 instances were brought online, the update script

was executed at each peer.

3. After all test queries were evaluated on the system, the 100 instances were shutdown. The

percentage of up-to-date fragments accessed by the queries were then calculated.

These steps were repeated for various update frequencies, with the update propagation algo-
rithm enabled and disabled. The replication strategy was fixed to Random Replica Selection

with Random Replica Placement. Only the real-world peer online-offline model was used.



108 CHAPTER 8: Experimental Evaluation

8.3.1.2 Calculating the Percentage of Up-to-date XML Fragments

During the experiment, each peer maintained an update log and an access log. Whenever a peer
updated a local document, it logged the time of the update, the IDs of the fragments that were
affected by the update, as well as the new versions of the fragments. Whenever a fragment was

accessed, the access time, fragment ID, fragment version and the query ID were logged.

After the experiment, the update logs for all the peers were merged into one log. The same was
done for the access logs. Then, for each entry in the merged access log, the merged update log
was checked to see whether an update for the fragment was made and whether the version of
the accessed fragment is the latest version. After all the access log entries were processed, the

percentage of latest version fragments was calculated and recorded.

Note that if one peer accessed the latest version of a fragment while another accessed an older
version during the same query, then only the latest version access was used in the calculation.
The old version access was ignored. The rationale behind this is that a query processor aggre-
gating the results sent by peers would be able to identify different versions of the same fragment

in the result set and discard any old versions if a newer version is present.

8.3.2 Results and Analysis

A plot of the percentage of up-to-date XML fragments for various update frequencies is shown
in figure 8.18. As expected, the update propagation algorithm resulted in a higher number of

latest version accesses than a system without an update propagation mechanism.

However, the difference between an update propagation enabled system and a system without
update propagation is not as great as we had hoped, especially for high update rates. This could
be as a result of the manner in which fragment accesses are handled in the prototype. The
update retrieval phase of the update propagation algorithm is initiated whenever a peer attempts
to access a fragment that has been marked stale. Instead of waiting for the update to arrive,
the peer immediately returns the stale fragment, as the update retrieval process may take an
arbitrary amount of time to complete. This reduces the percentage of latest version fragments
returned in the query results. Another reason for the low percentage could be that replica holders
initiate the update retrieval process too late. By the time updates are requested, peers storing

later versions of the fragment might have already left the network.

For systems in which low updates rates are the norm (less than 5 updates per minute), the cur-
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rent update propagauen algorithm may be sufficient. However, tor systems that expeet greater

update rates, a more sophisticated algorithm may be required.

8.4 Summary

This chaprer presented experiments conducted to evaluate the data replication and update prop-
agation algorithms.

The data replication experiments were condocted 1o determine the following: (1) the ditterence
i data availability in a sysiem that performs data replication compared to a system that dogs
not replicate data, (2) how well a svstem that replicates XML fragmenis compares to 3 system
that only replicates whole XML documents. (3) which replica selection algorithm performs
best under the experimental network conditions. and (43 which replica placement algorithm
pertorms best in the experimental network environment. These experiments were pertormed




110 CHAPTER 8: Experimental Evaluation

for various combinations of replica selection and placement algorithms in a network of peers
whose behaviours were modelled on that of a real P2P system as well as generated using a

Poisson process.

With replication enabled, the number of complete query results showed an increase of between
40% and 165% for the real-world P2P model, and an increase of between 4% and 55% for the

Poisson-generated model.

When comparing a system that fragments XML documents to one which does not, it was found
that replicating whole XML documents resulted in a greater number of complete query results.
When RRS was used, the number of complete query results were on average 24% higher in the
real-world case for a non-fragmenting system than a fragmentation-enabled one, while for MFA
and MRA, it was 60% and 37% higher, respectively. In the Poisson-generated model, these
increases were 8%, 28% and 21% higher for RRS, MFA and MRA, respectively. However,
enabling fragmentation resulted in a lower replication cost. A decrease of between 16% and
59% in replication cost was obtained in the real-world case, while a 34% to 62% decrease in

cost was seen for the Poisson case.

