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Abstract

Combining symbolic techniques such as: (i) SMT solving, (ii) rewriting modulo
theories, and (iii) model checking can enable the analysis of infinite-state systems
outside the scope of each such technique. This paper proposes rewriting modulo
SMT as a new technique combining the powers of (i)-(iii) and ideally suited to model
and analyze infinite-state open systems; that is, systems that interact with a non-
deterministic environment. Such systems exhibit both internal non-determinism
due to the system, and external non-determinism due to the environment. They
are not amenable to finite-state model checking analysis because they typically are
infinite-state. By being reducible to standard rewriting using reflective techniques,
rewriting modulo SMT can both naturally model and analyze open systems without
requiring any changes to rewriting-based reachability analysis techniques for closed
systems. This is illustrated by the analysis of a real-time system beyond the scope
of timed automata methods.
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1 Introduction

Symbolic techniques that represent possibly infinite sets of states by symbolic con-
straints have become essential to make formal verification —using model checking,
theorem proving, or combining features from both— much more scalable. They
provide high levels of automation when verifying various kinds of infinite-state sys-
tems. Such techniques have been vigorously developed, adopted in many systems,
and proved highly successful. They include: (i) SAT solving and other decision pro-
cedures, and their combination into Satisfiability Modulo Theories (SMT) solvers;
(ii) rewriting- and unification-based techniques, including rewriting modulo theories
and narrowing modulo theories; and (iii) symbolic model checking techniques.

A key open research issue limiting the applicability of current symbolic tech-
niques is lack of, or limited support for, extensibility. That is, although certain
classes of systems can be formalized in ways that enable the application of specific
symbolic analysis techniques, many other systems of interest (Section 6 provides an
example) fall outside the scope of some existing symbolic techniques. In such cases
one would like to extend and combine the power of symbolic techniques to analyze
the given system.

Certainly, some techniques to combine methods or procedures provide useful
ways of broadening the scope of methods and tools. For example: (i) combinations
of decision procedures, e.g., [26, 27]; and of unification algorithms, e.g., [5, 10]; (ii)
combinations of theorem provers with decision procedures, e.g., [1, 9, 31]; and (iii)
integration of SMT solvers in model checkers, e.g., [3, 17, 25, 34, 36]. However, it
seems fair to say that at present there is a lack of general extensibility techniques
for symbolic analysis that can simultaneously combine the power of SMT solving,
rewriting- and narrowing-based analysis, and symbolic model checking to analyze
systems beyond the scope of each separate analysis technique.

The main goal of the present work is to propose a new symbolic technique that
seamlessly combines the powers of rewriting modulo theories, SMT solving, and
model checking. For brevity, this technique is called rewriting modulo SMT, although
it could more precisely be called “rewriting modulo SMT+B,” where B is any
equational theory having a matching algorithm. It complements, and has similarities
with, another symbolic technique combining narrowing modulo theories and model
checking, namely, narrowing-based reachability analysis [24] and its extension to
symbolic LTL model checking [7].

Rewriting modulo SMT can be usefully applied to increase the power of equa-
tional reasoning, but its full power (including its model checking capabilities) is best
exploited when applied to concurrent open systems. The key point is that determin-
istic systems can be naturally specified by equational theories, but specification of
concurrent, non-deterministic systems requires rewrite theories [21], that is, triples
R = (Σ, E,R) with (Σ, E) an equational theory describing system states as elements
of the initial algebra TΣ/E , and R rewrite rules describing the system’s local con-
current transitions. Although extensive experience and many tools exist to specify
and analyze concurrent systems in this way (see the survey [23]), the specification of
concurrent open systems remains quite challenging. However, as explained below,
specification and analysis of open systems becomes easy and unproblematic with



rewriting modulo SMT.

An open system is a concurrent system that interacts with an external, non-
deterministic environment. When such a system is specified by a rewrite theory
R = (Σ, E,R), it has two sources of non-determinism, one internal and the other
external. Internal non-determinism comes from the fact that in a given system state
different instances of rules in R may be enabled, and the local transitions thus
enabled may lead to completely different states. What is peculiar about an open
system is that it also has external, and often infinitely-branching, non-determinism
due to the environment. That is, the state of an open system must include the
state changes due to the environment. Technically, this means that, while a sys-
tem transition in a closed system can be described by a rewrite rule t→t′ with
vars(t′)⊆vars(t), a transition in an open system is instead modeled by a rule of the
form t(−→x )→t′(−→x ,−→y ), where −→y represents fresh new variables. Therefore, a substi-
tution for the variables −→x ]−→y decomposes into two substitutions, one, say θ, for the
variables −→x under the control of the system, and another, say ρ, for the variables −→y
under the control of the environment. In rewriting modulo SMT such open systems
are described by conditional rewrite rules of the form t(−→x )→ t′(−→x ,−→y ) if φ, where
φ is a constraint solvable by an SMT solver. This constraint φ may still allow the
environment to choose an infinite number of substitutions ρ for the variables −→y , but
can exclude choices that the environment will never make.

The non-trivial challenges of modeling and analyzing open systems can now be
better explained. They include: (1) the enormous and possibly infinitary non-
determinism due to the environment, which typically renders finite-state model
checking impossible or unfeasible; (2) the impossibility of executing the rewrite
theory R = (Σ, E,R) in the standard sense, due to the non-deterministic choice of
ρ; and (3) the in general undecidable challenge of checking the rule’s condition φ,
since without knowing ρ, the condition φθ is non-ground, so that its E-satisfiability
may be undecidable, even for E confluent and terminating. As further explained
in the paper, challenges (1)–(3) are all met successfully by rewriting modulo SMT
because: (1) states are represented not as concrete states (i.e., ground terms) but
as symbolic constrained terms 〈t ;ϕ〉 with t a term with variables ranging in the
domain(s) handled by the SMT solver and ϕ an SMT-solvable formula, so that the
choice of ρ is avoided; (2) rewriting modulo SMT can symbolically rewrite such pairs
〈t ;ϕ〉 (describing possibly infinite sets of concrete states) to other pairs 〈t′ ;ϕ′〉; and
(3) decidability of φθ (more precisely of ϕ∧ φθ) can be settled by invoking an SMT
solver.

How rewriting modulo SMT is seamlessly integrated with a symbolic style of
model checking for infinite-state systems, thus combining the power of rewriting,
SMT solving, and model checking, is also worth explaining. The essential point
(further expanded in Section 5) is that, by exploiting the fact that rewriting logic is
reflective [14], rewriting modulo SMT can be reduced to standard rewriting. Specif-
ically, this means that all the techniques, algorithms, and tools available for model
checking closed systems specified as rewrite theories, such as Maude’s search-based
reachability analysis [13], become directly available to perform symbolic reachability
analysis on systems that are now infinite-state. This is illustrated by the formal
analysis of an infite-state real-time system outside the scope of timed-automata
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techniques in Section 6.

