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Preface

For years, the pattern recognition community has focused on developing optimal learn-

ing algorithms that can produce very accurate classifiers. However, experience has

shown that it is often much easier to find several relatively good classifiers instead of

one single very accurate predictor. The advantages of using classifier combinations

instead of a single one are twofold: it helps reducing the computational requirements

by using simpler models, and it can improve the classification performance.

Most Human Language Technology applications are based on pattern matching

algorithms, thus improving the performance of the pattern classification has a positive

effect on the quality of the overall application. Since combination strategies proved

very useful in reducing classification errors, these techniques have become very popular

tools in applications such as Speech Technology and Natural Language Processing.

The aim of this dissertation is basically to investigate suitable combination tech-

niques for Human Language Technology applications. We propose a novel combiner

algorithm based on the Analytical Hierarchy Process, and apply different ensembles in

Speech Technology and Natural Language Processing in order to improve their perfor-

mance.
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Notations used

M number of classes

N number of patterns in the database

R number of classifiers

T number of iterations (for Bagging a Boosting)

Ci the ith classifier

I the learning algorithm that creates classifiers Ci

x a pattern

x
(i) feature vector of pattern x, employed by the ith classifier Ci

xi the ith pattern of the database

ωj the jth class label

yi the label (or its numeric representation) of the ith pattern

wi the weight of the ith classifier in linear combinations

v
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1
Multiple-Classifier Systems

In this chapter we will review the most common classifier combination techniques used

by the researchers today. In the literature a fair number of combination strategies have

been proposed [22][52][59], these schemes differing from each other in their architec-

ture, the characteristics of the combiner, and the selection of the individual classifiers.

The first section will provide a general overview of these schemes, concentrating on

their architecture and data representation, and discuss some of the techniques for gen-

erating an effective set of classifier instances for building combinations. After discussing

the basic issues of multiple classifier systems, we will overview some of the static com-

bination rules applied in Human Language Technology like the “Majority Voting” and

“Product” rule.

1.1 Pattern Recognition

Pattern recognition (or classification) is the field of applications that seeks to learn

from a given set of examples how to classify new data into a finite set of categories

that are called classes. The input of a common pattern recognition system is thus

an entity called a pattern (like a segment of speech signal or an image) which we

would like to associate with an output class. A pattern recognition system is ususally

divided into three main parts, namely preprocessing, feature selection or extraction,

and classification. A pattern is represented by a set of measurements that should

contain relevant information about the structure of the object that we wish to classify.

The measurements can potentially be collected from a large number of data sources,

which would result in a high dimensionality vector of measurements. An overall view

of the main stages of a pattern recognition system is shown in Figure 1.1. The training

examples (or training patterns) are the known instances from which we wish to learn a

model that can generalize to previously unseen data.

Given infinite training data, consistent classifiers approximate the Bayesian decision

1



2 Multiple-Classifier Systems

Figure 1.1: The general model of a pattern recognition system.

boundaries to arbitrary precision, therefore providing a similar generalization. However,

often only a limited portion of the pattern space is available or observable. Given a

finite and noisy data set, different classifiers typically provide different generalizations.

It is thus necessary to train several classifiers when dealing with classification problems

so as to ensure that a good model or parameter set is found.

1.2 Multiple-Classifier Systems

Given a set of independent inducers, the simplest way of building a classifier system

is to select one with the best behaviour on a given testing database. During the

classification just the output of the selected classifier is computed, and only this will

affect the resulting decision. This selection is an “early” combination scheme widely

used in Pattern Recognition.

However, selecting such a classifier is not necessarily the ideal choice since poten-

tially valuable information may be wasted by discarding the results of the other clas-

sifiers. In order to avoid this kind of loss of information, the output of each available

classifier should be examined for making the final decision.

1.2.1 Combination Architectures

To integrate the output of several classifiers into a final decision, various combination

architectures are available. These architectures fall into the following three main groups:

• Parallel: Each of the inducers are invoked independently, and their results are

then combined by a combiner. The majority of combination architectures in the

literature belong to this category.

• Cascading: Individual classifiers are invoked in a linear sequence. The number

of possible classes for a given pattern is gradually reduced as more classifiers
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Figure 1.2: Parallel combination scheme

in the sequence are invoked. For the sake of efficiency, inaccurate but cheap

classifiers are applied first, followed by more accurate and expensive inducers.

Figure 1.3: Cascading combination scheme

Cascading architectures, for instance, are commonly used in POS tagging [47]

and NP parsing [102] applications.

• Hierarchical: Individual classifiers are combined into a structure similar to that

of a decision tree classifier. The tree nodes, however, may now be associated with

complex classifiers requiring a large number of features. The advantage of this

architecture is its high efficiency and flexibility in exploiting the discriminant power

of different types of features.

Figure 1.4: Hierarchical combination scheme

A number of classification schemes like Stacking [122] and dynamic selection

use this type of architecture, and have became popular in Human Language

Technology applications [110].
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1.2.2 Types of Knowledge Sources

The goal of designing a combination scheme is to assign a class label for an input

pattern using the information coming from the individual classifier instances. Each

of the trained inducers has to be capable of providing the label that it prefers, but

a number of machine learning methods can supply much more information than this.

The combination strategies can incorporate the following types of classifiers based on

the kind of information they provide:

Figure 1.5: Information levels of a typical classifier

• Abstract: Just the assigned class label is provided. Combiners which only need

this information as input are, for instance, the voting combiners like Bagging and

Boosting.

• Ranking: Instead of merely providing the best class label associated with the

given pattern, the list of labels is supplied, ranked in order of probability. This

more general information type can be used as input for combiners like the Borda

count rule.

• Measurement or Confidence: In the most general case, each of the a poste-

riori probabilities are provided. Combiners can aggregate these probabilities from

different inducers and make a final decision. Examples of combiners which use

the measurement information type are Prod, Sum, and Max Rules.

1.2.3 Generating effective Classifier Sets

A classifier combination is especially useful if the classifiers applied are largely indepen-

dent. If this is not already guaranteed by the use of different learning sets or different

learning methods, various re-sampling techniques like rotation and bootstrapping may

be used to artificially create such differences.
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• Rotation: The original learning set is divided into n disjoint subsets and uses

different unions of n − 1 subsets as training sets. This technique is commonly

used in cross validation during error estimation.

• Bootstrapping: A bootstrap sample can be generated by sampling instances

from the training set with replacement, using a specified probability distribution.

Examples include Bagging and Boosting.

• Generating noise: The generated classification model of an unstable classifier

strongly depends on existing errors in the training database. Adding artificial

errors is a way of generating a set of more or less independent classifiers, making

it possible to fulfil the requirements of a combiner.

1.3 Static Combination Schemes

The simplest non-trainable combiner is probably the most commonly used in the mul-

tiple classifier system community. Majority voting simply returns the class with the

highest number of votes. There has been a huge amount of research on the theoretical

aspects of majority voting for several decades, and, despite its simplicity it has proved

to be quite efficient in most applications. Majority voting only takes into account the

labels output by each individual classifier, but the natural way of making use of more

information is to apply posterior probabilities for taking into account a confidence mea-

sure for each classifier. In the following we will concentrate on the combinations of

classifiers that provide confidence level information.

Consider a pattern recognition problem where the pattern x is to be assigned to

one of m possible classes (ω1, . . . , ωm). Let us assume that we have R classifiers, each

representing the given pattern by a different feature vector. Next, denote this feature

vector (employed by the ith classifier) by x
(i). In the feature space each class ωk is

modelled by the probability density function p(x(i)|ωk) and its a priori probability of

occurrence P (ωk).

According to Bayesian theory, for given features x
i, i ∈ {1, . . . , R} the pattern x

should be assigned to class ωj with the maximal value of the a posteriori probability

such that

f(x) = ωj, j = argmax
k

P (ωk|x(1), . . . ,x(R)). (1.1)

Let us rewrite the a posteriori probability using Bayes’ Theorem. Then We have

P (ωk|x(1), . . . ,x(R)) =
p(x(1), . . . ,x(R)|ωk)P (ωk)

p(x(1), . . . ,x(R))
. (1.2)

In the latter the unconditional joint probability density can be expressed in terms of the
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conditional feature distributions, so that

p(x(1), . . . ,x(R)) =

m
∑

j=0

p(x(1), . . . ,x(R)|ωj)P (ωj). (1.3)

1.3.1 Product Rule

Let us assume that the probability distributions p(x(1), . . . ,x(1)|ωk) are conditionally

statistically independent. Then

p(x(1), . . . ,x(R)|ωk) =
R
∏

i=0

p(x(i)|ωk), (1.4)

and the decision rule

f(x) = ωj, j = argmax
k

P (ωk)
∏

i

p(x(i)|ωk), (1.5)

or, in terms of the a posteriori probabilities generated by the respective classifiers,

argmax
k

P 1−R(ωk)
∏

i

p(ωk|x(i)). (1.6)

1.3.2 Sum Rule

In some applications it may be appropriate to assume that the a posteriori probabilities

computed by the respective classifiers will not dramatically deviate from those of the

prior probabilities. This is a rather strong assumption but it may be readily satisfied

when the available information is highly ambiguous due to the high level of noise. In

such a situation we may assume that the a posteriori probability can be expressed in

the form

P (ωk|x(i)) = P (ωk)(1 + δki), (1.7)

where δki ≪ 1. Substituting this for the a posteriori probabilities in (1.6), we find that

P 1−R(ωk)
∏

i

P (ωk|x(i)) = P (ωk)
∏

i

(1 + δki). (1.8)

If we neglect terms of second and higher order, we can approximate the right-hand side

and obtain the sum decision rule

f(x) = ωj, j = argmax
k

[

(1 + R)P (ωk) +
∑

i

p(ωk|x(i))

]

. (1.9)
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1.3.3 Max, Min Rule

The decision rules (1.6) and (1.9) constitute the basic schemes for combining classifiers.

Many commonly used combination strategies can be developed from these rules after

noting that

∏

i

P (ωk|x(i)) ≤ min
i

P (ωk|x(i)) ≤
∑

i

P (ωk|x(i)) ≤ max
i

P (ωk|x(i)). (1.10)

This inequality suggests that the product and sum combination rules may be approx-

imated by the max and min operators, where appropriate. These approximations lead

to the following:

Max Rule:

f(x) = ωj , j = argmax
k

[

(1 + R)P (ωk) + R max
i

p(ωk|x(i))
]

, (1.11)

Min Rule:

f(x) = ωj, j = argmax
k

[

P 1−R(ωk) + R max
i

p(ωk|x(i))
]

. (1.12)

1.3.4 Median Rule

Note that using the equal prior assumption, the sum rule can be interpreted as com-

puting the average a posteriori probability. It is well known that a robust estimate of

the mean is the median, so it might be more appropriate to use it as the basis for the

combining procedure. Adopting this leads to the following rule:

f(x) = ωj , j = argmax
k

med
i

p(ωk|x(i)). (1.13)

1.3.5 Voting Rule

Hardening a posteriori probabilities P (ωk|x(i)) will produce binary valued functions ∆ki

like

∆ki =

{

1 if P (ωk|x(i)) = max
j

P (ωj|x(i))

0 otherwise,
(1.14)

which results in combination decision outcomes rather than a combination of a posterori

probabilities. Assuming that each a priori probability is equal, this leads to the following

decision rule:

f(x) = ωj, j = argmax
k

∑

i

∆ki. (1.15)

Note that for each class ωk, the sum on the right hand side of (1.15) simply counts

the votes received for this hypothesis from each individual classifier.
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1.3.6 Borda count

Instead of hardening a posteriori probabilities, it is possible to use modified probabilities

ρki based on ranking information.

ρki =
1

C

∑

j:P (ωj |x(i))≤P (ωk|x(i))

,1 (1.16)

where C is a normalization constant. This results in the following decision rule:

f(x) = ωj, j = argmax
k

∑

i

ρki. (1.17)

1.4 Summary

In this chapter we summarized the basic issues of multiple classifier systems, and derived

some of the static combination rules applied in Human Language Technology like the

“Majority Voting” and the “Product” rule. Although these techniques have become

popular in multiple-classifier systems owing to their simplicity, they cannot be adapted

to the special aspects of particular applications. For this reason, adaptive methods like

additive combination schemes have become the focus of research. These techniques

and their typical applications will be discussed in the next chapter.
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The Additive

Combination Model

In this chapter we will focus on linear combination schemes like averaging and boosting

techniques. These techniques can be adapted to the context of a particular application,

and they have a theoretical basis. Also, experimental studies have shown that linear

classifier combinations can definitely improve the recognition accuracy. Tumer and

Ghosh showed that combining networks using single averaging reduces the variance of

the actual decision boundaries close to the optimum boundary [108]. Later Fumera and

Roli extended the theoretical framework for the weighted averaging rule [92]. However,

due to their highly restrictive assumptions, we cannot say anything with confidence

about the performance of the combiner.

This chapter is organized as follows. In the first section we give a brief overview of

linear combination schemes, including averaging techniques, and examine the theoretical

background of these systems. In the next section we offer some strategies for setting

the required coefficients. After, we describe the most commonly used algorithms for

building effective ensemble systems like “Bagging” and “Boosting”.

2.1 Linear Combinations

Combiners aggregate the outputs of different classifiers to make a final decision. This

aggregation depends on the kind of information that the individual classifiers can supply.

As discussed in the previous chapter the classification methods can be grouped into

three main categories:

1. Measurement or Confidence. The classifier can model probability values for each

class label. Let f j
i (x) denote the output of classifier Cj for class i and pattern x.

9
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The linear combination method can be described by the formula

f̂i(x) =
N
∑

j=1

wjf
j
i (x), (2.1)

where f̂i(x) is the combined confidence value, and wj is the weighting factor of

classifier Cj . The final decision can be obtained by selecting the class with the

greatest probability, in accordance with the Bayesian decision principle.

2. Ranking. The classifier can produce a list of class labels in the order of their

probabilities. The combined position ĝi is then computed via the formula

ĝi(x) =

N
∑

j=1

wjg
j
i (x), (2.2)

where gj
i (x) is the position of the label ωi in the classification result of pattern x

obtained by the classifier Cj . With the selection of a proper monotonic decreasing

function u, and

f j
i (x) = u(gj

i (x)), (2.3)

the ranking-type combination can be reduced to the confidence-type scheme.

3. Abstract. The classifier supplies only the most probable class label. In this case

the combination relies on the majority voting formula

l̂(x) = arg max
i

∑

lj(x)=i

wj, (2.4)

where lj(x) is the index of the class label calculated for pattern x. Defining the

choice of f j
i (x) as

f j
i (x) =

{

1 lj(x) = i

0 otherwise
(2.5)

leads to the reformulation of voting as a confidence-type combination much like

that for the ranking type.

As we showed earlier, the output of classifiers belonging to the Ranking or Abstract

class can be transformed to class conditional probability values. Therefore, in the

following section we shall deal only with the confidence-type combination, and expect

the combiners to supply the class conditional probabilities.

2.2 Theoretical background

As mentioned previously, the output of the classifiers are expected to approximate

the corresponding a posteriori probabilities if they are reasonably well trained. Thus
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the decision boundaries obtained using this kind of classifier are close to Bayesian

decision boundaries. Tumer and Ghosh developed a theoretical framework for analyzing

the averaging rule of linear combinations [108]. Later Roli and Fumera extended this

concept by examining the weighted averaging rule [92].

We shall focus on the classification performance near these decision boundaries.

Consider the boundary between class i1 and i2. The output of the classifier is

fi(x) = pi(x) + ǫi(x), (2.6)

where pi(x) is the real a posteriori probability of class i, and ǫi(x) is the estimation

error. Let us assume that the class boundary xb obtained from the approximated a

posteriori probabilities

fi1(xb) = fi2(xb) (2.7)

are close to the Bayesian boundaries x
∗, i.e.

pi1(x
∗) = pi2(x

∗), (2.8)

for a boundary between class i1 and i2. Additionally assuming that the estimated errors

ǫi(x) on different classes are independently and identically distributed (i.i.d.) variables

with zero mean, Tumer and Ghosh showed that the expected error of classification can

be expressed as:

E = EBayes + Eadd, (2.9)

where EBayes is the error of a classifier with the correct Bayesian boundary. The added

error Eadd can be expressed as:

Eadd =
sσ2

b

2
, (2.10)

where σ2
b is the variance of b,

b =
ǫi1(xb) − ǫi2(xb)

s
, (2.11)

and s is a constant term depending on the derivatives of the probability density functions

at the optimal decision boundary.

Let us consider the effect of combining multiple classifiers. We shall deal only with

linear combinations, so we have the following combined probabilities:

f̂i(x) =

N
∑

j=1

wjf
j
i (x), (2.12)

where f j
i denotes the output of the classifier Cj for the class i. Assuming normalized
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weights, i.e.
N
∑

j=1

wj = 1, wj ≥ 0 (2.13)

we have that

f̂i(x) = pi(x) + ǫ̂i(x), (2.14)

where

ǫ̂i(x) =
N
∑

j=1

wjǫ
j
i (x) (2.15)

Let us compute the variance of b̂, where

b̂ =
ǫ̂i1 − ǫ̂i2

s
. (2.16)

Assuming that ǫj
i (x) are i.i.d. variables with zero mean and variance σ2

ǫj , the errors of

different classifiers on the same class are correlated, while on different classes they are

uncorrelated.

Cov(ǫm
i1

(xb), ǫ
n
i2
(xb)) =

{

ρmn when i1 = i2
0 otherwise

,

where ρmn denotes the covariance between the errors of classifier Cm and Cn for each

class. Expanding the tag σ2
ǫ in Eq. (2.10), we find that

Êadd =
1

s

N
∑

j=1

w2
jσ

2
ǫj

+
1

s

∑

m6=n

wmwnρmn.

Expressed in terms of additional errors of the classifiers

Êadd =
1

s

N
∑

j=1

w2
jE

j
add

+
1

s

∑

m6=n

wmwnρmn,

where the term Ej
add denotes the added error of the classifier Cj . In the case of

uncorrelated estimation errors (i.e. when ρmn = 0), this equation reduces to

Êadd =
N
∑

j=1

w2
jE

j
add , (2.17)
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which leads to the following optimal values for w:

wj = c
1

Ej
add

, (2.18)

where c is a normalization factor. With equally performing classifiers, that is when all

the errors Ej
add have the same value

Ej
add = Eadd, j = 1, . . . , N, (2.19)

we obtain the Simple Averaging rule:

wj =
1

N
, (2.20)

which results in the following error value:

Êadd =
1

N
Eadd. (2.21)

This formula shows that, under the conditions mentioned, linear combinations reduce

the error of the individual classifier. Taking into account correlated errors, however,

does not lead to a simple general expression for optimal values of weights, and other

methods are required to estimate the optimal parameters.

2.3 Simple Adaptive Combinations

To achieve the best combination performance the parameters of the combiner can be

trained on a selected training data set. The form of linear combinations we deal with

is quite simple, the trainable parameters being just the weights of classifiers. Thus the

various linear combinations differ only in the values of these factors. In the following

we give some examples of methods commonly employed, and in the next section we

propose a new method for computing these parameters.

1. Simple Averaging. In this simplest case, the weights can be selected so they have

the same value:

wj =
1

N
. (2.22)

As mentioned before, this selection is optimal when all the classifiers have a very

similar performance, and all the assumptions mentioned in Section 2.2 hold.

2. Weighted Averaging. Experiments show [92] that Simple Averaging can be out-

performed when selecting weights to be inversely proportional to the error rate

of the corresponding classifier:

wj =
1

Ej
, (2.23)
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where Ej is the error rate of the classifier Cj , i.e. the ratio of the number

of correctly classified patterns and total number of patterns on a selected data

set for training the combiner. This rule (a more general version of the Simple

Averaging rule) is employed in order to handle the combination of unequally

performing classifiers.