Looking at the replica selection algorithms, MRA yielded the highest number of complete query
results when fragmentation was disabled, followed by MFA and then RRS. This was observed
in both the real-world and Poisson-generated network models. However, when fragmentation
was enabled, the replica selection algorithms ranked differently. In the real-world case, MRA
performed the best, followed by RRS and then MFA. In the Poisson-generated case, RRS ranked
the highest, followed by MRA and then MFA. In terms of replication cost, the RRS always

performed the best of the three replica selection algorithms.

Finally, comparing the replica placement algorithms, no appreciable difference was observed

that suggested that one placement algorithm performed better than another.

The update propagation experiment looked at the percentage of XML fragment accesses for
which the latest versions were returned. This experiment was conducted on a system with
update propagation enabled and then repeated on a system with update propagation disabled.
Enabling update propagation increased the percentage of latest versions accessed, but not by as
big a margin as we had hoped. The low increase can be attributed to the system returning stale
fragments as soon as they are accessed rather than waiting for the update retrieval process to
complete and updates to arrive. It could also be due to the late initiation of the update retrieval

process.
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Conclusions and Future Work

This project investigated the data replication and update propagation problem in XML P2P
systems as a means of improving data availability in the face of peer departures. A survey of
existing XML P2P systems revealed that this problem has not yet received much attention from
the research community. Current systems instead focus on novel P2P XML indexing and query
processing techniques. We believe that in order to properly support data replication and update
propagation in a P2P system, such mechanisms need to be engineered into the system early in
the design process. To this end, we designed a XML P2P data management framework that

incorporates such mechanisms and components.

In section 1.1, we identified three mechanisms that a P2P system must provide to ensure data

availability: wide-spread data replication, replica location and update propagation.

To support wide-spread data replication, our XML P2P framework was designed to sit on top
of any P2P network implementation. By decoupling it from the underlying network, it does not
depend on the network structure or the routing algorithms used. As a result, data items are not
limited to specific locations in the network as they would be in structured P2P systems. We also
proposed various data replication strategies for the framework by dividing the data replication
problem into replica selection and replica placement, and allowing selection and placement
algorithms to be changed independently. Our experiments showed that whatever combination
of selection and placement algorithm were used, the availability of data in the network increased

compared to a system without any data replication.

The framework also allows for the reduction of replication cost by accommodating the frag-
mentation of XML documents into smaller pieces and replicating those instead of whole XML

documents. We found that this resulted in considerable cost reduction at the price of some
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data availability loss. However, the cost reduction is large enough to justify the drop in data

availability.

To support the location of replicas in the network, the framework defines a Fragment Location
Catalogue (FLC) that maps replica IDs to peer IDs. This further helps separate the framework
from the underlying P2P network and facilitates wide-spread data replication. The FLC may be

implemented as either a web service or built into the network (e.g. in the form of a DHT).

Finally, to tackle the update propagation requirement, we proposed a lazy update propagation
algorithm that sends updates to peers in a two-stage process. Experiments showed that this
algorithm increases the probability that data returned by queries are up-to-date, although the
percentage of up-to-date data returned was not as high as we would like it to be, especially for
high update rates. We also described how updates are handled in the framework, covering topics
such as XML document update types, identifying what fragments extracted from documents

have changed, and representing updates as deltas.

Having looked at all three issues - wide-spread data replication, replica location and update
propagation - our framework meets our initial requirements defined in this dissertation, and we
have accomplished what we set out to achieve. We have not only proposed data replication and
update propagation algorithms, but also presented an entire solution for an XML P2P data man-
agement system, and developed an evaluation system that facilitates further experimentation.

This work therefore serves as a good base for future research in the field.

Future Work

There are still a number of issues that could be addressed in future. This section highlights

some of these.

