UNIVERSITA DEGLI STUDI DI PISA

DIPARTIMENTO DI INFORMATICA
DOTTORATO DI RICERCA IN INFORMATICA

PH.D. THESIS

Adequacy Issues in Reactive Systems:
Barbed Semantics for Mobile Ambients

Giacoma Monreale

SUPERVISOR
Fabio Gadducci

May 24, 2011

Abstract

Reactive systems represent a meta-framework aimed afrdghbehavioral congruences for those specifi-
cation formalisms whose operational semantics is provimjeetwriting rules.

The aim of this thesis is to address one of the main issuegdfaimework, concerning the adequacy of
the standard observational semantics (the IPO and thextedlone) in modelling the concrete semantics of
actual formalisms. The problem is that IPO-bisimilarityi@ned considering only minimal labels) is often
too discriminating, while the saturated one (via all lapetsy be too coarse, and intermediate proposals
should then be put forward.

We then introduce a more expressive semantics for reagtsterss which, thanks to its flexibility,
allows for recasting a wide variety of observational, bigiation-based equivalences. In particular, we
propose suitable notions of barbed and weak barbed sermdnticeactive systems, and an efficient char-
acterization of them through the IPO-transition systems.

We also propose a novel, more general behavioural equisalditbisimilarity, which is able to re-
cast both its IPO and saturated counterparts, as well asattied one. The equivalence is parametric
with respect to a selb of reactive systems labels, and it is shown that under mifditimons onL it is a
congruence.

In order to provide a suitable test-bed, we instantiate cop@sal over the asynchronous CCS and, most
importantly, over the mobile ambients calculus, whose sgitsis still in a flux.

To Marco and Chiara: my dreams come true...

Acknowledgments

First of all, | would like to thank my supervisor Fabio Gaddijavho constantly supported, guided and
encouraged me during these years of research. Working wmitlnias a pleasure and an honour.

| am grateful to Filippo Bonchi for our collaboration: it @ated me to learn so much, building at the
same time a friendship.

| wish to thank Ugo Montanari, who conveyed to me the passiothfeoretical computer science in all
the occasions we discussed together. | also thank him angiGiGhelli for their patience in overseeing
my work as members of the supervisory committee.

| thank the reviewers for their useful and constructive ssgjgns, which led to several improvements
of the thesis.

I would also like to express my gratitude to all the peoplepagithem Paolo Baldan, with whom | had
the pleasure to work together or/and | had the opportunigxthange ideas: it always allowed me to have
fresh insights and novel points of view.

A special thought goes to my colleague and close friend MaarPesaresi. Her smile shall always be
in my mind and in my heart.

Many thanks to my family, and in particular to my sisters Aramal Marcella, for always believing in
me. Special thanks go to Anna, who gave me a very beautifabni®ofia. | would also like to thank her
for sharing with me the joys and the difficulties of these imi@ot years of study and life. | hope to have
the opportunity to work again with her.

| owe a lot to my husband Marco and my wonderful daughter @hiaho lovingly bear with me during
the writing of this thesis and made me laugh during my brektksnk | can not write all | would like to tell
them, because these acknowledgments would inevitablynbeedove letter.

Contents

[L__Introduction| 9
(1.1 _Thesis ContribUtion vttt e 10
L2 Outlineofthe Thedis 11

round on reactive systems 13

[2.1 _The Theory of Reactive SYStaMS o v vttt e e e e e 13
[2.2__The Theory of G-reactive SYSIEMS v vt et e 17
[2.3__Graph Transformation and the Borrowed Context Teclgiqu. 21
E&LD&BMMQJMIILB.QLLOML&dLQﬂ@(tS 21

[3.2 Graphs and Graphs with interfdces 28
[3.2.1 Two operations on hs . . 28
[3.2.2 Applyingthe operations e 29

Is_z_lﬁmdg 30
3.3.1 Parallel Independence and Confluence oo .. 31

13.4__Graphical Encoding for Processes of Mobile Amblents 31

[3.5 A Graph Transformation System for Mobile Ambiénts 34

4.2 DPO Rewriting for Graphs with Interfabeso 48
[4.3 Graphical Encoding_fgLExlgn_dngM_QbilgAmbj_enls_ELe_d;s 49
[4.4 Graph Transformation for the Extended Mobile Ambients... 50
4.5 The Synthesized Transition System o o v i 52
i i aII 52

52

55

57

59

59

60
61

6 CHAPTER 0. CONTENTS

List of Figures

2.1 Reductionrelatidn 14
[2.2__Syntax, structural congruence and reduction relati@he. L. 14
[2.3__Labelled transition system forthe SPC. 15
R4 Redexsqudre 16
RE_RPO . . .o 16
[2.6__IPOs composition and decomposition 17
2.7 _|1POsfortheterms | aandb [b(lefttoright) 18
2.8 _Redexsquaresforthe SPC. 18
29 The2celb:f=gl....., 19
[2.10 Reduction relation for G-reactive SyStems oo 20
[2.11 Redex square in G-reactive SySIemso i 20
RI2 GRPD 21
[2.13 A pushout squarg), and a commutative culdéi)| 22
[2.14 Cospans compositiOn. oo 23
3.1 Syntaxofmobileambiedts. 26
i =0 27
B3 Reductionrelatidn. 27
iti iom of the structural congruesgéé. 27
[3.5__Graphs with interface8..... andG.,, (lefttoright)l 29
[3.6 _Graphs with interface® andG’ (lefttoright)l 30
[3.7 _Graphwithinterface€ @ G| 31
B8 Adirectderivation. e 31
[3.9 _Parallelindependence for/m;. : G H, andps/mz., : G Hol 32
13.10 The type graph (faacte {in,out,open})| 32
[3.11 Graphsict,, (Wlth act € {in, out (menﬂ amb,.;, v, andgo (left to I’Ig_h_t)l 33

|3_.15_G_Lap_h_en_c_o_dmg for the Drocémn\(ym{m[[P] | open n.Q) | open m o 35
he re Do

13.23 Graph encodinf(rm)(wn)(P | Q | R)% od . . o o o 40
&Zuhi@m&mgm@wngthe useless restriction ooeralors T 0 |
[3.25 Normal form of the encodinf{vm)(vn)(m[P | Q| | open m.R)] fﬁFiI 40

CHAPTER 0. LIST OF FIGURES

4,24 Ambientw (from environment) enters ambiemt! 71
/ he minimal transitions generated by themle 72
4.26 The minimal transitions generated by themlg! 73
{4.27 The BC transition correspondingd® — 0 74

iti i i a0l ... 75

Chapter 1

Introduction

The ever increasing diffusion of concurrent and distriduggstems stimulated the development of novel
formalisms for their specification. Roughly, on the one sigehave more classical, syntax-based frame-
works such as those related to process calculi; on the oitkemse witness the renewed interest towards
visual models based on graph rewriting. Nowadays, thesediisms usually provide an abstract presenta-
tion of the behaviour of a system by resorting to some kindoefrational description, eventually exploiting
an observational equivalence.

Reduction semantics. At its simplest, the dynamics of a computational model isragfiby means of

a reduction semantif a set representing the possible states of the system, pluslabelled relation
among these states, called reduction relation. The setssilge states is often provided by means of an
equational specification, denoted as “structural congreleim the process calculi literature, stating which
presentations intuitively specify the same system, upsigréactical rearrangement of its components. The
reduction relation, usually denoted by, describes the evolution of systems over tinie:— @ means
that the statd”® reduces ta@, that is, P can execute a computational step and it is transformedjntbhe
reduction relation is closed under structural congruemekiiais inductively generated by a set of axioms
and a set of structural rules, which close the relation usdere contexts. A reduction rule is a péirr),
wherel represents the left hand side of the rule and the right hand side. So, a stafereduces into a
state@, P — @, if the left hand sidé of a reduction rule occurs in it, that i&, = C[l]. In this case, the
left hand side is replaced by the right hand sidend therefor&) = C[r].

For example, the reduction rule modelling the (asynchrehoaslike communication over a channel
aisa.P | a — P. Intuitively, the rule says that a process sending a message channel and a
process receiving on the same channel can react by constingngo actions and continuing & So,
the operational semantics of the proceds0 | @ | ¢ is obtained by instantiating the above ruleht6 and
contextualizing it in the unary context | ¢, hence obtaining the reductiam.0 |a | ¢ — b.0 | c.

Despite the advantage of conveying the semantics withwelaffew compact rewriting rules, the main
drawback of reduction semantics is that it may be quite hartkvise meaningful behavioral equivalences
(i.e., state equivalences based on the possible behavisystems), and more so if they are required to be
congruences (that is, closed with respect to all the comtaikthe specification). Being a congruence is a
desirable property, since it allows one to replace a subsystith an equivalent one without changing the
behaviour of the overall system, thus stimulating the needkéining similar equivalences for reduction-
based formalisms.

Barbed semantics. Various attempts of defining compositional behavioral egjeinces starting from a
reduction semantics have been made. An intuitive propdsshdy appearing in the literature on func-
tional languages [4], and further expoited in the field ofqaess calculi[[54], is based on so-callearbed
equivalencesuniformly describing an equality between systems spetifieusing calculi equipped with a
reduction relation and a notion of predicate, calbedb, which usually detects the possibility of performing
some action. In particular, in [54] the authors take intocat ccs [48], by showing that for that calcu-
lus the congruence induced by so-calledbed bisimulatiortoincides with standard, strong bisimulation.

1The reduction semantics is also called reduction semantidsos now on we will use them indifferently.

10 CHAPTER 1. INTRODUCTION

However, the framework proved successful also for otheutisds well (and we just mention here the case
of mobile ambientg[16], as reported n[47]), each time aihgpan ad-hoc notion of barb, specific for the
calculus at hand. However, these equivalences often eetharquantification over all contexts, so proofs
of system equivalence can be very complex and hard to provide

Labelled transition systems. An alternative approach equips the computational formadisvith an ob-
servational semantics by addindadel to each reduction. A labelled transition system (LTS) cstssof

a set of states and a labelled transition relation, i.e.ndaxed relation among states, describing how the
system can interact with the environment. So, for instaadeansition with labety from a stateP to the
state@, in symbolsP % @, means thaP can evolve taQ by interacting with the external environment,
and the labed describes the interaction. Labels are exploited to definemlostract semantics by identify-
ing systems with the same observational behaviour, in dodabstract aspects of system behaviour which
should be ignored. Often, these observational equivate(ieethem be alternative variants such as trace,
testing, bisimulation ...) are compositional, that is ytlage congruences with respect to all the possible
contexts of the specification.

These labelled semantics are usually less intuitive tharrékduction ones, and it might be difficult
to identify the intuitively correct LTS specifying a givenrimalism. A case at hand is the calculus of
mobile ambient§L6], for which only recently suitable labelled semanticre/proposed[47, 60], while for
example forr-calculus[49], there exist at least two main LTSs, the eanlg the late version, giving rise to
different behavioural equivalences.

Deriving bisimulation congruences from reductions. A series of papers recently addressed the need to
derive LTSs starting from a reduction semantics, in ordetdanve observational equivalences (and more
specifically, bisimulation equivalencés [48] 56]) that als congruences. The most successful technique
adopted so far is represented by the theomgattive systen{d5]. It is based on so-calleglative pushouts
(RPOs), capturing in an abstract setting the intuitivearotf “minimal” environment into which a system
specification has to be inserted, in order to allow a redndticoccur. The idea is very simple: whenever
a system specified by a ter@i[P], i.e., by a subtern® inserted into a (unary) “minimal” context[—],

may evolve to a stat€), the associated LTS has a transitiBnC[;J Q, i.e., the staté® evolves intoQ with
a labelC[—]. The resulting behavioural equivalence, calle®-bisimilarity, is a congruence if “enough”
RPOs exist.

Should all the possible contexts allowing a reduction beitidd) the resulting equivalence, denoted as
saturated bisimilarity would also result in a congruence. However, it is usuallyragtable, since it has
to tackle a potentially infinite set of contexts. The probleas been addressed in[13] by introducing an
“efficient” characterization (so-called semi-saturajioh these semantics, where one avoids considering
all possible contexts by using in a cunning way RPOs, at thee @f modifying the standard, symmetric
presentation of the (either strong or weak) bisimulationieences.

In any case, providing the proof that e.g. a process calaaltisfies the requirements needed for apply-
ing the RPOs technique is often quite a daunting task, duleetantricacies of the structural congruence.
A way out of the impasse is to look for graphical encodings micpsses, such that process congruence
is turned into graph isomorphism. Graph formalisms are raarenable to the RPOs trappings, and once
the processes of a calculus have been encoded as graphsbdesll'S can thus be distilled. Indeed, the
main source of examples concerning RPOs have bagaphs[51], a graphical formalism introduced for
specifying concurrent and distributed systems.

It is noteworthy that, should the reduction relation oveairs be defined using the double pushout
(DPO) approach]2], these graphs are amenable tdtnmwed context¢BCs) technique[[28], which
offers a constructive solution for calculating the miningahtexts enabling a graph transformation rule.
Indeed, graphs form aamdhesivecategory[[44], and for these formalisms borrowed contegtRRO may
be proved to be coincident notions [63].

1.1 Thesis Contribution

A less explored, yet a key issue in the theory of reactiveesystconcerns the adequacy of the observational
semantics associated to the distilled LTS. As discusség] it O-bisimilarity is often too strict (it identifies
less systems than expected), while the saturated one mag bedrse. As a paradigmatic case, the standard

1.2. OUTLINE OF THE THESIS 11

strong bisimilarity forccs[48] coincides with the IPO-bisimilarity, and it is strigincluded in the saturated
one [7]; while for the asynchronous version of the calculg®] [[PO-bisimilarity does not capture the
standard semantics (see below).

Barbed semantics for reactive systems. From a theoretical point of view, possibly the main techhica
contribution of this thesis is the introduction of suitabletions of (weak) barbed semantics for reactive
systems, and their efficient characterization via tramsiiystems labelled with minimal contexts, by ex-
ploiting the semi-saturated game. In order to properlyldistathe adequacy of the framework, we check
it against suitable case studies. To this end, we instentiat proposal over the asynchronauss, and
most importantly, over the calculus of mobile ambients, séhobservational semantics is still in a flux. In
particular, for the asynchronoass we show that strong barbed semantics is able to capturdéahdasd
asynchronous bisimilarity for the calculus, while for mebambients, we prove that the strong and the
weak reduction barbed congruence, proposed respectivid], and in[47], coincide with the strong and
weak barbed semantics for the calculus.

A more general behavioural equivalence for reactive system After the introduction of the more ex-
pressive barbed semantics for reactive systems, we talepdostvard, by proposing a novel behavioural
equivalence: L-bisimilarity. The equivalence is so calbetause it is parametric with respect to a et
of minimal labels and we show that under mild conditionsioit is a congruence. The equivalence is
intermediate between its IPO and saturated counterpadsed, it is able to recover both of them, by sim-
ply varying the set of label&. Furthermore, L-bisimilarity can also recast the notiorbafbed semantics
for reactive systems discussed above. With respect to ttheta@ase, L-bisimilarity admits a streamlined
definition, where state predicates play no role. It is thusiwipler verification, and its introduction may
have far reaching consequences over the usability of tletiveasystems formalism. In order to provide a
suitable test-bed, we instantiate our proposal again byeadihg the semantics of the asynchronoas
and of the calculus of mobile ambients.

Graphical encodings. For mobile ambients as well as asynchronass, in order to identify the set

L of minimal labels we exploit two minimal LTSs distilled by ares of graphical encodings. In order to
perform such a synthesis, processes are mapped into sagrdahs such that process congruence is turned
into graph isomorphism, while the reduction relation overgesses is captured by a set of graph rewriting
rules. In particular, while the graphical encoding for tlsgrechronouscsis an adaptation of the one for
the synchronous version proposed|in [7], we present a naxading for the mobile ambients calculus,
discussing its differences and advantages with respedteimative proposals in literature, and providing
an in-depth study. We also discuss the concurrency featdithe proposed graph transformation system
and we show how the information about dependencies amongdlia related) rewriting steps offered
by the graph-based semantics of mobile ambients may be asddritify interferences between process
reductions, formalising the taxonomy proposed_in [46].

Minimal LTSs via graphical encodings. Graphical encodings for mobile ambients and asynchronous
ccs are used to distill LTSs on (processes encoded as) graptemplying the borrowed context mech-
anism, hence, an instance of the RPO technique. For eadhlusleve then use the synthesized LTS in
order to infer a set of rules that is directly defined on thecpsses. As far as the mobile ambients calculus
is concerned, we also propose an alternative, yet equivafesentation of that LTS, by means of a set of
structural rules, and we prove that it is the same as the @avéously proposed in [60].

1.2 Outline of the Thesis

Chapter[2. Background on reactive systems: In this chapter we aim at giving a general introduction to
the theory of reactive systenis [45] and its extension ton2edisional categories [61]. We also introduce
the borrowed context technique [28], addressing the proloiederiving labelled transitions systems from

unlabelled reduction rules in the context of the doublehpus (DPO) approach to graph rewriting. Finally,

a sketch of the connection between the two approaches igeépas devised in [63].

Chapter [3. Graphical encodings for mobile ambients and asychronous ccs: In this chapter we
present the graphical encodings for the two calculi on whiehest the main results presented in the thesis,
namely, mobile ambient$ [16] and asynchronags. In particular, here we briefly introduce the two

12 CHAPTER 1. INTRODUCTION

calculi and for both of them we define an encoding mappinggsses into graphs, showing its soundness
and completeness with respect to the reduction semantibe ehlculus. Such encodings will be then used
in the next chapter for the synthesis of minimal labelledgiton systems over graphs.

Much of the content of this chapter appeared first in the aenfge papef [34] and then in its journal
version [35]: only Sectioh 319 can be found in the conferguageer [12].

Chapter[4. RPO semantics for mobile ambients and asynchrons ccs: In this chapter we apply
the borrowed contexts technique to the two graphical emgsdpresented in the previous chapter. In
particular, for both mobile ambients and asynchronoas, we present a suitable LTS directly defined over
the structure of processes, obtained analyzing the syindtekTS on graphs. These LTSs will be essential
in showing the adequacy of the results presented in the tlawiog chapters.

The development about the synthesis of the labelled tiansitystems for mobile ambients first ap-
peared in the workshop papét [9] and in its submitted jouveasion [8]. The part concerning the asyn-
chronousccscan be found in[10] and [12].

Chapter[. Barbed semantics for reactive systems: In this chapter we provide a framework for recasting
(weak) barbed equivalence in the reactive systems formalig/e prove that our proposal captures the
behavioural semantics for mobile ambients proposedind@@][47], as well as the standard semantics for
asynchronougcs. To this end we exploit the minimal contexts semantics fesséhcalculi presented in
Chaptef®.

Most of the results presented in this chapter were publighédte conference papér[11].

Chapter[@. On barbs and labels in reactive systems: In this chapter we present a new, more general
semantics for reactive systems, namely L-semantics, whiable to capture both its minimal and saturated
counterparts, as well as, under suitable conditions, theeragpressive barbed semantics. We test the
proposed framework on the case studies, by showing that myoopal is able to capture the standard
semantics for the mobile ambients and asynchromams

Results of this chapter appeared in the workshop papér [10].

Chapter[Z. Conclusions: In this chapter we summarize the main results of the thesisketch possible
future lines of research.

At the end of the thesis there are three technical Appendiaaael\[A[B and_C, where we show the
proofs of the results presented in Chapléfd 3, 4and 5, resggc

Chapter 2

Background on reactive systems

This chapter aims at giving a general introduction to theth®f reactive systems (Sectibn 2.1), and its
2-categorical extension (Sectibnl2.2). The borrowed ctriezhnique is also presented, and a sketch of
its relationship with the general framework included (88dP.3). In the presentation of the chapter we
assume some elementary knowledge of the basic notionsegfargttheory (pushouts, pullbacks, ...).

2.1 The Theory of Reactive Systems

This section summarizes the main results concerning (g@rytof) reactive systems introduced by Leifer
and Milner [45]. The aim of the formalism is deriving labellgansition systems for those specification for-
malisms whose operational semantics is provided by regluctiles, such that the associated bisimulation
equivalence is a congruence.

The framework is centered on the conceptsaftexf termandreduction rules

Roughly, a context is a term with a hole. Given a cont€¥t] and a term:, we would like to plug
t into C[—] and obtain the tern@'[t]. Moreover, given two context§’[—] and D[—], we would like to
compose them by substituting for example the first contextiwithe second one so obtaining the new
context D[C[—]]. This substitution operation between contexts should be associative. This means
that the context we obtain by insertidg/—] inside D[—] and then the resulb[C[—]] inside E[—] should
coincide with the term obtained by first insertifig]—] inside E[—] and then plugging the context|—]
in the resulting contexE'[D[—]]. Moreover, we would like to have an identity context such that the
context obtained by plugging a conteX{—] into — is exactlyC[—] itself. It is therefore quite natural to
model contexts as arrows of a category where compositiorroiva is composition of contexts, and objects
describe the types of such contexts.

In order to model a term as a context with no hole, we nedistnguishedobject0 of the category,
which is a special object denoting the lack of holes, suchahraws having) as domain represent terms.