Contributions. The contributions of this paper can be summarized as follows: (1)
it presents rewriting modulo SMT as a new symbolic technique combining the powers
of rewriting, SMT solving, and model checking; (2) this combined power can be
applied to model and analyze systems outside the scope of each individual technique;
(3) in particular, it is ideally suited to model and analyze the challenging case of open
systems; and (4) because of its reflective reduction to standard rewriting, current
algorithms and tools for model checking closed systems can be reused in this new
symbolic setting without requiring any changes to their implementation.

2 Preliminaries

We recall notation on terms, term algebras, and equational theories as in [6, 18].

An order-sorted signature Σ is a tuple Σ=(S,≤, F ) with a finite poset of sorts
(S,≤) and set of function symbols F . The binary relation ≡≤ denotes the equiv-
alence relation generated by ≤ on S and its point-wise extension to strings in S∗.
The function symbols in F can be subsort-overloaded and satisfy the condition that,
for (w, s), (w′, s′) ∈ S∗ × S, if f ∈ Fw,s∩Fw′,s′ , then w≡≤w′ implies s≡≤s′. A top
sort in Σ is a sort s ∈ S such that if s′ ∈ S and s ≡≤ s′, then s′ ≤ s. For any sort
s ∈ S, the expression [s] denotes the connected component of s, that is, [s] = [s]≡≤ .

The variables X are an S-indexed family X={Xs}s∈S of disjoint variable sets
with each Xs countably infinite. The set of terms of sort s is denoted TΣ(X)s and
the set of ground terms of sort s is denoted TΣ,s. TΣ(X) and TΣ denote the cor-
responding order-sorted Σ-term algebras. All order-sorted signatures are assumed
preregular [18], i.e., each Σ-term has a least sort ls(t)∈S s.t. t∈TΣ(X)ls(t). For S′⊆S,
a term is called S′-linear if no variable with sort in S′ occurs in it twice. The set of
variables of t is written vars(t).

A substitution is an S-indexed mapping θ : X −→ TΣ(X) that is different from
the identity only for a finite subset of X. The identity substitution is denoted by id
and θ|Y denotes the restriction of θ to a family of variables Y ⊆ X. dom(θ) denotes
the domain of θ, i.e., the subfamily of X for which θ(x) 6= x, and ran(θ) denotes
the family of variables introduced by θ(x), for x ∈ dom(θ). Substitutions extend
homomorphically to terms in the natural way. A substitution θ is called ground iff
ran(θ) = ∅. The application of a substitution θ to a term t is denoted by tθ and
the composition of two substitutions θ1 and θ2 is denoted by θ1θ2. A context C is a
λ-term of the form C = λx1, . . . , xn.c with c ∈ TΣ(X) and {x1, . . . , xn} ⊆ vars(c); it
can be viewed as a n-ary function C(t1, . . . , tn) = cθ, where θ(xi) = ti for 1 ≤ i ≤ n
and θ(x) = x otherwise.

A Σ-equation is an unoriented pair t = u with t ∈ TΣ(X)st , u ∈ TΣ(X)su ,
and st ≡≤ su. A conditional Σ-equation is a triple t = u if γ, with t = u a Σ-
equation and γ a finite conjunction of Σ-equations; it is called unconditional if γ
is the empty conjunction. An equational theory is a tuple (Σ, E), with Σ an order-
sorted signature and E a finite collection of (possibly conditional) Σ-equations.
We assume throughout that TΣ,s 6= ∅ for each s ∈ S, because this affords a simpler
deduction system. An equational theory E = (Σ, E) induces the congruence relation
=E on TΣ(X) defined for t, u ∈ TΣ(X) by t =E u iff E ` t = u by the deduction
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rules for order-sorted equational logic in [22]. Similarly, =1
E denotes provable E-

equality in one step of deduction. The E-subsumption ordering �E is the binary
relation on TΣ(X) defined for any t, u ∈ TΣ(X) by t�E u iff there is a substitution
θ : X −→ TΣ(X) such that t =E uθ. A set of equations E is called collapse-free for
a subset of sorts S′ ⊆ S iff for any t = u ∈ E and any substitution θ : X −→ TΣ(X)
neither tθ nor uθ are a variable for some sort s ∈ S′. TE(X) and TE (also written
TΣ/E(X) and TΣ/E) denote the quotient algebras induced by =E on the term algebras
TΣ(X) and TΣ, respectively; TΣ/E is called the initial algebra of (Σ, E). A theory
inclusion (Σ, E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and E ⊆ E′, is called protecting iff the
unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct of the initial algebra
TΣ′/E′ is a Σ-isomorphism, written TΣ/E ' TΣ′/E′ |Σ. A set of equations E is called
regular iff vars(t) = vars(u) for any equation t = u if γ ∈ E.

Appropriate requirements are needed to make an equational theory E admissible,
i.e., executable in rewriting language such as Maude [13]. It is assumed that the
equations of E can be decomposed into a disjoint union E ]B, with B a collection
of structural axioms (such as associativity, and/or commutativity, and/or identity)
for which there exists a matching algorithm modulo B producing a finite number of
B-matching solutions, or failing otherwise, and that the equations E can be oriented
into a set (of possibly conditional) sort-decreasing, operationally terminating, and

confluent conditional rewrite rules
−→
E modulo B.

−→
E is sort decreasing modulo B iff

for each t → u if γ ∈
−→
E and substitution θ, ls(tθ) ≥ ls(uθ) if (Σ, B,

−→
E ) ` γθ.

−→
E

is operationally terminating modulo B iff there is no infinite well-formed proof tree

in (Σ, B,
−→
E ).

−→
E is confluent modulo B iff all t, t1, t2 ∈ TΣ(X), if t →∗E/B t1 and

t→∗E/B t2, then there is u ∈ TΣ(X) such that t1 →∗E/B u and t2 →∗E/B u. The term

t↓E/B∈ TΣ(X) denotes the E-canonical form of t modulo B so that t→∗E/B t↓E/B

and t ↓E/B cannot be further reduced by →E/B. Under the above assumptions
t↓E/B is unique up to B-equality.

A Σ-rule is a triple l → r if φ, with l, r ∈ TΣ(X)s, for some sort s ∈ S, and
φ =

∧
i∈I ti = ui a finite conjunction of Σ-equations. A rewrite theory is a tuple

R = (Σ, E,R) with (Σ, E) an order-sorted equational theory and R a finite set of
Σ-rules. R induces a rewrite relation →R on TΣ(X) defined for every t, u ∈ TΣ(X)
by t →R u iff there is a rule (l → r if φ) ∈ R and a substitution θ : X −→ TΣ(X)
satisfying t =E lθ, u =E rθ, and E ` φθ. Relation →R is undecidable in general,
unless conditions such as coherence [35] are given. A key point of this paper is to
make such a relation decidable when E decomposes as E0]B1, where E0 is a built-in
theory for which formula satisfiability is decidable and B1 has a matching algorithm.
A topmost rewrite theory is a rewrite theory R = (Σ, E,R), such that for some top
sort State, no operator in Σ has State as argument sort and each rule l→ r if φ ∈ R
satisfies l, r ∈ TΣ(X)State and l /∈ X.