1. Investigating more replica selection techniques. During the data replication experiments,
Random Replica Selection (RRS) performed well compared to the access-based approaches,
especially Most-Frequently Accessed Replica Selection (MFA). As mentioned in sec-
tion 8.2.2.1, one of the reasons for this is that RRS had a head-start at replication data,
whereas the access-based algorithms had to wait for queries to be posed on the system
before having information on what fragments to replicate. While testing could have com-
pared the approaches only after the system had been running sufficiently long, this result

does raise an important issue. Future work on replica selection techniques could look at
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combining RRS and the access-based algorithms, so that replication can take place be-
fore the access information tables of the access-based algorithms are filled. An adaptive
selection mechanism could also be employed that changes the replica selection algorithm
depending on the current system conditions. For example, initially, RRS could be used
while there is still insufficient information available on the query pattern. Then, the mech-
anism could switch to the MFA algorithm when the query pattern has become predictable,
or to the Most-Recently Accessed Replica Selection (MRA) algorithm if the query pattern
is sporadic. Lastly, more heuristics for selecting fragments could be investigated, such as
taking the size of fragments into account or using more sophisticated access pattern anal-

yses and prediction techniques.

2. Investigating more replica placement techniques. The current replica placement algo-
rithms base their placement decisions on the past behaviour of the peers in the network.
More sophisticated algorithms could be introduced to predict the behaviour of the peers
t time units into the future. The current placement algorithms could also be improved
by only taking into account the last m time units. This might prevent the peers’ earlier

behaviour from overshadowing their current behaviour.

3. Improving the update propagation algorithm. Update propagation could be improved by
performing periodic checks on the data store contents and initiating the update retrieval
process as necessary, so that updates can be retrieved sooner. These periodic checks will,
of course, introduce extra bandwidth costs that need to be investigated, as peers would
make more update retrieval requests in the network. An adaptive approach could be
used to control the frequency of these periodic checks. If a peer receives an increasing
number of update notifications, the frequency of the checks could be increased, and vice
versa. The update propagation algorithm could also be compared with an eager update
propagation algorithm. Our reason for using a lazy approach over an eager algorithm that
immediately propagates updates to peers was to reduce the bandwidth cost involved in
transferring updates. The extent to which the lazy approach reduces this cost still needs

to be investigated.

4. Experiment with different FLC implementations. In this work, any bandwidth and perfor-
mance cost associated with the retrieval of information from the FLC has been ignored.
Future work in this area could look at various implementation approaches, such as using a
web service or DHT. The costs involved could then be measured to determine what effect
they have on the data replication and update propagation algorithms, and on the overall

performance of the system.

5. Experiment with more network scenarios. This work assumed an infinite amount of stor-
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age space at peers. As a result, the effects of limited storage space on the data replication
algorithms are not known. Different replica eviction policies could also be used to see
what effect they have on the algorithms. In addition to this, experiments could be con-
ducted with more query patterns and peer online-offline behaviour models. In particular,
it would be interesting to see how well the system copes with random network splits and

failures in which large parts of the network are suddenly taken offline.



Appendix A

Low-Level Prototype Implementation
Details

This section describes the low-level implementation details of the prototype XML P2P data
system discussed in chapter 7. A UML class diagram is presented for each component, along

with a brief description of how the classes and interfaces interact.
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A.1 The P2P Manager
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Figure A.1: UML cluss diagram of 1he P2P Manager component
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The P2P Manager component consists of the following generic interfaces. These interfaces

provide operations common to all P2P network implementations:

ID represents the ID of a peer or data item in the system.

Node maintains all the information about a remote peer in the network. It has operations to

return the ID of the remote peer and to check whether a remote peer is online.
Message represents the actual message that is transferred between peers in the network.
NetworkListener receives notifications whenever the following network events occur:

e When the peer joins and leaves the network;
e When messages are sent and received;
e When messages are forwarded by a peer en route to their destinations; and

e When connections to remote peers are established or broken.

NetworkManager implements the P2P networking mechanisms and routing algorithms. It
the main interface through which the all higher level components in the system interact
in order to use the P2P Manager component. Operations are provided to join and leave
the network, send messages, and to retrieve the local peer ID and list of neighbour peers.
The NetworkManager is also the entity in the P2P Manager that notifies Network-

Listener implementations of network events.