Now, the last concept we need to introduce before giving tnmél definition of reactive systems is
the one of reduction rules. They are pairs of (ground) term®¥ws with domairv) (I, r), wherel is the
left-hand side of the rule andis the right-hand side. The reduction relation is henceinbthby closing
them under certain contexts, callezhctive contextsIndeed, in general, there might be contexts inside
which reductions cannot occur. For example, if we consideilner's CCS, we have that| b — 0 yet
a.(b | b) has no reduction.

Now, we are ready to introduce the definition of reactive exyst Given a categor¢’, we denote the
class of morphisms with souree and target: by C(m, n).

Definition 2.1 (Reactive System)A reactive systenC consists of

1. a categon(GC,

N

a distinguished obje¢t € C;

w

a composition-reflecting subcategddyof reactive contexts
a set of pairsk C |J,;. C(0,1) x C(0, I) of reduction rules

P

14 CHAPTER 2. BACKGROUND ON REACTIVE SYSTEMS

By composition-reflecting we mean thatd’ € D impliesd, d’ € D. Note that the left-hand and right-
hand sides of reduction rules have the same codomain. Thissato obtain the definition of reduction
relation which is generated from the reduction rules byinlpshem under all reactive contexts.

Definition 2.2 (Reduction Relation) Given a reactive systeqC, 0, D, fR), the reduction relation— is
defined as followsP — Q iff P = [;d and @ = r;d for some reduction rulél,r) € R and reactive

contextd € D (Figure[2.1).
I
A X
]d
Pl = Il = |1Q
()
L
0

Figure 2.1: Reduction relation

Example 2.1. Let us consider the Simple Process Calculus (SPC), a tsubset of the Milner's CCS
proposed in[[64]. The first row of Figuke 2.2 shows the synfake calculus. We assume a 9¢bf names
ranging over byi, b, ¢, ..., and we letP, Q, R, . .. range over the set of processes.

The processes are considered up to the structural congriehénduced by the only axioms in the
second row of Figurie2.2. In order to keep the example as siagppossible, no structural rule guaranteeing
that the0 process is the identity for parallel composition is added.

The transition relatior- is defined by the rules in the bottom of the same figure. Thedfikisim on the
left models the synchronization over a chanmelhe middle and the right rules instead model the closure
of the relation with respect to the parallel composition gralstructural congruence.

In the following we define the corresponding reactive systepe = (C,0, D, R).

The categonyC. It has only0 and1 as objects, and terms over the signatire- 0 : 0,a : 0,a : 0,] : 2
(corresponding to the SPC grammar) as arrows. Terms arédeoed quotiented by the associativity and
commutativity equations (second row of Figlire]2.2) . Inigatar, the homse€(0, 0) contains only the
identity arrow. There are no arrows frohto 0. Arrows of C(0, 1) represent ground terms, while arrows
of C(1,1) represent contexts, that is, terms with just one hole.

Note that the composition of arrows models the substitutiba context in the unique hole within
another context. In particular, two types of substitutiomallowed: the composition between a closed term
P : 0 — 1andacontexC[—] : 1 — 1 resulting in the closed ter@[P] : 0 — 1, and the composition
between a context[—| : 1 — 1 and a contexD[—] : 1 — 1 resulting in the contexD[C[—]] : 1 — 1.

The distinguished objectThe object) denoting the lack of hole.

P:=0,a,a,P | P

(PlQ)R=P[(Q]|R) PlR=Q|P

ola—0 o P=Q . P=PP-QQ=(
PIR—Q|R P —qQ

Figure 2.2: Syntax, structural congruence and reduction relatioRPGf S

2.1. THE THEORY OF REACTIVE SYSTEMS 15

Reactive contextdll contexts are reactive.

Reduction rulesThe set{(a | a,0) | a € N}.

The behaviour of a reactive system is expressed as an uldlelnsition system. As previously said,
this kind of semantics is very natural and intuitive, butartiinately it is not compositional. For example,
consider the two SPC processeandb, neither of them can perform a transition, so since they tiage
same operational behavior they are considered equivalemte insert them into the context | a, the
former has a transition because it can execute the syndatoom over the channel instead the latter has
no transition. So, the equivalence is not preserved andehieérscnot a congruence.

Labelled transition systems represent an alternative adetised to give the operational semantics of
formalisms, often inducing compositional behaviouralieglences.

Figure[Z.8 shows the LTS for the fragment of the CCS introdiuneExampld211. We adopt the same
presentation used in [64]: the rules of the LTS are indeedhrbe standard SOS style [57] and there is also
an explicit rule closing the transition relation under thistural congruence. The first two axioms model
the execution respectively of an input and an output overamicbl. The middle axiom instead models
the internal computation, while the last two rules modeldlusure of the labelled transition relation with
respect to the parallel composition and the structural negce, respectively.

If we consider again the two SPC processes above, thatdasdb, we can easily note that the LTS
semantics above allows us to immediately distinguish thEhe former indeed has the labelled transition

a % 0, while the latter has no transition labelled withbut just one labelled with, b Lo

Intuitively, the transitiorn — 0 tell us that the processcan interact by performing an input over the
channela. In this case the label of the transition reflects an ageapability to perform a certain action.
If we shift our attention from the agent’s capability to thentext allowing the agent to react, the labelled
transition above becomes—" 0. In this case, instead of observing thatan execute an input over we
observe that it can interact with a context offering an otugwera.

So, by using this idea of having contexts as labels, we cauedan LTS from a reactive system. The
most immediate way to obtain it is plugging a teffminto some contex[—] and observe if a reduction

occurs. In this case we have th’atci!. Categorically speaking, this means tiiatC[—] matched; d
for some rule(l,) € R and some reactive contegt This situation is formally depicted in Figure 2.4. A
commuting diagram like this is calleddex square

Definition 2.3 (Saturated transition systemJ)hesaturated transition systefaTs) is defined as follows

e states: arrowsP : 0 — [in C, for arbitrary I;

e transitions: P —C>[S_AT QifC[P] — Q.

Note thatC'[P] is a stand-in fo?; C[—]: in the rest of the thesis often we will use this notation towal
an easier comparison with the process calculi notation.
Bisimilarity oversTsis a congruence and coincides with the definition below.

Definition 2.4 (Saturated bisimulation)A symmetric relatioriR is a saturated bisimulatioif whenever
PRQ thenvVC|[-]

o if C[P] — P’ thenC[Q] — @' and P’ RQ'.

Saturated bisimilarity~“ is the largest saturated bisimulation.

PAQ P=PP AQQ=Q
PIRAQI|R PAQ

a _a _ T
a—0 a—0 ala—0

Figure 2.3: Labelled transition system for the SPC.

16 CHAPTER 2. BACKGROUND ON REACTIVE SYSTEMS

Cl-] I4 d
N

I Is
AN . e

Figure 2.4: Redex square

Proposition 2.1. ~* is the coarsest bisimulation e that is also a congruence.

Note thatsTsis often infinite-branching since all contexts allowing wetions may occur as labels.
Moreover, it has redundant transitions. For example, clemshe SPC term. We have both the transitions
a —T‘S‘L‘T 0 anda ng,I:T 0 | P, yet P does not “concur” to the reduction. We thus need a notion of
“smallest context allowing a reduction”. In other words, heve to determin€'[—] andd of the redex
square in Figure 214 in a way such that they are a “least upperdi of P andi. Categorically, this means
to require that the square must bpuwshouts

Unfortunately, in many interesting categories of termsshmuts often do not exist. So, instead of
considering the smallest contexts allowing reductions,cavesider the “minimal ones” captured by the
notion ofidem pushoutswhich exist, unlike pushouts, in many categories of terlsfore giving the
definition of idem pushout, we give the definition of relatiueshout.

Definition 2.5 (RPO) Let the diagrams in Figurg 2.5 be in a categd®y and let ¢) be a commuting dia-
gram. Acandidatdor (i) is any tuple(!s, e, f, g) which makes (ii) commute. r&lative pushout (RPQ3 the
smallest such candidate, i.e., it satisfies the universgb@rty that given any other candidatg;, ¢’, f/, ¢'),
there exists a unique morphigim 75 — I such that (iii) and (iv) commute.

A commuting diagram is calledem pushouIPO) if it has an RPO of a special kind.

Definition 2.6 (IPO). A commuting square such as diagram (i) of Figurd 2.5 is cailtkeain pushout (IPO)
if (I4,¢,d,idy,) is its RPO.

Hereafter, we say that a reactive systeas redex RPO8POs) if every redex square has an RPO (IPO)
as candidate.
IPOs form the basis of the following definition of labelledrisition system.

Definition 2.7 (IPO-labelled transition system)rhe IPO-labelled transition systeifiTS) is defined as
follows

e states:P : 0 — I in C, for arbitrary I;

e transitions: P —C>I[}]O r;dif d € D, (I,r) € R, and the redex square of Figure 2.4 is an IPO.

In other words, if inserting into the contextC'[—] matches; d, andC[—] is the “smallest” such context
(according to the IPO condition), théntransforms ta-; d with label C[—].

Iy Iy , s , I
NI L S
I I3 IQ?I5$13 IQT>I5<713 16%15
N o4 N A
I I
(i) (ii) (iii) (iv)

Figure 2.5: RPO

2.2. THE THEORY OF G-REACTIVE SYSTEMS 17

Bisimilarity on ITS is referred to ad®O-bisimilarity (~7).
In [45], the authors showed that if the reactive system haex&POs, ther-! is a congruence. To do
this they use the composition and decomposition propert Ot.

Proposition 2.2 (Composition and decompositionBuppose that diagram (i) of Figure 2.6 has an RPO.
Then:

1. (Composition.) if both squares in diagram (i) of Figlt8 are IPOs then so is the exterior rectangle
(diagram (iii) of the same figure);

2. (Decomposition.) if the lower square and the exterior (@iegram (iii) of Figuré 2.6) of diagram (ii)
of Figure[Z.6 are IPOs then so is the upper square.
Theorem 2.1. In a reactive system having redex-RPQ4,is a congruence.

From the above theorem and Proposifiod 2.1, it follows th&at ~. In [13,[6] the authors show that
this inclusion is strict for many formalisms. Moreover, yhatroduce an efficient characterization of the
saturated semantics, callsemi-saturatedemantics. It avoids to consider the whefesthat is usually too
big, since it is labelled with all possible contexts allogireductions, and it uses the ITS, whose labels are
just the minimal contexts. So, the abstract semantics iaelkin the following way.

Definition 2.8 (Semi-saturated bisimulationA symmetric relatioriR is a semi-saturated bisimulatiah
whenever” R @, then

o it P-Sipb P thenC[Q] — @ andP' R Q.
Semi-saturated bisimilarity*° is the largest semi-saturated bisimulation.
Semi-saturated bisimulations coincide with saturated evfeenever the reactive system has redex IPOs.

Theorem 2.2. In a reactive system having redex-IPGs;° =~"5.

2.2 The Theory of G-reactive Systems

In several natural examples where process calculi with siraple structural congruences are considered,
RPOs either do not exist or do not give the expected equivaleherefore, in[64, 63], Sassone and
Sobochski proposed an extension of the theory of reactive systertig 2-categorical setting, in order to
consider the structural congruence as an integral paredhisory.

We begin by showing why in a simple calculus with an asso@aind commutative parallel operator,
such as the fragment of the CCS presented in Example 2.1pfiieation of the theory of RPOs fails.

Example 2.2. Let us consider the reactive systégpc shown in Exampl&2]1 which models a fragment
of the CCS, and the two SPC terms| a andb | b. It is easy to verify that both terms have just one

Is
RN)
e; ; 5 ;
IR
2 3 12 IS 4 3
N N N
1 I 1

(t) (i2) (i12)

I,

Figure 2.6: IPOs composition and decomposition

18 CHAPTER 2. BACKGROUND ON REACTIVE SYSTEMS

AN, 7N
N ko y

Figure 2.7: IPOs for the terms| @ andb | b (left to right).

IPO transition labelled with the identity contexts which are shown in Figufe 2.7. Therefore, against the
intuition, they result to be IPO-bisimilar.

If we indeed consider the standard LTS semantics for theike¢Figuré 2.8), we can distinguish these
two terms, since the former has also the two transitiong % 0 | @ anda | @ — a | 0, denoting the fact
that the term can interact with the environment offeringrgsut, respectively an output, over the channel
a. Obviously, the latter term has no transitions with thegels, and so they are not equivalent.

So, going back to the IPO LTS, we would like to derive also the transitions for the terna | a
corresponding to the ones of the standard LTS semanticsrshefore. This would mean requiring that
also the upper bounds of the two squares of Figuie 2.8 aravie sense minimal. Here, to better explain the
motivations, we numerate the different occurrences tof distinguish them, but obviously, it is impossible
in our category, where terms are up to structural congruetices easy to see that in our category the
two squares are not IPOs. In both cases, indeed, the smzdiedidate is the quadruplé, —, —, — | a).
However, if we could distinguish the different occurrenoés, the upper bound of the left square in Figure
[2.8 would be the minimal one where the synchronization usbsthe subtermu and the output over the
same channel is offered by the context. Similarly, the uppend of the right square in Figure 2.8 would be
the minimal one where the synchronization uses only thessoiat and the input is offered by the context.

So, summing up, the fact that in our category, terms are euiatil with respect to the structural con-
gruence makes impossible first to exactly determine whidumwences of a term belong to the redex and
consequently to obtain the right LTS.

1
. / \M / \al
1 1
al’lk Aaa al;\ %\02
0

Figure 2.8: Redex squares for the SPC.

The approach proposed in [64.]63] to solve the problems ofttbery of reactive systems discussed
above consists in keeping explicitly the derivation of stimal congruence between terms by using cate-
gories which have a 2-dimensional structure, that is, \@srbetween arrows”, calle2tcells

Before introducing the generalization of the notions otti@ system, RPO and IPO to the setting of
2-categories, we shortly recall the definition of 2-catéggor

Definition 2.9 (2-category) A 2-categoryC is a category consisting of
1. aclass of objectX,Y, 7, . ..

2. foranyX,Y € C, a categoryC(X,Y). The objects oC(X,Y") are arrows, and they are called
1-cells or simply arrows, and denoted by : X — Y. Identity arrows are instead denoted by

2.2. THE THEORY OF G-REACTIVE SYSTEMS 19

idx : X — X. The morphisms oE(X,Y") are called2-cells They are denoted hy : f = g and
represented as in Figufe 2.9. CompositionGii X, Y') is referred to as “vertical” composition and
it is denoted by. Identity 2-cells are denoted ly : f = f.

3. foreachX,Y, Z € C afunctorx : C(Y, Z) x C(X,Y) — C(X, Z), called “horizontal” compo-
sition, which is associative and admitg;, as identities.

The role of 2-cells in the approach proposed[inl [64, 63] isgfaresent structural congruences. This
means that if there exists a 2-cell: f = g, thenf andg represent two terms structurally equivalent,
anda is a proof of this equivalence. They therefore considertegmies whose 2-cells are isomorphisms.
Since the categories whose morphisms are all isomorphisenscammonly known as groupoids, these
2-categories are precisely the groupoid-enriched categar G-categories.

Definition 2.10 (G-Category) A G-category is a 2-category whose 2-cells are all isom@pts.

Now, we can introduce the generalization of the notion oftiga system to the setting of G-categories.
Definition 2.11 (G-reactive System)A G-reactive systerfl consists of

1. a G-categonC,

2. adistinguished obje¢t € C;

3. asetD C C of 2-cells closed, composition-reflectirgpctive contexts

4. aset of pairdh C |J,;. C(0,1) x C(0,I) of reduction rules

The closure property means that giverg D anda : d = d’ in C thend’ € D.

Definition 2.12 (Reduction Relation)Given a G-reactive systet®, 0, D, 2R), the reduction relation- is
defined as followsP — @ if there exist 2-cell” = [;d andr; d = @ for some reduction rulgl, r) € R
and a reactive context € D (Figure[2Z.10).

In the following, we present a G-reactive systems modeliRG S

Example 2.3. Let us consider again the fragment of Milner's CCS introdLiceExampld Z.1L. The corre-
sponding G-reactive syste@xpc = (C,0, D, R) is defined as follows.

The 2-categoryC has the same objects and arrows of the category underlyérrg#ttive system defined
in ExampldZIL. The only difference is that here terms aresicemed quotiented only by the associativity
equation (the left rule in the second row of Figlre 2.2). iitely, here arrows could be seen as sequences
where the order of the elements is important, while in ExafiZpl as multisets.

Isomorphic 2-cells between terms intuitively correspomdhie commutativity axiom of the structural
congruence (the right rule in the second row of Figuré 2.8).a2-cell between two terms is a permutation
which swaps parallel components (where by component we meartcurrence of an input/output on a
channel or a hole). So, an arrow representing a term compmisegarallel components is the source of
n! 2-cells determined by the permutations of its componengsanallel. Thus, for instance, there are two
automorphisms on | a : 0 — 1, the identity, and the automorphism which swaps the twoepfa.

The distinguished object, the reactive contexts and thectézh rules are defined as in Exampple] 2.1.

Figure 2.9: The 2-cellv: f = g.

20 CHAPTER 2. BACKGROUND ON REACTIVE SYSTEMS

~

2
A K

d

Pl =1 = |Q

()
AN

0

Figure 2.10: Reduction relation for G-reactive systems

In this setting, a redex square is a diagram as the one ind@drl, where there exists an explicit
isomorphisma between the terms obtained by pluggiRgnto the contextC[—] and the redeX into the
reactive contexd.

In the following, we present a generalization of the notidRBO to G-categories. This notion is used
to formalize the idea of the “smallest” context allowing @uetion in a G-reactive system. We refer the
reader to[[611] for a more detailed presentation.

Definition 2.13 (GRPO) Let the diagrams in Figure 212 be in a G-categdty A candidate for the
diagram (i) is any tupl€ls, n, 0, p, 3,7,) such that(1, «) e (3% 1,) e (1, %) = «. This means that the
2-cellsy, 3, ¢, illustrated in diagram (i), paste together to give A groupoidal-relative-pusho(GRPO) is
a candidate which satisfies the universal property, i.e.afty other candidatéls, n’, o', p’, 5',+', ') there
exists amediating morphisnthat is, a quadruplég : Is — I, : n' = n;q,% : 05 = o', 7 : q;p’ = p)
illustrated in diagrams (iii) and (iv). The equations thaged to be satisfied ard:)’ e (px1,)o(1,,*7) = ~;

2) (1o«) e (Pxly)ed =6 3)(1yxp) e (8x1,) e (1,*1) = 3. Such a mediating morphism
must be essentially unique, namely, for any other mediatiogohism({q’, ©’, ¢’, 7'} there must exist a
unique 2-celk : ¢ = ¢’ which makes the two mediating morphisms compatible,l)ex:e (1,, x &) = ¢';

2)(Lo*x &) ey =9 3)(ExLy)er =1
Diagram (i) of Figuré 212 is a GIPO if it has a special kind &?[0.

Definition 2.14 (GIPO). A square such as diagram (i) of Figure 2112 is called G-idershmut (GIPO) if
(Iy, f,m,idy,, o, 15,1,,) is its GRPO.

Analogously to reactive systems, we say that a G-reactigtesy has redex GRPOs (GIPOs) if every
redex square has a GRPO (GIPO) as candidate.
In the following we define an LTS by using the notion of GIPO.

Definition 2.15(GIPO-labelled transition systeml.etC be a G-reactive system and (Etbe its underlying
2-category. Th&IPO-labelled transition systeaLTs(C) is defined as follows

e states:P : 0 — [in C, for arbitrary I;

e transitions: P —%f}ao P’ if there existsl € D, (I,r) € R, and a 2-cella : P;C[—] = [;d such
that the redex square in Figuie Z]11 is a GIPO aRtlis isomorphic ta-; d.

Bisimilarity onGLTS(C) is referred to as GIPO-bisimilarity(“7°).

Cl-] I d
/N
I —_— I3

~N oA
0

Figure 2.11: Redex square in G-reactive systems

2.3. GRAPH TRANSFORMATION AND THE BORROWED CONTEXT TECHNIQU 21

-[6 I4

12 :> 13 12 771‘) %0 3 n—s I5 Hwo I3 IG ﬁ 15

Il Il
0] (i) (iif) (iv)

Figure 2.12: GRPO

Example 2.4. Let us consider the G-reactive systélgpc previously defined in Example2.3. It is easy
to verify that in its underlying 2-category, the two diagiaim Figurd 2.B are GIPOs, by considering for the
left square the 2-celk : a; | az | as = a; | as | az, which swaps the two outputs overand for the right
square the 2-cell’ : a1 | @y | a3 = a3 | a2 | a1, which swaps the two inputs over

Theorem 2.3. In a reactive system having redex-GRPO§,/”’? is a congruence.

2.3 Graph Transformation and the Borrowed Context Technique

In previous sections, we presented the theory of (G-)neasiistems aimed at deriving behavioral congru-
ences for those specification formalisms whose operatsgrakantics is provided by unlabelled rewriting
rules. Theborrowed contextéBCs) technique, developed by Ehrig andrig [27,[28], offers a solution to
the same problem in the double-pushout (DPO) approach phgeavriting.

In the following, we first introduce the BC mechanism (Setfh3.1) and then we briefly show the
relationship with the theory of G-reactive systems.