3. Hierarchical methods. To calculate the weights wj one can take those values that

minimize some kind of distance between the computed and required conditional

scores:

min
w

∑

x∈X

l
∑

i=1

L(f̂i(x), ri)), (2.24)

where ri is the requested conditional scores for class i, and L(f̂i(x), ri)) is the

loss function. Since machine learning algorithms can be regarded as optimization

methods that minimize the expected value of a loss function on the training

database, this optimization can be done by applying an appropriate machine

learning algorithm.

2.4 Bagging

The Bagging (Bootstrap aggregating) algorithm[16] votes classifiers generated by dif-

ferent bootstrap samples (replicates). A bootstrap sample is generated by uniformly

sampling m instances from the training set with replacement. T bootstrap samples

B1, B2, ..., BT are generated and a classifier Ci is built from each bootstrap sample Bi.

A final classifier C∗ is built from C1, C2, ..., CT whose output is the class predicted most

often by its sub-classifiers (majority voting).

Algorithm 1 Bagging algorithm

Require: Training Set S, Inducer I
Ensure: Combined classifier C∗

for i = 1 . . . T do
S ′ = bootstrap sample from S
Ci = I(S ′)

end for
C∗(x) = argmax

j

∑

i:Ci(x)=ωj

1

For a given bootstrap sample, an instance in the training set will have a probability

1− (1−1/m)m of being selected at least once from the m instances randomly selected

from the training set. For large m, this is about 1-1/e = 63.2%. This perturbation

causes different classifiers to be built if the inducer is unstable (e.g. ANNs, decision

trees) and the performance may improve if the induced classifiers are uncorrelated.

However, Bagging can slightly degrade the performance of stable algorithms (e.g. kNN)

since effectively smaller training sets are used for training.
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2.5 Random Forests

Breiman proposed Random Forests [15] as a variant of Bagging. A random forest is

an ensemble creation method that uses tree classifiers like C4.5 algorithm as a base

classifier. An ensemble of decision trees is built by generating independent identically

distributed random vectors Θj , j = 1, ..., K. One tree is grown from each vector. The

difference with Bagging is that the vectors Θj can be built by sampling from feature

sets, a sample set or by varying some parameters of the tree (e.g. the number of

nodes). In /citeRodriguez, Rodriguez et al. proposed a variation of random forest

called Rotation forests that simply adds a PCA pre-processing in order to decorrelate

the training data. They showed that experimental improvements could be obtained on

many datasets.

2.6 Boosting

The underlying idea of boosting is to combine simple rules iteratively to form an en-

semble that will improve the performances of each single member. Boosting theory has

its roots in Probably Approximately Correct (PAC) learning [112]. PAC gives a nice

formalism for deciding how much training data we need in order to achieve a given prob-

ability of correct predictions on a given fraction of future test data. In [112], Valiant

showed that simple rules, each performing only slightly better than random guessing,

can be combined to form an arbitrarily good ensemble. The challenge of boosting is to

find a PAC algorithm with arbitrarily high accuracy.

The first boosting algorithms were proposed by Schapire in 1990 [94] and Freund in

1995 [30]. However, several strong assumptions prevented the efficiently use of these

algorithms in practical situations: They need prior knowledge of the accuracy of the

weak hypotheses.

2.6.1 Adaboost

A first step towards more practical Boosting is the AdaBoost (Adaptive Boosting)

algorithm [31]. Adaboost is adaptive in the sense that a new hypothesis is selected

given the performances of the previous iterations. Unlike bagging, this allows the

algorithm to focus on the hard examples. This adaptive strategy is managed by a

weight distribution D over the training samples. A weight D(i) is given to each training

pattern xi. Examples with large weights will have more impact on choosing the weak

hypothesis than those with low weights. Then after each round, the weight distribution

is updated in such a way that the weight of misclassified examples is increased.

In the following we shall deal with only the case of binary classification, i.e. only

two class labels {−1, +1} are available. Let us consider, as usual, a training set ZN =

(x1, y1), (x2, y2), ..., (xN , yN). We suppose that we have a base learning algorithm (or

weak learner) which accepts as input a sequence of training samples Zn along with

a distribution D over the training samples. Given such an input, the weak learner
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constructs a weak hypothesis C. The predicted label y is given by sign(C(x)), while

the confidence of the prediction is given by ‖C(x)‖. We shall also assume that the

corresponding weighted training error is smaller than 1/2. This means that the weak

hypotheses have to be at least slightly better than random guessing with respect to

the distribution D. The distribution D is first initialized uniformly over the training

samples. Then it is iteratively updated in such a way that the likelihood of the objects

beeing misclassified in the previous iteration is increased.

The loss function L used for updating the weights (step 4 in the main loop) is

usually an exponential loss function, but other loss functions have been also proposed

in the literature (Logitboost [32] or Arcing [14]).

Two critical choices in AdaBoost are how to choose the weak hypothesis Ct and

what is the optimal wt. Let us define the training error of the ensemble Ĉ:

L1/0(Ĉ) =
1

N

n
∑

i=1

L1/0(yi, C(xi)), (2.25)

where L1/0 is the 1/0 loss function

L1/0(yi, C(xi)) =

{

1 if yi = C(xi)

0 otherwise
(2.26)

Shapire and Singer [95] give a bound on the training error of the combined hypothesis

Ĉ:

L1/0(Ĉ) ≤
T
∏

t=1

Nt, (2.27)

where Nt =
∑

i D
t
i exp(−ωtyiCt(xi)).

According to this theorem, the training error can be minimized by greedily minimiz-

ing Nt on each round of boosting. To choose the optimal ωt, we will consider several

cases in the following sections.

2.6.2 Discrete Adaboost

Let us first consider the original version of AdaBoost, called Discrete AdaBoost, when

the range of each weak hypothesis is restricted to the labels {−1, +1}. Then the

optimal ωt can be found by approximating Nt as follows:

Nt =
∑

i

Dt
i exp(−ωtyiCt(xi)) (2.28)

≤
∑

i

Dt
i

(

1 + yiCt(xi)

2
exp(−ωt) +

1 − yiCt(xi)

2
exp(ωt)

)

. (2.29)
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Algorithm 2 Boosting algorithm

Require: Training Set ZN = (x1, y1), (x2, y2), ..., (xN , yN), number of iterations T ,
Inducer I

Ensure: Combined classifier C∗

D
(1)
n = 1/N for all n = 1, . . . , N .

for t = 1 . . . T do
S ′ = bootstrap sample from ZN with distribution Dt

n

Ct = I(S ′)
ǫt = 1

n

∑N
n=1 L1/0(yn, C(xn))

if ǫt > 1/2 then Exit
select optimal wt

update weights D
(t+1)
n = D

(t)
n L(yn,C(xn))

Nt
,

where Nt is a normalization factor such that
∑N

n=1 D
(t+1)
n = 1.

end for
C∗(x) = sign(

∑T
t=1 wtCt(x))

The coefficient wt that minimizes Nt can be found analytically:

wt =
1

2
log

(

1 + rt

1 − rt

)

, (2.30)

where rt =
∑

i D
t
iyiCt(xi). With this choice of coefficient, the training error of the

combined hypothesis Ĉ is bounded by:

L1/0(Ĉ) ≤
T
∏

t=1

√

1 − r2
t . (2.31)

The quantity rt is a natural measure of the correlation of the predictions of Ct and the

labels yi with respect to Dt. From equation 2.31 it follows that:

L1/0(Ĉ) ≤ exp

(

−
T
∑

t=1

r2
t

)

, (2.32)

from which we infer that the condition
∑T

t=1 r2
t → ∞ suffices to guarantee that the

training error converges towards 0 when the number of iteration increases. Clearly this

holds if rt ≥ r0 > 0 for some positive constant r0 (recall that the weighting training

error of a weak hypothesis is less than 0.5).

2.6.3 Real Adaboost

A more general formulation of Discrete AdaBoost uses the confidence levels of each

weak classifier instead of just binary outputs. It is called Real AdaBoost [95]. Unlike

Discrete AdaBoost, the output space of the weak classifiers is not restricted to {−1; 1},
but can take values in R. More specifically, let us consider a partition of R into disjoint
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blocks X1, X2, ..., Xn for which h(x′) = h(x) = cj for all (x,x′) ∈ Xj × Xj . Let

us further assume that the partitioning is given. The task is to find the optimal cj ,

j = 1, ..., N . Let

W+
j =

∑

i:xi∈Xj ,yi=+1

Di (2.33)

be the weighted fraction of positive samples falling into partition Xj, and

W−
j =

∑

i:xi∈Xj ,yi=−1

Di (2.34)

the equivalent for the negative class. Then the normalization factor Nt can be rewritten

as:

Nt =
∑

j

(W+
j exp(−cj) + W−

j exp(cj)). (2.35)

The expression that we want to minimize has the optimal cj values

cj =
1

2
log

(

W+
j

W−
j

)

(2.36)

This technique has proved to be very effective in many applications, outperforming

Discrete AdaBoost by taking into account the confidence measures of the weak hy-

potheses. A good example of a weak learner that can be used using this partitioning

technique is a simple decision tree. The leaves of the tree directly define the partition

of the domain.

Note that in practice, W+
j or W−

j is very small, which could produce an inconsistency

in Equation 2.36. That is why we generally use a smoothed version of the coefficients:

cj =
1

2
log

(

W+
j + ǫ

W−
j + ǫ

)

, (2.37)

where ǫ > 0 is an appropriately small positive-valued constant.

2.6.4 Generalization error

So far have we only considered training error convergence to demonstrate the efficiency

of AdaBoost, but minimizing the empirical risk is no guarantee of a good generalization.

However, in practical situations, AdaBoost seems very unlikely to overfit and has one

more interesting property: the test error continues decreasing with the number of itera-

tions, even if the training error has reached zero. In order to explain this phenomenon,

let us analyze AdaBoost from a margin perspective. Let us recall that the ensemble

hypothesis has the form:

Without loss of generality, we can assume that
∑N

j=1 ωj = 1. Let us call H the

space of the hypotheses ht. Similar to margins in Support Vector Machines, we can

define the margin of example x with label y to be ρ = yf(x). The value of the margin
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can be viewed as a confidence in the prediction of H . Shapire proved [95] that the

generalization error is upper bounded with probability 1 − δ for all θ > 0 and for all f

by

PZn
(yf(x) ≤ θ) + O

(

1√
n

(

d log2(n/d)

θ2
+ log(

1

δ
)

)

1
2

)

, (2.38)

where PZN
denotes the probability with respect to choosing an example (x, y) uniformly

from the training set ZN and d can be regarded as the VC dimension of H.

The bound stated in the equation does not depend on the number of classifiers in

the ensemble, but remains quite loose in practical applications. However, it shows the

tendency that larger margins lead to a better generalization. In fact, the generalization

continues to improve even after the training error has reached zero because the margin

is still increasing. Note that several studies have tried to interpret AdaBoost as a soft

margin classifiers [74, 89]

2.7 Summary

In this chapter we outlined the main aspects of linear combination techniques, along

with their theoretical background. We examined how to build simple adaptive combi-

nation strategies and described the popular methods called “Bagging” and “Boosting”.

These methods have proved effective in improving the overall classification performance,

especially in the case of “weak” classifiers, but at a cost. To achieve high accuracies it

may require hundreds or thousands of iterations, which limits their practical usefulness.

In the next chapter we will introduce a simpler approach which works better than the

simple additive models and is less CPU demanding than the sophisticated Boosting

variants.
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Analytic Hierarchy Process

Linear combination schemes, especially Boosting algorithms, are frequently used in

machine learning applications due to their ability to improve the classification per-

formance. The Adaboost algorithm and its variants create a sequence of classifier

instances by training the same classifier algorithm on special bootstrap-samples of the

training database. The classification performance of the original classifier method can

be dramatically increased, especially in the cases of “weak” classifers, but for the final

solution it requires hundreds or thousands of iterations. In the practice, however, most

of the applications cannot provide the required huge amount of resources for applying

such a great number of classifier instances.

In this chapter we will presents an effective combination solution for these kinds

of applications. In the first section we will give a brief summary of the Multi-criteria

Decision Making and the fundamentals of the Analytic Hierarch Process. In the second

section we will investigate the mathematical properties of AHP, and a novel combination

method will be proposed in the third section.

3.1 Analytic Hierarchy Process

Analytic Hierarchy Process allows decision makers to model a complex problem in a

hierarchical structure which showing the relationships of the goal, objectives (criteria),

sub-objectives, and alternatives (See Figure 3.1). Uncertainties and other influencing

factors can also be included.

AHP allows for the application of data, experience, insight, and intuition in a log-

ical and thorough way. It enables decision-makers to derive ratio scale priorities or

weights as opposed to arbitrarily assigning them. In so doing, AHP not only supports

decision-makers by enabling them to structure complexity and exercise judgment, but

21
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Figure 3.1: A simple AHP hierarchy. In practice, many criteria have one or more
layers of subcriteria. These are not shown in this simplified diagram. Also, to avoid
clutter in AHP diagrams, the lines between the alternatives and criteria are often
omitted or reduced in number.

allows them to incorporate both objective and subjective considerations into the deci-

sion process. AHP is a compensatory decision methodology because alternatives that

are deficient in one or more objectives can compensate by their performance in other

objectives. It is composed of several previously existing but unrelated concepts and tech-

niques such as hierarchical structuring of complexity, pairwise comparisons, redundant

judgments, an eigenvector method for deriving weights, and consistency considerations.

Although each of these concepts and techniques were useful in themselves, the syner-

gistic combination of the concepts and techniques (along with some new developments)

produced a process whose power is indeed far more than the sum of its parts.

Users of the AHP first decompose their decision problem into a hierarchy of more

easily comprehended sub-problems, each of which can be analyzed independently. The

elements of the hierarchy can relate to any aspect of the decision problem - tangible or

intangible, carefully measured or roughly estimated, well- or poorly-understood-anything

at all that applies to the decision at hand.

Once the hierarchy is built, the decision makers systematically evaluate its various

elements, comparing them to one another in pairs. In making the comparisons, the

decision makers can use concrete data about the elements, or they can use their judg-

ments about the elements’ relative meaning and importance. It is the essence of the

AHP that human judgments, and not just the underlying information, can be used in

performing the evaluations.

The AHP converts these evaluations to numerical values that can be processed

and compared over the entire range of the problem. A numerical weight or priority is

derived for each element of the hierarchy, allowing diverse and often incommensurable

elements to be compared to one another in a rational and consistent way. This capability

distinguishes the AHP from other decision making techniques.

In the final step of the process, numerical priorities are derived for each of the

decision alternatives. Since these numbers represent the alternatives’ relative ability

to achieve the decision goal, they allow a straightforward consideration of the various

courses of action.

The procedure can be summarized as:
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1. The alternatives and the significant attributes are identified.

2. For each attribute, and each pair of alternatives, the decision makers specify their

preference (for example, whether the location of alternative “A” is preferred to

that of “B”) in the form of a fraction between 1/9 and 9.

3. Decision makers similarly indicate the relative significance of the attributes. For

example, if the alternatives are comparing potential real-estate purchases, the

investors might say they prefer location over price and price over timing.

4. Each matrix of preferences is evaluated by using eigenvalues to check the consis-

tency of the responses. This produces a “consistency coefficient” where a value

of 1 means all preferences are internally consistent. This value would be lower,

however, if a decision maker said X is preferred to Y, Y to Z but Z is preferred

to X (such a position is internally inconsistent). It is this step that causes many

users to believe that AHP is theoretically well founded.

5. A score is calculated for each alternative.

The two basic steps in the process are to model the problem as a hierarchy, then to

establish priorities for its elements.

3.2 Mathematical model

To compute the importance of possible choices, pairwise comparison matrices are uti-

lized for each criterion. The element aij of the comparison matrix A represents the

relative importance of choice i against the choice j, implying that the element aji is

the reciprocal of aij. Let the importance value v of choice y be expressed as a linear

combination of the importance values for each applied criterion:

v(y) =

n
∑

j=1

wjv(yj), (3.1)

where wj is the importance of choice y with respect to the criterion yj. Using compar-

ison matrices AHP propagates the importance values of each node from the topmost

criteria towards the alternatives, and selects the alternative with the greatest importance

value as its final decision.

Let us now focus on the computation of the weights w for a selected criterion. The

elements of a given pairwise comparison matrix approximate the relative importance of

the choices, thus

aij ≈
wi

wj
, (3.2)

where the elements of the unknown vector w are the importance values. A matrix M
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is called consistent if its components satisfy the following equalities:

mij =
1

mji
, (3.3)

and

mij = mikmkj ∀ i, j, k. (3.4)

If A is not consistent, it is not possible to find a vector w that satisfies the equation

aij =
wi

wj

. (3.5)

Now let us define the matrix of weight ratios by

W =

















w1

w1

w1

w2

w1

w3
· · · w1

wn
w2

w1

w2

w2

w2

w3
· · · w2

wn
w3

w1

w3

w2

w3

w3
· · · w3

wn

...
...

...
. . .

...
wn

w1

wn

w2

wn

w3
· · · wn

wn

















, (3.6)

or, in matrix notation,

W = wwT . (3.7)

Note that eqs. (3.3) and (3.4) hold for the matrix W :

wij =
wi

wj
=

wi

wk

wk

wj
= wikwkj, (3.8)

hence the matrix of weight ratios is consistent.

Because the rows of matrix W are linearly dependent, the rank of the matrix is

1, and there is only one nonzero eigenvalue. Knowing that the trace of a matrix is

invariant under similarity transformations, the sum of diagonal elements is equal to the

sum of eigenvalues, which implies that the nonzero eigenvalue λmax equals the number

of the rows:

λmax = n. (3.9)

It is straightforward to verify that the vector w is an eigenvector of matrix W corre-

sponding to the maximum eigenvalue

(Ww)i =
n
∑

j=1

Wijwj

=

n
∑

i=1

wi

wj
wj =

n
∑

j=1

wi

= nwi.
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The aim of AHP is to resolve the weight vector w from a pairwise comparison matrix

A, where the elements of A correspond to the measured or estimated weight ratios.

Following Saaty we shall assume that

aij > 0, (3.10)

and

aij =
1

aji
. (3.11)

From matrix theory it is known that a small perturbation of the coefficients implies

a small perturbation of the eigenvalues. Hence we still expect to find an eigenvalue

close to n, and select the elements of the corresponding eigenvector as weights. It can

be proved that

λmax ≥ n,

and the matrix A is consistent if and only if λmax = n. A way of measuring the

consistency of the matrix A is by defining the consistency index (CI) as the negative

average of the remaining eigenvalues:

CI =

∑

λ<λmax

λ

n − 1
=

λmax − n

n − 1
(3.12)

3.2.1 Combinations based on AHP

As mentioned above, AHP provides the following solution for the problem of linear

MCDM systems:

v(y) =

n
∑

i=1

wiv(yi),

where the importance value of the choice is the linear combination of the importance

values of the direct criteria. In linear classifier combinations the combined class condi-

tional probabilities are computed as weighted sums of the probability values from each

classifier, so

fi(x) =

N
∑

j=1

wjf
j
i (x).