3 Rewriting Modulo a Built-in Subtheory

The concept of rewriting modulo a built-in equational subtheory is presented. In
particular, the notion of rewrite theory modulo a built-in subtheory and its ground
rewrite relation are introduced. A canonical representation for rewrite theories mod-
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ulo built-ins is proposed, and some basic results are proved.

Definition 1 (Signature with Built-ins). An order-sorted signature Σ = (S,≤, F )
is a signature with built-in subsignature Σ0 ⊆ Σ iff Σ0 = (S0, F0) is many-sorted,
S0 is a set of minimal elements in (S,≤), and if f : w −→ s ∈ F1, then s /∈ S0 and
f has no other typing in F0, where F1 = F \ F0.

The notion of built-in subsignature in an order-sorted signature Σ is modeled
by a many-sorted signature Σ0 defining the built-in terms TΣ0(X0). The restriction
imposed on the sorts and the function symbols in Σ w.r.t. Σ0 provides a clear
syntactic distinction between built-in terms (the only ones with built-in sorts) and
all other terms.

If Σ ⊇ Σ0 is a signature with built-ins, then an abstraction of built-ins for t is a
context λx1 · · ·xn.t◦ such that t◦ ∈ TΣ1(X) and {x1, . . . , xn} = vars(t◦)∩X0, where
Σ1 = (S,≤, F1) and X0 = {Xs}s∈S0 . Lemma 1 shows that such an abstraction can
be chosen so as to provide a canonical decomposition of t with useful properties.

Lemma 1. Let Σ be a signature with built-in subsignature Σ0 = (S0, F0). For each
t ∈ TΣ(X), there exist an abstraction of built-ins λx1 · · ·xn.t◦ for t and a substitution
θ◦ : X0 −→ TΣ0(X0) such that (i) t = t◦θ, (ii) {x1, . . . , xn} are pairwise distinct
and disjoint from vars(t), and (iii) θ(x) = x if x 6= xi, for 1 ≤ i ≤ n; moreover,
(iv) t◦ can always be selected to be S0-linear and with {x1, . . . , xn} disjoint from an
arbitrarily chosen finite subset Y of X0.

Proof. By induction on the structure of t.

In the rest of the paper, for any t ∈ TΣ(X) and Y ⊆ X0 finite, the expres-
sion abstractΣ1(t, Y ) denotes the choice of a triple 〈λx1 · · ·xn.t◦ ; θ◦ ;φ◦〉 such that
the context λx1 · · ·xn.t◦ and the substitution θ◦ satisfy the properties (i)–(iv) in
Lemma 1, and φ◦ =

∧n
i=1 (xi = θ◦(xi)).

Under certain restrictions on axioms, matching a Σ-term t to a Σ-term u, can
be decomposed modularly into Σ1-matching of the corresponding λ-abstraction and
Σ0-matching of the built-in subterms. This is described in Lemma 2. The proof of
this lemma uses the following corollary.

Corollary 1. Let Σ = (S,≤, F ) be a signature with built-in subsignature Σ0 =
(S0, F0). Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and B1

regular, linear, collapse free for any sort in S0, and sort-preserving, and t ∈ TΣ(X0):

(a) if t ∈ TΣ0(X0) and t =1
B1
t′, then t = t′;

(b) if t ∈ TΣ1(X0) and t =1
B0
t′, then t = t′;

(c) if t ∈ TΣ1(X0) and t =1
B1
t′, then vars(t) = vars(t′) and t is linear iff t′ is so;

Proof.

(a) Axioms B1 do not mention any function symbol in F0. Therefore, the equation
in B0 can only apply to variables in X0. But B1 is collapse-free for any sort in
S0, so that no B1 equation can be applied to t, forcing t = t′.
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(b) Same argument as (a).

(c) Trivial consequence of B1 being regular and linear.

Lemma 2. Let Σ = (S,≤, F ) be a signature with built-in subsignature Σ0 = (S0, F0).
Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and B1 regular,
linear, collapse free for any sort in S0, and sort-preserving, if t ∈ TΣ1(X0) is linear
with vars(t) = {x1, . . . , xn}, then for each θ : X0 −→ TΣ0(X0):

(a) if tθ =1
B0

t′, then there exist x ∈ {x1, . . . , xn} and w ∈ TΣ0(X0) such that
θ(x) =1

B0
w and t′ = tθ′, with θ′(x) = w and θ′(y) = θ(y) otherwise;

(b) if tθ =1
B1
t′, then there exists v ∈ TΣ1(X0) such that t =1

B1
v and t′ = vθ; and

(c) if tθ =B0]B1 t
′, then there exist v ∈ TΣ1(X0) and θ′ : X0 −→ TΣ0(X0) such that

t′ = vθ′, t =B1 v, and θ =B0 θ
′ (i.e., θ(x) =B0 θ

′(x) for each x ∈ X0).

Proof. (a) It follows from Corollary 1 part (b) that B0 can only be applied on some
built-in subterm θ(x) of tθ, for some x ∈ dom(θ). That is, there is w ∈ TΣ0(X0)
such that θ(x) =1

B0
w and, since t is linear, t′ = tθ′, where θ′(x) = w and

θ′(x) = θ(x) otherwise.

(b) It follows from Corollary 1 part (c) that equational deduction with B1 can only
permute the built-in variables in t and it does not equate built-in subterms
such as the ones in ran(θ). Hence, by Corollary 1part (c), there exists a linear
v ∈ TΣ1(X0) such that t =1

B1
v and t′ = vθ.

(c) Follows by induction on the proof’s length in B0 ]B1.

Definition 2 introduces the notion of rewriting modulo a built-in subtheory.

Definition 2 (Rewriting Modulo a Built-in Subtheory). A rewrite theory modulo
the built-in subtheory E0 is a topmost rewrite theory R = (Σ, E,R) with:

(a) Σ=(S,≤, F ) a signature with built-in subsignature Σ0=(S0, F0) and top sort
State∈S;

(b) E = E0 ] B0 ] B1, where E0 is a set of Σ0-equations, B0 (resp., B1) are
Σ0-axioms (resp., Σ1-axioms) satisfying the conditions in Lemma 2, E0 =
(Σ0, E0 ] B0) and E = (Σ, E) are admissible, and the theory inclusion E0 ⊆ E
is protecting;

(c) R is a set of rewrite rules of the form l(−→x1,
−→y )→ r(−→x2,

−→y ) if φ(−→x3) such that
l, r ∈ TΣ(X)State, l is (S \S0)-linear, −→xi :−→si with −→si ∈ S∗0 , for i ∈ {1, 2, 3}, −→y :−→s
with −→s ∈ (S \ S0)∗, and φ ∈ QFΣ0

(X0), where QFΣ0
(X0) denotes the set of

quantifier-free Σ0-formulas with variables in X0.