2.3.1 DPO Rewriting with Borrowed Contexts

This section introducedouble-pushou(DPO) rewriting and its interactive extension whbrrowed con-
texts(BCs) [27,[28]. We present them by relying on adhesive categas in[[64]. Adhesive categories
were introduced by Lack and Sobocinskilin][44]. They aregates in which pushouts along monomor-
phisms are well-behaved. Various graphical structured urseomputer science form adhesive categories.
Some examples are directed graphs, typed graphs and hgplesgr

Below we recall the definition of adhesive categories.

Definition 2.16 (Adhesive Categories)A category is calleddhesivaf
e it has pushouts along monos;
e it has pullbacks;
e pushouts along monos a¥an Kampenvk) squares.

Referring to Figurd 2113, &k square is a pushout lik&), such that for each commuting cube agif)
having (i) as bottom face and the back faces of which are pullbacks ron¢ faces are pullbacks if and
only if the top face is a pushout.

As shown in [64], adhesive categories provide an elegatingeh which one can develop the well-
known theory of double-pushout graph rewritihgl[29, 26].

In order to uniformly introduce DPO and BCs, we consider DR@wations forsystems with interface
morphisms/ — G whereG represents a system addts interface.

Definition 2.17 (Production) Let A an adhesive category. productionor rewrite rulep : (L «~ I — R)
is a a production namg and a span.. << I — Rin A, where the left-hand side— L is monic.

22 CHAPTER 2. BACKGROUND ON REACTIVE SYSTEMS

<\

D

@) (ii)
Figure 2.13: A pushout squafé), and a commutative culdei).

Definition 2.18(DPO adhesive rewriting system) DPO adhesive rewriting systefARS) is a paif A, P),
whereA is an adhesive category arfdis a set of productions with different names.

In the definitions below, we refer to a chosen ARS= (A, P).

Definition 2.19 (DPO derivation for systems with interfaced)et / — G andJ — H be two systems with
interface andp : (L — I — R) a production. Amatchof p in G is a morphismm : L — G. Adirect
derivationfrom J — G to J — H via p andm is a commuting diagram as depicted below, where (1) and
(2) are pushouts and the bottom triangles commute. In thés @& write/ - G — J — H.

L——I——R

{o]

G+——=C—H

ANV

J

The morphisnk : J — C (making the left triangle commute) is unique, whenever isex If such a
morphism does not exist, the rewriting step is not feasillete that the standard DPO derivations can be
seen as a special instance of these, obtained consideringdace J the empty graph.

In these derivations, the left-hand sideof a production must then occur completelyGh In a BC
derivation L might occur partially inG, since the latter may interact with the environment throthgh
interfaceJ in order to exactly matcl.. Those BCs are the “smallest” contexts needed to obtaimthge
of L in G, and they may be used as suitable labels. Given an 8RS:(S) denotes the LTS derived via
the BC mechanism defined below.

Definition 2.20 (Rewriting with borrowed contexts)Given a productiorp : L <~ I — R, a system with
interfaceJ — G and a span of monas: G — D — L, we say that/ — G reduces td’ — H with label

J — F «— K viap andd if there are object&: ", C and additional morphisms such that the diagram below
commutes and the squares are either pushouts (PO) or plkh@B). We write/ — G iatiatl Sy N H,
calledrewriting step with borrowed context

D L I R
I ro | o I o I
G Gt C H
T PO T PB T -
J>—>F<—K“

2.3. GRAPH TRANSFORMATION AND THE BORROWED CONTEXT TECHNIQU 23

Consider the diagram above. The upper left-hand squareesiéng left-hand sidé and the objecty
to be rewritten according to a partial mat€h—~ D — L. The resultingz™ contains a total match df
and is rewritten as in the DPO approach, producing the tweratfuares in the upper row. The pushout in
the lower row gives the borrowed (or minimal) contéxtwhich is missing for obtaining a total match of
L, along with a morphisny — F' indicating howF' should be pasted t@. Finally, the interface fof is
obtained by “intersecting?’ andC' via a pullback.

The two pushout complements that are needed in Defirifia, 22melyC' and F’, may not exist. In
this case, the rewriting step is not feasible.

Note that some morphisms that in the diagram of Definifio2.dn be arbitrary, in the diagram of
Definition[2.20 are instead required to be mono. This is rezngdn order to obtain a bisimilarity over the
derived LTS which is a congruence.

2.3.2 Relating Borrowed Contexts and G-Reactive Systems

We are now ready for showing that adhesive rewriting systarasinstances of G-reactive systems, as
previously proved in[63]. We consider cospans as contaxis for this reason we need to work in bicate-
gories [5] (with iso 2-cells) instead of G-categories. For aim it is enough to know that a bicategory can
be described, roughly, as a 2-category where associattvédantity laws of composition hold up to iso-
morphism. In order to transfer the notions of GIPOs and GR@CS8ectiof 2.2) to bicategories, it suffices
to introduce the coherent associativity isomorphisms winecessary.

Bicategories of Cospans. Let A be an adhesive category with chosen pushouts. This medrisitleach
spand «— B — (C, there exists a unique chosen cospar- A +p C' « C such that the resulting square

is a pushout. The bicategory of cospanstohas the same objects Asand morphism pair§, -5 C < I,
as arrows from/; to I, denotedOfCC : Iy — I,. Objectsl; and I, are thought of as the input and the
output interface o’:c .

Given the cospané‘f(f oIy — IyandD7P : Iy — I3, their compositiorCf(f;Df}f : [, — Iz is the
cospan obtained by taking the chosen pushout-oindip, as depicted in Figule 2.114. Note that, since
arrows composition is a chosen pushout, it is associatiyegnto isomorphism. This is the reason why
cospans form a bicategory and not a 2-category.

A 2-cell h : Cfcc = D§§ : I, — I, is an arrowh : C — D in A satisfyingic;h = ip and
oc; h = op, and it isisomorphicif & is an isomorphism iA.

A cospanCy¢ is input linearwhenic is mono inA, and the composition of two input linear cospans
yields another input linear cospan. For this reason, we efineltheinput linear cospans bicategoigver
A, denoted by LC'(A), as the bicategory consisting of input linear cospans asrdasphic 2-cells.

From adhesive rewriting systems to G-reactive systems.Consider an ARSS = (A, P), where the
adhesive categorix has initial object). This can be seen as a G-reactive system where

o the base category BLC(A),

o the distinguished object &(the initial object),

e all arrows inI LC'(A) are reactive,

e rules are pairg0 — L «~ 1,0 — R« I) foranyL < I — RruleinP .

For an ARSS, Cg denotes its associated G-reactive system. A system wighface/ — G in S can
be thought as the arrow— G «— J of ILC(A).

C+r1, D

N

Il A C 12 N D 13

e} oc iD op

Figure 2.14: Cospans composition.

24 CHAPTER 2. BACKGROUND ON REACTIVE SYSTEMS

The translation presented above preserves semantics.
Proposition 2.3([33]). (J/ —» G) = (J — H)inSiff (/] - G) — (J — H) in Cg.

The above result allows for stating the correspondencedmiwRSs and BCs: GIPOs for G-reactive
systems over input linear cospans are equivalent to BCsSR8A

Proposition 2.4([63]). BC(S) = GLTS(Cg).

Chapter 3

Graphical encodings for mobile
ambients and asynchronougcs

This chapter present two graphical encodings for the matwiibients calculu$ [16] and the asynchronous
ccs[31], respectively. In particular, the graphical encodaighe asynchronouscsis basically an adap-
tation of the one for the synchronous version[ih [7]. We iadtpresent a new encoding for the mobile
ambients calculus and we provide an in-depth study of itaifea. Both encodings will be useful for the
examples we will use to illustrate the adequacy of the requttsented in Chaptdrk 5 did 6.

For both calculi, the proposed encodings use unstructuied fon-hierarchical) graphs and they are
sound and complete with respect to the structural congruehthe corresponding calculus (i.e., two pro-
cesses are equivalent if and only if mapped to isomorphiplgra As far as the mobile ambients calculus
is concerned, with respect to alternative proposals forgtiag@hical implementation of the calculus, our
encoding exploits the dichotomy between the tree struatfit@ process and the topology associated to
its activation points, i.e., to those ambients that acyuallow for the evolution of the subprocesses they
contain. In the encoding for the asynchronags this is not necessary, because the syntactical and the
activation dependence between the operators of a procasyegoincide. For both calculi the encoding
is then exploited to recast the operational semantics ofdleulus by an easy and natural presentation via
DPO rules, thus inheriting the wealth of tools and technidoe system analysis that are available for graph
transformation. Moreover, in the case of mobile ambientssolution faithfully captures a basic feature of
the calculus: ambients can be nested and reductions aragatgal across the nesting.

The adoption of graph transformation for simulating theuatbn semantics of process calculi allowed
for some technology transfer. One of its foremost applicetihas been the distillation of observational
semantics for such calculi, by relying on the borrowed canteechanism: an application of this method-
ology to mobile ambients and asynchronaes will be shown in Chaptdrl4. In this chapter, instead, we
profitably exploit another feature of the graph transfoioratormalism, namely, the possibility of defining
suitable concurrent semantics. This allows for obtaininghsa semantics also for any encoded calcu-
lus, hence offering a better understanding of process l@vavn particular, we exploit the information
about dependencies among (causally related) rewritingg stéfered by the concurrent semantics of mobile
ambients to identifynterferencedetween process reductions, formalising the taxonomyqseqghin [46].

This chapter is organised as follows. Secfion 3.1 brieflplts¢he calculus of mobile ambients. In Sec-
tion[3:2 we present the main definitions concerning (typazehygraphs and their extension with interfaces,
while Sectiori 3.8 recalls the DPO approach to their revgitifihen, in Section 314 we introduce a graph-
ical encoding for processes of the mobile ambients calcualnd we present our first result, namely, that
our encoding is sound and complete with respect to a sligiamneof the structural congruence of mobile
ambients. The main result of our work is presented in Se@i@nwhich introduces a graph transforma-
tion system for modelling the reduction semantics of moditeients. In Sectidn 3.6 instead we propose a
graph transformation system to recover a normal form fohgaaphical encoding of a process. This allows
us to recast the standard structural congruence of mobibéesns in terms of graph isomorphism. Section
[B7 discusses the concurrency features of our graph tranafion system for mobile ambients, and shows

26 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

how the notion of independence between rewriting steps reaysbd for giving a formal definition of both
plain andgrave interferenceamong process reductions, as introduced i [46]. Theni@®¢8I3 discusses
related work for the encoding of mobile ambients, while ®&dB.9 briefly introduces the asynchronous
Ccs, a graphical encoding for it, and a graph transformatiotesgsnodelling its reduction semantics.

3.1 Mobile Ambients

In this section we (very) briefly recall the calculus of metéimbients[[16]. In particular, we introduce the
syntax and the reduction semantics for its (finite) fragnwattiout the communication primitives.

Figure[3.1 shows the syntax of the calculus. We assumeJd eéhamesanging over bym, n, o,
Also, we letP, Q, R, ... range over the sét of processes.

The restriction operatdvn) P bindsn in P. A hamen occurring in the scope of the operatem) is
calledbound otherwise it is calledree We denote the set of free names of a prodedsy fn(P). We
adopt the standard notion @fconversion of bound names and the standard definition foersubstitution.
We write P{m/n} for the process obtained by replacing each free occurrehedro P with m, and by
a-converting the bound names to avoid conflicts with

The semantics of the mobile ambients calculus is given bygtinebination of an equivalence between
processes and a pre-order relation among them. stituetural congruencedenoted by=, is the least
relation on processes that satisfies the equations andlésestuwown in FigurE_312. The congruence relates
processes which intuitively specify the same system, ugpggntactical rearrangement of its components,
and it is used to define the operational semantics.

Thereduction relation denoted by—, describes the evolution of processes over tilie () means
that P reduces tap, that is, P can execute a computational step and it is transformedint&igure[3.3
shows the reduction rules. The first three rules are the dmBetaxioms for the reduction relation. In
particular, theRed-Inrule enables an ambientto enter a sibling ambient.. TheRed-Outrule enables an
ambientn to get out of its parent ambient. Finally, the last axiom allows to dissolve the boundarymf a
ambientn. TheRed-ResRed-AmtandRed-Parrules say that a reduction can occur underneath restrjction
ambient and parallel composition, respectively. Finalig last rule says that the reduction relation is closed
under the structural congruenee

3.1.1 An alternative congruence

As we stated above, the structural congruence is pivotdtendefinition of the reduction relation. It is
possible to take into account different structural congogerelations. We denote ky' the least relation
that satisfies also the equation in Figlired 3.4 besides timoBeyure[3.2, and by’ the reduction relation
defined by the rules shown in Figurel3.3, but closed undertthetaral congruence:’.

Note that considering the structural congrueadaloes not change substantially the reduction seman-
tics. Indeed, the mapping from abstract processes acgptdia into abstract processes according=o

P,Q ::= processes
0 inactivity
n[P] ambient
M.P action
(vn)P restriction
P | Py composition
M = capabilities
inn can enten
out n can exitn
openn can opem

Figure 3.1: Syntax of mobile ambients.

3.1. MOBILE AMBIENTS

PlQ=Q|P
(PIQ)IR=P[(Q|R)

(vn)(vm)P (VWU(V”)P
(wn)(P|Q)=P [(vn)Q ifn¢ fn(P)
(vn)m[P] = m[(vn)P] ifn#m
Plo=P

(vn)P = (vm)(P{m/n}) if m ¢ fn(P)

(Cong-Par-Comm)
(Cong-Par-Ass)
(Cong-Res-Res)
(Cong-Res-Par)
(Cong-Res-Amb)
(Cong-Zero-Par)
(Cong«)

Figure 3.2: Axioms of the structural congruence without the axjom)0 = 0.

nlin m.P | Q] | m[R] — m[n[P | Q] | R]
m[nfout m.P | Q] | R] — n[P [Q] | m[R]
openn.P | nlQ] — P | Q

P— Q= (vn)P — (vn)Q

P — Q= n[P] = n[Q)]
P—-Q=P|R—Q|R

(P=P,P —-Q.,Q0=Q)=P—Q

(Red-In)
(Red-Out)
(Red-Open)
(Red-Res)
(Red-Amb)
(Red-Par)
(Red-Cong)

Figure 3.3: Reduction relation.

(vn)0='0

(Cong-Zero-Res)

Figure 3.4: The additional axiom of the structural congruente

27

28 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

faithfully preserves the reduction semantics, as disclissf86] and stated by next proposition.

Proposition 3.1. Let P, Q be processes. P — @, thenP —' (). Vice versa, ifP —' (), then there exists
a processk, such thatP — R andQ =" R.

3.2 Graphs and Graphs with interfaces

This section presents some definitions concerning (hygraphs, typed graphs and graphs with interfaces.
It also introduces two operators on graphs with interfadéssrefer to[[15] and [19] for a detailed introduc-
tion.

Definition 3.1 (Graphs) A (hyper-)graph is a quadrupléV, E, s, t) whereV is the set of nodedy; is the
setof edges andl ¢t : £ — V* are the source and target functions.

From now on we denote the components of a gi@dy Vi, Eq, s¢ andig.

Definition 3.2 ((Partial) graph morphisms)Let G, G’ be graphs. A (hyper-)partial graph morphisfn:

G — G’ is a pair of partial functions(fy, fg) such thatfy : Vo — Vo, fg : F¢ — Eg and they
preserve the source and target functions, i.ej#fe) is defined, theri fy)*(sa(e)) = sa (fe(e)) and
(fv)*(ta(e)) = te (fe(e)). We say that the graph morphism is totafif and fx are so.

In the following, if not differently specified, morphismsibe total.
The category of graphs and total morphisms is denote@ixyph. We now give the definition of typed
graph [20], i.e., a graph labelled over a structure thasglfia graph.

Definition 3.3 (Typed graphs) Let 7" be a graph. Atyped graphG overT is a graph|G| with a graph
morphismrg : |G| — T.

Definition 3.4 (Typed graph morphisms)Let G, G’ be typed graphs ovef. A typed graph morphism
f: G — G'"is agraph morphisnf : |G| — |G’| consistent with the typing, i.e., such that = 7 o f.

The category of graphs typed ovEris denoted by'-Graph. In the following, we assume a chosen
type graphr’.

To define the encoding for processes inductively, we neethtipas to compose graphs. So, we equip
typed graphs with suitable “handles” for interacting withenvironment. The following definition intro-
duces graphs with interfaces.

Definition 3.5 (Graphs with interfaces)Let J, K be typed graphs. A graph with input interfadeand
output interfaceK is a triple G = (j, G, k), whereG is a typed graphj : J — G andk : K — G are
injective typed graph morphisms, and they are called inpuat @utput morphisms, respectively.

Definition 3.6 (Interface graph morphisms).et G, G’ be graphs with the same interface. An interface
graph morphisny : G = G’ is a typed graph morphism : G — G’ between the underlying typed graphs
that preserves the input and output morphisms.

We denote byl - G Y Ka graph with input interfacd and output interfacé. If the interfaces/
andK arediscretei.e., they contain only nodes, we represent them by seth aiiabuse of notation, in the
following we refer to the nodes belonging to the image of tiut (output) morphism as inputs (outputs,
respectively). We often refer implicitly to a graph withénfaces as the representative of its isomorphism
class. Moreover, we sometimes denote the class of isonogrhphs and its components by the same
symbol.

3.2.1 Two operations on graphs
Now, we define two binary operators on graphs with discrdtrfiaces.

Definition 3.7 (Sequential composition)LetG = J L6 d KadG = K EN ¢ E Ibe graphs
with discrete interfaces. Their sequential compositiothéesgraph with discrete interfacéso G’ = J L

o ¥ I, whereG" is the disjoint uniorG W G, modulo the equivalence on nodes induced @) = j'(z)
for all z € Vi and with the obvious source and target functions, ghénd k" are the uniquely induced
arrows.

3.2. GRAPHS AND GRAPHS WITH INTERFACES 29

Before defining the parallel composition between graphhk imiterfaces, we introduce the definition of
compatible graphs.

Definition 3.8 (Compatible graphs)LetG = J Lar Kande =7 Lo B K pe graphs with
discrete interfaces. We say th@tand G’ are compatibleif 7;(x) = 7, (x) for all z € V; NV, and
Tr(y) = TR (y) forall y € Vig N Vi,

Definition 3.9 (Parallel composition)LetG = J LagE kande = L@ E K be compatible
graphs with discrete interfaces. Their parallel compasitis the graph with discrete interfac&® G’ =

(JuJ e (K U K'), whereG” is the disjoint unionG & G’, modulo the equivalence on nodes

induced byj(x) = j'(x) forall x € V; NV andk(y) = k'(y) for all y € Vx N Vi and with the obvious
source and target functions, and, k" are the uniquely induced arrows.

Intuitively, the sequential compositidid o G’ is obtained by taking the disjoint union of the graphs
underlyingG and G’, and gluing the outputs d& with the corresponding inputs d&'. Similarly, the
parallel compositioniz ® G’ is obtained by taking the disjoint union of the graphs unded G andG’, and
gluing the inputs (outputs) d& with the corresponding inputs (outputs) @f. Note that both operations
are defined on “concrete” graphs. However, their resultsad@apend on the choice of the representatives
of their isomorphism classes.

Definition 3.10 (Graph expression)A graph expressiois a term over the syntax containing all graphs
with discrete interfaces as constants, and parallel andisatjal composition as binary operators. We say
that an expression isell-formedif all the occurrences of both sequential and parallel cosipon are
defined for the interfaces of their arguments, according édimtiond 3.¥ an@3]9.

The interfaces of a well-formed graph expression are coetpimductively from the interfaces of the
graphs occurring in it; the value of the expression is th@lg@btained by evaluating all its operators.

3.2.2 Applying the operations

Let us consider the graphs with interfad®s,., = {a,p} — Gams — {a,p,n} andG;,, = {a,p,n} —
Gin < {m} depicted in Figur€3]5. The graph on the left is just compadete hyper edgemb, which
has two source nodes, one of typand another one of type while the two target nodes are respectively
of typeo ande. The source nodes are in the input interface, while the aumperface is composed of the
target nodes plus the source nedé\ote that the dotted arrows represent input and output iniems. The
graph on the right is instead composed of a nog#us the hyper edgé:, which has two source nodes
respectively of type> ande, and three target nodes respectively of tgpe ando. The input interface is
composed of the source nodes of theedge plus the isolatednode, while the output interface, besides of
this last node, contains the target nodegof

As we will see later, the two graphs above respectively igarethe graphical operator modelling an
ambientn, and the graphical encoding for the proc2ssn.0, plus an isolated node

Since the output interface of the gra@h,,,, coincides with the input interface &f;,,, we can compute
their sequential composition, which results in the grapthiviterfaces shown on the left of Figurel3.6. It
is obtained by the disjoint union @¥,,,;, andG,,,, gluing the nodes of the former that are in the output
interface with the nodes of the latter that are in the inptérfiace. Moreover, as it will become clearer
later, the graph obtained by the sequential compositioressmts the graphical encoding of the process
P = n[in m.0].

o 0%y o 3
L N\
% ““>°;)’LambH'<““oP .P>o%o
o h e 0 <o o™ iy o4 o 0 4 o™

Figure 3.5: Graphs with interfacés, .., andG,,, (left to right).