Noting the similarities between these two methods, it is clear that, by applying pairwise

comparisons on classifiers performance, AHP provides a way of computing the weights

of inducers in classifier combinations. Let us calculate the element aij of the comparison

matrix as the quotient of classification performance on a selected test data set:

aij =
1
Ei

1
Ej

=
1

aji
, (3.13)
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where Ei is the classification error of classifier Ci. If all the performance errors are

measured on the same test data set, the comparison matrix A is consistent, and the

elements of the eigenvector whose corresponding eigenvalue is N , that is

wi =
1

Ei
, (3.14)

are the same those as generated by weighted averaging. However, this method allows us

to make pairwise comparisons of different inducers applied on different (e.g. randomly

generated) test sets, taking advantage of the stabilizing effect of AHP. This leads to

a more robust classification performance, especially in noisy environments, as shown in

the experiments section.

3.3 Experiments

In this section we will describe our experiments for comparing the performance of

averaging combiners and our AHP-based combiner.

3.3.1 Evaluation Domain

In the experiments three data sets were employed: a data-set used in our speech

recognition system, and two other datasets (letter and satimage) originating from the

statlog/UCI repository. (http://www.liacc.up.pt/ML/statlog)

1. Speech data set. The database is based on recorded samples taken from 160

children aged between 6 and 8. The ratio of girls and boys was 50% - 50%.The

speech signals were recorded and stored at a sampling rate of 22050 Hz in 16-

bit quality. Each speaker uttered all the Hungarian vowels, one after the other,

separated by a short pause. Since we decided not to discriminate their long and

short versions, we only worked with 9 vowels altogether. The recordings were

divided into a train and a test set in a ratio of 50% - 50%. There are numerous

methods for obtaining representative feature vectors from speech data, but their

common property is that they are all extracted from 20-30 ms chunks or ’frames’

of the signal in 5-10 ms time steps. The simplest possible feature set consists

of the so-called bark-scaled filterbank log-energies (FBLE). This means that the

signal is decomposed with a special filterbank and the energies in these filters

are used to parameterize speech on a frame-by-frame basis. In our tests the

filters were approximated via Fourier analysis with a triangular weighting. Alto-

gether 24 filters were necessary to cover the frequency range from 0 to 11025 Hz.

Although the resulting log-energy values are usually sent through a cosine trans-

formation to obtain the well-known mel-frequency cepstral coefficients (MFCC),

we abandoned it because, as we observed earlier, the learner we work with is

not sensitive to feature correlations so a cosine transformation would bring no

significant improvement.
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2. Letter Data Set. The objective of the Data set is to identify each of a large

number of black-and-white rectangular pixel displays as one of the 26 capital

letters in the English alphabet. The character images were based on 20 different

fonts and each letter within these 20 fonts was randomly distorted to produce a file

of 20,000 unique stimuli. Each stimulus was converted into 16 primitive numerical

attributes (statistical moments and edge counts) which were then scaled to fit

into a range of integer values from 0 to 15. We typically trained on the first

16000 items and then used the resulting model to predict the letter category for

the remaining 4000.

3. Satimage Data Set. One frame of Landsat MSS imagery consists of four digital

images of the same scene in different spectral bands. Two of these are in the

visible region (corresponding approximately to green and red regions of the visible

spectrum) and two are in the (near) infra-red. Each pixel is a 8-bit binary word,

with 0 corresponding to black and 255 to white. The spatial resolution of a pixel

is about 80m x 80m. Each image contains 2340 x 3380 such pixels. The database

is a (tiny) sub-area of a scene, consisting of 82 x 100 pixels. Each line of data

corresponds to a 3x3 square neighborhood of pixels completely contained within

the 82x100 sub-area. Each line contains the pixel values in the four spectral

bands (converted to ASCII) of each of the 9 pixels in the 3x3 neighborhood and

a number indicating the classification label of the central pixel. The number of

possible class labels for each pixel is 7. We trained on the first 4435 patterns of

the database and selected the remaining 2000 patterns for testing.

3.3.2 Evaluation Method

During the experiments we compared the performance of 6 different combiners applied

on each of the 3 databases. For each of the databases we trained 3-layered neural

networks with different structures, and selected 5 subsets of classifiers, denoted by

Set1 to Set5.

In the case of the speech and letter databases we trained networks, setting the

number of neurons in the hidden layer to 5, 10, 20, 40, 80, 160, and 320. Table 3.1

shows the construction of classifier sets. The columns refer to the number of hidden

neurons, and the rows show which networks belong to the selected classifier sets.

5 10 20 40 80 160 320

Set1 x x x x x x x
Set2 x x x x x x
Set3 x x x x x
Set4 x x x x
Set5 x x x

Table 3.1: Classifier sets for the speech and letter databases.

The satimage database contains only 7 classes. In this case we trained networks
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with hidden layer size set to 2, 5, 10, 20, 40, 80, and 160. The corresponding classifier

selection is displayed in Table 3.2.

2 5 10 20 40 80 160

Set1 x x x x x x x
Set2 x x x x x x
Set3 x x x x x
Set4 x x x x
Set5 x x x

Table 3.2: Classifier sets for the satimage database.

The experiments compared the performance of linear combination schemes with

different methods for acquiring the proper weights. We examined 2 schemes of Aver-

aging : SA and WA (i.e. simple and weighted) averaging, and 4 schemes of AHP. To

calculate the pairwise comparison matrices needed for the AHP method, we took the

quotient of classification errors of the two competing networks on a random test set

generated by bootstrapping (resampling the training data set with replacement) of the

training set. Based on the size of the generated test set we had 4 AHP schemes, AHP1

to AHP4, setting the size of each to 50, 100, 200 and 400, respectively. With the

WA combiner, the original training set was chosen for the calculation of the weights.

3.3.3 Results and Discussion

Set1 Set2 Set3 Set4 Set5

SA 8.52 9.26 9.95 9.77 8.80
WA 8.66 9.21 9.91 9.81 8.75
AHP1 8.66 8.94 9.44 10.05 8.80
AHP2 8.56 9.12 9.72 10.19 8.80
AHP3 8.61 9.21 9.49 9.58 8.70
AHP4 8.61 9.31 9.55 9.07 8.70

Table 3.3: Classification errors [%] on the Speech database (Error without combi-
nation: 12.92%)

Set1 Set2 Set3 Set4 Set5

SA 8.70 8.34 7.88 7.26 7.78
WA 7.56 7.64 7.64 7.06 7.68
AHP1 6.84 7.26 7.04 6.76 7.48
AHP2 6.74 6.90 6.98 6.82 7.56
AHP3 6.67 6.94 6.96 6.80 7.58
AHP4 6.78 7.00 6.88 6.82 7.54

Table 3.4: Classification errors [%] on the Letter database (Error without combi-
nation: 13.78%)



3.4 Conclusions and Summary 29

Set1 Set2 Set3 Set4 Set5

SA 10.95 10.35 10.35 10.00 10.05
WA 10.50 10.35 10.45 9.90 10.00
AHP1 10.05 9.95 10.05 9.60 9.30
AHP2 10.00 9.70 9.45 9.50 9.50
AHP3 9.80 9.50 9.50 9.20 9.45
AHP4 9.90 9.55 9.75 9.30 9.50

Table 3.5: Classification errors [%] on the Satimage database. (Error without
combination: 12.05%)

Tables 6.1, 6.2, and 3.5 show the results of our experiments. The columns represent

the various classifier sets, while the rows show the classification errors measured using

the selected combination of the corresponding classifier group.

As expected, However, in some cases SA performed better than WA and the AHP

combiners, telling us that the strong assumptions of the method are not always satisfied

[34].

The performance of AHP combiners depends on the size of the testing set. When

the test sets selected were too small, the measured accuracy values did not characterize

the goodness of the classifiers, and yielded poor combination results. Increasing the

size, however, makes the consistency index (CI) tend to zero, producing weights that

tend to the values calculated by weighted averaging. Determining the optimal size of

the test set will probably require further study.

When considering the sensitivity for the selection of different classifier subsets, the

AHP-based combiner has a behaviour similar to that of the WA method, hence the

optimal classifier set can be selected by methods available for the averaging combiners

[92].

3.4 Conclusions and Summary

In this chapter the Analytic Hierarchy Process was described in brief. Based on this

technique the author designed and implemented a novel linear combination method,

and then he compared its performance with those of other combiners. As shown in

the experiments, AHP-based combinations proved an effective generalization of the

weighted averaging rule; they outperformed the other averaging methods in almost

every case. This dual aspect of simplicity and improved performance was the author’s

original intention for devising such a method.
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Speech recognition is a pattern classification problem in which a continuously varying

signal has to be mapped to a string of symbols (the phonetic transcription). Speech

signals display so many variations that attempts to build knowledge-based speech rec-

ognizers have mostly been abandoned. Currently researchers tackle speech recognition

only with statistical pattern recognition techniques. Here, however a number of special

problems arise that have to be dealt with. The first one is the question of the recogni-

tion unit. The basis of the statistical approach is the assumption that we have a finite

set of units (in other words, classes), the distribution of which is modelled statistically

from a large set of training examples. During recognition an unknown input is classi-

fied as one of these units using some kind of similarity measure. Since the number of

possible sentences or even words is potentially infinite, some sort of smaller recognition

unit has to be chosen in a general speech recognition task. The most commonly used

unit of this kind is the phoneme, hence the next chapters deal with the classification

problem of phonemes.

The other special problem is that the length of the units may vary, that is utterances

get warped along the time axis. The only known way of solving this is to perform a

search in order to locate the most probable mapping between the signal and the pos-

sible transcriptions. Normally a depth-first search is applied (implemented by dynamic

programming), but a breadth-first search with a good heuristic is a viable option as

well.

4.0.1 Phoneme Modeling

Hidden Markov Models [87] synchronously handle both the problems mentioned above.

Each phoneme in the speech signal is given as a series of observation vectors

O = o1, ..., oT , (4.1)

31
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and one has one model for each unit of recognition. These models eventually return

a class-conditional likelihood P (O|c), where c refers to these units. The models are

composed of states, and for each state we model the probability that a given observation

vector belongs to (“was omitted by”) this state. Time warping is handled by state

transition probabilities, that is the probability that a certain state follows the given

state. The final “global” probability is obtained as the product of the proper omission

and state-transition probabilities.

Figure 4.1: The three-state left-to-right phoneme HMM.

When applied to phoneme recognition, the most common state topology is the

three-state left-to-right model (see Figure refHMM). We use three states s1, s2 and s3

because the first and last parts of a phoneme are usually different from the middle due

to coarticulation. This means that in a sense we do not really model phonemes but

rather phoneme thirds.

Because the observation vectors usually have continuous values the state omission

probabilities have to be modeled as multidimensional likelihoods. The usual procedure

is to employ a mixture of weighted Gaussian distributions for all state sj of the form

p(ρ|sj) =
k
∑

i=1

αiN (σ, µi, Σi), (4.2)

where N (σ, µi, Σi) denotes the multidimensional normal distribution with mean µi and

covariance matrix Σi, k is the number of mixtures, and αi are non-negative weighting

factors which sum to 1.

A possible alternative to HMM are the Stochastic Segmental Models. The more

sophisticated segmental techniques fit parametric curves to the feature trajectories of

the phonemes [80]. There is, however, a much simpler methodology [60][61] that applies

non-uniform smoothing and sampling in order to parametrize any phoneme with the

same number of features, independent of its length. The advantage of this uniform

parametrization is that it allows us to apply any sort of machine learning algorithm for

the phoneme classification task. This is why we chose this type of segmental modeling

for the experiments performed and also for our speech recognition system [104].

Hidden Markov Models describe the class conditional likelihoods P (O|c). These

type of models are called generative, because they model the probability that an obser-

vation O was generated by a class c. However, the final goal of classification is to find
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the most probable class c. We can readily compute the posterior probabilities P (c|O)

from P (O|c) using Bayes’ law since

P (c|O) =
P (O|c)P (c)

P (O)
(4.3)

Another approach is to model the posteriors directly. This is how discriminative

learners work. Instead of describing the distribution of the classes, these methods

model the surfaces that separate the classes and usually perform slightly better than

generative models.

In the following chapters in the phoneme classification tests we work both with

generative and discriminative methods. But before doing this we shall briefly introduce

the OASIS speech recognition system [60][61], developed at the Research Group on

Artificial Intelligence, which served as a framework for all the tests.

4.1 The OASIS System

The OASIS system was designed with the aim of creating a general framework that is

flexible enough to allow the experimentation with a wide range of techniques in speech

recognition. In the following we will give a short overview of the system.

Figure 4.2: Modular structure of the OASIS Speech Lab
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4.1.1 The Modular Structure and The Script-based User In-

terface

The basic execution units of the OASIS Speech Lab are the so-called objects. Similar

to the VBScript system of Microsoft, the objects are handled by the component object

model (other examples are COM, JavaBeans). Most of the objects may contain further

objects and one can assign names to them for identification. On each object services or

functions may be defined, and these may depend on other objects given as parameters.

Most of the objects used in the OASIS Speech Lab are so-called modules. The mod-

ules are, practically speaking, the kind of special objects that execute some sub-task of

the whole signal processing or recognition process. The modules can be interconnected

to form a processing work-flow graph – a directed acyclic graph that defines the data

flow between the modules. The user’s task is to construct a graph from modules and to

start the processing. Then the system automatically performs the computations while

some of the modules receive a new data block as its input.

The objects of the OASIS Speech Laboratory can be handled through a script-

based user interface. Via the Oasis Script Language the user can create the objects,

construct a graph from them by specifying their input-output relations, and finally start

the processing chain. We will not give a detailed description here of the keywords of

the script language and its syntax; rather we will only present an example script at

Appendix B, for the reader to get an impression of how the system works.

4.1.2 Auxiliary Modules

The collective term “auxiliary module” here refers to all those modules that do not

perform such scientific tasks as signal processing, machine learning or speech decoding.

Rather, they are there to make the system more user-friendly. The most important from

this group is the “DatTraverse” module. It facilitates the batch processing of files

by scanning the lines of a file list and passing its items to the input of the subsequent

module one at a time. The other group of important auxiliary modules are those that

allow the user to graphically display some data. Spectral maps, feature values and

segmentation boundaries can all be displayed using them. A special display module

helps visualizing the winning hypothesis of a recognition step.

A third category of important auxiliary modules is those routines that can read in

and write out data blocks. In particular, sound files (in Microsoft PCM WAV format)

can be read in and written out, but there are of course many other types of data that

can be exported or imported (for example, spectrographic representations may be saved

in BMP format). An interesting case is when we save train and test feature vectors in

a text file, so that they can later be processed by machine learning algorithms. The

system saves these data blocks in the data format common to the C4.5 learner and the

UCI data repository [75].

A very special input module is the “MicIn” module that can accept sound data

from the microphone. It has to be combined with the “VoiceDetect” module that
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detects speech activity – but this is now signal processing and leads us to the next

group of modules.

4.1.3 Signal Processing and Feature Extraction Modules

The OASIS System implements most of the common signal processing algorithms such

as FFT-based spectrum calculation, linear prediction coding and the extraction of cep-

stral coefficients. The FFT-based spectrum can be transformed to a logarithmic fre-

quency scale by the simulation of Bark-band frequency filters. From these the conven-

tional MFCC coefficients can also be readily obtained. But the HCopy routine of the

HTK package [123] can also be called as an external executable, this way guaranteeing

a front-end processing identical to that of the HTK.

The pre-processing algorithms listed above all result in a series of vectors – which are

all 2-dimensional data sets, and hence in the OASIS system they are called “Maps” .

The other group of data are of those that are 1-dimensional – in the system they

have the collective name “Feature” . Of course, any component of a ‘map’ can be

extracted and converted to a ‘feature’ stream (for example the ith cepstral coefficient

or the energy of the ith spectral band). But such basic features as the short-term

energy of the signal can also be calculated. Also, several different processing steps can

be applied to the features like mean and deviance normalization, differentiation in time

(i. e. the computation of ∆ coefficients), RASTA filtering, adaptive gain control, and

so on.

A special characteristic of the OASIS speech decoders is that they require a list

of hypothesized segment boundaries – in short, a segmentation. Segmentations are

stored in the so-called “ClusterBound” objects of the sytem. As the simplest type

of segmentations, we can create a ‘fake’ segmentation of the signal by assuming a

possible segment boundary at each frame. Using this fake segmentation in the decoder,

the search space will be the same as that of the conventional frame-based recognizers.

But we also have the option of constructing sophisticated segmentation algorithms that

yield a much sparser segmentation – thus reducing the search space and speeding up

the decoding process. In addition, as a special case of segmentations, we can read in

the manually positioned phonetic segment boundary markers of a labelled database.

This can be useful, for instance, when we are interested in evaluating the classification

abilities of a learning algorithm.

For segment-based recognition every segment has to be represented by the same

number of features, independent of its duration. This feature set is called the segment-

based features or acoustic cues. Such “ACue” objects can be constructed from frame-

based features by calculating their mean, deviance, cosine transform coefficients and so

on over the duration of the segment. Another way of creating segment-based features

is to extract the value of certain frame-based features at special positions such as the

start, end or middle points of the segment. Last, but not least, the duration of the

segment is yet another important cue that can be extracted as a segment-based feature.
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4.1.4 Evaluators

The task of the “Evaluator” modules of the system is to associate probabilities to a

given set of a data. In the default case the data is a block of segment-based features,

and hence the evaluator returns segment-based phone posteriors or class-conditional

phone likelihoods. It is also possible to run evaluator modules over a set of frame-

based features – but, as the decoders work over segments, in this case an additional

“CombineEvaluator” module is required to fuse the frame-based probability esti-

mates into a segment-based one. Both the segment-based and frame-based evaluators

have implementations that work with an artificial neural network (ANN), Gaussian mix-

ture models (GMMs), support vector machines (SVMs) and a projection pursuit learner

(PPL) – but so far have we conducted extensive tests only with the ANN and GMM

based evaluators.

Currently there are two special kinds of evaluators in the system that do not work

with spectral data. One of them is the “AprioriEvaluator” . As its name suggests,

it simply returns the a priori probabilities of the phone classes, based on the frequency

counts of the phone labels in the train set. The other one is the “DurationEvalua-

tor” that models the phone durations using advanced techniques. Their estimates can

be combined with the estimates of the conventional evaluators using proper “Combi-

neEvaluator” modules.

4.1.5 The Matching Engine

The task of the matching engine is to traverse all the possible hypotheses (the search

space being defined by the segmentation and the phone set), evaluate them (the score

of a hypothesis being defined by the acoustic evaluators, the language model and the

aggregation strategy inherent to the engine), and to return a ranked list of the best

hypotheses. Currently there are three different matching engine modules implemented

in the system; they differ in the strategy they apply for traversing the search space.

The ‘Viterbi Engine’ performs a Viterbi-style decoding, that is, a time-synchronous

or breadth-first search. The ‘Priority Queue Engine’ implements stack-decoding that

corresponds to a best first-search. The ‘Multiple Priority Queue Engine’ is a refined

version of the previous one in the sense that it stores the hypothesis belonging to

different time end points in separate queues.

Although in theory the evaluation of all possible hypotheses guarantees optimal

performance, in practice the processing time required for this is prohibitively long.

Hence, for fast execution it is very important to find search space pruning heuristics

that can throw away unpromising hypotheses without losing the good solutions. In

Viterbi encoding it can be done by applying the so-called beam search. In the stack

decoding scheme a natural solution is to limit the size of the stacks and thus allow them

to discard the least promising partial solutions. These techniques are both implemented

in OASIS; more details about efficient decoding in OASIS can be found in the articles

by Gábor Gosztolya who developed the matching engines of the system [37, 38, 39, 40].

The result of the recognition is evaluated by comparing it to the transcript belonging
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the sound file in the database. This may be an orthographic or a phonetic transcript,

depending on whether we perform word or sentence-level recognition, or just phonetic

decoding. In the case of isolated word recognition the comparison is quite simple and

can be performed by the “CompareResult” module. In the case of recognizing phone

or word sequences the comparison corresponds to an edit distance calculation. This can

be executed by the “CompareEditDist” and the “CompareSentence” modules

(for word and phone sequences, respectively).

