26 research outputs found

    Bidimensionality and Kernels

    Get PDF
    Bidimensionality theory was introduced by [E. D. Demaine et al., J. ACM, 52 (2005), pp. 866--893] as a tool to obtain subexponential time parameterized algorithms on H-minor-free graphs. In [E. D. Demaine and M. Hajiaghayi, Bidimensionality: New connections between FPT algorithms and PTASs, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, 2005, pp. 590--601] this theory was extended in order to obtain polynomial time approximation schemes (PTASs) for bidimensional problems. In this work, we establish a third meta-algorithmic direction for bidimensionality theory by relating it to the existence of linear kernels for parameterized problems. In particular, we prove that every minor (resp., contraction) bidimensional problem that satisfies a separation property and is expressible in Countable Monadic Second Order Logic (CMSO) admits a linear kernel for classes of graphs that exclude a fixed graph (resp., an apex graph) H as a minor. Our results imply that a multitude of bidimensional problems admit linear kernels on the corresponding graph classes. For most of these problems no polynomial kernels on H-minor-free graphs were known prior to our work.publishedVersio

    Stable graphs of bounded twin-width

    Full text link
    We prove that every class of graphs C\mathscr C that is monadically stable and has bounded twin-width can be transduced from some class with bounded sparse twin-width. This generalizes analogous results for classes of bounded linear cliquewidth and of bounded cliquewidth. It also implies that monadically stable classes of bounded twin-widthare linearly χ\chi-bounded.Comment: 44 pages, 2 figure

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Recent results and open problems on CIS Graphs

    Get PDF

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Parameterized Graph Modification Beyond the Natural Parameter

    Get PDF

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field

    Parameterized Graph Modification Beyond the Natural Parameter

    Get PDF
    corecore