30 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

To provide an example of parallel composition, let us cogiside graphs with interfacés = {a,p} —

G «— {n,m}andG’ = {a,p} — G’ — {m} depicted in FigurE3]6. As said above, the gré@ptepresents
the graphical encoding of the procesges= n[in m.0], instead, as we will see later, the gra@his the
graph encoding of the processgs= mout m.0].

For the moment, the reader can ignore how these encodingdbtai@ed. We only observe that in the
graphG there is an edgambrepresenting the ambientand an edgén simulating the capabilityn m.
Analogously, in the grapfy’ there is an edgambrepresenting the ambient and an edgeut simulating
the capabilityout m. Moreover, ambient names are represented by nodes obtipe are in the output
interfaces, and processes (subprocesses) are reprebgrgeaphs (subgraphs) that have as roots a pair
of nodes(e, ¢). Only the root nodege, <) of the graphs representing the procesBeand () are in the
input interfaces of the corresponding graphs. Moreovewesan note, each subprocess is represented by
a subgraph that has a differentroot node, while sometimes subgraphs representing diffengb-terms
share the root node. We will see later why this occurs.

The two graph€s andG’ are compatible. Indeed, the type of the nodes belongingttoibput inter-
faces coincides, and the same also holds for those nodewi@ico both output interfaces. Therefore, it is
possible to compute the parallel composition of the graplandG’, resulting in the graph with interfaces
shown in Figurd_317. It is easy to note that it is obtained keyuhion of the input interfaces and of the
output interfaces, respectively, and the disjoint uniot*@ndG’, gluing the root nodes of both graphs and
the nodes representing the nameAs we will see later, the graph with interfaces obtainedHhsygarallel
composition ofG andG’ represents the process obtained by making the parallel asitign between”
andQ, that is, the procesB = P | Q.

3.3 Graph Rewriting

This section introduces the basic definitions for the DPQ@ggh to the rewriting of (typed hyper-)graphs
[211,[24] and graphs with interfaces. Some of them have ajrbadn presented in Sectibnl2.3 in the more
general setting of adhesive categories. However, sineedatwe are going to need the track function, we
introduce a different definition of derivation between {syss as) graphs with interfaces using it.

Definition 3.11 (Graph production) A T-typed graph productiop : (L Lo R) is a production
namep and a span of graph morphisnig LI N R) with [mono inT-Graph. A T-typed graph
transformation systens(rs) G is a pair (7', P), whereT is a type graph and’ is a set of productions with
different names.

Definition 3.12 (Graph derivation) Letp : (L ML N R) be aT-typed graph production and' a
T-typed graph. A match agf in G is a morphismmn : L — G. A direct derivation fromG to H via
productionp and matchmy, is a diagram as depicted in Figute_3.8, where (1) and (2) arshmuts in
T-Graph. We denote this derivation ym : G = H, form = (mp, mr,mg), or simply byG — H.

Before giving the definition of derivation between graphshwinterfaces, we introduce the notion of
track function.

Definition 3.13 (Track function) Letp be a graph production and lgt/m : G = H be a direct deriva-
tion, as in FigureL3.B. The track functiotr(p/m) associated with the derivation is the partial graph
morphismr* o (I*)~!: G — H.

The track function identifies the items before and after adgon. It is used to give the definition of
derivation between graphs with interfaces.

TN S TN °
,,,,,,,,,,,,,,,,, A
0% h O ambH' MLH' oty o amb . outH'
7 " 7 __4_
orye 04on 04 om v ye I

Figure 3.6: Graphs with interfacésandG’ (left to right).

3.4. GRAPHICAL ENCODING FOR PROCESSES OF MOBILE AMBIENTS 31

Figure 3.7: Graph with interfacés ® G’.

Definition 3.14 (Graph with interfaces derivation).etG = J - G £ KandH = J EiN i
be graphs with interfaces, and lpfm : G = H be a direct derivation such that the track function
tr(p/m) is total onj(J) and k(K). We say thap/m : G = H is a direct derivation of graphs with
interfaces ifj’ = tr(p/m) o j andk’ = tr(p/m) o k.

Intuitively, a derivation between graphs with interfacesaidirect derivation between the underlying
graphs, such that inputs and outputs are preserved.

3.3.1 Parallel Independence and Confluence

We recall the classical notion of parallel independencd,states its connection with local confluence. A
more general version (with sequential independence rieglaonfluence) can be found n 39, Section 3.3].

Definition 3.15 (Parallel independence)etp;/m, : G = H; andps/ms : G = H, be two direct
derivations as in FigurE3]9. These derivations pazallel independerit there exists aindependence pair
among them, i.e., two graph morphisms: L; — Cs andiy : Ly — C; such thatly o iy = my, and
[foig =mp,.

Intuitively, two derivations as in Figufe_3.9 are paralieliépendent if they act on disjoint items of the
graphG, or at least on items that are simply read, and thus not dkleyeany of the two rule applications.
The proposition below is a classical result relating patalidependence with rule sequentialisation (see

e.g. [21]).

Proposition 3.2 (Confluence from independencelet p;/my : G = H; andpy/ms : G = Hy
be two direct derivations as in Figure 3.9 such that they arallel independent with independence pair
i1 : L1 — Cyandis : Lo — C7. Then, there exists a gragh and two derivationg,/m3 : H; — H,
with matchr; o o, andpy/mi : Hy = H, with matchr} o iy, such thattr(pe/m3) o tr(p1/m1) =
tr(p1/m3) o tr(pz/ma2).

Local confluence is thus implied by the standard notion odibelrindependence. The notion is stronger
than the corresponding property in e.g. term rewritingcaithe preservation of the track function implies

not only that the two derivations reach the same graph, ltithie items of the starting graph are preserved.
In particular, this implies that also the interface morpfgsare preserved.

3.4 Graphical Encoding for Processes of Mobile Ambients

This section introduces a graphical encoding for procestéise mobile ambients calculus. First of all,
we present a suitable type graph, depicted in Figurel 3.1d tlzen we define an inductive encoding by
exploiting the composition operators introduced in Deiimis[3.7 an@319. This corresponds to a variant of

L3R

I
'Nl[mpr
{

<—04>H

Q(*h

Figure 3.8: A direct derivation.

32 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

1 11 lo T2
Ris—hL — Ly - Los— T — R
lei m‘jl >7,L1 mLQ/ 77’L‘12 J/mRQ
o N b
Hy <~ Cy T G - Cy — H»

1 1 I3 T2

Figure 3.9: Parallel independence fay/mr, : G = H; andpz/mr, : G = Ha.

the usual construction of the tree for a term of an algebranasaare interpreted as variables, so they are
mapped to leaves of the graph and can be safely shared.

As we can see, in the type graph there are three types of nbdeype of a node is denoted by its
shape. Intuitively, a node of typerepresents an ambient name, while a graph that has as roats @ p
nodes(o, o) represents a process. More precisely, the node of ¢yppresents the activating point for
reductions of the process represented by the graph. We weatifterent types of node to model processes
by graphs because each graph has to model both the synitaaticide activation dependences between the
operators of a process. Indeed, in mobile ambients thengestioperators does not reflect the activation
dependences between them, since reductions can occug asidients. So, in order to model a process,
we usee nodes to model the syntactical dependences between thatorseof the process, ardnodes to
model their activation ones.

Each edge of the type graph, except theedge, simulates an operator of mobile ambients. Note
that theact edge actually represents three edges, namelyut andopen. These three edges simulate
the capabilities of the calculus, thenb edge represents the ambient operator, and tedge models the
restriction operatdﬂ. Notice that there is no edge representing parallel cortiposiFinally, thego edge
is a syntactical device for detecting the “entry” point fbetcomputation. We need it later to simulate the
reduction semantics of mobile ambients. It allows us toitbthe occurrence of a reduction underneath a
capability operator.

All edges, except thgo andr edges, have the same type of source, that is the node,liet, while they
have different types of target. In particular, th@b edge has the node li, o) as target, while thén, out
andopen edges have the same type of target, i.e. the nodélist o). Note that these three latter edges
have a node in the target. This node represents the activating pointifereductions of the continuation
of the capability. It is different from the activating poiot the outermost capability operator, because the
reductions of the continuation can occur only after theoactegulated by the capability is executed. The
amb edge instead has no node of typé its target. In fact, the activating point for the reduaoof the
process inside an ambient is the same one of the outermogramibhis occurs because process reductions
permeate ambients. Unlike the other graphical operatoes; bperator has as root only orenode and
does not have a node. This modelling of the restriction operator comes ftbmfact that we consider
this operator just as a scope operator. This solution, enfikt one proposed in[34], allows us to define an
encoding of mobile ambients that captures the standardtstal congruence of the calculus, dropping the
Cong-Zero-Reaxiom only.

Now we define a class of graphs such that all processes carcbdezhinto an expression containing

1 Note that in the next chapter we are going to introduce a igtifferent encoding. It will not use a graphical countaripfor
the restriction operator, and thus it will be easier to useto purpose of distilling a labelled transitions systems.

Figure 3.10: The type graph (fact € {in, out, open}).

3.4. GRAPHICAL ENCODING FOR PROCESSES OF MOBILE AMBIENTS 33

only those graphs as constants, and parallel and sequentigdosition as binary operators. Figures B.11
and 312 depict these constant graphs. In particular, EigLl presents the graphs that correspond to the
edges of the type graph. Figlire 3.12 presents additionataongraphs needed for the formal presentation
of our encoding. Note that in the graphs of the two figures waotkethe input interface on the left and
the output interface on the right. For example, the grapib,, in the middle of Figuré 311 has as input
interface{a, p} and as output interfacgu, p,n}. Sincea andp are constants used by our encoding, we
assume that, a ¢ N, while n € N (whereN is the set of names of mobile ambients).

In the following, we usé, , as shorthand fod, ® 0,,. Moreover, for a set of namds we useidr
andfreer as shorthands f@®),, . id,, and@),, .- free,, respectively. Note that both expressions are well
defined, because the operator is associative. The definition below introducesehcoding of processes
into graphs with interfaces. It maps each finite processargoaph expression.

Definition 3.16 (Encoding for processes) et P be a finite process and I&t be a set of names such that
fn(P) CT'. The encoding oP, denoted by P], is defined by structural induction according to the rules
in Figure[313.

Note that the encodinf)/.P]. represents the encoding©f n.P, out n.P andopen n.P, while act,,
represents thén,,, out,, andopen,, graphs, respectively.

Our encoding addresses theconversion of restricted names by denoting them witiodes that are not
in the image of the output morphism. The mapping is well-aefiim the sense that the result is independent
of the choice of the name: in the rule for restriction.

Moreover notice that in order to capture the axioBang-Res-Paand Cong-Res-Ambour encoding
extends the scope of each restriction operator to all thegsses in parallel and to its parent ambient,
respectively. Also, notice that theroot is the only root node that a graph representing a subegsoshares
both with the graphs representing the other processes allglaand with the graph representing its parent
ambient. Therefore, the graphical operator modelling és¢riction is linked only to the root of the graph
representing the process where it occurs. Note that lintkiegyraphical operatar also to thes root node
would still allow to capture the structural axioBong-Res-Paryet it would fail to recover the axior@ong-
Res-Amb This means that the two congruent procegsesm[P] andm[(vn)P], for n # m, would be
represented by different graphical encodings. This comus the fact that in our encoding we do not use
an edge to explicitly simulate the parallel operdtdbifferent processes in parallel are simply represented
by the fact that they share the same root nodes). Instead, we use an explicit graphical operator to
simulate the ambient operator, which shares with the psoicside it only the> root node.

The encoding[P]., whereT is a set of names such thgi(P) C T, is a graph with interfaces
({a,p},T). We note that the mapping is not surjective. In fact, theeegaaphs with interface§a, p},T')
that are not in the image of the encoding. The encoding of egssP is the grapﬂ[P]]fn(P).

Example 3.1. Let us consider the example below, originally proposed 6],[tvhich illustrates a form of
planned dissolution of an ambiemt

R = nlacid[out n.open n.P] | Q] | open acid.O .

Figured 3T} depicts the graph encodiii ;,,). We represent the graph encodings for the processes
P and@ by Gp andGg, respectively. Moreover, for the sake of simplicity, welaas that the ambient
names» andacid do not belong to the set of free namesfoandQ.

The leftmost edges, labelleainb and open have the same roots, into which the namesndp are
mapped. Those two edges represent the topmost operatdrs tid parallel components of the process.

a > o o< a a o< a a ><>ﬂ—> o< n
A o
Py act 04D pwm>--<~~wp
™ N
0 4 04 m @ >04)|E‘

Figure 3.11: Graphsct,, (with act € {in, out, open}); ambn,; v, andgo (left to right).

34 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

Figure 3.12: Graph®e, and0,; 0,, and free,,; andid,, (top to bottom and left to right).

The edges in the middle, representing from left to right theratorsacid[_] andout n._, respectively, are

linked to the same root. Intuitively, this means that they have the same atitiggooint of the outermost

ambient, and hence the reductions can permeate the twomiswiandacid. Instead, the rightmost edge,
labelledopen has a different source that is the target of the edget Intuitively, this means that this

capabilityopencan be executed only after the actiout

The graphical encoding shown in the example above models@ps where all the ambient names
are free. The next example shows instead how our encodinglsyadprocess with restricted names. It
also shows how our encoding is able to capture the strucéiiamsCong-Res-Re<Long-Res-Paand
Cong-Res-Amb

Example 3.2. Let S be the procesévm)(vn)(m[n[P] | open n.Q] | open m.R), wherem # n. The
encoding[[Sﬂfn(S) is depicted in Figure_3.15. We represent the graph encodingise processer, @ and
R by Gp, Gg andGp, respectively. Moreover, for the sake of simplicity, wewase that the names and
n do not belong to the free namesBf @ andR.

The graph in FigurEZ3:15 encodes:) (vm)(m[n[P] | open n.Q| | open m.R), as well as the process
(vm)((vn)(m[n[P] | open n.Q]) | open m.R) and furthermore als@vm)(m[(vn)n|[P] | open n.Q)] |
open m.R). The first two processes are congruensitby the axiomsCong-Res-Reand Cong-Res-Par
respectively. The latter is congruent to the middle onekbaa the structural axior@ong-Res-Amb

The following theorem states that our encoding is sound amaptete with respect to the structural
congruences.

Theorem 3.1. Let P,) be processes and I€tbe a set of names, such thét(P) U fn(Q) C I'. Then,
P =Qifandonly if[P]. = [Q]-

The proof of Theorem 311 is shown in Section]A.1 (Apperidix A).

3.5 A Graph Transformation System for Mobile Ambients

This section presents a graph transformation system thdeisidhe reduction semantics of the mobile
ambients calculus.

First of all, we enrich the encoding introduced in Definif&ad8 in order to avoid performing reductions
underneath capability operators. To do this we attaghedge to the root node of each graph representing
a process. Theo edge is a syntactical device needed for detecting the “eptint for the computation
of the process. Given a proceBsand a set of namds such thatfn(P) C T', its enriched encoding is the
graph[P]; ® go. We denote it byf P]7".

Figure[3.16 presents the rules of thes R,,,;, Which simulates the reduction semantiesintroduced
in Sectior31l. The&sTs R, contains just three rules, namely,, pou: andpope,. They simulate the
Red-In Red-OutandRed-Operreductions, respectively. The action of the three rulesiscdbed by the

[[0]]1“ = 04, ® freer

[n[P]lr = ambyo (idy ®[P]y)

[M.P] = acty, o (id, ® [P]y)

[bn)P)y = (vm @ [P{m/n}]rygmy) © (Om @idr) form ¢ T
[[P | Q]]F = [[P]]F ® [[Q]]F

Figure 3.13: Encoding for processes.

3.5. AGRAPH TRANSFORMATION SYSTEM FOR MOBILE AMBIENTS 35

> <
N NG
out > » <G
.................. -'"\
(I/C,[:d){>O<”L
___________________ e

Figure 3.14: Graph encoding for the proces$ecid[out n.open n.P] | Q] | open acid.O.

node identifiers. These identifiers are of course arbitfEngy correspond to the actual elements of the set
of nodes and are used to characterise the track function.

Now we discuss the rules of thers R,,,,,. In order to give a clear explanation of the rule actions,
we denote byumb,, anamb edge having in its target @ node identified byn. Let us consider the,,,
production. Thep;, rule preserves themb,, edge, removes themb, edge and re-creates this last one
underamb,,. Note that, after the reduction, tlie edge disappears and the nodes identified,bpgnd3,
and by1, and3, are pair-wise coalesced. The former coalescing guarattieg'structural” integrity of
the resulting graph, i.e., that all continuation processegut in parallel; the latter ensures, as a side effect,
that theo node3,, under thein prefix is activated.

Thep,.; rule preserves themb,,, edge and removes thenb,, edge, too. It also re-creates this last one
with the same source nodesw@hb,,. Analogously top;,,, after the reduction theut edge disappears and
the nodes identified by, and4,, and byl, and4, are pair-wise coalesced.

Finally, thep,,.,, production removes bottanb andopen edges. After the reduction, all thenodes
and all thee nodes are coalesced.

It seems noteworthy that three rules suffice for recastieg¢iduction semantics of mobile ambients.
That is possible for two reasons. First, the closure of rédnovith respect to contexts is obtained by
the fact that graph morphisms allow the embedding of a graiphinva larger one. Second, no distinct
instance of the rules is needed, since graph isomorphises tzre of the closure with respect to structural
congruence, and interfaces of the renaming of free names.

We now introduce the main theorems of the chapter. They #tat®ur encoding is sound and complete
with respect to the reduction relatien.

Theorem 3.2(Soundness)Let P, be processes arid a set of names, witlin(P) C T'. If P — @Q, then
Ramp €ntails a direct derivatiorf P]%" — [Q]7.

Intuitively, a process reduction is simulated by applyingile@ on an enabled event, that is, by a match
covering a subgraph with th@ operator on top.

Theorem 3.3(Completeness)Let P be a process antl a set of names, witfin(P) C I'. If R, entails
a direct derivation[P]{” = G, then there exists a procegs such that”? — @ andG = [Q[7.

Figure 3.15: Graph encoding for the procéss:)(vn)(m[n[P] | open n.Q] | open m.R).

36 CHAPTER 3.

N

N o
~ N
o3a
Lopen

nlinm.P|Q]lm[R] — m[n[P|Q]|R]

I out

openn.P|n[Q] — P|Q

<,\\
ola

.
im

Iopen

GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

[
¢
oi“ -2”
C M
\ \./‘O

odp

H’L

=)

2
1,057
PT3p

Ropen

Figure 3.16: The rewriting rulgsi,, pout andpopen (top to bottom).

3.5. AGRAPH TRANSFORMATION SYSTEM FOR MOBILE AMBIENTS 37

The proofs of Theorenis 3.2 ahd 3.3 are shown in SeLiioh A.p€AgdIXA).

The correspondence holds since a rule is applied only iktieea match that covers a subgraph with
the go operator on the top. This allows the occurrence of redustioride activated ambients, but not
inside capabilities. In fact, if anmb operator is activated, that is, itssource node has an outgoipg
edge, then all operators inside it are activated too, becthey have the same source nedas theamb
operator. Differently, a reduction can not occur insidedhgermost capability, because the activating point
for the reductions of the continuation of a capability ifeli&ént from the activating point of the outermost
capability.

The following example shows the application of some rulethefGTSR,,,.; to the graph encoding for
the process considered in Examlplg 3.1.

Example 3.3. Let us consider again the process shown in Example 3.1
R = nlacid[out n.open n.P] | Q] | open acid.O .

The graphical encoding for the process above is depicteijiméf3.14. Its enriched encoding is instead
presented in Figufe 3117, where the nodes are labelled ér twdlenote the track function of the derivation.
The edge labelledo denote the entry point for the computation of the process.

Note that the two edgemmb the edgeout and the outermost edggencan be involved in a reduction
step because they have the same activation node with aniogtgoedge. Instead, the rightmost edge,
labelledopen is not activated, since itssource is the target of another edge.

The application of the,,,; rule to the graph in Figule_31L7 results in the graph in FigLid&, which is
the actual encoding for the proceSs= acid[open n.P] | n[Q] | open acid.0. In fact, this rewriting step
simulates the transitioR — S.

Now, we can apply thg,,.,, rule to the graph in Figufe_3.118, and we obtain the graph inrfe{@.19.
Note that this rewriting step simulates the transiti@id[open n.P] | n[Q] | open acid.0 — open n.P |
n[Q].

Finally, by applying thep,,., rule to the graph in Figuie-3.19, we get the graph in Figur@.3The
derivation mimics the reductiovpen n.P | n[Q] — P | Q.

The rewriting steps shown in the example above simulate geseg of process reductions all occurring
on the top. The next example shows how our encoding is ablentdate process reductions that are nested
inside ambients.

Example 3.4. Let us consider the process previously shown in Exampleamely,S = (vm)(vn)(m[n[P] |
open n.Q)] | open m.R), wherem # n andm andn do not belong to the free namesBf Q andR. The
encoding[[S]]fn(S) is depicted in Figuré_3.15, while the enriched encoqﬁﬂ@;‘;(s) is presented in Fig-
ure[321.

