3,245 research outputs found

    Graph Creation, Visualisation and Transformation

    Full text link
    We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting

    Lineal: A linear-algebraic lambda-calculus

    Get PDF
    International audienceWe provide a computational de nition of the notions of vector space and bilinear functions. We use this result to introduce a minimal language combining higher-order computation and linear algebra. This language extends the lambda-calculus with the possibility to make arbitrary linear combinations of terms : alpha t + beta u. We describe how to \execute" this language in terms of a few rewrite rules, and justify them through the two fundamental requirements that the language be a language of linear operators, and that it be higher-order. We mention the perspectives of this work in the eld of quantum computation, whose circuits we show can be easily encoded in the calculus. Finally, we prove the confluence of the entire calculus

    Lineal: A linear-algebraic Lambda-calculus

    Full text link
    We provide a computational definition of the notions of vector space and bilinear functions. We use this result to introduce a minimal language combining higher-order computation and linear algebra. This language extends the Lambda-calculus with the possibility to make arbitrary linear combinations of terms alpha.t + beta.u. We describe how to "execute" this language in terms of a few rewrite rules, and justify them through the two fundamental requirements that the language be a language of linear operators, and that it be higher-order. We mention the perspectives of this work in the field of quantum computation, whose circuits we show can be easily encoded in the calculus. Finally, we prove the confluence of the entire calculus.Comment: The complementary note "On the critical pairs of a rewrite system for vector spaces" is provided in the source files. Short version : "Linear-algebraic Lambda-calculus : higher-order and confluence", Proceedings of RTA 08, Hagenberg, July 2008. LNCS 5117, 17, (2008). Long version : LMC

    Constrained narrowing for conditional equational theories modulo axioms

    Full text link
    For an unconditional equational theory (Sigma, E) whose oriented equations (E) over arrow are confluent and terminating, narrowing provides an E-unification algorithm. This has been generalized by various authors in two directions: (i) by considering unconditional equational theories (Sigma, E boolean OR B) where the (E) over arrow are confluent, terminating and coherent modulo axioms B, and (ii) by considering conditional equational theories. Narrowing for a conditional theory (Sigma, E boolean OR B) has also been studied, but much less and with various restrictions. In this paper we extend these prior results by allowing conditional equations with extra variables in their conditions, provided the corresponding rewrite rules (E) over arrow are confluent, strictly coherent, operationally terminating modulo B and satisfy a natural determinism condition allowing incremental computation of matching substitutions for their extra variables. We also generalize the type structure of the types and operations in Sigma to be order-sorted. The narrowing method we propose, called constrained narrowing, treats conditions as constraints whose solution is postponed. This can greatly reduce the search space of narrowing and allows notions such as constrained variant and constrained unifier that can cover symbolically possibly infinite sets of actual variants and unifiers. It also supports a hierarchical method of solving constraints. We give an inference system for hierarchical constrained narrowing modulo B and prove its soundness and completeness. (C) 2015 Elsevier B.V. All rights reserved.We thank the anonymous referees for their constructive criticism and their very detailed and helpful suggestions for improving an earlier version of this work. We also thank Luis Aguirre for kindly giving us additional suggestions to improve the text. This work has been partially supported by NSF Grant CNS 13-19109 and by the EU (FEDER) and the Spanish MINECO under grant TIN 2013-45732-C4-1-P, and by Generalitat Valenciana PROMETEOII/2015/013.Cholewa, A.; Escobar Román, S.; Meseguer, J. (2015). Constrained narrowing for conditional equational theories modulo axioms. Science of Computer Programming. 112:24-57. https://doi.org/10.1016/j.scico.2015.06.001S245711

    Quantifier-Free Interpolation of a Theory of Arrays

    Get PDF
    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extensionality

    Adequacy Issues in Reactive Systems: Barbed Semantics for Mobile Ambients

    Get PDF
    Reactive systems represent a meta-framework aimed at deriving behavioral congruences for those specification formalisms whose operational semantics is provided by rewriting rules. The aim of this thesis is to address one of the main issues of the framework, concerning the adequacy of the standard observational semantics (the IPO and the saturated one) in modelling the concrete semantics of actual formalisms. The problem is that IPO-bisimilarity (obtained considering only minimal labels) is often too discriminating, while the saturated one (via all labels) may be too coarse, and intermediate proposals should then be put forward. We then introduce a more expressive semantics for reactive systems which, thanks to its flexibility, allows for recasting a wide variety of observational, bisimulation-based equivalences. In particular, we propose suitable notions of barbed and weak barbed semantics for reactive systems, and an efficient characterization of them through the IPO-transition systems. We also propose a novel, more general behavioural equivalence: L-bisimilarity, which is able to recast both its IPO and saturated counterparts, as well as the barbed one. The equivalence is parametric with respect to a set L of reactive systems labels, and it is shown that under mild conditions on L it is a congruence. In order to provide a suitable test-bed, we instantiate our proposal over the asynchronous CCS and, most importantly, over the mobile ambients calculus, whose semantics is still in a flux

    Introducing ⦇ λ ⦈, a λ-calculus for effectful computation

    Get PDF
    International audienceWe present λ , a calculus with special constructions for dealing with effects and handlers. This is an extension of the simply-typed λ-calculus (STLC). We enrich STLC with a type for representing effectful computations alongside with operations to create and process values of this type. The calculus is motivated by natural language modelling, and especially semantic representation. Traditionally, the meaning of a sentence is calculated using λ-terms, but some semantic phenomena need more flexibility. In this article we introduce the calculus and show that the calculus respects the laws of algebraic structures and it enjoys strong normalisation. To do so, confluence is proven using the Combinatory Reduction Systems (CRSs) of Klop and termination using the Inductive Data Type Systems (IDTSs) of Blanqui
    • …
    corecore