4.1.6 Language Models

In most recognition tasks we have linguistic restrictions on the possible phone sequences.

The role of the language model is to provide the decoder with the possible phone

sequences, along with their corresponding probabilities. In line with the philosophy of

the OASIS system, the language models are special kinds of evaluators, but because of

their complexity and the conventional separation of the acoustic and language models

we choose to discuss them in this separate subsection.

Essentially, we can group the language models into three main categories. In the

simplest case we are dealing with an isolated word recognition task. In this case it is

sufficient to construct a pronunciation dictionary that simply lists the possible pronun-

ciation(s) of each word. This simple form of language models is implemented by the

“Dictionary” module of the OASIS system. For efficient storing and decoding, the

dictionary is stored in a tree-like compressed form.

Another group of language models are the statistical ones. From these the so-

called N -grams [49] are the most popular in speech recognition. These estimate the

probability of a word or phone based on its ‘history’, that is the previous N − 1 words

or phones. The OASIS system is capable of supporting the usage of both word and

phone N -grams. They are implemented via the “BLanguage” module of OASIS.

In the most difficult case the language model is formal (grammar-based), or a com-

bination of formal and probabilistic techniques. In Hungarian the creation of such a

language model raises special problems because of the agglutinative nature of the lan-

guage. The “SimpleRTN” module of the OASIS system contains an implementation

of a complex language model that combines context-free grammars and finite state

systems to solve these problems. We intended to keep the structure of this module

as similar to the language description techniques of other recognizers as possible. So,

when designing this sophisticated language model we initially followed the interface of

the Microsoft Speech API. It provides an XML description scheme for the definition

of context-free grammars, the words themselves being the terminals of the language.

However, in a Hungarian listing having all the agglutinated forms of a word stem is

intractable. As it happens, Hungarian morphology can be well modelled by finite state

systems [35]. Moreover, we observed that the agglutinated forms of a stem can be

stored in a much smaller space with transducers than with a traditional compression

algorithm. This led us to extend the SAPI description so that transducers could be

embedded in the place of terminals. This results in a context-free grammar with its
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terminals being the words recognized by the transducer. Further compression can

be achieved by applying special automaton compression algorithms which create the

smallest possible transducer that models the same language [55]. Additional savings in

storage are possible by storing the resulting transducer in a special data structure [56].

As regards the technical details, the implementation of the storage and traversal

of the transducers was relatively straightforward. Managing the context-free grammar,

however, required the implementation of a recursive transition network that was built

on a stack automaton. We also had to store the actual values of the stack, which

required special technical solutions.

The SAPI handles probabilities by allowing the user to associate weights with the

right hand side alternatives of a rule. The transducers embedded in our extended

scheme also allow the weighting of the transitions. So, by combining the two levels,

the system is able to associate a probability to any phone sequence.

Independent of the type of modelling, the interface of the language models is ad-

justed to suit the requirements of the decoder modules. During the extension of a

hypothesis the decoders ask for the possible extensions of a phone sequence, so the

task of the language model is to return all the possible subsequent phones of a prefix.

Based on this, the interface of the language models consists of two functions, together

making it possible to iteratively traverse all the phone sequences of the model. These

functions are:

Enter: Returns the first possible extension of a prefix, along with its probability

(or returns a null pointer if there is no extension).

Next: Return the next possible extension of the same prefix, along with its proba-

bility (or returns a null pointer if there are no more extensions).

4.2 Summary

In this chapter we provied a brief introduction to the speech recognition technology, we

compared the frame-based and segmental-based recognition strategies, and presented

our speech recognizer framework called OASIS. This sophisticated system served as

a designing and testing environment for speech technology research of the Research

Group on Artificial Intelligence.

The system was designed and its kernel functions and the auxiliary modules were

implemented by the author of this dissertation. He also contributed in coding the signal

processing modules (e.g “MicIn” and “SoundDetect”), in the feature extraction mod-

ules (especially in implementing real-time processing), and in the language processing

modules (“Dictionary” and the first versions of RTN processing). The OASIS System

contains combination strategies as a subsystem of the Evaluation modules, which was

also designed by the author. The results obtained by this module will be presented in

the next chapter.
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The quality of a speech recognizer application is highly dependent on the performance

of the phoneme classifier module applied. Thus, to build better speech recognizer

systems, it is advisable to consider the combination strategies of phoneme classifier

modules.

In this chapter, we will focus on the phoneme recognition using our segment-based

speech recognizer system called “OASIS” as a testing environment. In the first section

we will describe the evaluation domain, then we will present the initial frame-based

features and show how these are converted into segmental features. This is followed

by an elaboration of how the feature extraction techniques of chapters 3 and 4 were

applied along with a brief explanation of the learning algorithms used. Finally we discuss

the test settings, the results and, of course, their evaluation.

5.1 Evaluation domain

The various hybrid techniques were compared using a relatively small corpus that con-

sists of several speakers pronouncing Hungarian numbers. More precisely, 20 speakers

were used for training and 6 for testing, and 52 utterances were recorded from each per-

son. The ratio of male and female speakers was 50%:50% in both the training and the

testing sets. The recordings were made using an inexpensive commercial microphone

in a reasonably quiet environment, at a sample rate of 22050Hz. The whole corpus

was manually segmented and labelled. Because the corpus contained only numbers, we

had occurrences of only 32 phones, which is approximately two-thirds of the Hungarian

phoneme set. Because some of these labels represented only allophonic variations of

the same phoneme, some labels were fused, and so we actually worked with a set of

just 28 labels. We performed tests as well with two other groupings where the labels

were grouped into 11 and 5 classes, respectively, based on phonetic similarity. We had

two good reasons for doing experiments with these gross phonetic classes. First, we
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could increase the number of training examples in each class and inspect the effects of

this on the learning algorithms. Second, our speech recognition system has a first-pass

stage in which the segments are classified into gross phonetic categories only.

Hence we had three phonetic groupings, which will be denoted by grp1, grp2, and

grp3 from this point on. With the first grouping, the number of occurrences of the

different labels in the training set was between 40 and 599. This value was between 120

and 1158 for the second grouping and between 716 and 2158 for the third grouping.

5.1.1 Acoustic features

In the following we describe the initial feature extraction techniques which were em-

ployed in our tests. For each test a certain subset of these features was chosen.

Critical Band Log-Energies (CBLE)

Before the initial feature extraction, the energy of each word was normalized. After this

the signals were processed in 512-point frames (23.2 ms), where the frames overlapped

by a factor of 3/4. A Fast Fourier Transform was applied on each frame. Next, critical

band energies were approximated by the use of triangular-shaped weighting functions.

24 such filters were used to cover the frequency range from 0 to 11025Hz, the bandwidth

of each filter being 1 bark. The energy values were then measured on a logarithmic

scale.

Mel-Frequency Cepstral Coefficients (MFCC)

In order to incorporate the most common preprocessing method (namely MFCC) into

our features, we made additional tests after taking the discrete cosine transform (DCT)

of the critical band log-energies calculated above. The test used the first 16 coefficients

(including the zeroth one). A point which should be mentioned here is that since the

spectrum has already been smoothed by the critical band filters, the calculation of the

cepstrum does not fulfil its original task of removing the effect of pitch. Instead, its

supposed benefit is the decorrelation of features. In fact, it can be proved that the

DCT approximates the PCA quite closely for most signals, so it is worth comparing the

classification results for MFCC with critical band log-energies plus PCA.

Formant Band Gravity Centres (FBGC)

Besides the ones above we also wanted to do experiments with some more phonetically

based features like formants. However, since we had no reliable formant tracker (which

is known to be a very difficult task anyway), we instead used gravity centres as a

crude approximation for formants . The gravity centres were calculated from the power

spectrum in the following four frequency bands:
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200 Hz - 1400 Hz,

1000 Hz - 3000 Hz,

2500 Hz - 4000 Hz,

3000 Hz - 11025 Hz

The formula for the gravity centre G(a, b) of a band [a, b] is

G(a, b) =

∫ b

a
fS(f)df

∫ b

a
S(f)df

, (5.1)

where S(f) denotes the power spectrum.

The tests were performed on five feature sets[62] described later. Because all sets

contained duration information, we do not mention this separately. Set1 consisted of the

MFCC coefficients, because these are the most commonly used features. To have the

chance of studying the usefulness of the cosine transform, we also carried out tests on

the filter bank energies themselves (Set3). By augmenting Set1 and Set3 with gravity

centre features, we got two new sets, Set2 and Set4. We hoped that the addition of

these phonetics-based features would lead to a slight improvement. Lastly, the largest

set Set5 contains all the features, that is, filter bank energies, MFCC coefficients, and

gravity centres. The same trials were performed on the three phoneme groupings grp1,

grp2, grp3.

5.1.2 Classifiers

Each of the classifiers used in the experiments was modified so as to make them capable

of providing a posteriori probabilities for each class ωk.

Decision Tree Learner:

Our version of DTL used in the experiments is based on the C4.5 [86] tree learning

algorithm. It is able to learn predefined discrete classes from labelled examples. The

result of the learning process is an axis-parallel decision tree. This means that during

the training, the sample space is divided into subspaces by hyper-planes which are

parallel to every axis but one. In this way, we obtain many n-dimensional rectangular

regions that are labelled by class labels and organized in a hierarchical way so it can

be encoded into a tree. For knowledge representation, DTL uses the "divide and

conquer" technique, which means that regions are split during learning whenever they

are insufficiently homogenous, and left untouched when they are homogenous. Splitting

is done by axis parallel hyper-planes and, thanks to this, the learning process is quite

fast. Hence the greatest advantage of the method is time complexity. Unfortunately,

the simple learning strategy in certain cases results in a huge number of regions that

are needlessly split.
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Gaussian Mixture Models:

GMM[24] assumes that the class-conditional probability distribution p(xi|ωk) can be

well-approximated by a distribution of the form

f(xi) =

l
∑

j=1

cjN (xi, µj,Cj), (5.2)

where N (xi, µj,Cj) denotes the multidimensional normal distribution with mean µj and

covariance matrix Cj, l is the number of mixtures and cj are nonnegative weighting

factors that sum to 1.

As luck would have it, there is no closed formula for the optional parameters of the

mixture model. Normally the expectation-maximization (EM) algorithm is utilized to

find proper parameters, but it guarantees only a locally optimal solution. This iterative

technique is very sensitive to initial parameter values, so we used k-mean clustering

to find a good starting parameter set. Since k-mean clustering again guarantees only

a local optimum, we ran it 15 times with random parameters and took the one with

the highest log-likelihood to initialize the EM algorithm. In each case the covariance

matrix was made diagonal because training full matrices would have required much

more training data and computation time.

Support Vector Machines:

SVM[113] was developed by Vapnik for binary classification. It selects a hyperplane with

maximal margin to separate points with different class labels, but prior to that it applies

a nonlinear transformation to map the patterns to a higher dimensional space where

the classification is easier. The problem of nonlinearity is handled by kernel functions,

which makes Support Vector Machines a very powerful tool for machine learning.

Artificial Neural Networks:

ANNs[8] now count among the conventional pattern recognition tools, so we will not

describe them here. In the trials performed we used the most common feed-forward

multi-layer perceptron network with the back-propagation learning rule. The number

of neurons in the hidden layer was set at three times the number of features (this value

was chosen empirically based on preliminary trials). Training was stopped when, for

the last 20 iterations, the decrease in the error between two consecutive iteration step

remained below a certain threshold.

k Nearest Neighbour:

kNN[24] is a well known classifier used in pattern recognition. Because no rule or

decision is made before the actual classification, this approach is called lazy learning.

Typically, this kind of machine learning has a very short training time but the classifi-

cation of new data takes rather a long time. The storing and processing of millions of
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ANN SVM GMM kNN DTL
g1set1 13.71% 14.01% 21.16% 20.09% 35.58%
g1set2 12.23% 13.71% 24.65% 19.86% 33.75%
g1set3 11.88% 11.76% 26.77% 21.34% 32.80%
g1set4 12.23% 11.82% 25.59% 21.99% 32.09%
g1set5 11.88% 11.41% 24.36% 19.24% 34.22%
g2set1 10.64% 9.93% 18.68% 13.83% 22.10%
g2set2 10.40% 9.69% 21.69% 13.48% 22.46%
g2set3 8.63% 8.22% 18.68% 12.12% 21.75%
g2set4 10.76% 7.92% 18.26% 13.00% 21.45%
g2set5 9.93% 8.16% 20.33% 12.41% 24.76%
g3set1 7.15% 6.03% 11.76% 8.51% 13.38%
g3set2 6.32% 5.56% 11.82% 7.51% 12.71%
g3set3 5.38% 5.61% 10.22% 6.86% 10.87%
g3set4 5.32% 5.14% 10.46% 7.39% 12.00%
g3set5 5.61% 4.96% 10.11% 6.86% 12.35%

Table 5.1: Classification errors of the individual classifiers

examples can also be a serious handicap. Despite this, being a stable inducer it is an

excellent tool for machine learning.

5.1.3 Results of the standalone classifiers

In the first stage all the classifiers were tested on the same data set. As can be seen

in Table 5.1, SVM performed the best, ANN also had a good score, but the other

classifiers only produced poor results.

5.1.4 Selecting Classifier Set

One can expect a different performance depending on which classifiers are combined.

To obtain the optimal classifier selection, a different subset of the classifiers was se-

lected for combining with the same method. The subsets were generated sequentially

by inserting the next element from the strictly ordered list of classifiers into the previous

subset. The combination rule applied in the test was the Product rule.

The above test results in Table 5.2 show that there is little point in using all the classi-

fiers in combination schemes, as the optimal solution is a combination of SVM, ANN,

and kNN. Including GMM and DTL only leads to a deterioration in the classification

performance.

5.1.5 Comparing combination rules

In the next stage of the testing we combined the outputs of the selected classifiers

(SVM, ANN, and kNN) by applying various combination rules. Table 5.3 suggests that

there is no definite optimal rule for combining classifiers using this database. Combiners
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ANN

SVM

ANN

SVM

kNN

ANN

SVM

kNN

GMM

ANN

SVM

kNN

GMM

DTL

g1set1 13.71% 12.46% 12.00% 15.07% 29.91%
g1set2 12.23% 11.70% 11.76% 18.14% 27.42%
g1set3 11.76% 11.05% 11.70% 18.44% 27.96%
g1set4 11.82% 11.05% 12.77% 19.62% 28.25%
g1set5 11.41% 10.99% 10.87% 19.39% 27.66%
g2set1 9.93% 10.11% 8.63% 10.93% 17.43%
g2set2 9.69% 9.69% 8.76% 12.12% 16.61%
g2set3 8.22% 7.80% 7.03% 12.29% 16.19%
g2set4 7.92% 9.10% 8.98% 13.18% 17.14%
g2set5 8.16% 9.46% 8.51% 13.95% 19.33%
g3set1 6.03% 6.21% 5.14% 7.98% 8.04%
g3set2 5.56% 5.67% 5.02% 7.74% 9.04%
g3set3 5.38% 4.96% 5.14% 7.92% 7.21%
g3set4 5.14% 5.02% 4.67% 8.22% 9.40%
g3set5 4.96% 5.50% 5.02% 7.74% 9.10%

Table 5.2: Combination error obtained using the Product Decision Rule

which applied the Sum rule performed the best, but the improvement compared with

the others was only marginal.

5.1.6 Results using Bagging

In this part the Bagging algorithm was applied to each of the classifiers. During the

trials 15 bootstrap samples were generated, each of them with a size two-thirds that

of the size of the original training-set.

As can be seen (Table 5.4), Bagging can improve classification performance, almost to

the same level of the previous combination methods, but it requires more processing

time.

5.1.7 Results using Boosting

Because Boosting is an improvement on Bagging, we expected a better performance.

Testing Boosting on this data-set, however, produced roughly the same classification

error values. The explanation for this is that the classifiers are “too strong”, they

generated very small classification errors when using the training set. After the first step

of Boosting, only the “noise” remained in the bootstrap sample, which was too difficult

to separate, and the classification error on this sample generally hit the 50% limit. Here

the algorithm exits, but in practice a standard Bagging (uniform bootstrapping) step

can be performed instead. The result (Table 5.5) is very close to that for the Bagging
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Prod Sum Max Min Borda Voting
g1set1 12.00% 11.64% 12.59% 12.77% 12.77% 13.23%
g1set2 11.76% 11.41% 12.06% 13.06% 12.06% 11.47%
g1set3 11.70% 11.35% 13.18% 12.29% 11.64% 10.87%
g1set4 12.77% 12.41% 14.24% 12.35% 12.59% 11.41%
g1set5 10.87% 10.70% 11.88% 11.17% 11.41% 11.17%
g2set1 8.63% 8.45% 9.22% 9.10% 8.87% 9.16%
g2set2 8.75% 8.57% 9.87% 9.16% 9.10% 9.04%
g2set3 7.03% 7.09% 8.04% 7.33% 7.80% 7.15%
g2set4 8.98% 7.98% 9.87% 9.34% 8.69% 7.74%
g2set5 8.51% 8.22% 8.98% 7.98% 8.81% 8.51%
g3set1 5.14% 5.14% 6.32% 5.61% 5.61% 5.56%
g3set2 5.02% 5.50% 5.73% 4.85% 5.08% 5.08%
g3set3 5.14% 4.91% 5.26% 5.20% 5.08% 4.91%
g3set4 4.67% 4.61% 5.02% 4.79% 5.02% 4.91%
g3set5 5.02% 4.96% 5.08% 5.14% 5.14% 5.14%

Table 5.3: Classification error of hybrid combinations using ANN, SVM, and kNN

ANN SVM GMM kNN DTL
g1set1 12.71% 12.59% 19.80% 20.45% 26.36%
g1set2 11.76% 12.23% 23.05% 19.21% 22.70%
g1set3 10.99% 10.28% 22.70% 21.10% 22.87%
g1set4 11.88% 11.29% 22.94% 22.28% 21.57%
g1set5 10.70% 10.82% 21.22% 20.21% 21.39%
g2set1 11.17% 9.52% 14.83% 13.95% 16.84%
g2set2 9.75% 9.40% 18.38% 13.65% 17.32%
g2set3 8.16% 7.45% 15.96% 12.83% 16.90%
g2set4 8.69% 7.51% 16.67% 13.12% 16.31%
g2set5 9.57% 7.86% 16.67% 12.65% 16.37%
g3set1 6.80% 5.44% 11.05% 8.87% 11.23%
g3set2 6.38% 5.08% 10.64% 7.80% 10.52%
g3set3 5.79% 5.50% 10.11% 7.51% 11.82%
g3set4 5.26% 4.61% 09.57% 7.15% 10.22%
g3set5 6.09% 5.02% 9.63% 7.09% 10.40%

Table 5.4: Classification error of Bagging classifiers
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ANN SVM GMM kNN DTL
g1set1 12.51% 12.44 18.55% 20.32% 25.12%
g1set2 11.56% 11.97 22.05% 19.42% 22.25%
g1set3 10.79% 9.67 20.12% 20.87% 21.98%
g1set4 11.88% 10.43 20.05% 22.16% 21.60%
g1set5 10.66% 10.34 21.22% 19.87% 20.47%
g2set1 11.17% 9.72 14.87% 13.95% 16.75%
g2set2 9.75% 9.31 17.12% 13.87% 15.88%
g2set3 8.42% 7.14 15.27% 12.83% 16.36%
g2set4 8.64% 7.62 14.98% 13.07% 16.59%
g2set5 9.77% 7.36 15.14% 12.68% 15.72%
g3set1 6.76% 5.32 11.23% 8.97% 11.17%
g3set2 6.41% 4.87 9.96% 7.72% 10.69%
g3set3 5.63% 5.50 10.03% 7.31% 11.47%
g3set4 5.28% 4.82 9.98% 7.22% 9.93%
g3set5 6.02% 4.91 9.61% 6.98% 10.05%

Table 5.5: Classification error of Boosting classifiers

algorithm.