Two different applications of thg,,., rule to the graph]S]]j’cfl(s) are possible. The first application
results in the graph on the left of Figure 3.22 and it simalatee process reduction nested inside the
ambientm, namely,S — (vm)(vn)(m[P | Q] | open m.R). The other possible application of thg,..,
rule instead results in the graph on the right of Fidurel3D@s last rewriting step mimics the transition

Figure 3.17: Graph encodirfa[acid[out n.open n.P] | Q] | open acid.O]]?‘;(R).

38 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

Figure 3.19: Graph encodirfgpen n.P | n[Q)] ?Zm)-

Figure 3.20: Graph encodir{g” | Q[%;, -

Figure 3.21: Graph encodirfgvm)(vn)(m[n[P] | open n.Q] | open m.R)[%7, o -

3.6. COLLECTING USELESS RESTRICTIONS 39

S — (vm)(vn)(n[P] | open n.Q] | R). Now, it is possible to apply again thg,.,, rule to both graphs
in Figure[3.2P. The rewriting step obtained by applyingthg.,, rule to the graph on the left mimics the
transition(vm)(vn)(m[P | Q] | open m.R) — (vm)(vn)(P | @ | R), while the rewriting step obtained
by applying thep,,., rule to the graph on the right simulates the transitiem)(vn)(n[P] | open n.Q)] |
R) — (vm)(vn)(P | Q| R). Both the rewriting steps result in the graph in Figure B.23.

3.6 Collecting useless restrictions

In Sectio 3.4 we introduced a graphical encoding for mohiteients processes, proving its soundness
and completeness. The price to pay was the dropping the aegupiating processész)0 andO0, since the
encoding of the former has the occurrence of an edge whiclisisimg in the one of the latter. This section
shows how to recast the structural congrues¢®f mobile ambients in terms of graph isomorphism. To
this end, we introduce theTs R¥: it contains just the rewriting rulg, shown in Figuré_3.24. Here the
span of the graph morphisms is not presented explicitlgesihis obvious. The rule removes the useless
occurrences of the restriction operator, i.e., such treh#me it binds does not occur in the process. Indeed,
in the graphical encoding this means that the nodepresenting the restricted name is not shared with other
operators. The rewriting rule removes only thesedes: it cannot be applied unless the node representing
the name is isolated.

We start with a very simple technical lemma.

Lemma 3.1. Letp,/m, : G = H; andp,/ms : G = H, be two distinct direct derivations. Then,
these derivations are parallel independent.

This result guarantees that the definition below is welkgiv

Definition 3.17 (Normal form) LetG be a graph with interfaces. We calbrmal formof G, in symbols
nf(G), the graph with interfaces obtained by applying as manysiaepossible the rewriting rule of the
GTSRY ,10G.

In other words, the graph with interfaceg (G) is the normal form ofG if and only if it is impossible
to apply the rule of theTsXR! , t0G.

The proposition below states that the normal form of our bi@ad encoding is sound and complete with
respect to the process equivalence

Proposition 3.3. Let P, Q be processes and [Etbe a set of names, such thfat(P) U fn(Q) C I'. Then,
P ="Qifandonly ifnf([P];) = nf([Q]})-

The proof of Proposition 313 is shown in Section]A.3 (Apperid).

Example 3.5. Let us consider the proce8s = (vm)(vn)(m[P | Q] | open m.R), where the names:
andn do not belong to the free name &% @ and R. The graphical encodinbr]]?fl(T) is shown on the

left of Figure[3:2P. It is indeed equal to the encodi] ?Z(S), sincefn(T) = fn(S). The normal form

Figure 3.22: Graph encodings [(vm)(vn)(m[P | Q] | open m.R)[%), o and

[(vm)(vn)([n[P] | open n.Q] | R) ?Z(S) (left to right).

40 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

3}) 41’
5p

1
Pod gl — Gg

Figure 3.23: Graph encodirigvm)(vn)(P | Q | R)],s)-

o—{7}o | o | o

Figure 3.24: The rewriting rulg, for removing the useless restriction operators.

nf([T ?Z(T)) is represented in Figure3]25. It is obtained by applying onke the rewriting rule in Figure
[B:24. Such a rule allows us to remove from the gr@;ﬁ]hfn(T) the isolated node representing the useless
restricted name.

We now present the theorem stating that the normal form ofaugoding is sound and complete with
respect to the reduction relatien’.

Theorem 3.4(Soundness and Completenedspt P, (Q be processes arida set of names, witfin(P) C T'.
If P —" Q, thenR,,,;, entails a direct derivatiom f ([P]}") = G such thatv f(G) = nf([Q]L).

Let P be a process and' a set of names, withfn(P) C I'. If R, entails a direct derivation
nf([P]E’) = G, then there exists a procegs such thatP —' Q andnf(G) = nf([Q]7).

The proof of Theorem 314 is shown in Section]A.3 (Apperidix A).
We close the section by presenting another simple techieicaha.

Lemma 3.2. Letp,/m, : G = Hy andp/my : G = H, be two (distinct) direct derivations, for any
p € Ramp. Then, these derivations are parallel independent.

Thus, thecTs RY . given by the union ofR” and R,,,, can be considered as a graphical imple-
mentation of the reduction semanties, simultaneously allowing the normalisation of a process e
execution of a reduction step.

Figure 3.25: Normal form of the encodifigvm) (vn)(m[P | Q] | open m.R)];, -

3.7. CONCURRENCY AND INTERFERENCE 41

3.7 Concurrency and Interference

Our encoding may be exploited for defining a concurrent redacemantics of the mobile ambients calcu-
lus. The role of the intermediate grapln a rewriting rule is to characterise the elements of thelgta be
rewritten that are read but not consumed by a direct deoiwatBuch a distinction is important when con-
sideringconcurrentderivations, defined as equivalence classes of concret@atiens up to so-calledhift
equivalencd2]], identifying (as for the analogous, better-knopermutationequivalence of\-calculus)
those derivations that differ only for the scheduling ofépdndent steps. Roughly, the equivalence states
the interchangeability of two direct derivatiops/m, : G = H andps/m+ : H = M if they act either
on disjoint parts ofZ, or on parts that are in the image of the intermediate graphgugon, if they are
sequential independederivations).

As far as our encoding is concerned, the presence of thetopgtalinked to thec root node on the
interface graph allows the simultaneous execution of s¢veductions. Indeed, the sharing of this operator
allows the execution of several rewriting steps which atttezion disjoint parts of the graph, or on parts
that are in the image of the interface graphs. Note that tttettiat thego operator is linked to the root
node also allows the simultaneous execution of differetiicdons which can occur both at top-level and
inside ambients.

Let us consider the process= (vm)(vn)(m[n[P] | open n.Q] | open m.R), previously proposed
in Exampled 3R and 3.4. Its graphical encoding is present&igure[3.21. As shown in Examgle_B.4,
two different rewriting steps starting frofib] n(s) @re possible: the rewriting step simulating the opening
of the restricted ambient, and that one simulating the opening of the restricted anthie It is easy
to notice that the two reductions are parallel independ&hey indeed act only on disjoint items of the
graph[[S]}fn(S), or on items that are simply read, and thus not deleted, by#the two rule applications,
i.e., on items that are in the image of the grapbf the rule applied in both cases. Therefore, these two
reductions can be executed simultaneously or, put diffgrdacal confluence ensures that they give rise to
two derivations (shown in Example_8.4) that differ only ie tscheduling of the two steps. With respect to
the solution proposed in [36], there is no need to apply angdicasting rule to the graph grabﬁ]]fn(s).
Those rules were needed there to communicate to the sulsgescte information about “being activated”,
and thus allowing the two reductions to be executed.

The definition of independence can be used to give a definitionterference. As explained ih [46],
aninterferenceoccurs when a derivation is corrupted by the execution ofteralerivation. Here authors
identify two types of interferences which they cplain interferenceandgrave interference The former
occurs when a process may execute the same interactionwaittlifferent partners, while the latter occurs
when the two interactions are logically different. While fiist type of interferences is sometimes desired,
for example to model non-determinism, grave interfereru@@sbe considered “programming errors”, as
argued in[[46].

In [4€], both types of interference are defined informallytiAors use the notion eédexto denote the
pair of ambients or processes involved in a reduction, fbegean interference occurs when two or more
redexes share one of the interactive partners. The proldehat different occurrences of the same sub-
terms in a process are not identified and so, the mere notioedek is not able to say which occurrence
of the sub-term is used in presence of equal sub-terms inrbeegs. For instance, let us consider the
mobile ambient processin m.P] | n[in m.P] | m[Q)]. In it we can identify two redexes, both formed by
n[in m.P] | m[Q], butitis obvious that we can not identify which occurrencithe subprocess|in m.P]
they are actually using.

Giving a formal definition of interference is instead possiyy using our graphical encoding. As shown
previously, the reduction semantics of mobile ambientsagelied by a graph transformation system, and
a process reduction is simulated by applying a rewriting,rthiat is, by finding a match of the production
in the graph representing the process. The notion of matabtlgxidentifies the sub-terms involved in a
reduction, therefore a formal definition of plain and graveiference can be introduced.

Definition 3.18 (Plain and grave interferenceletp, /m; : G = H; andpy/ms : G = H be two
direct derivations. We say that thayterfereif they are not parallel independent. The interference isl sa
plainif p; = p,, andgraveotherwise.

Below we introduce some example of grave interference andhoa how we can identify them by

42 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

using the graphical encoding.

Example 3.6. Let us consider the process = open n.0 | n[in m.P] | m[Q], originally proposed in
[46], where the names: andn do not belong to the free names Bfand Q. Here the execution of the
openreduction on the ambient destroys the possibility to perform thie reduction on the ambient,
and vice versa. Indeed, both reductions act on the same ambigy making changes on the structure
of the process that destroy the possibility of performing t¢ither reduction. Since the two interactions
are logically different (in the first case we apply tRed-Operrule while in the second one we apply the
Red-Inrule), then a grave interference occurs. This is confirmethbynalysis of the graph in Figure 3.26
(representing the graphical encoding of the prod@sand of the interface graphs of the applied rewriting
rules. The graph in Figufe_326 confirms the possibility afgening thep,,.,, andp;,, rules originating
two derivations which simulate the two reductions aboveis lalso easy to note that matches of both
rewriting rules share the ambient This ambient is not in the interface graphs of both rulestefore it is
consumed by them. This means that the two derivations angamaliel independent and hence a symmetric
grave interference between them occurs.

Now let us consider the process= o[P] | n[in 0.0 | m[out n.Q)], also proposed iri [46], where the
names, n andm do not belong to the free names@fand(Q. Here it is possible to execute thereduction,
allowing n to enter the sibling ambient, or to execute theut reduction, allowing the ambient to exit
from n. Differently from the case above, the execution of a reductioes not destroy the possibility to
perform the other one although it turns out to be corrupt,ithdts execution gives a different outcome from
the one obtained by applying the same rule before the execafithe other reduction. This is confirmed
by the analysis of the graph in Figure 3.27 (representinggtaphical encoding of the proces$ and of
the interface graphs of the applied rewriting rules. It isyetn note that we can apply both the rujes
andp,; originating two derivations which simulate the two redans above. In this case the two matches
share the ambient, which is only read by the,,; rule but read and manipulated by thg rule. The two
derivations are indeed not parallel independent and hegcave interference occurs.

3.8 Related Work

The encoding presented before is not the only attempt peabss far to give a graphical implementation
of the mobile ambients calculus. The earliest proposalsree@waare of are [30] and [36]. Our solution
is reminiscent of the latter, lifting the use of unstructugraphs in the encoding of processes proposed
there. Besides introducing a slender graph syntax (in decae to[[3R]), the difference with the previous
proposal lies in the chosen representation of the statedatk of records for the activation points in [36]
forced the introduction of suitable rules for forwarding imformation about “being enabled” to subpro-
cesses. The presence of such spurious rules, possiblytingithe execution of some reductions, made the
correspondence between graph transformations and prosgisstions only weakly sound and complete
(see e.g[136, Theorems 5.3 and 5.4]). Thus, it made lessinggahthe application of standard tools from
graph transformation (such as the different parallelisaotbms) for discussing about properties of process
evolution. Therefore, also the use of the concurrent saogaf mobile ambients in the study of the be-
haviour of a process with respect to dynamic properties sagchon-interferencé [46] was less appealing

Figure 3.26: Graph encodirfgpen n.0 | nfin m.P] | m[Q]]$), z)-

3.9. GRAPHICAL ENCODING FOR ASYNCHRONOUS CCS 43

(¢ m <

Figure 3.27: Graph encodirfg[P] | n[in 0.0 | m[out n.Q||[%;, s)-

and intuitive. Our chosen state representation allowgatstor the reuse of such techniques, as surveyed
in [32] for thew-calculus.

As far as other proposals for graphical implementation areerned, we are aware 6f [18]30], using
the so-called Synchronised Hyper-edge Replacement (StaR)efvork, as well as of [55], in the mold of
the standard DPO approach. Moreoverlin [41] authors aidimencoding of mobile ambients by bigraphs.
They however leave to future work the detailed study of thelution, which they intend to exploit for the
derivation of a labelled transition system for the calculus

In general, those SHR solutions are eminently hierarchitalaning that each edge/label is itself a
structured entity, and possibly a graph. More precisebgtential processes become edge labels: when an
action is performed, an edge labelled kP is rewritten as the graph corresponding®o[B0] p. 11]. We
believe that this is less adequate for calculi such as mabhilaients, where the topology of the systems plays
a major role in discussing e.g. about distributed implemigon and parallel execution of reductiohs][46],
as witnessed by the results shown in Sectlonk 3.7 of thistehabloreover, the expressive power of the
SHR framework is achieved via a rather complex mechanismruterapplication, less intuitive and simple
than the basic DPO matching of our solution.

As far as|[[55] is concerned, the main difference with respecur proposal is in the use of a process
representation where the nesting of ambients is made @{pjithe presence of suitable edges, instead of
being implicit in the representation of each process, asiipooposal. The resulting encoding of processes
is thus centralised, and this condition results in a compébof graph transformation rules. Moreover, the
encoding of process reduction is sound, yet not completss, tiot allowing the reuse of tools for system
analysis that we mentioned earlier.

3.9 Graphical Encoding for Asynchronousccs

In this section we present an encoding for the finite fragméttie asynchronouscs(Aaccs). Differently
from [42,[51], where processes are encoded into bigraphs assfor mobile ambients we use unstructured
graphs. In particular, we adapt the encoding for the symdusccs presented in[7]), also modelling the
reduction semantics of the calculus via a set of DPO rulesinti&duce such an encoding because it allows
us to derive the IPO LTS for theccs (as shown in Chaptét 4), which we will use to establish thejadey

of the results we will present in next chapters.

Asynchronousccs. Here we shortly introducaccs as a fragment of asynchronoas(with no name
passing). We adopt the presentation[ih [1] that allows the ceterministic choice for input prefixes (a
feature missing in[17,714]). Moreover, to simplify the peagation, we avoid to consider infinite processes.
The syntax ofaccsis shown in Figur@3.28N is a set ohamesranged over by, b, . .., with 7 & N.
We letP, Q, ... range over the s@t of processes antl/, IV, . .. over the se§ of summations. With respect
to synchronougcs, the calculus lacks output prefixes: process thought of as a message, available on a
communication media named that disappears after its reception. Thee namesn(P) of a process
are defined as usual.
Processes are taken up tstauctural congruencérigure[3.28), denoted by. Thereduction relation
is the least relation~C P x P, closed undek, inductively generated by the rules in Figlire3.28. The

44 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

P:=a, P | Py (va)P, M M =0, o.P, My + M, az=a, T

PlQ=Q|P (P1Q)|R=P|(Q|R) Plo=p

M+N=N+M (M+N)+0=M+ (N +0) M+0=M

(va)(vb)P = (vb)(va)P (va)(P| Q)= P| (ua)Q ifa ¢ fn(P) (va)0 =0
(va)P = (vb)(P{"/.}) if b ¢ fn(P)

P—Q P—Q

al(aP+M)—P TP+M — P walP = ()0 PIR-O[R

Figure 3.28: Syntax, structural congruence and reduction relatiao ©$.
aP+M35P 1t P+MLP a0

PEQ adn(p PLQ PSP Q5@
(va)P £ (va)Q P|R5 QIR PlQ5P|Q

Figure 3.29: Labelled semanticsafcs

interactive semantics faxccsis instead given by the relation over processes up,tobtained by the rules

in Figure[3.2D. We lep, range over the set of labe{s, a,a | a € N}: the names of:, denoted byr(u),

are defined as usual. Differently from synchronous cal@dnding messages is non-blocking. Hence,
an observer might send messages without knowing aboutrénegption, and inputs are thus deemed as
unobservable. This is mirrored in the notion of asynchraenaigimilarity [1].

Definition 3.19 (Asynchronous bisimulation)A symmetric relatioriR is anasynchronous bisimulaticif
whenever” R) then

e if P 5 P'thenQ = Q' and P’ R,

e if P % P'thenQ % Q andP' RQ/,

e if P % P’ theneither) = Q" andP'RQ' orQ = Q" andP’' R Q' | a.
Asynchronous bisimilarity-* is the largest asynchronous bisimulation.

Graphical Encoding for Accs. We do not present the formal definition of the graphical entgpaf
ACCS, since it is analogous to the one for the synchronous verslidhe calculus presented inl[7, Defi-
nition 9]: it differs only for the choice of the typed grafh,, depicted in Figur€3.:30. We remark that
choosing a graph typed ové&ry means to consider graphs where each node (edge) is labgli@chdde
(edge) ofT'4, and the incoming and outcoming tentacles are preserved.

Intuitively, a graph having as root a node of typéc) corresponds to a process (respectively a sum-
mation), while each node of type basically represents a name. Indeed, even if the encodinigl b
defined by means of the two operators on typed graphs withfactes defined in Sectidn 3.2.1, faccs
the situation is summed up by saying that a typed graph wigtfaces is the encoding of a procd3f its
underlying graph is almost the syntactic treeftofeach internal node of typehas exactly one incoming
edge, except for the root, to which an edge labejjeds attached.

Going back to the type graph, the edge (snd simulates the input prefix (output operator, respec-
tively), while there is no edge for the parallel compositinon-deterministic choice and restriction opera-
tors. Edgec is a syntactical device for “coercing” the occurrence of mmation inside a process context,
while similarly to the mobile ambients encoding, the edgeletects the “entry” point of the computation.

3.10. SUMMARY 45

Figure 3.30: Type grapfia.

In this case it avoids to perform any reduction below the omtest prefix operators: it is needed to properly
simulate the reduction semantics of the calculus.

The encoding of a proceg® with respect to a set of nam&sncluding the free names @, is a graph
with interfaceg{p},T"). It is sound and complete with respect to the structural ngence of the calculus,
that is, two processes are equivalent if and only if they aapped into isomorphic graphs.

Figure[3.31 depicts the graph encoding for the prodess (vb)(b | b.@ + a). The two leftmost edges
labelledc andsnd have the same root, into which the nagdef the interface is mapped. They are the top
edges of the two subgraphs representing the parallel coem®mf the process. In particular, the edge
labelledsnd represents the output over the restricted chahmemelyb, while thec edge is the syntactical
operator denoting that its subgraph represents a summatianis,b.a + a. The two leftmost edges of
this last subgraph, both labelledv, model the two input prefixels anda, while the rightmostnd edge
represents the operator Note that the channel namaés in the output interface since it is free ity while
the bound namé does not belong to the interface.

A Graph Transformation System for Accs. Figure[3.3P shows the two rules of tegs R 4ccs, Which
simulates the reduction semantics of the calculus intred@bove. It contains just two rules, namgly,,,
andp., which mirror the two axioms of the reductions relation ig#ie[3.28. Also in this case, as for
mobile ambients, the action of the rules is described by taerndentifiers. Note that a soundness and
completeness result of our encoding with respect to reciustis easily obtained (s€é [7, Proposition 2]).
Note that the correspondence must account for the disgpodisub-processes, due to the resolution of non-
deterministic choices: after a DPO derivation there candréspof the graph (representing the discarded
components) that are not reachable from the root. Thergfaerocess” reduces td@, we will not have
that its graphical encoding will reduce to the encoding)oivith a DPO step, but it will reduce to a graph
whose subgraph reachable from the root coincides with tieedéng of Q. Vice versa, if the graphical
encoding of a procesB executes a DPO derivation and reaches the géapthen there exisf) such that

P reduces td@) and the subgraph @f reachable from the root coincides with the graphical enmpdf ().

3.10 Summary

We presented two graphical encodings for finite processgseotively of mobile ambients and asyn-
chronousccs. Each of them is sound and complete with respect to the apeahsemantics of the calculus

it encodes: both are based on unstructured graphs and sddDB® approach tools, thus allowing for the
reuse of analysis techniques from the graph transformatialid, along the lines of the graphical encodings

presented in[32, 36].
The graphical encoding of the asynchron@ss is basically an adaptation of the one for the syn-
chronous version of the calculus [7]. As said in the intrdaurcof this chapter, we presented the encoding,

D
» rﬁﬁ F—re H@H ﬂ\

Figure 3.31: Encoding for the proce8)(b | b.a + a).