6



Note that, due to the presence of conditions φ in the rules of R that are general
quantifier-free formulas, as opposed to a conjunction of atoms, properly speaking R
is somewhat more general than a standard rewrite theory as defined in Section 2.

The binary rewrite relation induced by a rewrite theory R modulo E0 on TΣ,State

is called the ground rewrite relation of R.

Definition 3 (Ground Rewrite Relation). Let R = (Σ, E,R) be a rewrite theory
modulo E0. The relation →R induced by R on TΣ,State is defined for t, u ∈ TΣ,State

by t→R u iff there is a rule l→ r if φ in R and a ground substitution σ : X −→ TΣ

such that (a) t =E lσ, u =E rσ, and (b) TE0 |= φσ.

The ground rewrite relation →R is the topmost rewrite relation induced by R
modulo E on TΣ,State. This relation is defined even when a rule in R has extra
variables in its righthand side: the rule is then non-deterministic and such extra
variables can be arbitrarily instantiated, provided that the corresponding instanti-
ation of φ holds. Also, note that non built-in variables can occur in l, but φσ is a
variable-free formula in QFΣ0

(∅), so that either TE0 |= φσ or TE0 6|= φσ.

A rewrite theory R modulo E0 always has a canonical representation in which
all left-hand sides of rules are linear Σ1-terms.

Definition 4 (Normal Form of a Rewrite Theory Modulo E0). Let R = (Σ, E,R)
be a rewrite theory modulo E0. Its normal form R◦ = (Σ, E,R◦) has rules:

R◦ = {l◦ → r if φ ∧ φ◦ | (∃l→ r if φ ∈ R)〈λ−→x .l◦ ; θ◦ ;φ◦〉 = abstractΣ(l, vars({l, r, φ}))}.

Lemma 3 (Invariance of Ground Rewriting under Normalization). Let R = (Σ, E,R)
be a rewrite theory modulo E0. Then →R =→R◦.

Proof. We show that →R ⊆ →R◦ and →R◦ ⊆ →R.

(⊆) Let t, u ∈ TΣ,State. If t →R u, then there is a rule (l → r if φ) ∈ R and a
ground substitution σ : X −→ TΣ such that t =E lσ, u =E rσ, and TE0 |= φσ.
It suffices to prove t →R◦ u with witnesses (l◦ → r if φ ∧ φ◦) ∈ R◦ and
ρ = θ◦σ. Note that t =E lσ = l◦θ◦σ = l◦ρ. For TE0 |= (φ ∧ φ◦)ρ first note
that TE0 |= φρ since φρ = φθ◦σ = φσ (because vars(φ) ∩ dom(θ◦) = ∅) and
TE0 |= φσ by assumption. For TE0 |= φ◦ρ notice that θ◦θ◦ = θ◦ because
ran(θ◦) ∩ dom(θ◦) = ∅, and then:

φ◦ρ =

(
n∧

i=1

xi = θ◦(xi)

)
ρ =

n∧
i=1

xiρ = θ◦(xi)ρ =

n∧
i=1

θ◦(xi)σ = θ◦(xi)θ
◦σ

=

n∧
i=1

θ◦(xi)σ = θ◦(xi)σ = >.

Hence t→R◦ u as desired.

(⊇) Let t, u ∈ TΣ,State. If t →◦R u, then there is a rule (l → r if φ) ∈ R and
a ground substitution σ : X −→ TΣ such that t =E l◦σ, u =E rσ, and
TE0 |= (φ ∧ φ◦)σ. It suffices to prove t →R u with witness (l → r if φ) ∈ R.
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Let 〈λx1 · · ·xn.l◦ ; θ◦ ;φ◦〉 be the abstraction of built-ins for l. Substitution σ
can be decomposed into substitutions θ : X0 −→ TΣ0(X0) and ρ : X −→ TΣ,
with θ(x) = σ(x) if x ∈ {x1, . . . , xn} and θ(x) = x otherwise, such that
σ = θρ. From TE0 |= (φ∧φ◦)σ it follows that TE0 |= φσ, i.e., TE0 |= φρ because
vars(φ)∩dom(θ) = ∅. Also, it follows that TE0 |=

∧n
i=1 θ(xi)ρ = θ◦(xi)ρ which

implies that:

t =E l◦σ = l◦θρ =E0]B0 l
◦θ◦ρ = lρ.

Hence t→R u, as desired.

By the properties of the axioms in a rewrite theory modulo built-insR = (Σ, E0]
B0 ] B1), B1-matching a term t ∈ TΣ(X0) to a left-hand side l◦ of a rule in R◦

provides a complete unifiability algorithm for ground B1-unification of t and l◦.

Lemma 4 (Matching Lemma). Let R = (Σ, E0 ] B0 ] B1, R) be a rewrite theory
modulo E0. For t ∈ TΣ(X0)State and l◦ a left-hand side of a rule in R◦ such that
vars(t) ∩ vars(l◦), t �B1 l

◦ iff GUB1(t = l◦) 6= ∅ holds, where GUB1(t = l◦) = {σ :
X −→ TΣ | tσ =B1 l

◦σ}.

Proof.

(=⇒) If t �B1 l
◦, then t =B1 l

◦θ for some θ : X −→ TΣ(X). Let ρ : X −→ TΣ be
any ground substitution. Then θρ ∈ GUB1(t = l◦).

(⇐=) Let σ ∈ GUB1(t = l◦) with l → r if φ ∈ R. Let vars(l◦) ∩X0 = {x1, . . . , xn}
and X1 = X \X0. Note that there are substitutions

α : vars(l◦) ∩X1 −→ TΣ1(X0)

ρ : X \ dom(α) −→ TΣ

satisfying σ = αρ and such that (l◦α) ∈ TΣ1(X0) is linear and ran(l◦α) ∩
(vars(t, l◦)) = ∅. Let ran(α) = {y1, . . . , ym}. Therefore, by Lemma 2, there
exists u ∈ TΣ1(X0) such that u =B1 l

◦α, u is linear, and vars(u) = vars(l◦α) =
x1, . . . , xn, y1, . . . , ym, and uρ = t. Moreover, t can be written as

u(t1, . . . , tn, tn+1, . . . , tn+m)

with ti ∈ TΣ0(X0). Define θ : X0 −→ TΣ0(X0) by θ(x) = ti if x ∈ {x1, . . . , xn},
θ(x) = ti+n if x ∈ {y1, . . . , ym}, and θ(x) = x otherwise. Then we have:

t = u(t1, . . . , tn, tn+1, . . . , tm+n)

= u(x1, . . . , xn, y1, . . . , ym)θ

=B1 l
◦αθ.