The lightly shaded package in figure A.l is the abstraction layer, the dark shaded package is
the FreePastry library, while the unshaded package is the “glue” between the abstraction layer
and the FreePastry library. FreePastryID and FreePastryNode are adapter classes [31]
that adapt Id and NodeHandle in the FreePastry library, respectively, to the corresponding
interfaces in the abstraction layer. The FreePastryMessage class encapsulates Message
objects so that they may be handed to the FreePastry routing layer. The FreePastryNet—
workManager adapts the Application interface in the FreePastry library to the Net -
workManager interface to expose the FreePastry functionality to higher-level components
in the system. Finally, the FreePastryNodeIDFactory implements the peer ID genera-
tion algorithm mentioned previously, and is used by the FreePast ryNetworkManager to

obtain the local peer ID.
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A.2 The Fragment Creator
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Figure A.2: UML class diagram of the Fragment Creator compoment

The bragmentCreator is the maan interface in the Fragment Creator component, It provides
doreatslragment () method which 1s called by the system w perform the fragment extrac-
ton. The SimsleTrasmentlreatsr class implements the TragrentOreator inlertace
atwed the SAX-bused fragment exiraction algorithm. [Luses the XMLT | leZandler class, which
implements a number of callback methods that are invoked by the SAX parser whenever certain

parts of the XML, decument are encountered while the document is being parsed,




APPERDIX A: Low-Level Prototype Implementation Details 114

A.3 The Fragment Location Cataloguc
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Figure A.3: UML class diagram oof the Fragment Location Catalogue

The 2 ragment LacatZonCatalogue interface provides methods to insert. retricve and re-
move XML fragment [D o peer ID list tappings. FragmeslTocatlonZalalogos im-
plementations are responsible for the FLC-specific fogic such as network comimunication and
caching., They de not handle the actual storage of the mappings. Instead, this responsibility
is factored into 4 ['ragmentLacationBtorags interface. This allows the FLLC-specific
logic and the Togic that manages the storage of the mappings 1o vary independently. Addition-
ally, it ullows the same storage mechanisms te be reused in differemt Fraguent Location -
Tata.oges implementations,  For inseance, a DHT-based FLC would implement the P2P

commumcation logic specific to a particular P2P protocol, but may use a TragrentLoosa—
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tionStorage implementation backed by a relational database to actually store the mappings
locally.

The operations in the FragmentLocationCatalogue interface were designed to be non-
blocking. Once they are called, they do not block until the operation completes. To enable
such non-blocking method invocation, a FragmentLocat ionCallback interface was in-
troduced. The FragmentLocationCallback interface contains methods that are called
by FragmentLocationCatalogue implementations upon completion of the correspond-
ing operations in the FragmentLocationCatalogue interface. Fragment Location-

Callback objects are passed to FLC operations as method arguments.



APPENDIX A: Low-Level Prototype Implementation Details 121

A4 The Update Manager
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Figure A.4: ML class disgrinn of the Update Manager component

The UccareManager class implements the XMILTaaS_ore interface, so that it provides
the same set of operutions to higher-level system compenents, Within the UpcalelMznager
clasy is 4 refercnee to an ¥XM1Dalz3_cre instance, The UncatsManager delegates data

store operations to this ¥MLOa-a%t o re instance vnee it has completed 11s own work,

The ¥21 2 £ intertuce is used by the UsdateManager to determine what XML fragments in
an XML document have been updated, 1t provides a compars () method, which takes as mput
the old and new version of an XML document. and returns an array of Ze ta objects. vne for
each updated fragment found in the document, The Detz uvbjeets deseribe how a fragment
wils updated. The XD Z£ interface is also responsible for applving De 1= zs to XML fragments
to generate the new version of a fragment. This is dene using the m=rge () method, which
receives the old version of the XMI. document and an array of Da1ta objects as mput. and

returns the new version of the XML document.
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A5 The Query Processor
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Figure A.5: UML cluss diagram ol 1the Query Processor component

The Query Processor s represented by the ZueryZ rocessor interface. This mterface has
two methods for cvaluanng queries: evaluate () andevz luslael ssally (b, The owal-
wale (1 method performs query evaluation on XML Dragments in the netweork as described in
section 5.6.2, The ovaluazolcocally () method omly performs query processing on local
XMI. fragments, It is called by the cvzluats () method o perform logal query processing,
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It 15 also invoked whenever a query fronl a remote peer is received. Suery?rocessor-
Callback objects are passed W Lhe cvaluazo () and cvaluatelocally {1 methods as
arguments, and are noiified by the SusryFrocezsor of query resulis via callback merhods,
The g eryzrocesaed () method inthe CueryrPracezsaorlistensyr mlerface 15 called
by the CoeryProcessor whanever a4 query was processed on any locally stored XML frag-
ment.