46 CHAPTER 3. GRAPHICAL ENCODINGS FOR MOBILE AMBIENTS AND ASYRHRONOUS CCS

7]]
Ve P o
. O o, o, O o, p1
P1 s1 ﬂH P2 P1 s1 P2 o0: Osy
N —
Y
............ snd o ° o
Leom Leom Reom
7]
P o~ o
. o . . S ° Py
p1 %H s1 P2 P1 s1 P2 o0l Osq
LT IT Rtau

Figure 3.32: The productions.om : Leom = Icom — Reom @andpr : L, «— I — R-.

since it allows us to derive the IPO LTS for thecs (as shown in Chaptél 4), which is used to establish
the adequacy of some results we will present in the next ensipt

As far as the encoding for mobile ambients, it has the alititpodel the syntactic structure of a process
and to keep track of its activation points, that is, of thasdi@nts where reductions may actually take place.
Therefore, it allows a simple and faithful modelling of treduction semantics of mobile ambients. We
considered the original presentation of the calculus, bgatiding the communication primitives, as well as
recursive expressions: both could be tackled along the tifi¢he solution in[[32].

The article also offers a list of applications for the graplhiencoding ofr-calculus [32, Section 8],
which could be immediately lifted to our encodings. Theygarirom the use of graphs for verifying
system properties expressed by spatial logic to the useedfdahrowed contextapproach for deriving a
labelled transition system for the encoded calculi.

Among them, we focused on the use of the borrowed contexthaném: a thorough study of the
labelled transition system for mobile ambients obtainedekgloiting the borrowed context technique is
indeed presented in the next chapter. It should be remahiatthis array of applications is possible also for
mobile ambients thanks to our graphical implementatiorenatthe tree structure of a process is decoupled
from its activation points.

Chapter 4

RPO semantics for mobile ambients and
asynchronousccs

This chapter presents two case studies on the synthesisSx far process calculi, choosing as testbed
mobile ambients and asynchronauss, respectively introduced in Sectidns13.1 3.9.

Both proposals are based on (a slight variant of) the graplitcodings of both calculi presented in the
previous chapter, where each process is mapped into a goafbped with suitable interfaces, such that
the denotation is fully abstract with respect to the usuaicstiral congruence. Graphs with interfaces are
amenable to the borrowed contexts synthesis mechanisrohughan instance of G-relative pushouts. The
mechanism allows the effective construction of a labeltadgition systems that has graphs with interfaces
as both states and labels, and such that the associateddnitynis automatically a congruence.

Here we concentrate on mobile ambients, by focusing on talysis of the derived labelled transition
system over (processes as) graphs with interfaces. Ircpkmti we first use the labelled transition system
on graphs to recover a suitable one directly defined overtthetare of mobile ambients processes, and we
then exploit it to define a set of inference rules (in the SQf&}tapturing the same operational semantics
for the calculus. The chapter is rounded up by a comparistim avi alternative proposal by Rathke and
Sobochski described in [60] (also inspired by the RPO technique).

Also as far as the asynchronotissis concerned, we introduce an IPO LTS for the calculus. Weado n
show all steps needed to obtain it, because the procedursedeisivery similar to the one exploited in [7]
for the synchronous version of the calculus. We presensithecause it will be useful in some examples
presented in the next chapters.

The chapter is organized as follows. Secfiod 4.1 shortipihices an extended syntax for the mobile
ambients calculus, needed for the presentation of the tipesh semantics in Sectidn 4.6. Sectlon]4.2
recalls the DPO approach to rewriting on graphs with interéa as well as the associated BC technique for
distilling an LTS. Then, in Sectidn_ 4.3 we discuss a gragheécaoding for the extended mobile ambients
processes, which is the basis for a graph transformatidemsyfor mobile ambients that simulates process
reduction, defined in Sectidn 4.4. In turn, these are neealethé presentation in Sectibn 4.5 of an LTS
for graphs with interfaces representing mobile ambientsgsses, obtained by means of the BC synthesis
mechanism. Furthermore, the LTS over graphs is exploiteSeiction[4.6 to introduce an LTS defined
directly over processes of the mobile ambients calculuSekctior 4.7 we then present a novel description
of the distilled LTS by means of a set of inference rules, igi@ecording to the SOS style. And finally, this
SOS characterization is used in Secfiod 4.8 to formally @the correspondence between our proposal and
Rathke and Sobaski's. Finally, before summarizing the chapter (Sedfid@), in Sectiof 419 we briefly
present a labelled transition system for the asynchrooagssynthesized by applying the BC technique to
the graphical encoding introduced in Secfiod 3.9.

4.1 Extended Mobile Ambients

This section shortly introduce an extended version of thbila@mbients calculus (previously introduced
in Sectior3.P): we need it for the presentation of the opamat semantics in Sectidn 4.6. There, indeed,

48 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

we will present an LTS having as target states processesuwihbrspecified subprocesses and/or ambient
names which can be further instantiated. Therefore, wednite an extended syntax that allows us to build
processes containingocess variableandname variables

Definition 4.1 (Extended processeshet N be a set ofnamesranged over bymn, n,u, ... and letX =
{X,Y,...}andV = {z,y,... } be respectively a set gfrocess variableand a set ofname variablesAn
extended process a term generated by the syntax in Figlrel4.1.

P ::=0,n[P|, M.P,(vn)P, Py| P2, X, x[P] M ::=in n,out n,open n

Figure 4.1: Extended syntax of mobile ambients.

Intuitively, an extended process suchud®]| X represents an underspecified process, where either the
processX or the name of the ambierf—] can be further instantiated.

Definition 4.2 (Pure and well-formed extended processdspureprocess is an extended process such that
no process or name variable occurs in itwll-formedprocess is an extended process such that no process
or name variable occurs more than once. Wele®), R, . .. range over the seP of pure processes; and
P..Q., R.,...overthe sef. of well-formed processes.

We use the standard definitions for the set of free names ofeagrocess, denoted byfn(P), and
for a-convertibility, with respect to the restriction operaorn). As for the general definition, variables
carry no name, hencgn(z[P.]) = fn(P.) and fn(X) = (. Later on we are also going to need the set of
name and process variables occurring in a process, defireeghasted and denoted as(P.) andpuv(F.).

Moreover, we consider a family afubstitutions which may replace a process/name variable with a
pure process/name, respectively. Substitutions avoidenzapture: for a pure procesgy the expression
(vn)(vm)(m[X]|z[0]){™/.,"IF] /x} corresponds to the pure procés)(vq)(q[n[P]]|m[0]), for names
p.q & {m} U fn(n[P]).

The semantics of the calculus is given by the reductioniogland the structural congrueneedefined
on pure processes and respectively presented in Figutesd3.2.

4.2 DPO Rewriting for Graphs with Interfaces

This section recalls thdouble-pushou{DPO) approach to the rewriting of graphs with interfacesteN
that the definition of DPO derivation for systems with intexé has already been introduced in Sedtioh 2.3,
by considering the more general setting of adhesive cagsjoHere we instantiate them for the case of
graphs with interfaces in order to give the operationalifitta of the production application, which will be
useful later on.

In the following we use the notion of graph production intodd in Definitiod 3.T1..

Definition 4.3 (Derivation of graphs with interfaces)et.J — G andJ — H be two graphs with inter-
faces. Given a productiop: L <~ I — R, amatchofpin G is a monom : L — G. Adirect derivation
fromJ — GtoJ — H viap andm is a diagram as depicted below, where (1) and (2) are pushauts
the bottom triangles commute. In this case we wfite: G — J — H.

T

4>R
(2) J
H

/

Lot~
m] (1)
G+—

G Q———~

4.3. GRAPHICAL ENCODING FOR EXTENDED MOBILE AMBIENTS PROCESES 49

Operationally, applying a productignto a graph with interfaced — G consists of three steps. First,
the (injective) matchn : L — G is chosen, providing an occurrenceloin G. Then, all the items o7
matched byl — [(I) are removed, leading to tlentext graphC'. If C'is well-defined, and the resulting
square is indeed a pushout, the itemgof r(I) are finally added ta”, further coalescing those nodes and
edges identified by, obtaining the derived grapH.

The morphisnk : J — C which makes the left triangle commute is unique, whenewexigts. If such
a morphism does not exist, then the rewriting step is notitifEasMoreover, note that the standard DPO
derivations (Definitioi-3.12) can be seen as a special instahthese, obtained considering as interfdce
the empty graph.

Note that here we require that the matehhas to be mono. This condition is going to be necessary
since it is needed for the application of BC rewriting. Ndoahat we do not report explicitly this notion,
since it is the same of the one introduced in Sediich 2.3 ntbre general setting of adhesive categories.

4.3 Graphical Encoding for Extended Mobile Ambients Processes

This section introduces the graphical encoding for thereldéd mobile ambients processes. It is very
similar to the one presented in Section] 3.4, where only mpse®over the standard syntax are considered.
The only difference is that here we consider extended psesesnd, in order to apply the borrowed context
technique, we need to have graphs with only one interfacee®Mer, in order to simplify the encoding, we
drop the graphical restriction operator. The lack of restin operators is dealt with simply by manipulating
the interfaces of graphs, that is, by denoting restrictadasaby name nodes that are not in the interface.
As discussed later in this section, this new encoding fouset consider a slightly different structural
congruence containing the axioms in Figlire] 4.8, but on theraside it allows us to obtain a slender
graphical encoding which is simpler to manipulate.

Figure[4.2 shows the type grafihi; that we consider: it differs from that one of Sectfon] 3.4 dialy
the absence of the restriction operator.

The intuitive meaning of nodes and edges is exactly the samede of type> represents an ambient
name, while a graph that has as roots a pair of nddge represents a process, wherprecisely denotes
the activating point for reductions of the process. As faedges are concerned, each of them, except the
go edge, simulates an operator of mobile ambients, whilgsthedge is a syntactical device for detecting
the “entry” point for the computation. We need it to simultite reduction semantics of the calculus.

The well-formed processes are encoded into expressionishwls constants besides containing the
graphs in Figures3.11 abd 3]12 (also used in the encodingdtidB[3.4) also contain the graphs in Fig-
ure[4.3. Parallel and sequential composition (respegtilefinitions[3.7 and3]9) are instead the only
binary operators which are used. We assume a fafnily} W {X,, X,, | X € X} with no intersection with
N.

In the following, besides usin@, ,, andid, , as shorthands f@, @ 0, andid, ® id,, respectively, we
similarly exploit0x andidx which stand fol0x, ® 0x, andidy, ® idx,. Moreover, for a set of names
T', we use0r andidr as shorthands f(}@neF 0, and®nEF id,,, respectively; and for a process we let
idpy(p,) Stand forQ) ., p,) idx.

The definition below introduces the encoding of extendedgsses (with no occurrence of name vari-
ables) into graphs with interfaces, mapping a process irgoaph expression. Note that the encoding
[M.P.] represents the encoding®f n.P,, out n.P, andopen n.P,, while act,, represents thén,,, out,,

50 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

andopen,, graphs, respectively.

Definition 4.4 (Encoding for processes) et P. be a well-formed process with no occurrence of name
variables and lef" be a set of names such that(P.) C I'. Theencodingof P, denoted by~], is
defined by structural induction according to the rules inurg4.3.

Given a well-formed procesB and a set of names, such thatfn(P.) C T, its encoding[P]. is a
graph with interface${a,p} W {X,, X, | X € pv(P.)} wT,0). Moreover, as in the encoding of Section
[33, itsenriched encodings the graph P]~ ® go, which we denote b{P.[%’. Intuitively, it is obtained
by attaching gjo edge to the> root node of each graph representing a process.

Example 4.1. Consider the pure proced® = nlin m.0]|m[out m.0], previously introduced in Sec-
tion[3.2.2. Figur€ 415 shows the graphical encodify,,, ,,, according to Definitioi 414. Itis very similar
to the one shown in Figute 3.7 and obtained by conS|der|ng1[nent3]3 the only difference is that here
names nodes representing free names are in the input ceddgether with root nodesando.

Now, consider the pure process= (vn)R. Its enriched encodin@Sﬂ‘{]fn} is shown in Figuré4l6.
This is obtained fron‘[R]}{n m} in two steps: at first, the nodeis removed from the interface (obtaining
[[S]]{m}) and then, thgo edge is attached to the activation naddinally obtaining[S]?’ {m}

Let us focus on the first step: by definitioft],,,, = (new, ® idy, @ idap) o [R]y,, ,,;- The graph
with interface(new,, ® id,, ® id,) has the same underlying bodyiaf, ,, . ,,, but the name: is missing
from the input interface: the sequential composition ofittve graph having interfacen, m, a, p} results
into the same graph but withoutamong its inputs. In this way our encoding allows to bind nanredeed,
all the nodes appearing in the interface represent free names whileabthers represents bound names.

The graphical encoding presented above is not sound andle@nwth respect to the structural con-
gruence= presented in Figure3.2. It is easy to see for example thaprbeessesvk)(out m.open k)
andout m.(vk)open k, for m # k, are mapped to the same graph, represented in Higdre 4.vefdtes
this graphical encoding forces to consider new structwialnas, that is, "floating” axioms for capabilities,
concisely represented by the axiom in Figurd 4.8.

Moreover, as for the solution proposed in Secfion 3.4, thdoess of the encoding requires the struc-
tural axiomCong-Res-Nito be dropped. Note that considering the standard structoingruence of mobile
ambients with the axiomSong-Res-Acind without the axionCong-Res-Nitloes not change substantially
the reduction semantics. The equality introduced by themagCong-Res-Adholds for example in the ob-
servational equivalence for mobile ambients proposedih [4

The encoding is sound and complete with respect to the atalaongruence=, now induced by the
axioms in Figuré€ 312 and the ones in Figlird 4.8, as statedebgrtiposition below.

Proposition 4.1. Let P, be pure processes and Iebe a set of names, such thai(P) U fn(Q) C T.
Then,P = Q if and only if [P]%" = [Q]%".

The proof is very similar to the one for Proposition]3.1. Tasult could be suitably extended, in order
to encompass also well-formed processes, but this is nessacy for our purposes.

4.4 Graph Transformation for the Extended Mobile Ambients

To model the reduction semantics of the extended mobile emdyiwe adopt a slight variant of the graph
transformation syster,,,,, presented in Sectidn 3.5 (Figure 3.16).

Xa a > o Xa > o< Xa a > o< a

Figure 4.3: Graph®x, and0x,; idx, andidx,,; id. andid, (top to bottom and left to right).

4.4. GRAPH TRANSFORMATION FOR THE EXTENDED MOBILE AMBIENTS

[[X]]F - OX ® OF

[[OHF = 0ap ®Or

[n[P]] = (idpy(p,y ® amb, ® idr) o [Pe]

[[M.Pé]]F = (Z.dpv(pg) ® act, & ’Ldr) o [[PE]]F

[[Pe | Qe]]l‘ = [[Pe]]r @ [[QE]]F

[Py = (idpuip) @ iday © newn @ide) o [PA™ fu}lpugmy fOrm ¢ T

Figure 4.4: Encoding for well-formed processes.

TN oAl
ot f—w-
B N N

Figure 4.5: Graph encoding for the procesg: m.0]|m[out m.0].

g0
— °
o > o amb H . °
\4’\
o o
A
o? > e amb . out — .
RN
oM °

> e <& <
N
a > o out ° open H °
N
O Koo m o

Figure 4.7: Encoding fofvk)(out m.open k) andout m.(vk)open k.

(vn)M.P = M.(vn)P ifn ¢ fn(M) (Cong-Res-Act)

Figure 4.8: The capability floating axiom.

51

52 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

The new rewriting rules are shown in Figlire]4.9. The maireddiice is that here we have to consider
only injective matches, therefore we need to assume amicesfar the rule;,, andp,.;, where the nodes
labelledn andm may actually be coalesced. Moreover, we consider the ruiibstiae intermediate graph
1 without edges except thgp edge. This allows us to make easier the synthesis of borreeetexts
derivations, by preserving the soundness and completefieks encoding with respect to the reduction
relation—.

Theorem 4.1(Reductions vs. rewrites)Let P be a pure process, and I€tbe a set of names, such that
fn(P) CT. If P— Q, thenR,,,;, entails a direct derivatioff P]{” = [Q]7’. Vive versa, iR, entails
a direct derivation] P]7* = G, then there exists a pure proce@ssuch that? — Q andG = [Q]{’.

The proof is very similar to the ones of Theordmd 3.2[anH 3.3.

In the following we will introduce an example of applicatiof the p;,,, rule. Before presenting it,
we would point out that, thanks to the special form of the DR{@g in Figuré 419, given a mateh, the
pushout (1) of Definitioh 413 always exists.

Example 4.2. Let T be the pure procesS previously introduced in Sectidn_3.2.2 but with the ambient
namen coinciding withm, namely, T = (vm)(m[in m.0]|m[out m.0]).

The enriched graphical encoding for the process above istéepin Figurd 4.70. The edge labelled
go denotes the entry point for the computation of the proceste that all the edges of the graph can be
involved in a reduction step because they have the sametatinode with an outgoingo edge.

The application of the;,,_. rule to the graph in Figufe 4110 results in the graph in Figlid
is the encoding for the proce&sm)(m[m[0]|out m.0]). This rewriting step simulates the transitioh—
(vm)(m[m]0]|out m.0]). With respect tan[in m.0]|m[out m.0] — m[m[0]|out m.0], the application
of the (ResRed) rule is immaterial: the occurrence of th&ioti®n operator is simply mimicked by the
embedding of_;,, . into a graph with an interface that is lacking

4.5 The Synthesized Transition System

In this section we start applying the BC synthesis mechaltisRy,,,,;, in order to derive an LTS for graphs
representing mobile ambients processes. We open with esdindtory section explaining the graphical
counterpart of process variables (Secfion 4.5.1): thesemployed in the presentation (Secfion 4.5.2) of
some examples of rewriting steps with BCs. Building on thesethen introduce (Sectién 4.5.4) a compact
representation of the derived LTS by meansrofimal derivations these are extrapolated via the use of
some pruning techniques (Section 415.3). The resultingiET®ing to be exploited in Sectibn 4.6, in order
to define a novel LTS directly for mobile ambients processes.

4.5.1 Process variables, graphically

We first illustrate how a single BC transition may induce auabn involving extended processes. To this
end, consider the graph — G depicted in Figur€4.12 and the diagram in Definifion P.20e Tdrmer
represents the encoding of the procgss (vn)(m[0] | n]0]).

The occurrence of the node$ ando!« ensures us that the process represented by F', namely
T = openm.0, can be put in parallel witl$, so that/ — G intuitively corresponds t& | 7. Note
however the occurrence of the nodés ando?« in K: they witness the possibility of a parametric instance
of processT. Indeed, the graph with interfacdé ~— G actually represents | T, for any process
variableX and well-formed procesBx = openm.X.

Put differently, the contexf — F < K is the minimal context allowing the reduction, which can be
obtained by applying the BC technique. The presence of tdessd» ando?« in K is important because
they denote the fact that it could be further instantiatetth wny substitution of the process variable

Additionally, note why our composition does not capturefmbnames. Consider e.g. the bound name
n of G < J. It does not appear in the interfadeand thus, for all graph with interfaces« F’ — K’
(representing possible substitutions), it can not be iiedtwith any name of”.

4.5.2 Examples of borrowed transitions
This section shows the application of the BC synthesis nmshato the graphical encoding of a process.

o

Let us consider the graph — G = [[P]]-:{’m}, whereP = (vn)(n[in m.0)|m[out m.0]). In the following

4.5. THE SYNTHESIZED TRANSITION SYSTEM

ola o2p o3p oég amb -;Z
C ™
o™ o™ ~ o om
S
olp otp olp =Y amb |—) el
Izn Rzn

ola o2p o3P oip

olp om om m

o

ola o2p
on
n
o

1pe2P

o3,
olp oip
o3a

Iapen Ropcn

. 1q |_> 2p
ola o2p o3p °34 Rp
om <‘ —p o™

. ola 3
ola o2r e3P otp 4a 4p
e
¢
olp om i o
A
Loutf(; qutfc Rout—c

Figure 4.9: The rewriting ruleg:., pout, Popen, Pin—c @Ndpout—. (tOP to bottom).

Figure 4.10: Graph encoding for the procéss:) (m/[in m.0]|m[out m.0]).

54 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

Figure 4.11: Graph encoding for the procéss:)(m[m[0]|out m.0]).

we discuss the possible transitions with soufce» G that are induced by the rulg,, : L;, < I;;, — Rin

of Ry, in Figure[4.9. Since for each pair of mon@s«— D ~— L, a labelled transition might exist, in
order to perform a complete analysis, we should considethallpairs of mono¢: «—~ D — L;,. We
proceed by showing some of the possible transitions gestetat such pairs. Actually, we are going to see
that it is not necessary to check all those pairs that we areamsidering here, by exploiting the pruning
techniques presented in the next subsection.

BC transition for D equalstol;, Letustake a® the left-hand sid€.;,, and note that there is only one
map into the grapldé:. The transition generated by this choice is depicted infeig22. The graply™ is
the same a&'. Now C' and H are constructed as in a standard DPO rewriting step. Whengdkias the
whole left-hand side/ — G needs no context for the reduction and thus the label of taissition is the
identity context, i.e., two isomorphisms into the discrgtaphs with three node@,a,m}ﬁl Intuitively,
this corresponds to an internal transition over procesabslled withr.