Therefore, t�B1 l
◦, as desired.
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4 Symbolic Rewriting Modulo a Built-in Subtheory

We explain how a rewrite theory R modulo E0 defines a symbolic rewrite relation
on terms in TΣ0(X0)State constrained by formulas in QFΣ0

(X0). The idea is that,
when E0 is a decidable theory, transitions on the symbolic terms can be performed
by rewriting modulo B1, and satisfiability of the formulas can be handled by an
SMT decision procedure. This approach provides an efficiently executable symbolic
method called rewriting modulo SMT that is sound and complete with respect to the
ground rewrite relation of Definition 3 and yields a complete symbolic reachability
analysis method.

Definition 5 (Constrained Terms and their Denotation). Let R = (Σ, E,R) be
a rewrite theory modulo E0. A constrained term is a pair 〈t ;ϕ〉 in TΣ(X0)State ×
QFΣ0

(X0). Its denotation JtKϕ is defined as

JtKϕ = {t′∈TΣ,State | (∃σ : X0−→TΣ0) t′=tσ ∧ TE0 |= ϕσ}.

The domain of σ in Definition 5 ranges over all built-in variables X0 and conse-
quently JtKϕ ⊆ TΣ,State for any t ∈ TΣ(X0)State, even if vars(t) 6⊆ vars(ϕ). Intuitively,
JtKϕ denotes the set of all ground states that are instances of t and satisfy ϕ.

Before introducing the symbolic rewrite relation on constrained terms induced by
a rewrite theory R modulo E0, auxiliary notation for variable renaming is required.
In the rest of the paper, the expression fresh-vars(Y ), for Y ⊆ X finite, represents
a variable renaming ζ : X −→ X satisfying Y ∩ ran(ζ) = ∅.

Definition 6 (Symbolic Rewrite Relation). Let R = (Σ, E,R) be a rewrite theory
modulo built-ins E0. The symbolic rewrite relation R induced by R on TΣ(X0)State×
QFΣ0

(X0) is defined for t, u ∈ TΣ(X0)State and ϕ,ϕ′ ∈ QFΣ0
(X0) by 〈t ;ϕ〉  R

〈u ;ϕ′〉 iff there is a rule l → r if φ in R and a substitution θ : X −→ TΣ(X) such
that (a) t =E lζθ and u = rζθ, (b) E0 ` (ϕ′ ⇔ ϕ∧φζθ), and (c) ϕ′ is TE0-satisfiable,
where ζ = fresh-vars(vars(t, ϕ)).

The symbolic relation  R on constrained terms is defined as a topmost rewrite
relation induced by R modulo E on TΣ(X0) with extra bookkeeping of constraints.
Note that ϕ′ in 〈t ;ϕ〉  R 〈u ;ϕ′〉, when witnessed by l → r if φ and θ, is seman-
tically equivalent to ϕ ∧ φζθ, in contrast to being syntactically equal. This extra
freedom allows for simplification of constraints if desired. Also, such a constraint ϕ′

is satisfiable in TE0 , implying that ϕ and φθ are both satisfiable in TE0 , and therefore
JtKϕ 6= ∅ 6= JuKϕ′ . Note that, up to the choice of the semantically equivalent ϕ′ for
which a fixed strategy is assumed, the symbolic relation  R is deterministic be-
cause the renaming of variables in the rules is fixed by fresh-vars. This is key when
executing  R, as explained in Section 5.

The important question to ask is whether this symbolic relation soundly and
completely simulates its ground counterpart. The rest of this section answers this
question in the affirmative for normalized rewrite theories modulo built-ins. Thanks
to Lemma 3, the conclusion is therefore that R◦ soundly and completely simulates
→R for any rewrite theory R modulo built-ins E0.
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The soundness of  R◦ w.r.t. →R◦ is stated and proved in Theorem 1. Intu-
itively, soundness means that a pair 〈t ;ϕ〉 R◦ 〈u ;ϕ′〉 is a symbolic underapproxi-
mation of all pairs such that t′ →R◦ u′ with t′ ∈ JtKϕ and u′ ∈ JuKϕ′ .

Theorem 1 (Soundness). Let R = (Σ, E,R) be a rewrite theory modulo built-ins E0,
t, u ∈ TΣ(X0)State, and ϕ,ϕ′ ∈ QFΣ0

(X0). If 〈t ;ϕ〉  R◦ 〈u ;ϕ′〉, then tρ →R◦ uρ
for all ρ : X0 −→ TΣ0 satisfying TE0 |= ϕ′ρ.

Proof. Let ρ : X0 −→ TΣ0 satisfy TE0 |= ϕ′ρ. The goal is to show that tρ →R◦ uρ.
Let l◦ → r if φ ∈ R◦ and θ : X0 −→ T0(X0) witness 〈t ;ϕ〉  R◦ 〈u ;ϕ′〉. Then
t =E l◦ζθ, u =E rζθ, E0 ` (ϕ′ ⇔ ϕ ∧ φζθ), and ϕ′ is TE0-satisfiable. Without
loss of generality assume that θ|vars(t,ϕ) = id|vars(t,ϕ) and let σ = ζθρ. Then note
that tρ =E (l◦ζθ)ρ = l◦ζθρ = l◦σ and uρ =E (rζθ)ρ = rζθρ = rσ. Moreover,
TE0 |= (ϕ′ ⇔ ϕ ∧ φζθ) and TE0 |= ϕ′ρ imply TE0 |= φζθρ, i.e., TE0 |= φσ. Therefore,
tρ→R◦ uρ, as desired.

The completeness of  R◦ w.r.t. →R◦ is stated and proved in Theorem 2, which
is a “lifting lemma”. Intuitively, completeness states that a symbolic relation yields
an over-approximation of its ground rewriting counterpart.

Theorem 2 (Completeness). Let R = (Σ, E,R) be a rewrite theory modulo built-ins
E0, t ∈ TΣ(X0)State, u

′ ∈ TΣ,State, and ϕ ∈ QFΣ0
(X0). For any ρ : X0 −→ TΣ0 such

that tρ ∈ JtKϕ and tρ →R◦ u′, there exist u ∈ TΣ(X0)State and ϕ′ ∈ QFΣ0
(X0) such

that 〈t ;ϕ〉 R◦ 〈u ;ϕ′〉 and u′ ∈ JuKϕ′.

