29 research outputs found

    Adaptive algorithms for real-world transactional data mining.

    Get PDF
    The accurate identification of the right customer to target with the right product at the right time, through the right channel, to satisfy the customer’s evolving needs, is a key performance driver and enhancer for businesses. Data mining is an analytic process designed to explore usually large amounts of data (typically business or market related) in search of consistent patterns and/or systematic relationships between variables for the purpose of generating explanatory/predictive data models from the detected patterns. It provides an effective and established mechanism for accurate identification and classification of customers. Data models derived from the data mining process can aid in effectively recognizing the status and preference of customers - individually and as a group. Such data models can be incorporated into the business market segmentation, customer targeting and channelling decisions with the goal of maximizing the total customer lifetime profit. However, due to costs, privacy and/or data protection reasons, the customer data available for data mining is often restricted to verified and validated data,(in most cases,only the business owned transactional data is available). Transactional data is a valuable resource for generating such data models. Transactional data can be electronically collected and readily made available for data mining in large quantity at minimum extra cost. Transactional data is however, inherently sparse and skewed. These inherent characteristics of transactional data give rise to the poor performance of data models built using customer data based on transactional data. Data models for identifying, describing, and classifying customers, constructed using evolving transactional data thus need to effectively handle the inherent sparseness and skewness of evolving transactional data in order to be efficient and accurate. Using real-world transactional data, this thesis presents the findings and results from the investigation of data mining algorithms for analysing, describing, identifying and classifying customers with evolving needs. In particular, methods for handling the issues of scalability, uncertainty and adaptation whilst mining evolving transactional data are analysed and presented. A novel application of a new framework for integrating transactional data binning and classification techniques is presented alongside an effective prototype selection algorithm for efficient transactional data model building. A new change mining architecture for monitoring, detecting and visualizing the change in customer behaviour using transactional data is proposed and discussed as an effective means for analysing and understanding the change in customer buying behaviour over time. Finally, the challenging problem of discerning between the change in the customer profile (which may necessitate the effective change of the customer’s label) and the change in performance of the model(s) (which may necessitate changing or adapting the model(s)) is introduced and discussed by way of a novel flexible and efficient architecture for classifier model adaptation and customer profiles class relabeling

    Feature extraction and fusion techniques for patch-based face recognition

    Get PDF
    Face recognition is one of the most addressed pattern recognition problems in recent studies due to its importance in security applications and human computer interfaces. After decades of research in the face recognition problem, feasible technologies are becoming available. However, there is still room for improvement for challenging cases. As such, face recognition problem still attracts researchers from image processing, pattern recognition and computer vision disciplines. Although there exists other types of personal identification such as fingerprint recognition and retinal/iris scans, all these methods require the collaboration of the subject. However, face recognition differs from these systems as facial information can be acquired without collaboration or knowledge of the subject of interest. Feature extraction is a crucial issue in face recognition problem and the performance of the face recognition systems depend on the reliability of the features extracted. Previously, several dimensionality reduction methods were proposed for feature extraction in the face recognition problem. In this thesis, in addition to dimensionality reduction methods used previously for face recognition problem, we have implemented recently proposed dimensionality reduction methods on a patch-based face recognition system. Patch-based face recognition is a recent method which uses the idea of analyzing face images locally instead of using global representation, in order to reduce the effects of illumination changes and partial occlusions. Feature fusion and decision fusion are two distinct ways to make use of the extracted local features. Apart from the well-known decision fusion methods, a novel approach for calculating weights for the weighted sum rule is proposed in this thesis. On two separate databases, we have conducted both feature fusion and decision fusion experiments and presented recognition accuracies for different dimensionality reduction and normalization methods. Improvements in recognition accuracies are shown and superiority of decision fusion over feature fusion is advocated. Especially in the more challenging AR database, we obtain significantly better results using decision fusion as compared to conventional methods and feature fusion methods

    Capacitance-voltage measurements: an expert system approach

    Get PDF

    Multi-system Biometric Authentication: Optimal Fusion and User-Specific Information

    Get PDF
    Verifying a person's identity claim by combining multiple biometric systems (fusion) is a promising solution to identity theft and automatic access control. This thesis contributes to the state-of-the-art of multimodal biometric fusion by improving the understanding of fusion and by enhancing fusion performance using information specific to a user. One problem to deal with at the score level fusion is to combine system outputs of different types. Two statistically sound representations of scores are probability and log-likelihood ratio (LLR). While they are equivalent in theory, LLR is much more useful in practice because its distribution can be approximated by a Gaussian distribution, which makes it useful to analyze the problem of fusion. Furthermore, its score statistics (mean and covariance) conditioned on the claimed user identity can be better exploited. Our first contribution is to estimate the fusion performance given the class-conditional score statistics and given a particular fusion operator/classifier. Thanks to the score statistics, we can predict fusion performance with reasonable accuracy, identify conditions which favor a particular fusion operator, study the joint phenomenon of combining system outputs with different degrees of strength and correlation and possibly correct the adverse effect of bias (due to the score-level mismatch between training and test sets) on fusion. While in practice the class-conditional Gaussian assumption is not always true, the estimated performance is found to be acceptable. Our second contribution is to exploit the user-specific prior knowledge by limiting the class-conditional Gaussian assumption to each user. We exploit this hypothesis in two strategies. In the first strategy, we combine a user-specific fusion classifier with a user-independent fusion classifier by means of two LLR scores, which are then weighted to obtain a single output. We show that combining both user-specific and user-independent LLR outputs always results in improved performance than using the better of the two. In the second strategy, we propose a statistic called the user-specific F-ratio, which measures the discriminative power of a given user based on the Gaussian assumption. Although similar class separability measures exist, e.g., the Fisher-ratio for a two-class problem and the d-prime statistic, F-ratio is more suitable because it is related to Equal Error Rate in a closed form. F-ratio is used in the following applications: a user-specific score normalization procedure, a user-specific criterion to rank users and a user-specific fusion operator that selectively considers a subset of systems for fusion. The resultant fusion operator leads to a statistically significantly increased performance with respect to the state-of-the-art fusion approaches. Even though the applications are different, the proposed methods share the following common advantages. Firstly, they are robust to deviation from the Gaussian assumption. Secondly, they are robust to few training data samples thanks to Bayesian adaptation. Finally, they consider both the client and impostor information simultaneously

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line

    All-optical spiking neurons integrated on a photonic chip

    Get PDF

    Scaling up integrated photonic reservoirs towards low-power high-bandwidth computing

    No full text

    Information Bottleneck

    Get PDF
    The celebrated information bottleneck (IB) principle of Tishby et al. has recently enjoyed renewed attention due to its application in the area of deep learning. This collection investigates the IB principle in this new context. The individual chapters in this collection: • provide novel insights into the functional properties of the IB; • discuss the IB principle (and its derivates) as an objective for training multi-layer machine learning structures such as neural networks and decision trees; and • offer a new perspective on neural network learning via the lens of the IB framework. Our collection thus contributes to a better understanding of the IB principle specifically for deep learning and, more generally, of information–theoretic cost functions in machine learning. This paves the way toward explainable artificial intelligence
    corecore