BC transition for D equals to the subgraph in the upper part ofL;,, Now we take ad) the subgraph
of L;, representing an ambient with a capabilityinside it. Note that also in this case there is only one
possible map into the grapf. The resulting transition is shown in Figure 4.23. The gréphis the
graphG in parallel with the graph representing an ambientthus intuitively it represents the process
(vn)(nlin m.0]|m[out m.0]|m[X]) for some process variabl&. The graph/ — G, in order to reach
the graphG™, has to borrow from the environment the contéxt— F «~ K that represents the syntactic
context—|m[X]. Note that in the resulting interfadg there is a process no@é» pointing to the process
node ofF’ occurring inside the ambient, and this process node represents a process vafiglas detailed

in Sectiof4.511. The grapls and H are then constructed as in the standard DPO approach.ivalyit
K — H represents the procesgout m.0]|m[n[0]| X], whereX is the same process variable occurring in
the label/ — F « K. This can be understood by observing that the processefods K points both to

a node ofH and to a node of’. Summarizing, this transition moves the ambienito an ambientn that

is provided by the environment.

10r, equivalently, to the value of the expressidp ® id, ® idm, as defined in Sectidn3.4.

om om om

A
ola ola open H 2P ola o2p
\/'N

olp olp o2a olp o2a

Figure 4.12: The graphs with interfacés— G and the contexf — F «— K.

4.5. THE SYNTHESIZED TRANSITION SYSTEM 55

BC transition for D equals to the subgraph in the lower part ofL;,, Another possibleD is the sub-
graph ofL;,, consisting of the ambient depicted in the lower parfLgf. In this case, there are two possible
maps into the graply: the map into the subgraph 6f representing the ambient, and the map into the
subgraph of5 representing the restricted ambient

In the first case, we obtain the transition shown in Figurdl4The grapiG is the graphG in parallel
with the graph representing a fresh ambient namieaving inside a capabilityn m. Intuitively, it rep-
resents the procegsn)(n[in m.0]|mout m.0]|w[in m.X3|X;]) for some process variabl€§;, X5. In
order to reaclG™, the graph/ — G has to borrow from the environment the contéxt— F « K rep-
resenting the syntactic contexiw[in m.X5|X;]. As in the above cas&; and X, are process variables,
since in the interfac&” there are the process noaés ande?. The graphg€’ andH are obtained by a stan-
dard DPO derivation. The grapki — H represents the procegsn)(n[in m.0]|m[out m.0|lw[X2|X1]]).
Summarizing, this transition represents an ambiefrom the environment entering inside the ambient
of the process.

In the second case no transition is possible. Indeed théngrdpis the whole grapld in parallel with
a fresh ambienty having inside a capabilityn n, but the pushout complement 6f— G — G does not
exist, because is restricted and thus it does not belong to the interfacéntuitively, this means that no
ambient from the environment can enter inside a restridt#dthg ambientn.

4.5.3 Reducing the Borrowing

In order to know all the possible transitions originatingrfr a graph with interfaced — G, all the
subgraphgD’s of L;,,, Lo, and L., should be analyzed. To shorten this long and tedious proecdie
use the two pruning techniques presentedlin [7].

The first one is based on the observation that those itemsaf-hdnd sidd. that are not inD have to
be glued ta& through.J. Let us consider a nodeof D corresponding to a nod€ in L, such that)’ is the
source or the target of some edgthat does not occur ifv. Since the edgeis in L but not inD, it must
be added td@- through.J, and thus:, must be also ir/. Such nodes are callémbundary node

Let us consider for example the graph in Figure #.13 as a apb@fL,,,.,,. Its root nodes are boundary
nodes since they have an outgoing edge that occurs,in, but notin it. Also the name nodeis a boundary
node, since inL,,., there is an ingoing edge that does not occur in the graph iréig.IB. Therefore
these nodes must be mapped to nodes occurring in the irdeffa€ G. This is exactly the reason why,
if we consider the grapll — G in Figure[4.1P there is a transition when we chooséathe graph in
Figure[4.1B mapped to the subgraph representing the amhbiemhile no transition is possible if we map
the sameD to the subgraph modelling the ambient

Boundary nodes are formally captured by the categoricanaf initial pushout

Definition 4.5 (Initial pushout) Let the square (1) below be a pushout. It isiaitial pushoutof C' — D
if for every other pushout as in diagram (2) there exist twaua morphismsi — A’ and B — B’ such
that diagram (2) commutes.

Figure 4.13: The subgraph &f, e,

56 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

A——B A%B
J, o l JA’HB’K l
C——D PO N
C—D

1) (@)

Since the category of (typed hyper-)graphs we work in hasalnpushouts for all arrows [25], the
previous discussion is formalized by the lemma below [7,oCary 1].

Lemma 4.1. A graph with interfaces/ — G can perform a BC rewriting step iR,.,.;, if and only if there
exist

e amonoD — L (whereL is the left hand side of some productior®p,s),
e amonoD — G,

e amorphism/p — J (whereJp is the initial pushout oD — L) such that square (2) in Figuie 214
commutes.

The three conditions of the lemma above are sufficient toaguee that a grapli — G can perform a
BC rewriting step. This is indeed possible if and only if thexist a mond — G and a mond) — L
such that the diagram of Definition 2]20 can be constructad:eushouts and pullbacks always exist, we
have just to ensure that pushout complements exist. NovaidsrsSectio 414, for all the rules in Figure
[43, the pushout complemeht— L »— G always exists because all the noded.cdre inI. Thus, we
have a transition if and only if there exists the pushout dementJ — G — G which, as shown i]7],
is guaranteed by the third condition of the lemma.

This lemma allows to heavily prune the space of possibe As for graphs corresponding to the
encoding of processes, we can exclude all thosehaving a continuation process node (any node depicted
by e that is not the root) as boundary node, observing that the noicess node in the interfaceis the
root node.

A further pruning —partially based on proof techniques pnése in [28]— is performed by excluding
all thoseD’s which generate a BC transition that is not relevant forlilsmilarity. In general terms, we
may exclude all théD’s that contain only nodes, since thaBé can be embedded in every graph (with the
same interface) generating the same transitions.

Concerning our case study, those transitions generated/byhaving the root node without the edge
labelledgo are also not relevant. In fact, a graph can perform a BC ttiangiising such & if and only if
it can perform a transition using the satewith a go edge outgoing from the root. Note indeed that the
resulting states of these two transitions only differ fa ttumber ofjo edges attached to the root: the state
resulting after the first transition has two's, the state resulting after the second transition only diese
states are bisimilar, since the numbego% does not change the behavior [7, Lemma 12].

JDHFD

(€0)

(2) PO PO

PO PB

Figure 4.14: The BC construction together with commuting squares @)r(itial pushout ofD — L) and (2).

4.5. THE SYNTHESIZED TRANSITION SYSTEM 57

The two pruning techniques presented above allow us to amigider the partial matchd3 shown in
Figured 4.TH, 4.25 arid 4126, together witls obtained from the ones of the last two figures by coalescing
the name nodes andm.

45.4 Minimal transitions

In Sectio4.513 we restricted quite a lot the space of pleséis. However, reasoning on the synthesized
LTS is still hard (this is usually the case when working wittrided LTSs, as pointed out inl[3] and [6],
where the authors state that an SOS presentation of theesyzeld LTS would be desirable). In order to
simplify this reasoning, we introduce a setrainimal transitionsthat allow us to derive all and only the
transitions of the (pruned) synthesized LTS.

Inspired by Lemm&4]1, providing necessary and sufficientditmns for performing a transition, we
consider the graph#, — D for all thoseD’s that have not been pruned in Secfion4.5.3 Zpdtontaining
only the boundary nodes @.

The minimal transitions have the following shape where #femiost square in the lower row is the
initial pushout ofD — L.

Lo [oo |

Jp— Fp +——Kp

Figured 4,16 4.25 arld 4126 concisely represent thesdtiomss showing for each of these the starting
graphD, the labelJp — Fp <~ Kp, and the resulting grapR. The three figures represent the minimal
transitions respectively generated by the rylgs,,, pi, andp,,:. Additionally, the minimal transitions
generated by the rules,,_. andp,.._. should be considered, but they are easily described gjertm
those ofp;,, andp,,:, respectively. In particular, for each minimal transitisith D,,, there exists a
minimal transition generated hy,,_., where all the relevant graphs are obtained by coalescmgdhles

n andmB Analogously for the minimal transitions generated by tHe g1),,,.

All the transitions originated from a graph — G (representing a process) can be characterized by
exploiting these minimal transitions. By Leminal4.1, we datesthat/ — G can perform a BC rewriting
step inR,,,p if and only if there exist a mon® — G, for someD of the minimal transitions, and a
morphismJp — J such that square (2) in Figure 4114 commutes.

The label of the rewriting step can be obtained from the lab#ie minimal transition. First of all note
that the interface/ contains all the nodes afp (as suggested by the morphisfp — J), all the name
nodeso representing the free names of the modeled process (astesdg®cour encoding), and the root
nodes of the grap® when they are not id,. Then the grapl#’ only contains the whole graphip and all
the nodes of/. Indeed, as shown in the proposition below, which is an adit of Proposition 4 of[7],
F can be obtained as the pushoutief — Fp andJp — J.

Proposition 4.2. Letp : L «+< I — R be a production aR,,,.;; d : D — L amono such that in Figufe 4]16
diagram (i) is the initial pushout aof and diagram (ii) is a pullback; and — G a graph with interfaces.
Then there exists & such that/ — G 2=~ K — H viap andd if and only if there exists a mono
D — G, agraphV and a morphisnyp, — J such that the central square of diagram (iii) in Figure 4.16
commutes and” and H are constructed as illustrated there.

It is easy to prove thak is a discrete graph containing all and only the nodeE aér more concretely,
K consists of the nodes ofand K p.

Finally, the resulting grap#/ is obtained by replacing in the graphthe subgraplD with R. As shown
in Propositiod 4P, it can be computed in a DPO stepof< D N I — R, whereD N I is the pullback of
D — Landl — L.

2Note also that it is irrelevant to consider the coalescedioerfor the rule WithD;n, , since it would coincide with the minimal
transition forD;,, ., , for all 4.

CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

D — Jp — Fp —~ Kp— R
go (\E‘
ola a p ola o2p 1q
34
on on
on
olp olp 2
P
1,037
Janmzl FDO])enl KDopFn,l Ro]}en
la 1 la 1
< < o 030
< a
o™ on on
o~ on
~
»
—ny 1pes,
o3a ola
— —
Dopens Fpyyen, Kpopers Ropen
la
03%
on
2
»
1pes,
Dope,n;; —) 0 —) — fRopen

Figure 4.15: The minimal transitions generated by the pyle,,.

4.6. ANEW LTS FOR MOBILE AMBIENTS 59

As an example, consider the BC rewriting step shown in FiguP8. We are going to show that it
is derivable by the minimal transition fap;,,,, shown in Figuré_4.25. First of all note that there exist
D;,, — G andf) — J such that the square (2) in Figire 4.14 commutes. Novg equal toJ, since it
consists of the composition dfp,, (i.e., () and.J. The new interfaces is equal toF, since it contains
all and only the nodes of andKp,,, (i.e.,0)). The arriving staté{ is obtained simply by replacing;,,,
with R;,,. Therefore, starting from the minimal transitid»,,,, we exactly obtained the BC transition of

Figure[4.2D.
4.6 A New LTS for Mobile Ambients

This section presents the LTB directly defined over mobile ambients processes. The infereules
describing this LTS are obtained from the transitions ofltfi& on graphs presented in Sectlon 4.5.4. In
particular, we derive an inference rule for each minimaisiion. As we will explain later in Sectidn 4.6.2,
the conditions in the premise of each inference rule comedo the necessary and sufficient conditions
allowing a transition from a grapti’ encoding a process, while the label and the resulting psoass
obtained from the label and the resulting state of the bagthiransition, respectively. Section416.1 presents
the LTS, while Section'4.6.2 shows how this LTS is distilléaisng from the LTS over graphs.

The labels of the transitions are unary contexts, i.e., dasfrthe extended syntax with a hole The
formal definition of our LTS is shown in Figures 4117 and 4.18.

4.6.1 The labelled rules on processes...

The rules in Figure 417 represent thactions modeling internal computations. Note that thelgbf the
transitions are contexts composed of just a hejavhile the resulting states are pure processes. The rule
INTAU enables an ambientto enter a sibling ambient.. The rule QJTTAU enables an ambientto get

out of its parent ambient.. Finally, the rule @ENTAU models the opening of an ambient These three
rules exactly derive the same transition relation of thaictidn relation over mobile ambients, thus they
could be replaced with the rules in Figlre 3.32.

The rules in FigurE4.18 model the interactions of a processits environment. Note that both labels
and resulting states contain process and name variabledefikie the LTSD, for pure processes of mobile
ambients by instantiating all the variables of the labeld ahthe resulting states. We implicitly assume
that it is closed with respect to the structural congruence.

Definition 4.6. Let P, Q be pure processes and I€{—] be a pure context. Then, we have t}ﬁat@@j Q
if there exists a transitior® (ilrp Q. and a substitutiow such thatQ.c = Q andC.[—]o = C[-].

Recall that substitutions map process variables into proegsses, and that they do not capture bound
names.

The rule >ENmodels the opening of an ambient provided by the environnmeiarticular, it enables
a process’ with a capabilityopen n.P; at top level, forn € fn(P), to interact with a context providing
an ambient: that contains inside it some proceXs. The resulting state is the process over the extended
syntax(vA)(P| X |P;), whereX; represents a process provided by the environment. Not&ehatstan-
tiation of the process variabl§; with a process containing a free name that belongs to thedooaimes in
A is possible onlyx-converting the resulting proceésA) (P | X1|P2) into a process that does not contain
that name among its bound names at top level.

—
~
b
Q
«—
SO
T
s}
~———
—
!
Q
—

Il
QU
b
Q

S
b
Q
T

(i) (ii) (iii)

Figure 4.16: Diagrams used in Proposition] 4.2.

60 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

P=(vA) €[nlin m.Pyi|Ps]|m[Ps]]

(INTAU) —
P—(vA) Clm[n[P1|P2]|Ps]]

P=(vA) C[n[P1]|open n.Ps)
1);;(VA) G[PH\PE]

(OPENTAU)

(OUTTAU)

P=(vA) Clm[n[out m.P;|Ps]|Ps]]
P—(vA) Clm[Ps]|n[P1|P2]]

Figure 4.17: The internal transitions of the LTS(for C[—] context containing only ambients and parallel operators).

P=(vA)(in m.P1|P>) m¢gA

(IN) [~ | X1]|m[X>]
P————————2 5 (vA)m[z[Py| P2 X1]| X2]

P=(A)(n[in m.Py|P]|P;) mgA

P=(vA)(nlout m.Pi|P]|P3) mgA
WS (v A)(m[Ps]| X2]|n[P1| P2])

(OuTAMB)

P=(vA)(open n.Pi|P2) n¢gA

(INAMB) ——= "5 (OPEN) —Tn(X1]
P———=(vA)(m[n[P1|P2]| X2]| Ps) ——(VA)(P1| X 1| P2)
(ColN) s 5,?(1”‘2](”1[&“1)2) m¢A (CoOPEN) }Tji:é)ﬁ:[Pl]le) ngA
(vA)(m[z[X1|X2]|P1]| P2) (vA)(P1|X1|P2)
(©ouT) P=(vA)(out m.Pi|P>) m¢gA

XX, (0 A) (mI X2 Py | P2l X1])

Figure 4.18: The environmental transitions of the LS

The rule @OPEN instead models an environment that opens an ambient of teegs. The rule
INAMB enables an ambient of the process to migrate into a siblifgearhprovided by the environment,
while in the rule N both the ambients are provided by the environment. In the @dIN an ambient
provided by the environment enters an ambient of the procBss rule Q TAMB models an ambient of
the process exiting from an ambient provided by the enviremtwhile in the rule @T both ambients are
provided by the environment.

The LTSD does not properly conform to the so-called SOS style: ingdiedpremises of the inference
rules are just constraints over the structure of the processs is a consequence of the fact that the rules
of our LTS are obtained from the borrowed minimal transisioiach rule corresponds to one minimal
transition presented in Sectibn 4J5.4 and it is obtaineceasribed below.

4.6.2 ...from the borrowed rules on graphs

Observe that a grapli — G representing a procegs can perform a BC rewriting step iR,,,,; if and
only if there exists a mon® — G, for someD of a minimal transition, and a morphist, — J,
such that square (2) in Figure 4114 commutes. Moreoverathel Bnd the resulting graph of the borrowed
transition forG are obtained from the label and the resulting state of thémnailntransition ofD, respec-
tively. Therefore, for each minimal transition we obtainiaference rule: the conditions in the premise
correspond to the necessary and sufficient conditions fdoqeing a transition from a grap@¥, while the
label and the resulting process are obtained from the laduklree resulting state of the borrowed transition,
respectively. Since the labels of the LTS over graphs obthlyy the BC mechanism represent minimal
graph contexts enabling a graph production, the labelsf B8 over processes represent minimal process
contexts enabling a reduction.

As the main example, in this section we closely look at theesgondence between the ruleg&l and
the first minimal transition in Figufe 4.115.

Consider agrapli — G representing the encoding for a procésdf there exists a mon®, .., — G
and a morphisn/p,,., — J, such that the square (2) in Figlre 4.14 commutes, the gfaph G can
perform a BC rewriting step ifR,,,, with labelJ — F «— K, where.J, F and K respectively consist of
IDopen, s D andKp,,., togetherwith the free names 8% Now, note thatD,,.,, can be embedded
in G and a morphismy/p, ., — J (such that the square (2) in Figilre 4.14 commutes) may eéxstd
only if P = (vA)(open n.Py|Py), forn ¢ A. Indeed, the graph must contain an occurrence of the operato

openq

4.7. AN SOS PRESENTATION FOR THE DERIVED LTH 61

open n.— on top, possibly further instantiated, since it includ&s,.,, ; and since the interfacé contains
all the nodes of/p,,,, , we conclude that must belong to/, that is,n must be a free name @t. This is
the premise of the rule GEN.

Starting from the label/ — F « K of the BC transition we now obtain the label of the process
transition. By observing the shape &% which contains all the items aofp, ., , we can say that the
process context is composed of the ambieniMoreover, the context’ is glued toG through.J, which
contains the free names ffand the nodes ofp,,., , i.€., the name and the nodes representing the roots
of the graphz (which modelsP). Since these two nodes represent the roots of the grafpthich models
ambientn), we conclude that the label of the process transition isréest with the ambient in parallel
with a hole representing process

The graphK represents the interface of both graghand . It contains all the nodes &t p,,,,, . i.€.,
the roots ofF' and the roots of the process inside the ambienThe nodes of the interfack represent
the “handles” of " and H for interacting with an environment. Therefore, the precesde ofK that is
not the root ofF' can be thought of as a process variable inside the ambignthe label of the transition.
Therefore, we conclude that the label of the transition sitlirce the procesB can be represented as
the minimal context-|n[X;], where— is a hole andX; is a process variable. The resulting process
(vA)(P1|X1|P) exactly corresponds to the state from the BC transition. Indeed, in the interfaée
of the graphK — H also the node modeling the process variakleoccurs, which represents a process
provided by the environment.

The reader should notice that while there are 13 minimakttiams, only 10 rules occur in Figures 4117
and4.18. This is due to the fact that each of the ruleCoIN and QuT is actually derived by two minimal
transitions. The ruleN is generated by the minimal transitionk,,, and Dj,, of Figure[4.25, ©IN by
Dip, andDgn3 of the same figure, and@ by D,;, andD;,,, of Figure[4.26. We show the latter, since
the others are analogous.

In the minimal transition withD,,,;, two ambients are borrowed from the environment. The first one
has namen (i.e., the ambient from which the process wants to exit) levtiie second has a fresh name
(itis not restricted, since it occurs i p,,,). This transition thus corresponds to the rule

P=wA)(out m.Pi|P;) m¢&A ndg (AU fn(P))
p IR 4,) ([Xo) |l Py | P X4])

In the minimal transition withD; . the namen belongs to the process (it occurs inside the graph

D,,4;) but, since the node occur inJD/ml, it should appear in the interfack i.e., it must be free. Thus,
this transition corresponds to the rule

P = wA)(out m.P|Py) mg&A ne fn(P)
p IR 4,) ([Xo) |l Py | P X4))

The conclusion of the two rules above is identical, thus wema together their premises, and com-
pactly represent them via the ruleu® of Figure[4.I8. Substituting the namewith a name variable:
basically guarantees that any actual name can be subgtitute evenm (thanks toD,,:—.,), as long as it
does not occur i,

4.7 An SOS Presentation for the Derived LTSD

In the previous two sections we described a semi-automatibiodology for distilling an LTSD. This
section introduces a set of SOS rules, tailored @&vesuch that the associated LBScoincides with the
former one. The rules fd¥ are shown in Figure 4:19. We assume the implicit presendeeafule

P = P/ Pl Ce[_] QE

Ce[-] 0

P—
The rules in the first two rows of Figufe 4119 model internahpatations. They are indeed obtained
from the rules in FigurE417. In particular, since theseswxactly derive the same transition relation of

(Cong)

62 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

the reduction relation over mobile ambients, we replacatht the reduction rules labelled with the identity
context—. So, we obtain the axioms modelling the execution of the lotijas of the calculus, and a
structural rule for each ambient, parallel and restrictperators.

