2,846 research outputs found

    Performance Analysis of Publish/Subscribe Systems

    Full text link
    The Desktop Grid offers solutions to overcome several challenges and to answer increasingly needs of scientific computing. Its technology consists mainly in exploiting resources, geographically dispersed, to treat complex applications needing big power of calculation and/or important storage capacity. However, as resources number increases, the need for scalability, self-organisation, dynamic reconfigurations, decentralisation and performance becomes more and more essential. Since such properties are exhibited by P2P systems, the convergence of grid computing and P2P computing seems natural. In this context, this paper evaluates the scalability and performance of P2P tools for discovering and registering services. Three protocols are used for this purpose: Bonjour, Avahi and Free-Pastry. We have studied the behaviour of theses protocols related to two criteria: the elapsed time for registrations services and the needed time to discover new services. Our aim is to analyse these results in order to choose the best protocol we can use in order to create a decentralised middleware for desktop grid

    The integration of grid and peer-to-peer to support scientific collaboration

    Get PDF
    There have been a number of e-Science projects which address the issues of collaboration within and between scientific communities. Most effort to date focussed on the building of the Grid infrastructure to enable the sharing of huge volume of computational and data resources. The ‘portal’ approach has been used by some to bring the power of grid computing to the desk top of individual researchers. However, collaborative activities within a scientific community are not only confined to the sharing of data or computational intensive resources. There are other forms of sharing which can be better supported by other forms of architecture. In order to provide a more holistic support to a scientific community, this paper proposes a hybrid architecture, which integrates Grid and peer-to-peer technologies using Service Oriented Architecture. This platform will then be used for a semantic architecture which captures characteristics of the data, functional and process requirements for a range of collaborative activities. A combustion chemistry research community is being used as a case study

    Integrating BOINC with Microsoft Excel: A case study

    Get PDF
    The convergence of conventional Grid computing with public resource computing (PRC) offers potential benefits in the enterprise setting. For this work we took the popular PRC toolkit BOINC and used it to execute a previously monolithic Microsoft Excel financial model across several commodity computers. Our experience indicates that speedup approaching linear may be realised for certain scenarios, and that this approach offers a viable route to leveraging idle desktop PCs in the enterprise

    Incentives in peer-to-peer and grid networking

    Get PDF
    Today, most peer-to-peer networks are based on the assumptionthat the participating nodes are cooperative. Thisworks if the nodes are indifferent or ignorant about the resourcesthey offer, but limits the usability of peer-to-peernetworks to very few scenarios. It specifically excludes theirusage in any non-cooperative peer-to-peer environment, beit Grid networks or mobile ad-hoc networks. By introducingsoft incentives to offer resources to other nodes, we seean overall performance gain in traditional file-sharing networks.We also see soft incentives promoting the convergenceof peer-to-peer and Grid networks, as they increasethe predictability of the participating nodes, and thereforethe reliability of the services provided by the system as awhole. Reliability is what is required by Grid networks, butmissing in peer-to-peer networks

    A FUNCTIONAL SKETCH FOR RESOURCES MANAGEMENT IN COLLABORATIVE SYSTEMS FOR BUSINESS

    Get PDF
    This paper presents a functional design sketch for the resource management module of a highly scalable collaborative system. Small and medium enterprises require such tools in order to benefit from and develop innovative business ideas and technologies. As computing power is a modern increasing demand and no easy and cheap solutions are defined, especially small companies or emerging business projects abide a more accessible alternative. Our work targets to settle a model for how P2P architecture can be used as infrastructure for a collaborative system that delivers resource access services. We are focused on finding a workable collaborative strategy between peers so that the system offers a cheap, trustable and quality service. Thus, in this phase we are not concerned about solutions for a specific type of task to be executed by peers, but only considering CPU power as resource. This work concerns the resource management module as a part of a larger project in which we aim to build a collaborative system for businesses with important resource demandsresource management, p2p, open-systems, service oriented computing, collaborative systems

    Grid-enabling FIRST: Speeding up simulation applications using WinGrid

    Get PDF
    The vision of grid computing is to make computational power, storage capacity, data and applications available to users as readily as electricity and other utilities. Grid infrastructures and applications have traditionally been geared towards dedicated, centralized, high performance clusters running on UNIX flavour operating systems (commonly referred to as cluster-based grid computing). This can be contrasted with desktop-based grid computing which refers to the aggregation of non-dedicated, de-centralized, commodity PCs connected through a network and running (mostly) the Microsoft Windowstrade operating system. Large scale adoption of such Windowstrade-based grid infrastructure may be facilitated via grid-enabling existing Windows applications. This paper presents the WinGridtrade approach to grid enabling existing Windowstrade based commercial-off-the-shelf (COTS) simulation packages (CSPs). Through the use of a case study developed in conjunction with Ford Motor Company, the paper demonstrates how experimentation with the CSP Witnesstrade and FIRST can achieve a linear speedup when WinGridtrade is used to harness idle PC computing resources. This, combined with the lessons learned from the case study, has encouraged us to develop the Web service extensions to WinGridtrade. It is hoped that this would facilitate wider acceptance of WinGridtrade among enterprises having stringent security policies in place

    Computational Mechanism Design: A Call to Arms

    No full text
    Game theory has developed powerful tools for analyzing decision making in systems with multiple autonomous actors. These tools, when tailored to computational settings, provide a foundation for building multiagent software systems. This tailoring gives rise to the field of computational mechanism design, which applies economic principles to computer systems design

    Parallel processing over a peer-to-peer network : constructing the poor man’s supercomputer

    Get PDF
    The aggregation of typical home computers through a peer-to-peer (P2P) framework over the Internet would yield a virtual supercomputer of unmatched processing power, 95% of which is presently being left unutilized. However, the global community appears to be still hesitant at tapping into the well of unharnessed potential offered by exploiting distributed computing. Reasons include the lack of personal incentive for participants, and the high degree of expertise required from application developers. Our vision is to tackle the aforementioned obstacles by building a P2P system capable of deploying user-defined tasks onto the network for distributed execution. Users would only be expected to write standard concurrent code accessing our application programming interface, and may rely on the system to transparently provide for optimal task distribution, process migration, message delivery, global state, fault tolerance, and recovery. Strong mobility during process migration is achieved by pre-processing the source code. Our results indicate that near-linear efficiencies – approximately 94% ± 2% of the optimal – may be obtained for adequately coarse-grained applications, even when deployed on a heterogeneous net- work.peer-reviewe

    Enabling JXTA for High Performance Grid Computing

    Get PDF
    Grid computing has recently emerged as a response to the growing demand for resources (processing power, storage, etc.) exhibited by scientific applications. However, as grid sizes increase, the need for self-organization and dynamic reconfigurations is becoming more and more important. Since such properties are exhibited by P2P systems, the convergence of grid computing and P2P computing seems natural. However, using P2P systems (usually running on the Internet) on a grid infrastructure (generally available as a federation of SAN-based clusters interconnected by high-bandwidth WANs) may raise the issue of the adequacy of the P2P communication mechanisms. This paper evaluates the communication performance of the JXTA P2P library over SANs and WANs, for both J2SE and C bindings. We analyze these results and we evaluate solutions able to improve the performance of JXTA on such grid infrastructures
    • 

    corecore