Proof. By the assumptions there is a rule (l◦ → r if φ) ∈ R◦ and a ground substi-
tution σ : X −→ TΣ satisfying tρ =E l◦σ, u′ =E rσ, and TE0 |= φσ. Without loss of
generality assume vars(t, ϕ)∩ vars(l◦, r, φ)) = ∅; otherwise l, r, φ can be renamed by
means of fresh-vars. Furthermore, σ = ρ can be assumed. The goal is to show the
existence of u ∈ TΣ(X)State and ϕ′ ∈ QFΣ0

(X0) such that (i) 〈t ;ϕ〉 R◦ 〈u ;ϕ′〉 and
(ii) u′ ∈ JuKϕ′ . Since l◦ is linear and built-in subterms are variables, by Lemma 2
there exists α : X −→ TΣ satisfying tα =B1 l

◦α. Hence GUB1(t = l◦) 6= ∅ and,
by Lemma 4, there exists θ′ : X −→ TΣ(X) satisfying t =B1 l◦θ′ and a fortiori
t =E0]B0]B1 l

◦θ′. Let θ : X −→ TΣ(X) be defined by θ(x) = θ′(x) if x ∈ vars(l)
and θ(x) = ρ(x) otherwise. Note that θ|vars(l)ρ =E0]B0 ρ|vars(l). Define u = rθ and
ϕ′ = ϕ ∧ φθ, and then for (i) and (ii) above:

(i) It suffices to prove that TE0 |= ϕ′ρ, i.e., TE0 |= (ϕ ∧ φθ)ρ. By assumption
TE0 |= ϕρ and TE0 |= φρ. Notice that:

φθρ = (φθ|vars(l))ρ =E0]B0 (φρ)ρ = φρ.

Hence TE0 |= φθρ.

(ii) By assumption u′ =E0]B0]B1 rρ; also:

rρ =E0]B0]B1 rθ|vars(l)ρ = rθρ = uρ.

Hence u′ =E0]B0]B1 uρ ∈ JuKϕ′ by part (i).
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Although the above soundness and completeness theorems, plus Lemma 3, show
that→R is fully characterized symbolically by R◦ , for any rewrite theory R mod-
ulo E0, because of condition (6) in Definition 6, the relation  R◦ is in general
undecidable. However,  ◦R becomes decidable for built-in theories E0 that can be
extended to a decidable theory E+

0 (typically by adding some inductive consequences)
such that:

(∀φ ∈ QFΣ0
(X0)) φ is E+

0 -satisfiable ⇐⇒ (∃σ : X0 −→ TΣ0) TE0 |= φσ. (1)

Many decidable theories E+
0 of interest are supported by SMT solvers satisfying

this requirement. For example, E0 can be the equational theory of natural number
addition and E+

0 Pressburger arithmetic. That is, TE0 is the standard model of
both E0 and E+

0 , and E+
0 -satisfiability coincides with satisfiability in such a standard

model. Under such conditions, satisfiability of ϕ∧φζθ (and therefore of ϕ′) in a step
〈t ;ϕ〉 R◦ 〈u ;ϕ′〉 becomes decidable by invoking an SMT-solver for E0, so that R◦
can be naturally described as symbolic rewriting modulo SMT (and modulo B1).

The symbolic reachability problems considered for a rewrite theory R modulo
E0 in this paper, are existential formulas of the form (∃−→z ) t →∗ u ∧ ϕ, with −→z
the variables appearing in t, u, and ϕ, t ∈ TΣ(X0)State, u ∈ TΣ(X)State, and ϕ ∈
QFΣ0

(X0). By abstracting the Σ0-subterms of u, the ground solutions of such a
reachability problem are those witnessing the model-theoretic satisfaction relation:

TR |= (∃−→x ] −→y ) t(−→x )→∗ u◦(−→y ) ∧ ϕ1(−→x ) ∧ ϕ2(−→x ,−→y ) (2)

where TR = (TΣ/E ,→∗R) is the initial reachability model of R [11], t∈TΣ(X) and
u◦∈TΣ1(X) are S0-linear, vars(t) ⊆ −→x ⊆ X0, and −→y ⊆ X. Thanks to the soundness
and completeness results, theorems 1 and 2, the solvability of Condition (2) for→R
can be achieved by reachability analysis with  R◦ . This is stated and proved in
Theorem 3.

Theorem 3 (Symbolic Reachability Analysis). Let R = (Σ, E,R) be a rewrite
theory modulo built-ins E0. The reachability problem in Condition (2) has a solution
iff there exist a term v ∈ TΣ(X)State, a constraint ϕ′ ∈ QFΣ0

(X0), and a substitution
θ : X −→ TΣ(X), with dom(θ) ⊆ −→y , such that (a) 〈t ;ϕ1〉  ∗R◦ 〈v ;ϕ′〉, (b) v =B1

u◦θ, and (c) ϕ′ ∧ ϕ2θ is TE0-satisfiable.

Proof. By theorems 1 and 2, and induction on the length of the rewrite derivation.

In Theorem 3, since dom(θ) ⊆ −→y , and −→x and −→y are disjoint, the variables of −→x
in ϕ2θ are left unchanged. Therefore, ϕ2θ links the requirements for the variables −→x
in the initial state and −→y in the final state according to both ϕ1 and ϕ2. Also note
that the inclusion of formula ϕ1 as a conjunct in the formula in Condition (3) of
Theorem 3 is superfluous because 〈t ;ϕ1〉 R◦ 〈v ;ϕ′〉 implies that ϕ1 is a semantic
consequence of ϕ′.
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5 Reflective Implementation of  R◦

The design and implementation of prototype that offers support for rewriting modulo
SMT in the Maude system are discussed. The prototype relies on Maude’s meta-
level features, that implement rewriting logic’s reflective capabilities, and on SMT
solving for E+

0 integrated in Maude as CVC3’s decision procedures. The extension of
Maude with CVC3 is available from the Matching Logic Project [33]. In the rest of
this section, R = (Σ, E0]B0]B1, R) is a rewrite theory modulo built-ins E0, where
E0 satisfies Condition (1) in Section 4. The theory mapping R 7→ u(R) removes the
constraints from the rules in R and interprets the built-in variables X0 as constants.

In Maude, reflection is efficiently supported by its META-LEVEL module [13],
which provides key functionality for rewriting logic’s universal theory U [14]. Rewrite
theories R are meta-represented in U as terms R of sort Module, and a term t in
R is meta-represented in U as a term t of sort Term. The key idea of the reflective
implementation is to reduce symbolic rewriting with  R◦ to standard rewriting
in an associated reflective rewrite theory extending the universal theory U . This
is specially important for formal analysis purposes, because it makes available to
 R◦ some formal analysis features provided by Maude for rewrite theories such as
reachability analysis by search. This is illustrated by the case study in Section 6.

