6 research outputs found

    Multi-frequency polarimetric SAR signatures of lead sea ice and oil spills

    Get PDF
    Synthetic aperture radar is used to identify and monitor oil spills. Separation from oil spill look-alikes is an important part of a fully automatic oil spill detection scheme. Here we investigate the polarimetric signatures for oil spills and newly formed sea ice (a well-known look-alike) in fully polarimetric Radarsat-2 satellite scenes. Using the fully polarimetric scenes we calculate four different parameters, co-polarization ratio, polarization difference, scattering entropy, and mean alpha angle. Three pairs of satellite scenes with comparable incidence angles are used. We observe that a combination of the co-polarization ratio and the polarization difference enables us to delineate the spills from their surrounding and also to discriminate the oil spills from the newly formed sea ice. The scattering entropy and the alpha values provide additional information about the scattering mechanisms of sea ice and oil spills

    Radar probing of surfactant films on the water surface using dual co-polarized SAR

    Get PDF
    Microwave radar is a very perspective tool for all-weather monitoring of film slicks which appear in radar imagery of the water surface as areas of reduced backscattering due to damping of short wind waves. Information about the backscatter variations obtained from single band/one polarization radar seems to be insufficient for film characterization, so, new capabilities of multi-polarization radar for monitoring of film slicks have been actively discussed in the literature. In this paper results of new field experiments on remote sensing of film slicks using dual co-polarized radars: a satellite X-band TerraSAR-X and recently designed at IAP RAS a Multifrequency Radar Complex - three-band scatterometer operating in X-/C-/S-bands and mounted onboard a ship are presented. Along with backscattering depression the variations of polarized (Bragg) and non polarized radar backscatter components in slicks were analyzed. It is obtained that VV-to-HH backscatter ratio is smaller than the ratio predicted by a Bragg (two-scale) model thus indicating that additional, non polarized (NP), component also contributes to the total radar backscatter. Assuming the radar backscatter to be a sum of polarized (Bragg) and NP components the latter was eliminated from the total radar backscatter, and contrasts for the Bragg and NP components were obtained. The contrasts for the polarized component allowed us to estimate damping of gravity-capillary wind waves at Bragg wavelengths in slick and to give more accurate comparison with models of wave damping due to elastic film

    Oil-Spill Pollution Remote Sensing by Synthetic Aperture Radar

    Get PDF

    Empirical Relationship Between the Doppler Centroid Derived From X-Band Spaceborne InSAR Data and Wind Vectors

    Get PDF
    One of the challenges in ocean surface current retrieval from synthetic aperture radar (SAR) data is the estimation and removal of the wave-induced Doppler centroid (DC). This article demonstrates empirically the relationship between the dc derived from spaceborne X-band InSAR data and the ocean surface wind and waves. In this study, we analyzed over 300 TanDEM-X image pairs. It is found that the general characteristics of the estimated dc follow the theoretically expected variation with incidence angle, wind speed, and wind direction. An empirical geophysical model function (GMF) is fit to the estimated dc and compared to existing models and previous experiments. Our GMF is in good agreement (within 0.2 m/s) with other models and data sets. It is found that the wind-induced Doppler velocity contributes to the total Doppler velocity with about 15% of the radial wind speed. This is much larger than the sum of the contributions from the Bragg waves (~0.2 m/s) and the wind-induced drift current (~3% of wind speed). This indicates a significant (dominant) contribution of the long wind waves to the SAR dc. Moreover, analysis of dual-polarized data shows that the backscatter polarization ratio (PR=σ⁰VV/σ⁰HH) and the dc polarization difference (PD=|dcVV|-|dcHH|) are systematically larger than 1 and smaller than 0 Hz, respectively, and both increase in magnitude with incidence angle. The estimated PR and PD are compared to other theoretical and empirical models. The Bragg scattering theory-based (pure Bragg and composite surface) models overestimate both PR and PD, suggesting that other scattering mechanisms, e.g., wave breaking, are involved. In general, it is found that empirical models are more consistent with both backscatter and Doppler data than theory-based models. This motivates a further improvement of SAR dc GMFs

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Oil spill and ship detection using high resolution polarimetric X-band SAR data

    Get PDF
    Among illegal human activities, marine pollution and target detection are the key concern of Maritime Security and Safety. This thesis deals with oil spill and ship detection using high resolution X-band polarimetric SAR (PolSAR). Polarimetry aims at analysing the polarization state of a wave field, in order to obtain physical information from the observed object. In this dissertation PolSAR techniques are suggested as improvement of the current State-of-the-Art of SAR marine pollution and target detection, by examining in depth Near Real Time suitability
    corecore