The Suc-yErocossozServer class represents the Query Processor component’s network
inlerfuce. Il overrides the mezsageieceived () method in the acsiractleLwori-
Lizstensx class o caplure Jusry¥esszages received trom remote peers. and passes the
gueries speciied in those Qusry¥eszages o the eva_catelocal v () method in the
DuaryProcesaer inerface, The OrervBrocesserisrver receives query resulls from
the CueryProcessor by implementing the CuervErocsssarlallback mterface, Once
it receives a yuery result, it sends a JueryRes:_t¥assage usng the Networkkanagcr

to the remote peer from which it received the guery.

The functionaliey of the FPI is scparated info a4 TragmenlPalhTrdex and a Tragreni -
Fathitoraze terface to allow FPL-specific logic and the logic that manages the storape of
the FPL mappings w vary independently, The ®XMLFragment Surmary interface represcnts
the fragmentSurmary dala stracture o the | fragmentfd, fragmentSummary) teple. Tt
has two methods: eva. _alaiy and seriadize ). The evaluate (3 method Lakes the
query string as an argument, and returns a boolean value indicating whether a non-emply re-
sult set could be returned il the given query is evaluated on the XML fragment summarised by
the ¥¥LEragrani Sommary object, The zerizl’ <=0 method converts the XTI Frag-
mant summa=y object toan array of bytes for storage. Since calculating XML fragment sum-
maries 15 beyond the scope of this work, the pratotype uses the Wu_ 1XEMLF ragme s Surmary
class, which always returmns —roe fromits cvaluate ) method, regardless of the value of the
argumenl. The serizlize () method of the NullX¥LFragment Sunmary alwiys relurns

4n emply array,
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A.6  The Peer Discover and Pinger Components
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Figure A.7: UML ¢lass diagram of the Peer Discovery and Pinger components

The FeerD | sooverinterface represents the peer discovery mechanism, It informs the syvstem

of discovered peers by culling the pes-sFound i) method inthe Pesriscovery? [s-

Lener interface. The DzlanazeFes NI scovery class 1s 4 mock implementation of the

Faerl . scovery mechanism that maintains a list of peer 1Ds in o database,

The Pearbinrgs= class implements the PeerDiscoveryllatensr inlerface. [1 informs

the system ol a peer’s onhine/ofllitie status by invoking the peerOnlins () and cearOf-

t_ine i} methods inthe CeerxPingsrl izt ersr inlerface, respectively.
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A.7 The Replication Manager
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Figure A.8: LML class diagram of the Beplication Manager component

The Absl racliep | lcafs leclor class implements the Rep ! icafelacLar interface
and mtintaing a replice gueue onto which fragments selected for replication are placed. All the
replica selection algorithms discussed in section 6.1,2 are implemented as Abs L rac| Rep |-
cafeleczor subclasses that override the abstract process (3 method, Fragments selected
for replicanon are represcnted as Senlicainfo objects, cach holding a reference to the se-
lected fragment and a number indicating how many copies of the selected fragment should
be created in the network. These Rap | ical=i o ohjects are returned by the process ()
methods implemenied by the fbsl raclRes | i cale leclor subclasses and are added (o

the replica quewe in the 2hstractReplicafelector cluss,

ZeplizalnIc objects are retrieved from the queue by the Feclicationianacer class
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using the nextReplica () method in the ReplicaSelector. When a replica has been
successfully transferred to a remote peer, the ReplicationManager calls the replicaS—

ent () method to inform the ReplicaSelector where the replica was sent.

The AbstractReplicaPlacer classimplementsthe ReplicaPlacer interface and stores
the list of online peers from which the replica placement algorithms select peers to which repli-
cas should be sent. The replica placement algorithms discussed in section 6.1.3 are implemented
as AbstractReplicaPlacer subclasses that implement the getPeers () method in the
ReplicaPlacer interface. This method is called by the ReplicationManager to re-
trieve the IDs of the peers on which a given replica should be placed.