The prototype defines a parametrized functional module SAT(Σ0, E0 ] B0) of
quantifier-free formulas with Σ0-equations as atoms. This module extends (Σ0, E0]
B0) with new sorts Atom and QFFormula, and new constants var(X0) identifying the
variables X0. It has, among other functions, a function sat : QFFormula −→ Bool
such that for φ, sat(φ) = > if φ is E+

0 -satisfiable, and sat(φ) = ⊥ otherwise.
The process of computing the one-step rewrites of a given constrained term

〈t ;ϕ〉 under R◦ is decomposed into two conceptual steps using Maude’s metalevel.
First, all possible triples 〈u ; θ ;φ〉 such that t →u(R◦) u is witnessed by a matching
substitution θ and a rule with constraint φ are computed1. Second, these triples
are filtered out by keeping only those for which the quantifier-free formula ϕ∧φθ is
E+

0 -satisfiable.
The first step in the process is mechanized by function next, available from the

parametrized module NEXT(R,State,QFFormula) whereR, State, andQFFormula
are the metalevel representations, respectively, of the rewrite theory module R, the
state sort State, and the quantifier-free formula sort QFFormula. Function next
uses Maude’s meta-match function and the auxiliary function new-vars for comput-
ing fresh variables (see Section 4). The call

next(((S,≤, F ] var(X0)), E0 ]B0 ]B1, R◦), t, ϕ)

computes all possible triples 〈u ; θ′ ;φ′〉 such that t R◦ u is witnessed by a substi-
tution θ′ and a rule with constraint φ′. More precisely, such a call first computes a
renaming ζ = fresh-vars(vars(t, ϕ)) and then, for each rule(l◦ → r if φ), it uses the
function meta-match to obtain a substitution

θ ∈ meta-match(((S,≤, F ] var(X0)), B0 ]B1), t↓E0/B0]B1
, l◦ζ),

1Note that in u(R◦) variables in X0 are interpreted as constants. Therefore, the number of
matching substitutions θ thus obtained is finite.
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and returns 〈u ; θ′ ;φ′〉 with u = rζθ, θ′ = ζθ, and φ′ = φζθ. Note that by having a
deterministic choice of fresh variables (including those in the constraint), function
next is actually a deterministic function.

Using the above-mentioned infrastructure, the parametrized module NEXT im-
plements the symbolic rewrite relation  R◦ as a standard rewrite relation in the
theory NEXT, extending META-LEVEL, by means of the following conditional
rewrite rule:

ceq 〈X:State ;ϕ:QFFormula〉 → 〈Y :State ;ϕ′:QFFormula〉
if 〈Y ; θ ;φ〉 S := next(R•, X, ϕ) ∧ sat(ϕ ∧ φ) = > ∧ ϕ′ := ϕ ∧ φ

whereR• = ((S,≤, F]var(X0)), B,R◦). Therefore, a call to an external SMT solver
is just an invocation of the function sat in SAT(Σ0, E0 ]B0) in order to achieve the
above functionality more efficiently and in a built-in way.

Given that the symbolic rewrite relation R◦ is encoded as a standard rewrite re-
lation, symbolic search can be directly implemented in Maude by its search command.
In particular, for terms t, u◦, constraints ϕ1, ϕ2, F a variable of sort QFFormula,
the following invocation solves the inductive reachability problem in Condition (2):

search 〈t ;ϕ1〉 →∗ 〈u◦ ;F 〉 such that sat(F ∧ ϕ2).

6 Analysis of the CASH algorithm

This section presents an example, developed jointly with Kyungmin Bae, of a real-
time system beyond the scope of timed automata [2] that can be symbolically an-
alyzed in the prototype tool integrating Maude and CVC3 described in Section 5.
The analysis uses such a prototype to perform model checking based on rewriting
modulo SMT. Some details are omitted; full details and the prototype tool can be
found in [8].

The example involves the symbolic analysis of the CASH scheduling algorithm,
developed by Caccamo, Buttazzo, and Sha [12], which attempts to maximize sys-
tem performance while guaranteeing that critical tasks are executed in a timely
manner. This is achieved by maintaining a queue of unused execution budgets that
can be reused by other jobs to maximize processor utilization. CASH poses non-
trivial modeling and analysis challenges because it contains an unbounded queue.
Unbounded data types cannot be modeled in timed-automata formalisms, such as
those of UPPAAL [20] or Kronos [37], which assume a finite discrete state.

The CASH algorithm was specified and analyzed in Real-Time Maude by explicit-
state model checking in an earlier paper by Ölveczky and Caccamo [29], which
showed that, under certain variations on both the assumptions and the design of
the protocol, it could miss deadlines. But explicit-state model checking has intrin-
sic limitations which the new analysis by rewriting modulo SMT presented below
overcomes. The CASH algorithm is parametrized by: (i) the number N of servers
in the system, and (ii) the values of a maximum budget bi and period pi, for each
server 1 ≤ i ≤ N . Even if N is fixed, there are infinitely many initial states for
N servers, since the maximum budgets bi and periods pi range over the natural
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numbers. Therefore, explicit state model checking cannot perform a full analysis.
If a counterexample for N servers exists, it may be found by explicit-state model
checking for some chosen initial states, as done in [30], but it could be missed if the
wrong initial states are chosen.

Rewriting modulo SMT is useful for symbolically analyzing infinite-state systems
like CASH. Infinite sets of states are symbolically described by terms which may
involve user-definable data structures such as queues, but whose only variables range
over decidable types for which an SMT solving procedure is available. For the
CASH algorithm, the built-in data types used are the Booleans (sort iBool) and
the integers (sort iInt). Integer built-in terms are used to model discrete time.
Boolean built-in terms are used to impose constraints on integers.

A symbolic state is a pair {iB,Cnf} of sort Sys consisting of a Boolean constraint
iB, with and denoted ^, and a multiset configuration of objects Cnf, with mutiset
union denoted by juxtaposition, where each object is a record like-structure with
an object identifier, a class name, and a set of attribute-value pairs. In each object
configuration there is a global object (of class global) that models the time of the
system (with attribute name time), the priority queue (with attribute name cq),
the availability (with attribute name available), and a deadline missed flag (with
attribute name deadline-miss). A configuration can also contain any number of
server objects (of class server). Each server object models the maximum budget
(the maximum time within which a given job will be finished, with attribute name
maxBudget), period (with attribute name period), internal state (with attribute
name state), time executed (with attribute name timeExecuted), budget time
used (with attribute name usedOfBudget), and time to deadline (with attribute
name timeToDeadline). The symbolic transitions of CASH are specified by 14
conditional rewrite rules whose conditions specify constraints solvable by the SMT
decision procedure. For example, rule [deadlineMiss] below models the detection
of a deadline miss for a server with nonzero maximum budget.

vars AtSG AtS : AttributeSet .

var iB : iBool .

var Cnf : Configuration .

vars iT iT’ iNZT : iInt .

var St : ServerState .

vars G S : Oid .

var B : Bool .

crl [deadlineMiss] :

{ iB, < G : global | dead-miss |-> B, AtSG >

< S : server | state |-> St, usedOfBudget |-> iT,

timeToDeadline |-> iT’,

maxBudget |-> iNZT, AtS > Cnf }

=> {iB ^ iT >= c(0) ^ iNZT > c(0) ^ iT’ > c(0) ^ iNZT > iT + iT’,

< G : global | dead-miss |-> true, AtSG >

< S : server | state |-> St, usedOfBudget |-> iT,

timeToDeadline |-> iT’,
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maxBudget |-> iNZT, AtS > Cnf }

if St =/= idle /\ check-sat(iB ^ iT >= c(0) ^

iNZT > c(0) ^ iT’ > c(0) ^

iNZT > iT + iT’) .