5.2 Conclusions and Summary

In this chapter we surveyed the various combination schemes available using speech

recognition oriented data-sets. The author designed and implemented the combina-

tion methods, and integrated them as submodules into the “OASIS” speech recognizer

framework. The experimental results show that making classifier hybrids improved the

discrimination performance, the best results being obtained by aggregating the output

of SVM, ANN, and kNN. The performance of the combiners applying different decision

rules was not significantly different, but the “Sum” rule outperformed the others. Com-

paring the traditional Bagging and Boosting techniques, we found that they had nearly

the same classification improvement, but their applicability was limited because they

were too CPU intensive. The findings suggest that it is worth applying combination

techniques in phoneme-level speech recognition systems because they will hopefully

produce better scores, hence improve the overall results.
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Vocal Tract Length

Normalization

As we mentioned earlier, the efficiency of a speech recognizer application is highly

dependent on the performance of the phoneme classifier module used. Also, it is just

as important for a phonetic teaching system like our Phonological Awareness Teaching

System called “Speech-Master”. Since the system should work well both for children

and adults of different ages, the recognizer has to be trained with the voices of users

of both genders and of practically any age. The task is also special because it has to

recognize isolated phones, so it cannot rely on language models. Consequently, there

is a heavy burden on the acoustic classifier, and we need to apply any helpful trick that

might improve the overall performance.

One of the available techniques is speaker normalization, or more specifically, vocal

tract length normalization (VTLN), which proves very useful when the targeted users

vary greatly in age and gender. Applying off-line vocal tract length normalization

algorithms [21, 25, 83, 111, 119, 120, 121], one can build recognizers that work robustly

with voice samples from males, females and children.

In this chaper we will examine how the combination techniques affect the perfor-

mance of the on-line normalization techniques, and we will show that with a careful

selection of combiners it is possible to surpass the accuracy of the off-line methods.

This chapter is organized as follows. The following section give a brief introduction

to the the Vocal Tract Length Normalization methods, and then it examines the vari-

ous parameter estimation techniques. Section 2 describes the evaluation domain, the

database, the available features and the classifier algorithms used for the inspection.

In Section 3 is concerned with the combination techniques, focusing on the traditional

and linear combination schemes. The experiments section compares the performance

of the various VTLN and combination methods. Lastly, we give some brief conclusions,

and make some suggestions about classifier combinations.

47
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6.1 The Model used for VTLN

One of the major physiological sources of inter-speaker variation is the vocal tract length

of the speakers (Fig. 6.1). In [21] the average vocal tract length for men was reported

Nasal Cavity

Lips

Tongue Body Vertebral
Column

Larynx Frequency

Man

Girl

Spectrum

Figure 6.1: Vocal Tract Length and its frequency shifting. The graph drawn with
solid and dashed line shows the spectrum of a vowel uttered by a man and a girl,
respectively.

to be 17 cm, for women it was 15 cm, and for children it was 14 cm. The formant

frequency positions are inversely proportional to vocal tract length and this causes a

shift of the formant centre frequencies. Consequently, VTLN is usually performed by

warping the frequency scale.

Modelling the vocal tract as a uniform tube of length L, the format frequencies

are proportional to 1/L. Thus the simplest approaches use a linear warp. In reality,

however, the vocal tract is more complex than a uniform tube. That is why many more

sophisticated warping functions have been proposed in the literature [25, 119]. Some

of the commonly applied warping functions are:

• Linear warping function

f ′ = kf (6.1)

• Exponential warping function

f ′ = k3f
s f, (6.2)

• Bilinear warping function

f ′ = f +
2

π
tan−1 (k − 1) sin(πf)

1 − (k − 1) cos(πf)
, (6.3)

• Piecewise linear warping function (vertical)

f ′ =

{

kf 0 ≤ f ≤ t

k2f(1 − k2) t < f ≤ 1
, (6.4)

where t = h
k

k2 = 1−kt
1−t

.
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Figure 6.2: Examples of VTL warping functions. The figures show the mapping
between the original (horizontal axis) and the warped (vertical axis) frequencies.

• Piecewise linear warping function (horizontal)

f ′ =

{

kf 0 ≤ f ≤ t

k2f(1 − k2) t < f ≤ 1
, (6.5)

where t = h k2 = 1−kt
1−t

,

Given a warping function, normalization can be implemented either by re-sampling

and interpolating the spectrum or modifying the width and centre frequencies of the

mel (Bark) filter bank.

6.1.1 VTLN parameter estimation

The linear discriminant (LD) criterion is defined using the covariance matrices of a

given sample set over a speech database. Each sample is placed in a phonetic class

and the samples that belong to a given speaker are extracted using the same warping

parameter. The task is then to optimize these parameters for each speaker according

to the LD criterion:

LD =
|B|
|W | , (6.6)

where B is the between-class and W is the within-class covariance matrix. The value

of the LD criterion is small if the different classes are spaced out and each of them has

a small scatter around the class centres. While optimizing the warping parameters of

all the speakers at the same time is impractical, an iterative process (Algorithm 3) can

be applied.
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Algorithm 3 LD-VTLN parameter estimation
Choose an initial warping factor for each speaker and warp the samples
while the average warping factor variation is above the set threshold do

for all speakers do
calculate the LD criterion for each α value in a small neighbourhood of the
current warping parameter
select the best warping parameter

end for
Update the sample set using the optimal warping factors that are obtained

end while

This optimization method, however, works off-line. So a natural question then

arises. Is it possible to efficiently estimate the optimal parameters obtained by off-line

algorithms using machine learning regression methods that work on-line?

6.1.2 Real-time VTLN

LD-VTLN parameter estimation requires all the utterances in advance. Real-time recog-

nition systems, however, require an instantaneous response. To have the advantages

of speaker normalization in on-line systems, machine learning methods can be applied

to the estimation of the correct parameters. Out of the many possible regression tech-

niques we chose to experiment with neural nets. Their task is to estimate the optimal

LD-VTLN warping parameter for each speaker based on the actual spectral frame with-

out warping. Paczolay [82] compared the performance of these kinds of on-line method

with those off-line LD-VTLN parameter estimation techniques.

6.2 Evaluating Domain

Firstly we will describe the corpus, the feature extraction technique, then the classifiers

and regression algorithms used in the tests.

For training and testing purposes we recorded samples from 240 speakers, namely

60 women, 60 men, 60 girls and 60 boys. The children were aged between 6 and 9.

The speech signals were recorded and stored at a sampling rate of 22050 Hz in 16-bit

quality. Each speaker uttered all the Hungarian vowels, one after the other, separated

by a short pause. Since we decided not to discriminate their long and short versions,

we only worked with 9 vowels altogether.

6.2.1 Feature Sets and Classifier

The signals were processed in 10 ms frames, the log-energies of 24 critical-bands being

extracted using FFT and triangular weighting [87]. The energy of each frame was nor-

malized separately, which meant that only the spectral shape was used for classification.

In all the classification experiments the Artificial Neural Nets (ANNs) [8] employed
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here were the well-known three-layer feed-forward MLP networks trained with the back-

propagation learning rule. The number of hidden neurons was equal to 16.

6.2.2 Warping parameter estimation

In order to test the performance of the VTLN techniques, we transformed the original

features of the databases using the calculated α warping parameter for each pattern

and then generated a database for each set of output data. To estimate parameter

values the following methods were applied:

• LD-VTLN: The initial value of the warping parameter α was set to 0. For the

optimization the value of α in this interval was quantized – it could take one of

15 discrete values. The iteration was stopped when the average change in the

warping parameter fell below 10−2.

• RT-VTLN: For the learning of the parameter α of the warping function a

special MLP network was constructed with one output neuron and two hidden

layers with 32 and 24 neurons, respectively. Training was performed with respect

to mean square error.

6.3 Combination strategies

Since the applied classifier algorithm, a Multilayer Perceptron network supplies the

class-conditional probabilities for all the class labels, any of the confidence level com-

bination strategies can be utilized for improving the efficiency the Vocal Tract Length

Normalization.

6.3.1 Multi-Model classifier

Multi Model Classifiers is a special classifier combination, where the combined class

probabilities are given by:

p̂j(x) =
N
∑

i=1

wi(x)pj
i (x) (6.7)

Here the weight vector w depends on the current pattern. In addition only one compo-

nent of w can be non-zero, so this weighting selects a classifier whose output appears

as the output of the given combination, i.e.:

wi(x) =

{

1 if i = σ(x)

0 otherwise
, (6.8)

where σ is a special function which selects a classifier for the current pattern. To

implement this function any possible machine learning method can be applied.
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88.32

96.11

92.66

94.04

91.32

90.81

LD−VTLN

Concat

RT−VTLN

Multi−Model

All

Children

Girls

Boys

Women

Men

Recognition accuracy

Table 6.1: Recognition accuracies of the standalone classifiers (in percent). The
parameter estimation of LD-VTLN requires all pattern data in advance, thus this
method cannot be utilized in real recognition systems, its performance can be
regarded as a reference value for the other normalization techniques.

6.4 Classification Results

The experiments were conducted as follows. We employed 5-fold leave-one-out cross-

validation, keeping the ratio of boys, girls, men and women uniform in each case. So

the train and test sets had a ratio of 4 : 1. Separating the original database named “All”

according to the speakers gender and age, we obtained databases for “Men”, “Women”,

“Boys”, “Girls”, and “Children”. On each database we trained an MLP classifier.

For “Multi model” evaluations, we divided the train set into the following 3 cate-

gories: men, women, and children. On each of them we trained an MLP as classifier,

and afterwards we trained an MLP network with 16 hidden neurons to select the cate-

gory of a given pattern.

To make our regression-based normalization RT-VTLN more robust, we generated a

new concatenated database called “Concat” that, besides the warped features, contains

the original features as well.

Because the parameter estimation of LD-VTLN requires all pattern data in advance,

this method cannot be utilized in real recognition systems, so we treated its performance

as a reference value for the other normalization techniques.

Table 6.1 shows the classification accuracies measured on the chosen databases. It

was clear that the performance on the separated categories was significantly better than

that of the original, the ’Multi Model’ method being based on this experiment. Of the

VTLN techniques we applied, LD-VTLN performed the best, improving the accuracy

by 36 %. But being off-line technique, it requires all data in advance to work, so

this cannot be applied to real classification problems. The run-time VTLN produced a

moderate performance compared to the LD-VTLN, but this difference could be halved

using not only the warped but also the original features (“Concat”).



6.5 Combination results 53

88 89 90 91 92 93 94

Boosting

Bagging

AHP

Voting

Sum

Prod

Min

Max

−

Recognition accuracy
Base
RT−VTLN
Concat

Table 6.2: Recognition accuracy on the databases with combination (in %). The
various bars in each triplet correspond to the databases, and bar-triplets represent
the applied combiner.

6.5 Combination results

For the combiners “Max”, “Min”, “Prod”, “Sum”, and “Voting” we exploited the 8-fold

rotation of the database to generate 8 data-sets as training sets for the classifiers. After

training MLP networks on the corresponding sets we utilized a given set of combiners

on them, and measured their performances on a common test data-set.

To calculate the pairwise comparison matrices needed for the AHP method, we took

the quotient of classification errors of the two competing networks on a random test

set generated by bootstrapping (resampling the training data set with replacement) of

the training set.

“Bagging” and “Boosting” generate their own sequence of training data-sets; in these

cases we ran the methods on the original database directly, setting the max iteration

number to 50.

The experimental results are shown in Table 6.2. For each combiner the recognition

accuracy was measured on 3 different databases: “All”, “RT-VTLN”, and “Concat”. The

effect of the classifier combination depends on the database complexity. With the “All”

database, each of the combiners has a better performance than that for the original

classification. On the warped databases (“RT-VTLN” and “Concat”) the traditional

combinations have less influence. Bagging and Boosting gave the best scores due to

the large number of classifiers used.

Comparing the above results with the reference figure of LD-VTLN (92.55%), we

may conclude that with a properly selected combination scheme the regression based
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Normalization

real-time VTLN method (Boosting on Concat, 92.67%) can outperform the results of

the off-line method LD-VTLN.

6.6 Conclusions and Summary

In this chapter we examined the effect of Vocal Tract Length Normalization techniques

and their combination strategies on the phoneme classification performance. The au-

thor showed that the on-line parameter estimation methods can be handled as special

combination structures, and he implemented the adapted versions of combiner strate-

gies like “Bagging” and “Boosting”. The results demonstrated that using combination

stategies of the on-line methods, the overall system can achieve nearly the the same

recognition quality as that with the off-line normalization version, while applying Bag-

ging and Boosting may produce classifiers with better performances than those for

LD-VTLN. With these positive results the implemented module was integrated into the

award-winning Phonological Awareness Teaching System called “Speech-Master”.
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POS Tagging

Part-of-speech tagging (POS tagging or POST), also called grammatical tagging, is

the process of marking words in a text that correspond to a particular part of speech,

based on both their definition and their context, i.e. the relationship between adjacent

and related words in a phrase, sentence, or paragraph. A simplified form of this is

commonly taught to schoolchildren, in the identification of words as nouns, verbs,

adjectives, adverbs, and so on. Being a building block of many Human Language

Technology applications like NP parsing, a number of strategies have been proposed in

the literature to improve its performance.

In this chapter we will review the current state-of-the-art in Hungarian POS tag-

ging, and investigate the classifier combination strategies that can improve the overall

classification performace of such systems. In the first section, the most important pub-

lished results of the last few years in Hungarian POS tagging are summarized. After

we discuss our choice of the TBL algorithm as POS-tagger in details in Section 7.1. In

Section 7.3 we examine the combination stuctures used in the POS tagging application,

and then we propose a new strategy for adaptive POS tagger ensemble systems. The

results of the boosted tagger are presented in Section 7.4.

7.1 POS Tagging of Hungarian Texts

Standard POS tagging methods were applied to Hungarian as soon as the first annotated

corpora appeared that were big enough to serve as a training database for various

methods. The TELRI corpus [23] was the first corpus that was used for testing different

POS tagging methods. This corpus contains approximately 80, 000 words. Later, as the

Hungarian National Corpus [115] and the Manually Annotated Hungarian Corpus (the

Szeged Corpus) [3] became available, an opportunity was provided to test the methods

on bigger corpora (153M and 1.2M words, respectively).

In recent years several authors have published many useful POS tagging results in
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Hungarian. It is generally believed that, owing to the fairly free word order and the

agglutinative property of the Hungarian language, there are more special problems as-

sociated with Hungarian than those of the Indo-European languages. However, the

latest results are comparable to results achieved in English and other well-studied lan-

guages. Fruitful approaches for Hungarian POS tagging are Hidden Markov Models,

Transformation Based Learning and rule-based learning methods.

One of the most common POS tagging approaches is to build a tagger based

on Hidden Markov Models (HMM). Tufis [109] reported good results with the Tri-

grams and Tags (TnT) tagger [12]. A slightly better version of TnT was employed by

Oravecz [79], and it achieved excellent results. In their paper, Oravecz and Dienes [79]

argue that regardless of the rich morphology and relatively free word order, the POS

tagging of Hungarian with HMM methods is possible and effective once one is able

to handle the data sparsity problem. They used a modified version of TnT that was

supported by an external morphological analyzer. In this way the trigram tagger was

able to make better guesses about the unseen words and therefore to get better results.

An example of the results achieved by this trigram tagger is presented in the first row

of Table 7.2.

Another approach which is distinct from the statistical methods is the rule-based

learning one. A valuable feature of the rule-based methods is that the rules these

methods work with are usually more intelligible to humans than the parameters of

statistical methods. For Hungarian, a few such approaches are available in the literature.

In a comprehensive investigation, Horváth et al. [47] applied five different machine

learning methods to Hungarian POS tagging. They tested C4.5, PHM, RIBL, Progol

and AGLEARN [2] methods on the TELRI corpus. The results of C4.5 and the best

tagger found in this investigation (RIBL) are presented in the second and third rows of

Table 7.2. Hócza [44] used a different rule generalization method called RGLearn. Row

4 shows the test results of that tagger in Table 7.2. Transformation Based Learning

is a rule-based method that we will discuss in depth in the next section. Megyesi [73]

and Kuba et al. [68] produced results with TBL taggers that are given in Table 7.2, in

rows 5 and 6, respectively.

7.2 The TBL tagger

Transformation Based Learning (TBL) was introduced by Brill [17] for the task of POS

tagging. Brill’s implementation consists of two processing steps. In the first step, a

lexical tagger calculates the POS tags based on lexical information only (word forms).

The result of the lexical tagger is used as a first guess in the second run where both

the word forms and the actual POS tags are applied by the contextual tagger. Both

lexical and contextual taggers make use of the TBL concept.

During training, TBL performs a greedy search in a rule space in order to find the

rules that best improve the correctness of the current tagging. The rule space contains

rules that change the POS tag of some words according to their environments. From

these rules, an ordered list is created. In the tagging phase, the rules on the rule list
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Test Domain Baseline TBL

full corpus 94.94% 96.52%
business news 97.56% 98.26%
cross-domain 79.51% 95.79%

Table 7.1: Accuracy of the baseline tagger and the TBL tagger.

Tagger Accuracy

TnT + Morph. Ana. 98.11%
C4.5 97.60%
Best method (RIBL) 98.03%
RGLearn 97.32%
TBL 91.94%
TBL + Morph. Ana. 96.52%
Best combination 96.95%

Table 7.2: Results achieved by various Hungarian POS taggers.

are applied one after another in the same order as the rule list. After the last rule has

been applied, the current tag sequence is returned as a result.

For the Hungarian language, Megyesi applied this technique initially with moderate

success. [71] The weak part of her first implementation was the lexical module of the

tagger, as described in [73]. With the use of extended lexical templates, TBL produced

a much better performance but still lagged behind the statistical taggers.

We chose a different approach that is similar to the method in [68]. The first

guess of the TBL tagger is the result of the baseline tagger. For the second run, the

contextual tagger implementation we employed is based on the fnTBL learner module

[78]. Here we used the standard parameter settings included in the fnTBL package.

7.2.1 Baseline Tagger

The baseline tagger relies on the Humor [84] morphological analyzer to get the list of

possible POS tags. If the word occurs in the training data, the word gets its most

frequent POS tag in the training. If the word does not appear in the training, but

representatives of its ambiguity class (words with the same possible POS tags) are

present, then the most frequent tag of all these words will be selected. Otherwise, the

word gets the first tag from the list of possible POS tags.

Some results produced by the baseline tagger and the improvements obtained by

the TBL tagger are given in Table 7.1.
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7.3 Combination strategies

7.3.1 Related works

An exhaustive investigation on combinations of different POS taggers is available in

[110]. Voting strategies and multi-level decision methods (stacking) have been inves-

tigated also. For Hungarian, a third possible approach was studied by Horvath et. al

[47]. This was a cascade combinations of the taggers, which means that the output of

one tagger is the input of another. Kuba et al. [68] performed experiments by apply-

ing cascade and “Majority voting” combinations of various tagger methods. Cascading

TBL with any other tagger is a quite straightforward idea. The first guess that TBL

starts with can be the output of another tagger. This kind of concatenation naturally

requires that training of the TBL tagger should take place on examples tagged by the

first tagger. “Majority voting” is another simple way of combining methods. In the case

of three taggers, say, it means that the chosen tag will be the one that is suggested by

at least two of the taggers. If no such tag exists, the tag suggested by the preferred

tagger will be chosen. It is worth noting that for a majority voting strategy there is

no need to run all the taggers for each word. In this case, only two of them must be

run for every word and, should they disagree, the tag suggested by third tagger will

be chosen. This strategy provided the same result as majority voting with preference

given to the third tagger. It is clear that the selection of the preferred tagger will not

greatly influence the final outcome. Hence, when applying majority voting in a real

world tagger, other aspects like speed can determine the tagger preference. According

to the test results in [68], the combinations outperformed their component taggers in

almost every case. However, in the various test sets, different combinations proved

the best, so no conclusion could be drawn about the best combination. The combined

tagger that performed best on the largest test set is shown in row 7 of Table 7.2.

