89 research outputs found

    On conflict-driven reasoning

    Get PDF
    Automated formal methods and automated reasoning are interconnected, as formal methods generate reasoning problems and incorporate reasoning techniques. For example, formal methods tools employ reasoning engines to find solutions of sets of constraints, or proofs of conjectures. From a reasoning perspective, the expressivity of the logical language is often directly proportional to the difficulty of the problem. In propositional logic, Conflict-Driven Clause Learning (CDCL) is one of the key features of state-of-the-art satisfiability solvers. The idea is to restrict inferences to those needed to explain conflicts, and use conflicts to prune a backtracking search. A current research direction in automated reasoning is to generalize this notion of conflict-driven satisfiability to a paradigm of conflict-driven reasoning in first-order theories for satisfiability modulo theories and assignments, and even in full first-order logic for generic automated theorem proving. While this is a promising and exciting lead, it also poses formidable challenges

    Conflict-driven reasoning in unions of theories

    Get PDF
    Many applications of automated reasoning require decision procedures for the satisfiability of a formula in a theory given by the union of a few theories. Reasoning in a union of theories can be approached in more than one way. The equality-sharing method, also known as Nelson-Oppen scheme, combines decision procedures for the component theories. Superposition-based theorem-proving strategies unite the presentations of the theories to reason about their union. CDSAT, which stands for Conflict-Driven SATisfiability, assumes that each theory is equipped with an inference system, called theory module, and coordinates the theory modules to reason in a conflict-driven manner in the union of the theories. A theory module is an abstraction of a decision procedure, made of inference rules that may correspond to axioms of the theory. Conflict-driven means that the system maintains a representation of a candidate partial model of the formula, and performs nontrivial inferences only to explain conflicts between the candidate model and the formula, so that the conflict can be solved by updating the partial model. CDSAT provides a framework where the theory modules cooperate to build the candidate model and to explain the conflicts. This talk presents CDSAT placing it in the big picture of multi-theory reasoning and conflict-driven reasoning

    Semantically-guided goal-sensitive reasoning: decision procedures and the Koala prover

    Get PDF
    The main topic of this article are SGGS decision procedures for fragments of first-order logic without equality. SGGS (Semantically-Guided Goal-Sensitive reasoning) is an attractive basis for decision procedures, because it generalizes to first-order logic the Conflict-Driven Clause Learning (CDCL) procedure for propositional satisfiability. As SGGS is both refutationally complete and model-complete in the limit, SGGS decision procedures are model-constructing. We investigate the termination of SGGS with both positive and negative results: for example, SGGS decides Datalog and the stratified fragment (including Effectively PRopositional logic) that are relevant to many applications. Then we discover several new decidable fragments, by showing that SGGS decides them. These fragments have the small model property, as the cardinality of their SGGS-generated models can be upper bounded, and for most of them termination tools can be applied to test a set of clauses for membership. We also present the first implementation of SGGS - the Koala theorem prover - and we report on experiments with Koala

    Theory Combination: Beyond Equality Sharing

    Get PDF
    International audienceSatisfiability is the problem of deciding whether a formula has a model. Although it is not even semidecidable in first-order logic, it is decidable in some first-order theories or fragments thereof (e.g., the quantifier-free fragment). Satisfiability modulo a theory is the problem of determining whether a quantifier-free formula admits a model that is a model of a given theory. If the formula mixes theories, the considered theory is their union, and combination of theories is the problem of combining decision procedures for the individual theories to get one for their union. A standard solution is the equality-sharing method by Nelson and Oppen, which requires the theories to be disjoint and stably infinite. This paper surveys selected approaches to the problem of reasoning in the union of disjoint theories, that aim at going beyond equality sharing, including: asymmetric extensions of equality sharing, where some theories are unrestricted, while others must satisfy stronger requirements than stable infiniteness; superposition-based decision procedures; and current work on conflict-driven satisfiability (CDSAT)

    Hierarchic Superposition Revisited

    Get PDF
    Many applications of automated deduction require reasoning in first-order logic modulo background theories, in particular some form of integer arithmetic. A major unsolved research challenge is to design theorem provers that are "reasonably complete" even in the presence of free function symbols ranging into a background theory sort. The hierarchic superposition calculus of Bachmair, Ganzinger, and Waldmann already supports such symbols, but, as we demonstrate, not optimally. This paper aims to rectify the situation by introducing a novel form of clause abstraction, a core component in the hierarchic superposition calculus for transforming clauses into a form needed for internal operation. We argue for the benefits of the resulting calculus and provide two new completeness results: one for the fragment where all background-sorted terms are ground and another one for a special case of linear (integer or rational) arithmetic as a background theory

    SGGS theorem proving: an exposition

    Get PDF
    We present in expository style the main ideas in SGGS, which stands for Semantically-Guided Goal-Sensitive theorem proving. SGGS uses sequences of constrained clauses to represent models, instance generation to go from a candidate model to the next, and resolution as well as other inferences to repair the model. SGGS is refutationally complete for first-order logic, model based, semantically guided, proof confluent, and goal sensitive, which appears to be a rare combination of features. In this paper we describe the core of SGGS in a narrative style, emphasizing ideas and trying to keep technicalities to a minimum, in order to advertise it to builders and users of theorem provers

    Conflict-driven satisfiability for theory combination: lemmas, modules, and proofs

    Get PDF
    Search-based satisfiability procedures try to build a model of the input formula by simultaneously proposing candidate models and deriving new formulae implied by the input. Conflict-driven procedures perform nontrivial inferences only when resolving conflicts between formulae and assignments representing the candidate model. CDSAT (Conflict-Driven SATisfiability) is a method for conflict-driven reasoning in unions of theories. It combines solvers for individual theories as theory modules within a solver for the union of the theories. In this article, we add lemma learning to CDSAT; we show that theory modules for several theories of practical interest fulfill the requirements for completeness and termination of CDSAT; and we present two ways to enrich CDSAT with proof generation. First, we present a proof-carrying CDSAT transition system that produces proof objects in memory accommodating multiple proof formats. Alternatively, we apply to CDSAT the LCF approach to proofs from interactive theorem proving, by defining a kernel of reasoning primitives that guarantees that CDSAT proofs are correct by construction

    CDSAT for nondisjoint theories with shared predicates: arrays with abstract length

    Get PDF
    CDSAT (Conflict-Driven Satisfiability) is a paradigm for theory combination that works by coordinating theory modules to reason in the union of the theories in a conflict-driven manner. We generalize CDSAT to the case of nondisjoint theories by presenting a new CDSAT theory module for a theory of arrays with abstract length, which is an abstraction of the theory of arrays with length. The length function is a bridging function as it forces theories to share symbols, but the proposed abstraction limits the sharing to one predicate symbol. The CDSAT framework handles shared predicates with minimal changes, and the new module satisfies the CDSAT requirements, so that completeness is preserved
    • …
    corecore