The AbstractReplicaPlacer receives notifications of online and offline peers from the

PeerPinger class in figure A.7 by implementing the PeerPingerListener interface.



Appendix B

Procedures Used During Experimental

Evaluation

This section presents the procedures and algorithms used for measurement gathering during the

experimental evaluation in chapter 8.
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canaldateQueries := new list

foreach xmlDoc in xmlDocCollection do:
gueries := generate xmlDoc XPath queries
foreach query in queries do:
resultSet := evaluate query on xmlDoc
if resultSet is not empty do:
add guery to candidateQueries
end if
end foreach
end foreach

n := no. gueries to pose on system

for i := 0 to n do:
query := select random query from candidateQueries
queryTime := generate time using Poisson process
output queryTime, query and submitting peer

end for

Figure B.1: Pseudocode for generating the set of test queries

<guery> ::= '/’ <element-name> <step>«

<step> ::= <axis> <element—-name> <predicate-list>?
<axis> =/

<predicate-iist> = ' [’ [ <predicate> ’ or '’ .~ <predicate> ']’
<predicate> ::= <element-predicate> ; <attr-predicate>
<element-predicate> ::= <element-name> ’'=’ <alphanumeric-string>

’ 7

<attr-predicate> 1= '@’ <attr-name> ‘=’ <alphanumeric-string>
<element-name> ::= <alphanumeric-string>

<attripbute-name> ::= <alphanumeric-string>

Figure B.2: BNF notation for the form of the XPath queries used in the experiments
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procedure fingerprint (Element element):

1

2 string := serialize(element)

3 return mdShash (string)

4 end procedure

5

6 procedure serialize(Element element) :

7 string := ’$’ + element.getNodeName ()

8

9 // Process element attributes

10 string := string + serializeElementAttributes(element)
11

12 // Process child elements and text nodes

13 rodelList := element.getChildNodes ()

14 if nodelList.length() > 0:

15 string := string + "<"

16 chiidrenProcessed := 0

17 foreach node in nodelist:

18 if node is an element node:

19 if childrenProcessed > 0:

20 string := string + ", "

21 end if

22 string := string + serialize (node)
23 childrenProcessed := childrenProcessed + 1
24 else if node is a text node:

25 text := node.getNodeValue() .trim()
26 if text.length() > 0:

27 if childrenProcessed > 0:

28 string := string + ","

29 end if

30 string := string + text

31 childrenProcessed := childrenProcessed + 1
32 end if

33 end if

34 end foreach

35 string := string + ">"

36 end if

37

38 return string

39 end procedure

Figure B.3: The XML tree fingerprinting algorithm used for comparing XML trees as described in
section 8.2.1.2
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Figure B.4: Serializing XML element attributes to strings for fingerprinting in figure B.3

procedure serializeElementAttributes (Element element):
string = ""

attributeslist := element.getAttributes()
if attributeslist.length() > 0:
string := string + "{"
for 1 := 0 to attributeslist.length():
attribute := attributesList[i]
string := string + attribute.getName () + "="
string := string + attribute.getValue ()
if 1 < attributeslist.length() - 1:
string := string + ","
end if
end foreach
string := string + "}"
end if

return string
end procedure
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List

AIO
AURP
CRP
CSRP
DHT
DIN
FIN
FLC
FPI
MFA
MFA-F
MFA+F
MRA
MRA-F
MRA+F

P2P

of Acronyms

Access Information Object

Average Uptime Replica Placement

Counter-based Replica Placement

Counter-State Replica Placement

Distributed Hash Table

Document Information Node

Fragment Information Node

Fragment Location Catalogue

Fragment Path Index

Most-Frequently Accessed Replica Selection

Most-Frequently Accessed Replica Selection Without Fragmentation
Most-Frequently Accessed Replica Selection With Fragmentation
Most-Recently Accessed Replica Selection

Most-Recently Accessed Replica Selection Without Fragmentation
Most-Recently Accessed Replica Selection With Fragmentation

Peer-to-Peer

132
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RRP Random Replica Placement

RRS  Random Replica Selection

RRS-F Random Replica Selection Without Fragmentation
RRS+F Random Replica Selection With Fragmentation

XML  eXtensible Markup Language
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