7.3.2 Combination strategies of the TBL tagger

In this chapter we are concerned with the combination of more TBL algorithms. TBL

belongs to the group of learners that generates abstract information, i.e. only the class

label of the source instance. Although it is possible to transcribe the output format

to the confidence type, this limitation reduces the range of the applicable combination

schemes. “Min”, “Max” and “ Prod” rules cannot produce a competitive classifier

ensemble, while “Sum” Rule and “Borda Count” are equivalent to “Majority voting”.

To build better combination strategies we need to investigate how to adapt the

more sophisticated adaptive techniques like “Boosting” to POS tagging applications.

7.3.3 Context-dependent Boosting

The task of the tagger is to select the proper Part of Speech code for a given word in

a sentence. The Boosting algorithm is based on weighting the independent instances
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based on the classification error of the previously trained learners. It builds classifiers

at each iteration that work well on the data instances with high weights, while the

instances with lower weights have less importance in the learning process. Most of

the algorithms like TBL cannot handle data instance weights directly. In such cases

Boosting creates bootstrap versions of the database, where the instances are drawn

randomly with replacement according to distribution determined from the weights.

Training the classifier algorithm on the bootstrapping databases simulates the weighted

training, but this strategy cannot be applied to context-dependent applications like

POS tagging. Here the words of the corpus are not independent instances because

their context and the position in the sentence both affect their meaning.

In this thesis we propose a general solution for these kind of applications. We will

treat the classifier as a black box that assigns class labels for a sequence of instances,

where the sequences are handled independently, but the context of the instances in the

sequence can have an effect on the labelling process. For context-free applications the

sequences contain just one instances, while in POS-tagging the sequences represent the

sentences.

The generalized version of Boosting assigns weights to the sequences instead of

the instances, and creates bootstrap samples by drawing sequences from the original

datasets. The classification error of the sequences can then be calculated from the

errors of the instances in the sequence. In the current implementation we use the

arithmetic mean. Despite this, the combined final error is expressed as the relative

number of misclassified instances.

Algorithm 4 Generalized context-dependent Boosting algorithm

Require: Training Set S, sequence number m, Inducer I
Ensure: Combined classifier C∗

S ′ = S with weights set to be 1/m
for i = 1 . . . T do

S ′ = bootstrap sample of sequences from S
Ci = I(S ′)

ǫi =
∑

xj∈S′:Ci(xj)6=ωj

weight of xj

if ǫi > 1/2 then Exit
βi = ǫi

(1−ǫi)

for all xj ∈ S ′ such Ci(xj) = ωj do
weight of xj = weight of xj · βi

end for
normalize weights of sequences to sum to 1

end for

C∗(x) = argmax
j

∑

i:Ci(x)=ωj

log
1

βi
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7.4 Experimental results

The training and test data sets utilized here are part of the Szeged Corpus [3]. This

corpus contains text samples taken from the following six domains: fiction, school

compositions, newspaper articles, computer-related texts, laws and short business news.

Out of these, business news texts have been separated and were used as a dataset for

domain-specific tests. The rest of the corpus was treated as a dataset for tests on a

general text. We will call this latter part of the corpus ‘the complete corpus’.

The grammatical structure and the vocabulary of business news are rather different

from texts of other domains. Hence we expect business news to be representative of

domain-specific corpora in cross-domain tests (in tests where the training and the test

data come from different domains).

The Szeged Corpus was annotated manually with morpho-syntactic codes from the

Hungarian version of the MSD (Morpho-Syntactic Description) code set. Throughout

this investigation, all tests were executed with the full MSD tag set. The complete

tag set contains several thousand possible codes, out of which 1113 tags appear in the

corpus.

Because the MSD tag set we used supports a fine distinction between different

parts-of-speech, the ratio of ambiguous words in all tokens is higher than usual: 43.4%.

The corresponding ratio is 27.7% and 10.0% for the Hungarian National Corpus and

the TELRI corpus, respectively [109, 47].

The training and testing datasets were chosen from the business news domain of the

Szeged Corpus. The train database contained about 128,000 annotated words in 5700

sentences. The remaining part of the domain, the test database, has 13,300 words in

600 sentences.

The results of the training and testing error rates are shown in Figure 7.1. The

classification error of the standalone TBL algorithm on the test dataset was 1.74%.

Boosting is capable of reducing it to below 1.31%, which means a 24.7% relative error

reduction. As the graphs show, boosting achieves this during the first 20 iterations, so

further processing steps cannot make much difference to the classification accuracy. It

can also be seen that the training error does not converge to a zero-error level. This

behaviour is due to the fact that the learner cannot maintain the 50% weighted error

limit condition. Bagging achieved only a moderate gain in accuracy, its relative error

reduction rate being 18%.

7.5 Summary

In this chapter we investigated the conventional classification strategies of POS tagger

applications. Simple, static combinations have become popular tools of research in the

last decade. However, the advanced adaptive techniques cannot be applied directly.

The author designed and implemented a new combination method, a context-dependent

variant of the Boosting algorithm, and compared the measured overall tagging scores
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Figure 7.1: Classification error of Bagging and Boosting algorithm on the training
and training datatsets ( dashed: Bagging, solid: Boosting).

with the results of the standalone parser and the traditional combination systems. The

results indicate that the proposed algorithm can reduce the classification error of the

TBL tagger by 24.7%, thus it can be applied in POS tagger systems that require very

high accuracies.
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NP Parsing

Syntactic parsing is the process of determining whether sequences of words can be

grouped together. It is an important part of the field of natural language processing

and it is useful for supporting a number of large-scale applications including informa-

tion extraction, information retrieval, named entity identification, and a variety of text

mining applications.

In this chapter we will examine the NP parsing of Hungarian texts, describe a parser

algorithm called PGS, and overview the combination structures that are able to improve

the parsing quality. The chapter is organized as follows. Section 8.1 summarizes the

related works on syntactic parsing, then the properties of Hungarian NP parsing are

described in sections 8.2 and 8.3. Section 8.4 presents the method used for learning

grammar from an annotated corpus, followed by Section 8.5, which investigates the

available combination strategies, and offers a Boosting variant method for this problem.

In the last section we describe how the proposed methods were tested, then we briefly

discuss the results of our experiments.

8.1 Related Works

Several authors published results of syntactic parsing especially designed for English.

Generally the performance is measured with three scores: precision, recall and an Fβ=1

rate which is equal to 2 precision·recall
precision+recall

. The latter rate has been used as the target

for optimization. Ramshaw and Marcus [88], for instance, built a chunker by apply-

ing transformation-based learning (Fβ=1=92.0). They applied their method to two

segments of the Penn Treebank [70] and these are still being used as benchmark data

sets. Tjong Kim Sang and Veenstra [102] introduced cascaded chunking (Fβ=1=92.37).

These novel approaches attain good accuracies using a system combination. Tjong Kim

Sang [103] utilized a combination of five classifiers for syntactic parsing (Fβ=1=93.26).
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8.2 Hungarian NP Parsing

Hungarian is an agglutinative, free word order language with a rich morphology. These

properties make its full analysis difficult compared to Indo-European languages. Un-

ambiguous marks for the automatic recognition of NP boundaries do not exist. The

right bound of NPs can be the head part of the NP, but in some cases the NP head

can replace its positions with its modifiers. Determining the left bound of NPs can be

more difficult, because it could be a determinant element, and, due to the possibility

of a recursive insertion, it is not easy to decide which determinant and NP head belong

together. Some of these difficulties are illustrated in the following:

• Free word order:

(NP Péter) olvas (NP egy könvvet): (NP Peter) is reading (NP a book).

(NP Egy könyvet) olvas (NP Péter) : (NP Peter) is reading (NP a book).

• Missing determiners:

(NP Péter) olvas (NP egy könyvet): (NP Peter) is reading (NP a book).

(NP Péter) (NP könyvet) olvas: (NPPeter) is reading (NP a book).

• Missing NP head:

(NP Péter) (NP a sárga könyvet) olvassa, (NP Mari) pedig (NP a pirosat):

(NP Peter) is reading (NP the yellow book) and (NPMary) (NP the red one).

where: (NP a pirosat) = (NP a piros könyvet)

Up till now there has been no good-quality syntactic parser available for the Hun-

garian language. Benchmark data sets for correctly comparing results on Hungarian do

not exist yet either. The HuMorESK syntactic parser [58] developed by MorphoLogic

Ltd uses attribute grammar, assigning feature structures to symbols. The grammar

part employed in the parser was made by linguistic experts. Another report on the on-

going work of a Hungarian noun phrase recognition parser [116] is based on an idea of

Abney’s [1] using a cascaded regular grammar and it has been tested on a short text of

annotated sentences (Fβ=1=58.78). The idea of using cascaded grammars seems ben-

eficial, this technique being used in all Hungarian parser developments. A noun phrase

recognition parser [45] is applied machine learning methods to produce grammar of

noun phrase tree patterns from an annotated corpus (Fβ=1=83.11).

8.3 The Training Corpus

Initially, corpus words were morpho-syntactically analysed with the help of the Hu-

Mor3 automatic preprocessor and then manually POS tagged by linguistic experts.

The Hungarian version of the internationally acknowledged MSD (Morpho-Syntactic

Description) scheme [27] was used for the encoding of the words. Due to the fact

that the MSD encoding scheme is extremely detailed (one label can store morpholog-

ical information on up to 17 positions), there is a large number of ambiguous cases,
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Figure 8.1: A parsing tree of a Hungarian sentence (with its English equivalent)
from the Szeged Corpus “Short Business News”

i.e. roughly every second word of the corpus is ambiguous. Disambiguation therefore

required accurate and detailed work. It required 64 person-months of manual annota-

tion. Currently all possible labels as well as the selected ones are stored in the corpus.

About 1800 different MSD labels are used in the annotated corpus. The MSD label

corresponds to the partof- speech determined attribute, and specific characters in each

position indicate the value for that attribute. For example, the MSD label “Nc-pa”

specifies the following properties:

POS: Noun,

Type: common,

Gender: - (not applicable to Hungarian),

Number: plural,

Case: accusative.

All the texts of Szeged Corpus were parsed manually, that is annotators marked

various phrase structures. The extensive and accurate manual annotation of the texts,

which required 124 person-months of manual work, is a good feature of the corpus.

The syntax trees of annotated sentences contain various type of phrases, shown by

following list:

Noun phrase (NP) Verb prefix (PREVERB)

Adjective phrase (ADJP) Conjunction (C)

Adverb phrase (ADVP) Pronoun phrase (PP)

Verb phrase (VP) Clause (CP)

Infinitive(INF) Sentence (S)

Negative (NEG)

In general, the NP building process of a sentence produces detailed NP trees much

like Figure 8.1. These general NP trees must be simplified because, of course, simpler

trees more readily support information extraction. This simplification was done by

linguistic experts in the manual annotation phase.
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8.4 Learning tree patterns

In this section the learning task of syntactic tree patterns will be described which

contains the preprocessing of training data, generalization and specialization of tree

patterns. An improved version of RGLearn [45] named PGS (Pattern Generalization

and Specialization) was used as a tree pattern learner.

8.4.1 Preprocessing of training data

The initial step for generating training data is to collect syntactic tree patterns from an

annotated training corpus. The complete syntax tree of sentence must be divided into

separate trees and cascade tree building rules to prepare the parser to reconstruct it.

In parsing, using context free grammar has a lot of advantages, but the conditions of

pattern usage may completely disappear. Some structural information can be salvaged

if tree patterns are used. To generate cascaded grammar, linguistic experts have defined

the following processing levels for the Hungarian language:

• Short tree patterns of noun, adjective, adverb and pronoun phrases.

• Recursive complex patterns of noun, adjective, adverb and pronoun phrases.

• Recursive patterns of verb phrases.

• Recursive patterns of sub-sentences.

8.4.2 Generalization of tree patterns

Using the collected tree patterns the syntactic parser is able to reconstruct the tree

structure of training sentences. But, in order to perform the syntactic parsing of

an unknown text to a fair accuracy, the collected tree patterns must be generalized.

Generalization means that the lexical attributes of each tag are neglected except for

the POS codes. In this phase the learning problem is transformed into a classification

problem. Namely, which set of lexical attributes would supply the best result for the

decision problem of tree pattern matching, i.e whether a given tree structure covers

a given example or not. To support the learner, positive and negative examples are

collected from a training set for each tree type. The example in Figure 8.2 shows the

complete tree pattern learning process.

8.4.3 Specialization of tree patterns

Negative examples are the bad classifications of generalized tree pattern and they must

be eliminated. Therefore specialization selects each possible lexical attribute from

positive examples by making new tree patterns and tries to find the best tree patterns

with unification.

The initial step of specialization generates all possible new tree patterns by extending

generalized tree patterns with exactly one attribute from the covered positive examples.

The next step of specialization extends the set of tree patterns with all possible new tree

patterns by a combination of each pair of tree patterns. The combination of two tree
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Sentence parts (examples):
1: . . . (NP Tf(AdjP Afp − sn)Np − sn) . . .
2: . . . (NP Tf(NP Afp − pn) Nc − pa −−− s3) . . .
3: . . . (NP (NP T i(NP Afs − sn))(NP /Nc − s2) . . .
4: . . . (NP Tf(AdjP Afp − sn)Nc − sn) . . .
5: . . . (NP Tf(AdjP Afp − sn)(AdjP Afp − sn)) . . .

Generalized pattern (one of four possible): (NP T ∗ (AdjP A∗) N∗)
Coverage: positive {1,4}, negative {2,3}, uncovered {5}
Specialized pattern: (NP T ∗ (AdjP A∗) N???n)
Coverage: positive {1,4}, negative {}, uncovered {2,3,5}

Notations:
In the lexical codes each letter is a lexical attribute, the first one being the part
of speech: T∗: determiner, A∗: adjective, N∗: noun, N???n: noun with a lexical
attribute, ?: a letter of any kind, ∗: one or more letters of any kind.
The noun and adjective phrases are represented by (NP ...) and (AdjP ...),
respectively

Figure 8.2: A tree pattern learning example.

patterns means the union of their lexical attributes. To avoid the exponential growth

of a tree pattern set, weak tree patterns are excluded by applying error statistics on

positive and negative examples. Here the following score of a given tree pattern is used

as the target for maximization:

score = λ1*(pos-neg)/pos + λ2*(pos-neg)/(pos+neg),

where pos is the number of covered positive examples, neg is the number of covered

negative examples and λ1 + λ2 = 1.

Fruitful unifications dramatically decrease the negative coverage, resulting in a pos-

itive coverage almost at the same time. The score maximization runs parallel on every

positive example. A new tree pattern is stored only if a covered positive example ex-

ists where the score of new tree pattern is greater than the previous maximum value.

Specialization stops when the current step did not improve any maximum value.

An appropriate setting of λ factors in linear combination can provide the optimal

tree pattern set. A greater λ1 may result in tree patterns with high coverage, while a

greater λ2 may result in a high accuracy but there is a possibility of low tree patterns

appearing with a low coverage.

8.4.4 Generating Probalistic Grammar Rules

The syntax tree of a sentence can generally be derived in different ways, especially

when using a large grammar. The choice of a best derivation from the derivation forest

requires additional information. One of the possible ways of doing this is a making

of PCFG (Probability Context Free Grammar). Using a PCFG, the probability of a

derivation is the product of probabilities of the applied rules, but the product may be
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replaced by other operators, e.g. a max operator. After evaluating each derivation, the

derivation with a higher probability will selected. The conditional probability of a rule

is computed with the following formula of Maximum Likelihood Estimation:

P (T → β|T ) =
Count(T → β)

Count(T )
(8.1)

The formula shows that the conversion of a CFG to a PCFG is based on rule application

statistics on the training data, namely, counting the proper coverage of each rule and

counting the node labels in the annotated syntax trees. This method is applicable for

tree patterns as well. Counting the coverage of tree patterns is the same as counting

coverage of one level rules.

8.4.5 Syntactic parsing

The main task of the syntactic parser is to find the most likely parse tree for input

sentences. Input data contains disambiguated POS tag labels and it may come from

the Szeged Corpus during the testing phase of the method, or it may be provided by

a POS tagger tool [66] as a practical application of the method. There are natural

language processing modules used to determine various linguistic features for syntactic

parsing when the process starts with plain text: tokenization, sentence segmentation,

morpho-syntactic analysis and part-of-speech (POS) tagging.

Parsing with a PCFG can be done in polynomial time – but disambiguation – namely

the selection of best possible parse tree from the parse forest, is an NP-hard problem.

Sima’an [99] demonstrated that there is no deterministic polynomial time algorithm for

finding the most probable parse of a sentence. Owing to this fact, it is not efficient

if the parser determines all possible derivations with probabilities, and then selects the

best one. Hence, the Viterbi algorithm [118] is applied in our parser to find the most

probable derivation, because it can perform it in cubic time. The basic idea behind

the Viterbi approach is the elimination of low probability subderivations in a bottom-up

fashion. Two different subderivations for the same part of sentence and with the same

root can both be included by derivations in the same way. Thus, if one of these two

subderivations has a lower probability, it will be eliminated.

The Viterbi elimination method is applicable for higher levels in bottom-up parsing

and finally for the selection among S roots of the derivation forest. There are a lot of

low probability subderivations that are pruned through parsing to speed up the process.

8.5 Combination Strategies

To build better NP parser systems, a number of combination strategies have been

proposed in the literature. Tjong Kim Sang and Veenstra [102] for instance introduced

cascaded chunking (Fβ=1=92.37). These novel approaches attain good accuracies using

combination systems. Utilizing a combination of five classifiers for syntactic parsing,
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Parser Fβ=1

Standalone parser 78.5
Prod Rule 79.4
Max Rule 77.5
Min Rule 78.7
Sum Rule 82.4
Borda Count 81.9
Bagging 83.6
Boosting 86.2

Table 8.1: Results achieved by combining RGLearn parsers

Tjong Kim Sang [103] got a slightly better performance (Fβ=1=93.26).

In the following we shall investigate the combination strategies of the RGLearn

parser. Since this parser algorithm provides confidence information type, the majority

of the combination schemes discussed in the previous chapters can be employed. The

overall syntax parser generates all the possible syntax tree for the input test, queries

all the the parser instances for the scores on these tree structures, then based on the

scores it selects the syntax tree with the best overall combined scores.

This framework allows the static combination techniques like “Prod”, “Sum”, “Max”,

“Min” and “Borda Count” to be integrated into the parser system. In the case of

adaptively trainable combiner methods like “Bagging” and “Boosting”, the algorithm

generates several parser instances that should concentrate on instances that behave

badly in previous iterations. Treating sentences as data instances, Boosting forces the

parsers to focus on the tree structures in problematic sententes, and then it creates

better parsing systems. Since the RGLearn algorithm can handle instance weights, this

combination strategy can be applied in our NP parsing applications as well.