That is, the protocol misses a deadline for server S whenever the value of attribute
maxBudget exceeds the addition of values for usedOfBudget and timeToDeadline

(i.e., iNZT > iT + iT’) , so that the allocated execution time cannot be exhausted
before the server’s deadline.

The goal is to verify symbolically the existence of missed deadlines of the CASH
algorithm for the infinite set of initial configurations containing two server objects
s0 and s1 with maximum budgets b0 and b1 and periods p0 and p1 as unspecified
natural numbers, and such that each server’s maximum budget is strictly smaller
than its period (i.e., 0 ≤ b0 < p0 ∧ 0 ≤ b1 < p1). This infinite set of initial states is
specified symbolically by the equational definition (not shown) of term symbinit.
Maude’s search command can then be used to symbolically check if there is a
reachable state for any ground instance of symbinit that misses the deadline:

search in SYMBOLIC-FAILURE : symbinit =>*

{ iB:iBool, Cnf:Configuration < g : global |

AtS:AttributeSet, deadline-miss |-> true > } .

Solution 1 (state 233)

states: 234 rewrites: 60517 in 2865ms cpu

(2865ms real) (21118 rewrites/second)

iB:iBool --> ((i(0) <= c(0) ^

i(1) <= c(0)) v i(0) <= c(0) + i(1) ^

...

Cnf:Configuration -->

< s1 : server | maxBudget |-> i(0), period |-> i(1),

state |-> waiting, usedOfBudget |-> c(0),

timeToDeadline |-> ((i(1) -- c(1)) -- c(1)),

timeExecuted |-> c(0) >

< s2 : server | maxBudget |-> i(2), period |-> i(3),

state |-> executing, usedOfBudget |-> c(2),

timeToDeadline |-> ((i(3) -- c(1)) -- c(1)),

timeExecuted |-> c(2) >

AtS:AttributeSet --> time |-> c(2), cq |-> emptyQueue,

available |-> false

A counterexample is found at (modeling) time two, after exploring 233 symbolic
states in less than 3 seconds. By using a satisfiability witness of the constraint iB

computed by the search command, a concrete counterexample is found by exploring
only 54 ground states. This result compares favorably, in both time and compu-
tational resources, with the ground counterexample found by explicit-state model
checking in [29], where more that 52,000 concrete states where explored before find-
ing a counterexample.
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7 Related Work and Concluding Remarks
The idea of combining term rewriting/narrowing techniques and constrained data
structures is an active area of research, specially since the advent of modern theorem
provers with highly efficient decision procedures in the form of SMT solvers. The
overall aim of these techniques is to advance applicability of methods in symbolic
verification where the constraints are expressed in some logic that has an efficient
decision procedure (see [28] for an overview). In particular, the work presented
here has strong similarities with the narrowing-based symbolic analysis of rewrite
theories initiated in [24] and extended in [7]. The main difference is the replacement
of narrowing by SMT solving and the decidability advantages of SMT for constraint
solving.

M. Ayala-Rincón [4] investigates, in the setting of many-sorted equational logic,
the expressiveness of conditional equational systems whose conditions may use built-
in predicates. This class of equational theories is important because the combi-
nation of equational and built-in premises yield a type of clauses which is more
expressive than purely conditional equations. Rewriting notions like confluence,
termination, and critical pairs are also investigated. S. Falke and D. Kapur [15]
studied the problem of termination of rewriting with constrained built-ins. In par-
ticular, they extended the dependency pairs framework to handle termination of
equational specifications with semantic data structures and evaluation strategies in
the Maude functional sublanguage. The same authors used the idea of combining
rewriting induction and linear arithmetic over constrained terms [16]. Their aim is
to obtain equational decision procedures that can handle semantic data types rep-
resented by the constrained built-ins. H. Kirchner and C. Ringeissen proposed the
notion of constrained rewriting and have used it by combining symbolic constraint
solvers [19]. The main difference between their work and rewriting modulo SMT
presented in this paper, is that the former uses narrowing for symbolic execution,
both at the symbolic ‘pattern matching’ and the constraint solving levels. In con-
trast, rewriting modulo SMT solves the symbolic pattern matching task by rewriting
while constraint solving is delegated to an SMT decision procedure. More generally,
a difference common to [4, 15, 16, 19] is that all of those papers address symbolic
reasoning for equational theorem proving purposes, but none of them addresses the
kind of non-deterministic rewrite rules, which are needed for open system modeling.

This paper has presented rewrite theories modulo built-ins and has shown how
they can be used for symbolically modeling and analyzing concurrent open systems,
where non-deterministic values from the environment can be represented by built-
in terms. Under reasonable assumptions, including decidability of E+

0 , a rewrite
theory modulo is executable by term rewriting modulo SMT. This feature makes
it possible to use, for symbolic analysis, state-of-the-art tools already available for
Maude, such as its space search commands, with no change whatsoever required
to use such tools. We have proved that the symbolic rewrite relation is sound and
complete with respect to its ground counterpart, have presented an overview of
the prototype that offers support for rewriting modulo SMT in Maude, and have
presented a case study on the symbolic analysis of the CASH scheduling algorithm
illustrating the use of these techniques.

Future work on a mature implementation and on extending the idea of rewriting
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modulo SMT with other symbolic constraint solving techniques such as narrowing
modulo should be pursued. Also, the extension to symbolic LTL model check-
ing, together with state space reduction techniques, should be investigated. The
ideas presented here extend results in [32] and have been successfully applied to
the symbolic analysis of NASA’s PLEXIL language to program open cyber-physical
systems [32]. Future applications to PLEXIL and other languages should also be
pursued.
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30. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

31. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduc-
tion (CADE), volume 607 of LNAI, pages 748–752, Saratoga, NY, June 1992.
Springer-Verlag.

32. Camilo Rocha. Symbolic Reachability Analysis for Rewrite Theories. PhD thesis,
University of Illinois at Urbana-Champaign, 2012.
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