8.6 Experiments

The training and test datasets were converted from a subset of the business news domain

of the Szeged Corpus. During the experiments we generated 50 learners by training the

PGS algorithm on different training sets, these sets being created by randomly drawing

4000 instances with replacement from the original training set. The λ1 parameter of the

PGS algorithm was selected for optimal performance on the original train dataset. From

our preliminary investigations we found that the PGS algorithm attains its maximal

recognition accuracy when λ1 is set to 0.7, hence this setting was used during the

combination experiments.

8.6.1 Results

The syntactic tree pattern recognition accuracy of the standalone RGLearn parser was

Fβ=1=78.5 on the business-news domain using 10-fold cross-validation.
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Based on their performance, the combination schemas can be divided into 3 groups.

The schemas Max, Min, and Prod have roughly the same performance: they cannot

significantly improve the classification accuracy of the PGS learner. The Borda Count

and Sum rule can take advantage of combinations, and produce an Fβ=1=82 score on

the test data-set. The best classification was obtained by using the Boosting algorithm,

achieving the value Fβ=1=86. Note that the context-dependent Adaboost algorithm

cannot reduce the training error rate to zero owing to the fact that the Boosting

algorithm requires that the weighted error should be below 50%, and this condition is

not always fulfilled. Comparing these results with the performance of the standalone

learner, we see that combinations can improve the classification scores by some 10%.

8.7 Summary

In this chapter we examined the NP parsing of Hungarian texts. A general machine

learning method called GPS was described and evaluated on the Szeged Corpus. To

obtain a better parsing efficiency the author examined several combination strategies

and implemented a Boosting-variant algorithm. As the results showed, the accuracy of

tree pattern recognition was effectively improved using the combination schemas, the

best performance being achieved by the proposed Boosting algorithm.
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Conclusions

In this thesis, we covered various aspects of classifier combination techniques, from

both the theoretical and practical perspectives. In particular, we studied classifier com-

bination techniques and showed how they could be applied with success to speech

recognition and natural language processing tasks.

In the last few decades, multiple classifier systems have become a powerful tool

for machine learning. Combination algorithms, especially the boosting methods, have

proved useful in improving classification scores. However, despite their success in the-

oretical investigations, applying the boosting algorithms is not always efficient in prac-

tice. In cases like speech recogition applications in mobile devices, simpler combination

strategies should be applied. The proposed strategy, based on the Analytic Hierarchy

Process, can be an alternative solution for these problems, providing a better perfor-

mance than that for the averaging methods.

As shown in this thesis, applications in Human Laguage Technologies can exploit the

benefits of classification improvements of the combination techniques. In the evaluation

tests on our speech recognizer system called “OASIS”, we investigated the efficiency

of the combination strategies of phoneme classifiers. Recognizing the importance of

phoneme classification, we examined another promising method for this task, namely

the Vocal Tract Length Normalization procedure. We found that combination strategies

can be applied successfully both for adapting the model for the speakers in real-time and

for improving the overall phoneme classification. Following our successful results, these

structures were integrated into our award-winning Phonological Awareness Teaching

System “SpeechMaster”.

Other tasks of Human Language Processing, like POS tagging and NP parsing, are

also known to be sensitive to the performance of the machine learning method applied.

To achieve better results, simple static combination techniques are available in the

literature. But due to the context dependence of these applications, more advanced

boosting methods cannot be used directly. The proposed context-dependent versions of

the boosting algorithm offer a solution for these problems, and the results demonstrate

71



72 Conclusions

that they can undoubtedly improve the parsing scores in the given Hungarian POS

tagging and NP parsing applications.



APPENDIX A
Databases Used in the Dissertation

A.1 The OASIS-Numbers Database

The OASIS-Numbers database consists of spoken Hungarian numbers. It was collected

at the Research Group on Artificial Intelligence of the Hungarian Academy of Sciences

within the framework of the SZT-IS-10 national grant. Thanks to the governmental

support, the database is freely accessible to everyone. The recordings of the corpus are

of reasonably good quality, having been recorded with several types of microphones at

a sampling rate of 22050 Hz in 16-bit quality. The speakers of the database are mostly

university students – 62 males and 49 females.

The utterances recorded can be grouped into two main categories. One of them

contains the so-called base words. These correspond to 26 words that are selected so

that from them all the Hungarian numbers between 0 and 1,000,000 can be constructed.

All the base word recordings of the corpus are manually segmented and labelled at the

phone level. Altogether 28 different phonemic labels occur in these transcripts.

The other group of recordings contain randomly chosen numbers between 0 and

1,000,000; these files are intended to be used for testing.

In the selection of the the train and test utterances we followed the recommenda-

tion of the database documentation. Thus, 2185 base word recordings were used for

training and 1247 random utterances for testing purposes, respectively. For the test

utterances we applied the pronunciation dictionaries given with the database. The pho-

netic transcripts for the compound numbers were simply generated by concatenating

the transcripts of the proper base words.

A.2 The MTBA Hungarian Telephone

Speech Database

The MTBA Hungarian Telephone Speech Database is the result of an IKTA project

carried out in 2001-2003 by the Department of Informatics, University of Szeged, and

the Department of Telecommunications and Media Informatics, Technical University of
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Budapest. The MTBA Hungarian Telephone Speech Database is the first Hungarian

speech corpus that is publicly available and has a reasonably large size. Besides several

groups of recordings that contain isolated words (numbers, company names, city names,

etc.), the database contains 6000 sentences recorded from 500 speakers (12 sentences

from each). These sentences are relatively long (40-50 phones per sentence) and were

selected so that their phonetic transcripts contains evey possible phone connection that

occurs in Hungarian. Recordings were made via both mobile and line phones, and

the phone calls were organized so that the recordings covered the whole area of the

country. The speakers were chosen so that their distribution corresponded to the age

and gender distribution of the Hungarian population. All the sentences were manually

segmented and labelled at the phone level. A set of 58 phonetic symbols was used for

this puprose, but after fusing certain rarely occurring allophones, we worked with only

52 phone classes in the experiments.

For the selection of training and test utterances, we first removed those sentences

from the database that contained significant noise and/or half-cut phones (denoted

by [spk] and [cut] symbols in the phonetic transcript). From the remaining sentences

1367 were randomly chosen for training purposes (containing 68333 phone instances).

For phone recognition tests we used another set of 687 sentences (containing 34532

phone instances). The word recognition results reported in the dissertation are isolated

word recognition tests performed on another block of the database that contained city

names. All the 500 city names (each pronounced by a different caller) were different. Of

the 500 recordings only 431 were employed in the tests as the rest contained significant

non-stationary noise or were misread by the caller. The language model employed in the

word recognition tests was a simple pronunciation dictionary (created by an automatic

phonetic transcription routine) that contained one phonetic transcript for each word

and assumed that each of them had equal priors.

In certain experiments reported in this dissertation several parameters will be fine-

tuned on the city name recordings. In these cases further testing is required on an

independent data block. For this purpose we chose an additional group of 438 recordings

from the database, again containing city names, but this time over a smaller vocabulary.

More details about the construction and contents of the MTBA database can be

found in [117] (in Hungarian).

A.3 The BeMe-Children Database

The BeMe-Children database was collected as part of an IKTA project carried out in

2002-2004 by the Department of Informatics, University of Szeged, the Gyula Juhász

Teacher Training School of the University of Szeged and the School for the Hearing

Impaired in Kaposvár. The goal of the project was the construction of the “SpeechMas-

ter” software package for speech therapy and teaching reading, and the BeMe-Children

corpus was originally recorded for the purpose of training and testing the software.

The corpus contains recordings from 500 children from the lower classes of elementary

schools and from a further 200 pupils with various levels of hearing impairment. In the
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experiments reported in this dissertation just the former block of data was used, so we

give details only on these recordings.

The database contains samples of 100 words from each of the 500 children. From

these 40 words were the same in every case and the remaining 60 words varied from

speaker to speaker. Only the latter recordings were made use of in the experiments. To

construct this data set the most frequent 2000 words were collected from 14 teaching

reading books that are currently used in elementary schools. These 2000 words were

distributed in the 500*60 recordings according to their frequency in the books, that is

the more frequent words occur in more recordings. The recordings were collected in 14

schools all around the country from children of age 6-7, from 250 boys and 250 girls.

The database is phonetically segmented and labelled.

For the experiments presented in this dissertation 4000/920 utterances were se-

lected for training/testing purposes, respectively. For language modelling the phonetic

transcripts of the 2000 words were created automatically. Owing to the high variability

in the children’s voices and the recording conditions, and because of the many similar-

sounding words in the dictionary, this recognition task appeared to be quite difficult.

More details about the construction and contents of the BeMe-Children database

can be found in [97]. The “SpeechMaster” software is described in [4] (both papers are

in Hungarian).

A.4 The Szeged Corpus

The Szeged Corpus is a manually annotated natural language corpus currently compris-

ing 1.2 million word entries, 145 thousand different word forms, and an additional 225

thousand punctuation marks. With this, it is the largest manually processed Hungarian

textual database that serves as a reference material for research in natural language

processing as well as a learning database for machine learning algorithms and other

software applications. Language processing of the corpus texts so far included morpho-

syntactic analysis, POS tagging and shallow syntactic parsing. Semantic information

was also added to a preselected section of the corpus to support automated information

extraction.

A.4.1 Text of Szeged Corpus

selecting texts for the Szeged Corpus, the main criteria was that they should be themat-

ically representative of different text types. The first version of the corpus, therefore,

contains texts from five genres, roughly 200 thousand words each. Due to its relative

variability, it serves as a good reference material for natural language research applica-

tions, and proves to be large enough to guarantee the robustness of machine learning

methods. Genres of Szeged Corpus 1.0 include:

• fiction (two Hungarian novels and the Hungarian translation of Orwell’s 1984)

• compositions of 14-16-year-old students
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• newspaper articles (excerpts from three daily and one weekly paper)

• computer-related texts (excerpts from a Windows 2000 manual book and some

issues of the ComputerWorld, Számítástechnika magazine)

• law (excerpts from legal texts on economic enterprises and authors’ rights).

During further developments, the first version of the corpus was extended with a 200

thousandword- long sample of short business new2. The newly added section served as

an experimental database for learning semantic frame mapping to be later integrated

in an IE technology. Table 1. shows data referring to Szeged Corpus 2.0.

A.4.2 Annotation of the Szeged Corpus

Morpho-syntactic analysis and POS tagging of the corpus texts included two steps.

Initially, words were morpho-syntactically analysed with the help of the Humor [84] au-

tomatic pre-processor. The program determined the possible morpho-syntactic labels

of the lexicon entries, thereby creating the ambiguous version of the corpus. After the

preprocessing, the entire corpus was manually disambiguated (POS tagged) by linguists.

For the tagging of the Szeged Corpus, the Hungarian version of the internationally ac-

knowledged MSD (Morpho-Syntactic Description) scheme (Erjavec, Monachini, 1997)

was selected. Due to the fact that the MSD encoding scheme is extremely detailed

and refined (one label can store information on up to 17 positions), there is a large

number of ambiguous cases, i.e. one word is likely to have more than one possible

labels. Experiences show that by applying the MSD encoding scheme, roughly every

second word of the corpus is ambiguous. Disambiguation, therefore, required accurate

and detailed work cumulating up to 64 person-months of manual annotation. Currently

all possible labels as well as the selected ones are stored in the corpus. A unique feature

of the corpus is that parallel to POS tagging, users’ rules have been defined for each

ambiguous word in a pre-selected (202 600- word-long) section of the corpus. The aim

of applying users’ rules was to mark the relevant context (relevant set of words) that

determines the selection of a certain POS tag. Users’ rules apply before1, before2, ...,

after1, after2, ... predicates for marking the relevant context of a word. The manu-

ally defined rules can then be generalised to regular disambiguation rules applicable to

unknown texts as well. Out of the selected 202 600 words 114 951 were ambiguous.

Annotators defined users’ rules for these cases among which 26 912 different ones were

found. The major advantage of the defined rules lies in their accuracy and specificity,

wherefore they are an interesting and valuable source of additional linguistic informa-

tion that can e.g. support the more precise training of machine learning algorithms.

After the completion of POS tagging, a project was initiated to encompass shallow

syntactic parsing of the Szeged Corpus. The linguistic information identified by shallow

syntactic parsing proves to be rich enough to support a number of large-scale NLP

applications including information extraction (IE), text summarisation, machine trans-

lation, phrase identification in information retrieval, named entity identification, and

a variety of text-mining operations. In order to achieve their goal, researchers of the
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University of Szeged, Department of Informatics, the MorphoLogic Ltd. Budapest, and

the Research Institute for Linguistics at the Hungarian Academy of Sciences had to

conduct some research concerning the syntax of Hungarian sentences, NP annotation

schemes, and rules covering the recognition of phrases. Results showed that in Hungar-

ian, nominal structures typically bear the most significant meaning (semantic content)

within a sentence, therefore NP annotation seemed to be the most reasonable step

forward. Shallow parsing was carried out on the entire Szeged Corpus 2.0 (1.2 million

words). Automated pre-parsing was completed with the help of the CLaRK program, in

which regular syntactic rules have been defined by linguistic experts for the recognition

of NPs. Due to the fact that the CLaRK parser did not fully cover the occurring NP

structures (its coverage was around 70%), manual validation and correction could not

be avoided. In total, 250 thousand highest level NPs were found, and the deepest NP

structure contained 9 NPs embedded into each other. The majority of the hierarchic

NP structures were between 1 to 3 NPs deep. Manual validation and correction lasted

60 person-months. As a continuation of shallow parsing, the clause structure (CPs) of

the corpus sentences was also marked. Labelling clauses followed the same approach

as earlier phases of NLP: it comprised an automatic pre-annotation followed by manual

correction and supplementation.
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APPENDIX B
An Example OASIS Script

The following code is a typical configuration script of the OASIS Speech Lab System.

Lines start with “//” contain comments for the easier understanding.

// creating a window for displaying the results

sys "win = new Window()";

mod {

// listing the elements of the work flow graph a boolean variable

// controlling when we are going to train or test

train = 0;

// reading the phone symbol table from a file

ph = new SimplePhonemes(root.mnt.data.’phonemes.gr’);

// loading the pronunciation dictionary

dict = new Dictionary(root.mnt.data.’dict.txt’, ph);

// this module goes through the elements of the file list

// one by one

dt = new DatTraverse(root.mnt.’filelist.txt’);

// reading the wave file obtained from the DatTraverse module

wfi = new WavFileIn(dt);

// the following modules calculate the MFCC coefficients along

// with their ‘delta’ and ‘delta-delta’ values; the processing

// steps are: preemphasis - Fourier spectrum - mel filter bank

// energy estimation - cosine transform - delta and delta-delta

// coefficient calculation

wfp = new PreEmpSB(wfi, 0.97);

sp = new Spectrum(wfp, 400, 160, 512, 1);

fbb = new FilterBankBA(sp, 26);
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mfcc = new MFCCBA(fbb, 12, 22, 1);

de1 = new DeltaMapBA(mfcc);

de2 = new DeltaMapBA(de1);

// collecting the coefficients into the feature vector fe[0..38]

for i:0..12 fe[i] = new FBand(mfcc, [i]);

for i:0..12 fe[i+13] = new FBand(de1, [i]);

for i:0..12 fe[i+26] = new FBand(de2, [i]);

// extraction of segment-based acoustic cues; here they are

// simply the feature averages over the segment parts divided

// in a 3-7-3 ratio

for i:0..11 a[i] = new ACMean(fe[i], 0.0, 0.3);

for i:0..11 b[i] = new ACMean(fe[i], 0.3, 0.7);

for i:0..11 c[i] = new ACMean(fe[i], 0.7, 1.0);

//a further cue will be the segment duration

acd = new ACDuration();

// reading in the annotation file belonging to the wave file;

// it contains the orthographic transcript and may also contain

// manual segmentation and labelling info; the former is required

// for testing; the latter are required for training

df = new DatFile(dt, sp, ph);

if (not train) {

// a block for testing the recognizer

// fake clustering by placing a boundary marker at every

// 2nd frame

cfall = new FakeClusters(2, sp);

// loading the parameters of the ANN-based Evaluator and

// specifying the segmental features as its input

anne = new ANNEvaluator("ann.wts", 1,

a[0..11], b[0..11], c[0..11], acd);

// the evaluator results are cached in order to avoid

// processing the same segment twice

canne = new EvalCache2(anne);

// recognition using the Multiple Priority Queue Engine;

// its input modules are the evaluator, the segmentation,

// and the dictionary (along with the phonetic symbol table);
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// the segments are restricted to be at least 3 frames and

// at most 200 ms long; the size of the stacks is set to 150

te = new MPQEngine(canne, 0, cfall, dict, ph, 200, 0, 3, 150);

// the resulting word is compared with the orthographic

// transcript given in the annotation file; the results are

// collected in cr

cr = new CompareResult(te, df);

// a block that displays the spectrogram, the manual

// segmentation markers and the segment boundaries of

// the winning hypothesis

md = new MapDisplay(sp, parent.win, "SP", 1, 50, 0, 32767);

cbd = new ClusterBoundDisplay(df, parent.win, "CB");

cbd = new HypothesisDisplay(te, cfall, parent.win, "HYP");

// building the graph of the modules and starting processing

build();

start();

// after processing all the files, this module displays the

// recognition statistics collected by CompareResult

? cr

}

if (train) {

// a block that extracts training data from the files

// this module goes through all the segments given by

// the manual segmentation, labels them according to the

// labels given in df, and extracts the segmental features

// from them; the strategy of how to create anti-phone

// examples is specified by the code "162";

// the data extracted is then saved by StringFileOut

mkt = new MKTrain(df, "162", ph,

a[0..11], b[0..11], c[0..11], acd);

sfo = new StringFileOut(mkt, "traindata.data");

//building the graph of the modules and starting processing

build();

start();

}

}





APPENDIX C
Summary in English

For years, the pattern recognition community has focused on developing optimal learn-

ing algorithms that can produce very accurate classifiers. However, experience has

shown that it is often much easier to find several relatively good classifiers instead of

one single very accurate predictor. The advantages of combining classifiers instead of a

single classifier are twofold: it helps reducing the computational requirements by using

simpler models, and it can improve the classification performance.

Most Human Language Technology applications are based on pattern matching

algorithms, thus improving the performance of the pattern classification has a positive

effect on the quality of the overall application. Since combination strategies proved

very useful in reducing classification errors, these techniques have become very popular

tools in applications such as Speech Technology and Natural Language Processing.

This dissertation consists of two main parts. The first part discusses the theoretical

aspects of the combination methods, while the second part deals with the applications

of these methods to speech technology and natural language processing.

Combination Strategies

Given infinite training data, consistent classifiers approximate the Bayesian decision

boundaries to arbitrary precision, therefore providing a similar generalization. However,

often only a limited portion of the pattern space is available or observable. Given a

finite and noisy data set, different classifiers typically provide different generalizations.

It is thus necessary to train several classifiers when dealing with classification problems

so as to ensure that a good model or parameter set is found.

Having a set of independent inducers, the simplest way of building a classifier system

is to select one with the best behaviour on a given testing database. During the

classification just the output of the selected classifier is computed, and only this will

affect the resulting decision. This selection is an “early” combination scheme widely

used in Pattern Recognition. However, selecting such a classifier is not necessarily the

ideal choice since potentially valuable information may be wasted by discarding the

results of the other classifiers. In order to avoid this kind of loss of information, the

output of each available classifier should be examined for making the final decision.
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In Chapter 2 we briefly outlined the simple static combination strategies, including

“Prod”, “Sum”, “Min”, “Max" and “Borda Count” rules. Although these techniques have

become popular in multiple-classifier systems owing to their simplicity, they cannot be

adapted to the special aspects of particular applications. For this reason, adaptive

methods like additive combination schemes have become the focus of research, these

being reviewed in Chapter 3.

Analytic Hierarchy Process

Linear combination schemes, especially Boosting algorithms, are frequently used in

machine learning applications due to their ability to improve the classification per-

formance. The Adaboost algorithm and its variants create a sequence of classifier

instances by training the same classifier algorithm on special bootstrap samples of the

training database. The classification performance of the original classifier method can

be dramatically increased, especially in the cases of “weak” classifers, but for the final

solution it requires hundreds or thousands of iterations. In the practice, however, most

of the applications cannot provide the required huge amount of resources for applying

such a great number of classifier instances.

In Chapter 4 we provided a short introduction to Multi-Criteria Decision-Making

(MCDM) and its powerfull strategy, the Analytic Hierarchy Process (AHP). Based

on this technique the author designed and implemented a novel linear combination

method, and then he compared its performance with those of other combiners. As

shown in the experiments, AHP-based combinations proved an effective generalization

of the Weighted Averaging rule; they outperformed the conventional methods in almost

every case.

Speech Technology Applications

Automatic speech recognition is a special pattern classification problem which aims to

mimic the perception and processing of speech in humans. For this reason it clearly

belongs to the fields of machine learning and artificial intelligence. For historical reasons,

however, it is mostly ranked as a sub-field of electrical engineering, with its own unique

technologies, conferences and journals. In the last two decades the dominant method

for speech recognition has been the hidden Markov modeling approach. Meanwhile,

the theory of machine learning has developed considerably and now has a wide variety

of learning and classification algorithms for pattern recognition problems.

Phoneme Classification

In this thesis the phoneme classification tests were performed within the framework of

the OASIS speech recognizer. The aim of these tests was to study how the application
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of the combination methods affects the classification performance applied on a set of

standard classification algorithms given in the speech recognition literature.

In Chapter 6 we surveyed the various combination schemes available using speech

recognition oriented data-sets. The experimental results showed that making classifier

hybrids improved the discrimination performance, the best results being obtained by

aggregating the output of SVM, ANN, and kNN. The performance of the combiners

applying different decision rules was not significantly different, but the “Sum” rule out-

performed the others. Comparing the traditional Bagging and Boosting techniques, we

found that they had nearly the same classification improvement, but their applicability

was limited because they were too CPU intensive. The findings suggest that it is worth

applying combination techniques in phoneme-level speech recognition systems because

they will hopefully produce better scores, hence improve the overall results.

Vocal Tract Length Normalization

As we mentioned earlier, the efficiency of a speech recognizer application can be highly

dependent on the performance of the phoneme classifier module used. Also, it is just

as important for a phonetic teaching system like our Phonological Awareness Teaching

System called “Speech-Master”. Since the system should work well both for children

and adults of different ages, the recognizer has to be trained with the voices of users

of both genders and of practically any age. The task is also special because it has to

recognize isolated phones, so it cannot rely on language models.

In Chapter 7 we focused on a procedure called Vocal Tract Length Normalization

(VTLN), which has proved very useful when the targeted users vary greatly in age and

gender. We showed that the on-line parameter estimation methods can be handled

as special combination structures and we described the evaulation process. The re-

sults demonstrate that using combination stategies of the on-line methods, the overall

system can achieve nearly the the same recognition quality as that with the off-line

normalization version, while applying Bagging and Boosting may produce classifiers

with better performances than those for LD-VTLN. With these positive results the

implemented module was integrated into the award-winning Phonological Awareness

Teaching System called “Speech-Master”.

POS Tagging

Part-of-speech tagging (POS tagging or POST), also called grammatical tagging, is

the process of marking words in a text that correspond to a particular part of speech,

based on both their definition and their context, i.e. the relationship between adjacent

and related words in a phrase, sentence, or paragraph. A simplified form of this is

commonly taught to schoolchildren, in the identification of words as nouns, verbs,

adjectives, adverbs and so on. Being a building block of many Human Language

Technology applications like NP parsing, a number of strategies have been proposed in

the literature to improve its performance.



86 Summary in English

Chapter 8 gives a brief overview to the Part-Of-Speech tagging, To improve the

performance of the tagger, we introduced a special, context-dependent variant of the

popular Boosting algorithm, and demonstrated that this combination strategy effec-

tively reduced the parsing error. The results showed that the proposed algorithm can

reduce the classification error of the TBL tagger by 24.7%, thus it can be applied in

POS tagger systems that require very high accuracies.

Syntactic Parsing

Syntactic parsing is the process of determining whether sequences of words can be

grouped together. It is an important part of the field of natural language processing

and it is useful for supporting a number of large-scale applications including informa-

tion extraction, information retrieval, named entity identification, and a variety of text

mining applications.

In Chapter 9 we examined the effect of the combination methods in syntactic pars-

ing. A general machine learning method called GPS was described and evaluated on the

Szeged Corpus. To obtain better parsing efficiency the author examined several combi-

nation strategies and implemented a Boosting-variant algorithm. As the results show,

the accuracy of tree pattern recognition is effectively improved using the combination

schemas, the best performance being achieved by the proposed Boosting algorithm.

C.1 Key Points of the Thesis

In the following a thesis-like listing of the most important results of the dissertation is

given. Table C.1 shows which thesis is described in which publication by the author.

I. ) The author developed a new linear combination strategy based on the Analytic

Hierarchy Process,which is able to improve the classification performance using

a small number of classifiers. He compared the results of other competing al-

gorithms and demonstrated that in most cases it results in better classification

scores than those for the conventional strategies.

II. ) The author designed and implemented the kernel parts of the speech recognition

framework Oasis System. Using the integrated combination module, he compared

the efficiency of various combination techinques in the field of speech technol-

ogy. The experiments confirm that combining the results of multiple classifier

algorithms effectively enhances the quality of phoneme recognition.

III.) The author investigated the application of classifier combinations in Vocal Tract

Length Normalization to improve the phoneme recognition performance. The

proposed schemas have been integrated into the award-winning Phonological

Awareness Teaching System “SpeechMaster”.
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[28] [29] [81] [67] [46]
I. •
II. • •
III. •
IV. • •
V. •

Table C.1: The relation between the thesis topics and the corresponding publica-
tions

IV. ) The author developed a novel context-dependent variant of the Adaboost algo-

rithm. Applied on a POS tagging application of Hungarian texts and compared

with the existing combinations techinques, he found that the proposed method

resulted in a significant improvement in the classification accuracy.

V. ) The author examined the efficiency of several combination strategies applied in a

Natural Language Processing task called Noun Phrase parsing. To improve the

classification performance, he adapted the Boosting algorithm to the special re-

quirements of the problem. In experiments he found that the proposed algorithms

significantly enhanced the accuracy of tree pattern recognition.



88 Summary in English



APPENDIX D
Summary in Hungarian

A mintaillesztéssel kapcsolatos kutatások hőskorában a lehető legjobb tanulóalgorit-

musok, minél pontosabb osztályozók keresése állt a középpontban. Az eredmények

és a tapasztalatok azonban arra világítanak rá, hogy általában jóval egyszerűbb több,

viszonylag jó osztályozót találni, mint egyetlen kimelkedően jót. Egy-egy osztályozó

használata helyett azok kombinálása kétszeres előnnyel is jár: egyrészt csökkenti az

egyszerű modellek számítási igényét, másrészt javítja az osztályozási teljesítményt.

A legtöbb természetes nyelvi technológiai alkalmazás valamilyen mintaillesztési al-

goritmuson alapul, így a mintaillesztés hatékonyságának növelése a teljes rendszer

működésére is pozitív hatással lehet. Mivel a kombinációs stratégiák sikeresen alka-

lmazhatóak osztályozóalgoritmusok hibáinak csökkentésére, egyre nagyobb tért hódí-

tanak olyan alkalmazások esetén is mint például a a beszédtechnológia és a természetes

nyelvi feldolgozás.

Jelen disszertáció két fő részre tagolódik. Az első rész a kombinációs módszerek

elméleti aspektusait taglalja, a második rész pedig ezen módszerek beszédtechnológiai,

illetve természetes nyelvi feldolgozásban történő alkalmazását mutatja be.

Kombinációs stratégiák

Végtelen mennyiségű tanító adat felhasználásával minden konzisztens tanulóalgorit-

mus a Bayes-féle optimális osztályozást állítaná elő. A gyakorlatban azonban mindig

csak véges és zajos mintahalmaz áll rendelkezésünkre, így a különböző eljárások szük-

ségszerűen különböző osztályozáshoz vezetnek. Ezért érdemes egy adott probléma

megoldása érdekében több különböző algoritmust is betanítani, ekkor nagyobb eséllyel

garantálhatjuk, hogy jó modellt, illetve paraméterbeállítást kapunk.

Amennyiben több független osztályozó is rendelkezésünkre áll, a különböző osztá-

lyozók által generált különböző eredményeket valamilyen módon figyelembe véve kell

döntést hoznunk. A legegyszerűb lehetséges megoldás, hogy a tanítás során a lehet-

séges osztályozók közül kiválaszjuk azt, amelyik egy adott teszthalmazon a legjobban

viselkedik. Ezek után a kiértékelésnél a többi osztályozó eredményét már nem vesszük

figyeleme. Ez az igen egyszerű stratégia azonban a legritkább esetben optimális, hiszen

értékes információt veszíthetünk a többi osztályozó kimenetének eldobásával. Ez az
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információvesztés elkerülhető, ha az összes rendelkezésünkre álló osztályozó algoritmus

kimenetét figyelembe vesszük a kombinációs módszerek segítségével.

A második fejezetben röviden áttekintettük az egyszerűbb statikus kombinálási

stratégiákat, többek közt a "Prod", "Sum", "Min", "Max" és "Borda Count" sz-

abályt. Habár ezek a kombinálási módszerek épp egyszerűségüknek köszönhetően igen

népszerűek a szakirodalomban, nem lehet őket konkrét alkalmazások speciális igényei-

hez igazítani. Emiatt az adaptív módszerek, mint pl. az additív kombinációs sémák

kerültek a kutatások előterébe. A harmadik fejezetben ezeket a módszereket vizsgáltuk

meg részletesebben.

Analitikus hierarchikus eljárás

A lineáris kombinációs technikák, különösen a Boosting algoritmus különböző változatai

rövid idő alatt igen nagy népszerűségre tettek szert a gépi tanulási alkalmazásokban,

mivel számottevően képesek javítani az osztályozás hatékonyságát. Az Adaboost al-

goritmus osztályozók egy sorozatát állítja elő oly módon, hogy ugyanazt a tanulóal-

goritmust az adatbázis különböző, speciálisan mintavételezett változataira alkalmazza.

Ezzel a módszerrel – különösen az ún. "gyenge" osztályozók esetében – drasztikus

javulást lehet elérni az osztályozó egyszeri tanításához képest, azonban az eljárás több

száz vagy akár több ezer iterációs lépést is igényelhet. Gyakorlati alkalmazások esetében

legtöbbször nem áll rendelkezésünkre kellő mennyiségű erőforrás ilyen hatalmas men-

nyiségű osztályozási példa kiértékeléséhez, amely a módszerek használhatóságát erősen

korlátozza.

A 4. fejezetben összefoglalja a többtényezős döntések és az analitikus hierarchikus

eljárás alapjait. Bevezettünk egy új, az analitikus hierarchikus eljáráson alapuló lineáris

kombinálási módszert, majd összehasonlítottuk ennek hatékonyságát más kombinációs

megoldásokéval. A futtatások eredményeiből kiderült, hogy az AHP-alapú módszer a

súlyozott átlagolási kombinálás egy hatékony általánosítása: a bevezetett eljárás majd-

nem minden esetben jobb eredményt ért el, mint a hagyományos lineáris módszerek.

Beszédtechnológiai alkalmazások

Az automatikus beszédfelismerés egy speciális alakfelismerési probléma, amely az em-

beri beszédérzekelés és beszédértés utánzására törekszik. Célkitűzése alapján nyilván-

valóan a gépi tanulás, távolabbról pedig a mesterséges intelligencia témakörébe tar-

tozik, viszont történeti okokból általában a mérnöki tudományok egyik ágaként tartják

számon. Az utóbbi évtizedekben a rejtett Markov-modell vált a beszédfelismerés dom-

ináns technológiájává, azonban ez idő alatt a gépi tanulás elmélete is sokat fejlődött,

és mostanra már a tanuló és osztályozó algoritmusoknak széles palettáját kínálja.
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Fonémák osztályozása

A jelen disszertációban ismertetett fonémaosztályozási teszteket az OASIS beszéd-

felismerési keretrendszer segítségével végeztük el. A tesztek során megvizsgáltuk,

hogy a dolgozat elméleti fejezeteiben ismertetett kombinációs módszerek hogyan be-

folyásolják a beszédfelismerési irodalomból ismert sztenderd osztályozó algoritmusok

hatékonyságát. A kísérleti eredmények azt mutatták, hogy a különböző osztályozók

kombinálásával az osztályozási pontosság általában javult; a legjobb eredményt akkor

kaptuk, amikor az SVM, ANN és k-NN algoritmusok kimeneteit összesítettük. A

különböző egyszerű kombinálási sémák teljesítménye között nem mutatkozott szig-

nifikáns különbség, de a "Sum" szabály jobb eredményt szolgáltatott, mint a többi

módszer. A Bagging és Boosting algoritmusokat megvizsgálva azt találtuk, hogy

nagyjából ugyanolyan pontosságjavulást eredményeznek, de az alkalmazásukat korlá-

tozza, hogy futtatásuk igen erőforrásigényes. Az eredmények alapján végül kijelen-

thető, hogy a fonémaszintű beszédfelismerés során érdemes kombinációs stratégiákat

alkalmazni, mivel általában javítanak az oszályozás pontosságán, s így a beszédfelismerő

működésén.

Artikulációs csatorna hossznormalizálása

Mint korábban már említettük, egy beszédfelismerő rendszer pontosságát nagyban

meghatározza a fonémafelismerő modul hatékonysága. Méginkább igaz ez a tény a

fonetikai tanítási célú alkalmazások eseténben, mint például a "Beszédmester" nevű

beszédjavítás-terápiai és olvasásfejlesztő rendszer. Mivel ennek a rendszernek gyer-

mekek és különböző korú felnőttek hangját is megfelelően kell kezelnie, a betanítás

során mindkét nemű és gyakorlatilag mindenféle korú beszélőtől kell tanító hangmintát

gyűjteni. A feladat azért is speciális, mert izolált fonémákat is fel kell tudnia a rendsz-

ernek ismerni, így egy esetleges nyelvi modul segítségére sem támaszkodhat.

A 7. fejezetben bemutattuk az ún. artikulációs csatorna normalizálási technikát

(VTLN), amely hasznosnak bizonyult olyan esetekben, ahol a beszélők kora és neme

nagyon nagy változatosságot mutat. Megmutattuk, hogy az on-line paraméterbec-

slő módszerek speciális kombinációs struktúrának tekinthetők, majd a kombinációs

módszereket kiértékeltük. Az eredmények azt mutatták, hogy az on-line módszerek

kombinációs stratégiáját alkalmazva a rendszer képes megközelíteni ugyanazt a felis-

merési hatékonyságot, mint az off-line normalizálási algoritmusok, továbbá Bagging és

Boosting alkalmazásával az osztályozók teljesítménye képes túlszárnyalni az LD-VTLN

módszerét. A kapott pozitív eredményekre alapozva az implementált algoritmusokat

beépítettük a "Beszédmester" programunkba.

Szófaji egyértelműsítés

A szófaji egyértelműsítés (POS tagging) során egy szöveg szavaihoz szófaji címkéket

rendelünk, figyelembe véve a szó szótárban feltüntetett szófaját és a szó szövegkörnyezetét

(azaz az adott szintagmában, mondatban, bekezdésben betöltött szerepét) is. Mivel a
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szófaji egyértelműsítés számtalan természetes nyelvi technológiának, mint pl. a nyelvi

elemzésnek alapvető építőeleme, így hatékonyságának javítása érdekében több módszer

is kidolgozásra került.

A 8. fejezetben röviden áttekintettük a szófaji egyértelműsítés problémáját, és

bevezettük a Boosting algoritmus speciális, környezetfüggő változatát. Az eredmények

szerint az implementált kombinációs módszer segítségével az illesztési hiba hatékonyan

redukálható: a TBL tagger osztályozási hibaarányát 24,7 százalékkal tudtuk csökken-

teni.

Szintaktikai elemzés

A szintaktikai elemzés feladata annak megállapítása, hogy adott szöveg szavainak mi-

lyen sorozata szintaktikailag összetartozó. Számos természetes nyelvi technologiai alka-

lmazás megoldásában játszik kulcsszerepet, mint pl. az információkinyerés, a névelem-

felismerés, és más szövegbányászati alkalmazások.

A 9. fejezetben mevizsgáltuk a magyar nyelvű nyelvtani elemzés nehézségeit, majd

bemutattunk egy szabályalapú gépi tanulási algoritmust, amely famintákat keres adott

szövegben. Az algoritmus hatékonyságának növelése érdekében többféle kombinációs

stratégiát is kiértékeltünk, és megállapítottuk, hogy a faminták felismerése számot-

tevően javítható bizonyos kombinációs stratégiák használatával, a legjobb eredményt

az adaptált Boosting algoritmus nyújtotta.

D.1. Az eredmények tézisszerű összefoglalása

Az alábbiakban öt tézispontba rendezve összegezzük a Szerző kutatási eredményeit.

A kutatásokból származó publikációkat, valamint azok tartalmának az egyes tézispon-

tokhoz való viszonyát a C.1 táblázat tekinti át.

I. ) A Szerző kidolgozott egy újszerű, az AHP módszerre épülő lineáris kombinációs

stratégiát, amely képes akár kis számú osztályozó használásával is hatékonyan

növelni az osztályozási pontosságot. A Szerző összevetette módszerét más, ha-

sonló célú ismert módszerekkel, és megmutatta, hogy a javasolt tecnhika az es-

etek többségében jobb osztályozási pontosságot eredményez, mint a hagyományos

stratégiák.

II. ) A Szerző megtervezte és implementálta az OASIS beszédfelismerő keretrendszer

alapvető részeit. Az integrált kombinációs modult felhasználva kiértékelte szá-

mos kombinációs technika hatékonyságát. A kísérletek igazolták, hogy többféle

osztályozóalgoritmus kombinálásával a fonémafelismerés pontossága számottevő

mértékben javítható.

III.) A Szerző megvizsgálta a kombinációs stragégiák hatását az artikulációs csatorna

hosssznormalizáció során alkalmazott módszereken. Az eredmények azt mutat-

ták, hogy az on-line módszerek kombinációjával a rendszer képes elérni akár az
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off-line módszerek hatékonyságát is. A javasolt módszerek beépítésre kerültek a

"Beszédmester" beszédjavítás-terápiai és olvasásfejlesztő rendszerbe.

IV. ) A Szerző kifejlesztette az Adaboost algoritmus egy általánosított, környezetfüggő

változatát. A módszert magyar nyelvű szófaji egyértelműsítési problémán kiértékelve

azt találta, hogy szignifikánsan képes javítani az osztályozási pontosságot a ko-

rábban használt kombinálási módszerekhez képest.

V. ) A Szerző megvizsgálta számos kombinációs stratégia alkalmazhatóságát egy ter-

mészetes nyelvi probléma, a főnévi csoportok elemzése terén. Az osztályozási

hatékonyság növelése érdekében a Boosting algoritmust a feladat speciális igényei-

hez igazította. Az futtatások eredménye szerint a javasolt algoritmus javított a

faminták felismerési pontosságán.
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