The remaining rules in Figuie 4119, modelling the intexawsi of a process with its environment, are
obtained from the rules in Figuke 4]18. In particular, focleaf these rules we derive three rules. First,
we determine the axiom by considering the minimal processl@@ by the reduction to occur. For e.g. the

rule IN of the LTSD, the minimal process allowing the reductioniism. P;. Therefore, we determine the

z[—|X1]Im[Xo]
—_—

axiomin m.P; m[z[P1|X1]|X2]. The next step is to determine the structural rules in SOS

style. So, as far as the rulel lof the LTS D is concerned, we have that if eI XalImlXe] P., then for

the process’|@ there is a transition labelled —|.X1]|m[.X>] leading to the procesB. with the process)

el Xa]lmIXe) tEmDE b oandm # a,

inside the ambient, that is, P|Q il) P {91/ }. Instead, ifP

then(va)p XX oy p
This result is also confirmed by the analysis of the minimehsitions.

Deriving axioms As explained in Sectioh 4.3.4, a minimal transition repnés@ BC transition, where
the starting graph is the smallest graph allowing a BC révgriby considering a given graph transformation
rule and a given partial match. The graptof a minimal transition therefore represents the minimatpss
needed to the reduction modeled by the BC transition to octhis means that each minimal transition
represents an axiom of the SOS LTS.

Let us consider for example the minimal transition 12y, . The graphd);,,, represents the process
in m.0, but all the remarks made below also hold for the extendedgssan m.P;, where P, represents
any process.

As explained in Sectioh 4.5.4, starting from the label of B@ transition we obtain the label of the
process transition that in this case:{s-| X1]|m[X>], with z name variable. The resulting process is instead
represented by the gragh,, that models the processP; | X;]|m[Xs]. Therefore, this minimal transition

represents the axioim m.P; Xl lmlXe) mlx[Py| X1]| X2].
Now, let us consider the minimal transition foiD,,,. It represents the axiom

n[(vA)(in m.P1|P)] 222 in](vA)(PL|P2)]| Xa]. Nevertheless, it is obvious that this rule can be
rewritten as the ruleNAMB of Figure[4.19, by using the transition derived accordinthsrules N, IN-
PArR and INREsS. Graphically, this is suggested by the fact that the grBph, contains the partial match
Dy, , which gives rise to the minimal transition allowing us taide the rule of the third row of Figure

Deriving structural rules for the parallel operator The structural rules can instead be obtained by ana-
lyzing the interface/p of the minimal transition, whose nodes represent the “hesidif D for interacting
with the environment. Since for each minimal transitiohy always contains the root nodes Bf then we
can add a graph representing a processin parallel with D, by obtaining a grapll — G, where the in-
terface/ consists of/p together with the free names @f Now, since there exist a moro — G (because
G consists of the grap® in parallel with) and a morphismyp — .J, such that the square (2) in Fig-
ure[4.1# commutes, the graph— G can perform a BC rewriting step R,,,., with labelJ — F «— K,
whereF" and K consist ofF'p and K p together with the free names . Process-wise, this means that if
p Pe, then for the procesB|(Q there is also a transition labell€q—].

Let us consider again the minimal transition fay,,, . By analyzing the interfacdp,, we may obtain
the structural rule for the parallel operator. Sinkg,, contains the root nodes of the graph then we
can add a graplh representing a procesg in parallel with D. In this way, we obtain a grapi — G,
where the interfacd consists of/p,, together with the free names @f The graph/ ~— G can perform
a BC rewriting step irR,,,, with label J — F' < K, whereF and K respectively consist of p, and

Kp,,, together with the free names @f This means that the graph contekxt— F' < K also reg}lesents

the process context[—|X;]|m[X2]. In terms of processes, this means thapif —mE) Pe, then
P|@ also has a transition labeled wiit—| X]|m[X2]. The resulting process is represented by the graph
H which is obtained simply by replacing;,, with R;, in G. T,he nodes, after the reduction execution

is under the ambient and moreover it represents a process variabl&.in This means that the graph

in

4.7. AN SOS PRESENTATION FOR THE DERIVED LTH

(INTAU) (OUTTAU) (OPENTAU)
n[in m.P|Q]|m[R]—m[n[P|Q]|R] m[n[out m.P|Q]|R]—n[P|Q]|m[R] open n.P|n[Q]—P|Q
(TAUAMB) (TAUPAR) (TAURES)
PP P—p’ P—P
n[P]—n[P’] P|Q—P'|Q (va)P— (va)P’
(IN) (INPAR) (INRES)
x[—|X1]|m[X2] P, p_tEIXalimiXa) P, agm

z[—[X1]|m[Xo z[—|Xq]Im[X2] z[—|Xq1]|m[Xq

inm4P14]>m[w[P1\X1]|Xz] PlQ——"25 P QX /) (va)P—

]
(va)Pe
(INAMB) (INAMBPAR) (INAMBRES)
x[—|X m[X —|m[X —|m[X
P[‘l]‘[z]Pe P\[z]Pe P‘[Q]Pgaim
—|m[X5] o —|m[X3] —|m[Xs]
n[Pl——"=P{"/2,%/x,} PIQ—PQ (va)pP————(va)P.
(ColIN) (CoINPAR) (CoINRES)
—|xz[in m.Xq|X —|z[in m.X1|X
p || 11X2] P, p |z[in m.X1]X2] P. arm
—|zlin m.X1|X2] —|z[in m.X1|X2] —|zlin m.X1|X2]
m[P | —m[z[X1|Xo]|P] PIQ———————— 2 F|Q (va)pP—————————(va) P
(ouT) (OUTPAR) (OUTRES)
mlxz[—|X X z[—|X1]|X
[z[—1X1]1X2] P, p mlz[—|X1]1X2] P. atm
mz[—]X1]|X2] mlz[—|X1]1X2 [z[—1X1]]

X
out m. Py ————————m[Xs]|x[P1]| X1] P\Q—]>PE{Q‘X1/X1} (va)P - 2! (va)P.

(OuTAMB) (OUTAMBPAR) (OUTAMBRES)
mz[—|X X m[—|X m[—|X
[=[—1X1]1X2] P, p [—1X2] P, p n[—|X2] P. atm
m[—[X2] o m[—[X3] Qlx m[—|X2]
n[Pl———2P{"/2,%/x, } PlQ————PA{?1*2/x,} (va)p—————(va)P.
(OPEN) (OPENPAR) (OPENRES)
—In[Xq] —In[Xq]
—— P, P————P. a#n
—[n[Xq] —In[Xq] —In[Xq]
open n.Pi— P | X, PlQ—P|Q (va)P———(va) P
(CoOPEN) (CoOPENPAR) (CoOPENRES)
- X —lopen n.X
p |open n.Xq P, P |op 1 P, a;én
—|open n.X —lopen n.X —lopen n.X
n[Py] S Py X PlQ— PR (va) P—""—" (va) P,

Figure 4.19: The LTS.

64 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

modelingQ (that has as root the nosg,) after the reduction execution is under the ambieand it is in
parallel with the process variab,;. Therefore the resulting processits{ @11 / x, }.

Deriving structural rules for the restriction operator Also the structural rules for the restriction oper-
ator can be obtained by analyzing the interfage Indeed, we know that a graph — G representing

a process” can perform a BC rewriting step if and only if there exist a mdn — G and a morphism
Jp — J, such that the square (2) in Figlire 4.14 commutes. If we malé interface/ by removing one

or more name nodes, then the graptwith the new interface/’ can also perform the same BC rewriting
step if and only if there exists a morphisfip, — J’, such the square (2) in Figure 4114 commutes. This
means that all the name nodes.ff must also belong td”’, therefore as suggested by the encoding, the

ambient names aP that are inJp cannot be restricted. In terms of processes, this meanig Tﬁa(f[—_l P
then for the procesgra) P there is also a transition labelled—] if the names belonging tdp do not
belong toa.

On the basis of the remarks above, starting from the minimaaisition for D,,,,, we can derive a

structural rule for the restriction operator. In particuia P el Xaliml X Pe, then for the proces8/a) P
there is a transition with the same label leading to the @®ge:) P. if the namem (that belongs to the
interfaceJp,,) is not restricted.

Note that the interfacdp also allows us to obtain a graph— G that is composed of the grapgh
with another graph on the top. Itis easy to note that in thie ¢he grapty — G does not perform any BC

transition because it is impossible to find a morphigm— .J such the square (2) in Figure 4114 commutes.

Equivalence between LTSs As for D, also for$ we define the LTS for pure processes by instantiating
all the variables of the labels and of the resulting statesreldver, also in this case, we implicitly assume
that it is closed with respect to the structural congruence.

Definition 4.7. Let P, @ be pure processes and Ieé{—] be a pure context. Then, we have t%tc—[jgj Q
if there exists a transitio®® C‘—Hg Q. and a substitutior such that).c = Q andC.[—]o = C[—].

As stated by the following theorem, the LTSsandD; coincide.

Theorem 4.2. Let P be a pure process and lét[—] be a pure context. Thed® CA[S]DJ Q if and only if

Cl—
Piﬂ]sg Q.

The proof of Theorem 412 is shown in Section]B.1 (Appendix B).
4.8 Equivalence between LTSs

This section shows the equivalence between our & 8efined on pure processes and the LTS proposed
by Rathke and Sobatski in [60, Figures 6, 7 and 8].

Their LTS is organized into three components: the procéss-TS €, the context-view LTS$A, and
the combined LTS A. The labels of the LT®A have the shape | M, wherea is derived by the LTS

e, and M by the LTSA. In a transitionP %@A Q, the labela identifies the minimal context needed
by the pure proces#® to react, whilel is a list of pure processes and ambient names, represemting a
instantiation of the context components. The first columiaifle[4.1 shows all the labets of the LTS

©, while the second column for each of these labels preseatsatexty,, that it identifies. We refer the
interested reader t6 [60, Lemma 6] for a more detailed expian of this correspondence. Note that each
contexty,, contains a set of typed numbered holes. In particular, haflegpe N can be instantiated with
ambient names, while holes of typge- can be instantiated with pure processes. Therefore, imaitien

P C”—>M@A P’, the tuple)M has to provide an instantiation for all context componethi, is, for each hole

of x., of process typer (different from1p,.) and for each hole of name typé. The holel p,. instead
represents the hole that has to be instantiated with theepsét As we are going to see later on, it is the

hole that is represented with in our contexts. For example, consider the transiﬁbweﬂ P’. Here
the tupleM must provide an instantiz{[ion for the holes,., 3 and4p,. of the contexty;,, ... This means
that it has to have the following shapé : Q, n, R, for QQ, R pure processes andambient name.

4.8. EQUIVALENCE BETWEEN LTSS 65

It is immediate to note that there exists a one-to-one cpomdence between the labéls[—] of our
LTS 8 and the contextg,, listed in the second column of Talfle B.1. This corresponglémshown in the
same table, wher€¢[—] (the third column) denotes the label of our LB orresponding to the context
X« Of the second column.

Note that for each label, the context€”®[—] and x,, have the same shape. The helen C[—]
corresponds to the holes,. in x, and there is a correspondence between name and procedsesof
C%[—] and holes ofy,, of type N an Pr, respectively. Consider e.g. the lalg&l* ™[] = z[—|X1]|m[X>)]
and the corresponding context, ., = 3n[lpr|2p.]|m[4p,-]. The two contexts have the same shape. In
particular, the name variablecorresponds to the hobey, the hole— corresponds to the holes,. , and the
process variableX; and X, correspond to the hol€s,. and4p,., respectively.

As explained in Sectioh’4.7, a substitutienfor a contextC,[—] provides an instantiation for the
process and name variables of the context. For instancebsitstion o for the contextCi"™[~] =
z[—| X1]|m[X2] must have the shapg’/x,,” /., /x,} for Q, R pure processes andambient name.
Now, since there is a correspondence between holes of axtopteof type N and Pr, and name and
process variables of the relative contéXt[—], respectively, it is obvious that given a tuplé for y, itis
possible to determine a unique corresponding substitutigrfor C*[—]. Such a substitution,; instan-
tiates each variable with the same value usedbyo instantiate the hole corresponding to that variable.
Analogously, given a substitutionfor C*[—], it is possible to determine a unique corresponding substit
tion]\Zg for x.. Consider again the context,, ,, and the tupIeZ\Z = @, n, R providing an instantiation
respectively for the hole2p,., 35 and4p,.. The substitutiorr;, (induced byM) for the corresponding
contextCi" ™[~ = z[—|X1]|m[Xa] is {?/x,," /=, /x,}. Analogously, it is possible to determine the
tuple M from the substitutionr,;. The last two columns of Tab[e4.1 show for eachespectively the
shape of the tuples7® ando$,.

The following propositions allow us to formally prove therspondence between the L¥sand the
LTS CA. Their proofs are in Sectidn B.2 (Appendix B).

Proposition 4.3. Let P be a pure process. P M@A @, then there exist§). such thatP &15 Q.

and@ = Q.0%.

Proposition 4.4. Let P be a pure process and letoe a substitution. 1#? Cilg Q. andQ.0c = @, then

there existsy such thaC.[-] = C*[—] and P (LM‘L’:@A Q.

From the two propositions above and from the definition ofL.fi8 §; (Definition[4.7) follows the main
result of this section.

Theorem 4.3. Let P be a pure process. IP Meﬂ Q, then there is a unique (up-tg) substitutions

such thatP C“L]"SJ Q. Vice versa, ifP CLJSJ @, then there arey and a unique (up-te=) tupIeM such
thatC[-] = C°[-] and P “ ¢4 Q.
o Xa Col-] M? oSy
in m 3n[Lpr|2p,]m[4p,] (=] Xa][m[Xo] Pn@Q {T/x0" 0% [x2}
[in m] Lpr[m[2p,] —|m[X5] P {"/x.}
[M] 4N[Z'?’Lm.2pr|3pr”1pr —‘LU[ZTL mX1|X2] PQTL {P/X“Q /X27n /x}
out m m[3n[1pr|2pr]4p,] m[z[—|X1]| Xo] PnQ {7/ 22/ x:}
[out m] | m[lpr|2p,] m[—|Xs] p Plxa}
open n 1pr|n[2py] —[n[X,] P {"/x.}
open openn.2p,|1p, —|open n.X P £/x,}
T 1pr — (Z) {}

Table 4.1: The correspondence betwegly., C&[—], M ando$;.

66 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

4.9 A Labelled Transition System for the Asynchronousccs

In this section we present an IPO-LTS on processes of thehsymousccs. To this end, as for the mobile
ambients calculus, we shortly introduce an extended versfdhe asynchronouscs, where processes
containing process and summation variables are allowed.

Extended Asynchronousccs. Figure[4.2D shows the extended syntax of the calculus. Waress
setN of namesranged over by:, b, ¢, As for mobile ambients, we include a setmbcess variables
X = {X,Y,...}, which are needed for the presentation of the LTS in FigiZ&,4and a set cfummation
variablesM = { X/, Y, ...}, useful to discuss the application of the BC mechanism tplgg@ncoding
ACCS processes.

By following Definition[4.1 for mobile ambients, we defingpare processand a pure summation as
an extended process, respectively summation, such thatocegs or summation variable occurs. We let
P,Q,R,...range over the seék of pure processes, and, N, ... over the se§ of pure summationWe
use the standard definitions for the set of free names of agroeessP, denoted byfn(P), and fora-
convertibility, with respect to the restriction operatdrs:). As for the general definition, variables carry
no name, hencgn(X) = 0 and fn(Xy) = 0.

As for the mobile ambients calculus, we consider a familysobstitutions which may replace a
process/summation variable with a pure process/summatfubstitutions avoid name capture: for a
pure process?, the expressioriva)(vb)(a.b.X + X){?/x,>F /x,, } corresponds to the pure process
(ve)(vd)(c.d.a+b.P), fore,d & {b} U fn(b.P).

The semantics of the calculus is given by the reductionicglaind the structural congruence on pure
processes both defined in Figlire 3.28.

Borrowed Contexts LTSs for asynchronousccs. The graphical encoding for the asynchronagcs
presented in Sectidn_3.9 is amenable to the BC mechanisnhigerid, as for mobile ambients, we need
to consider extended processes and, in order to apply thevied context technique, we need to have
graphs with only one interface. We do not formally introdtice encoding for extended processes of the
asynchronougcs It can indeed be obtained by following what we did for the if@bmbients calculus
in Sectior[4.B. Intuitively, the encoding is defined as désed in Sectioh 39, with the only difference that
here nodes representing free names of the process are imptlteinterface together with theroot node,
the e nodes representing the process variables and ttwales representing the summation variables.

The graph transformation system modeling the reductiorastios of the extended asynchron@mes
is exactly the same as the one presented in Selction 3.9.

So, the BC synthesis mechanism may be applied to it in ordéetive an LTS for graphs representing
asynchronougcs processes. Figufe 4]07, 4128 4nd #.29 show three exampkS trfnsitions. In par-
ticular, the first one shows an application of the BC synthagchanism to the graphical encoding of the
processr.0, induced by the rule.. : L. «— I, — R,.. We take asD the left-hand sidd.,, therefore the
starting graph needs no context for the reduction and saathe bf this transition is the identity context.
Intuitively, this corresponds to an internal transitioreoprocesses, labelled with

Figure[4.28 shows an application of the BC synthesis meshamo the graphical encoding of the
processi.a + 7.0, induced by the rul® ..., : Leom < Lecom — Reom. We take ad) the subgraph of..,,,
representing an input prefix. The gra@t is the graphG in parallel with the graph representing an output
over a, thus intuitively it represents the proces& + 7.0 | @. The graphJ — G, in order to reach the
graphG™, has to borrow from the environment the context that remitssthe process context | @. The
graphsC and H are then constructed as in the standard DPO approach.ivalyit’ — H represents the
process: | 0. Summarizing, this transition models a communication alrerchannek, where the output
action is provided by the environment.

Finally, Figurd 4.2P represents a BC derivation again ieduay the rulep..,,, but with starting graph
the encoding of the proceas Here we take a® the subgraph olL..,,, representing an output prefix. The

P:u=a, P | P, (va)P, M, X M =0, a.P, My + My, X at=a, T

Figure 4.20: Extended syntax atcs.

4.10. SUMMARY 67

graphGT is the graphG in parallel with the graph representing an input avgthus intuitively it represents
the procesg | a.X; + X/, for some process variablé; and summation variabl&¥ ;. The graph/ — G,

in order to reach the gragh™, has to borrow from the environment the contéxt- ' < K representing
the syntactic context | a.X; + X ;. Note indeed that in the resulting interfakethere are a process node
e’ and a summation node! pointing, respectively, to the process node (modellingac@ss variable)
of F following the input operator, and to the summation noder@gsgnting a summation variable) i
representing the root of the input operator. The grafghs- H, intuitively, represents thé process, so
summarizing, this transition models a communication overchannet, where the input action is provided
by the environment.

An LTS for asynchronous ccs processes. Here we do not present all the steps necessary to obtain the
LTS directly defined ovenccs processes. It suffices to know that we mimicked [7], whereaththors
derived an LTS for the ordinargcsby employing the borrowed context mechanism.

Figure[4.2]l shows the LTS.

Obviously the labels are minimal contexts, i.e., they repng the exact amount of context needed by a
process to react. Moreover, note that the label of thep()Sule contains the process variabig. Actually,
it should also contain the summation variable, but, as itassjble to note in the BC transition shown
in Figure[4.29, this variable does not occur in the arrivitages and it also plays no role in the derived
bisimilarity. We therefore avoided considering it in thbdh

Following Definition[4.6 for mobile ambients, we define the3.A; for processes over the not-extended
syntax by instantiating the process variable of the labedsad the resulting states.

Rule Rcv represents the main difference between the Ar8nd the one derived inl[7] for the syn-
chronous version. Since in the asynchronaas outputs have no continuations, then the label and the
target state have no process variable which is instead deedee synchronous version of the calculus.

Itis easy to see that there is a close correspondence betheeerdinary LTS semantics (in Figure 3.29)

andthe LTSA: P % Qiff P = Q, P % Qiff P 2% QandP % qQiff P ™ | X,.

However, as we will see later, for the asynchroncas IPO-bisimilarity is too fine grained. Consider
for example the two processesi+7.0 andr.0. They are asynchronously bisimilar (according to Defimitio
[B:19), but they are not IPO-bisimilar. In the next chapterwiktintroduce a new semantics for reactive
systems that generalizes”.

4.10 Summary

In this chapter we exploit the graphical encodings respelgtifor mobile ambients and ACCS, both pro-
posed in the previous chapter, to distill two LTSs on (preessncoded as) graphs. Each LTS is obtained
semi-automatically by first applying the BC technique to ¢gfneph transformation system associated to
the calculus, and further using some pruning techniquegefooving possible reductions, yet preserving
bisimilarity. The LTS defined on graphs is then exploited idey infer an LTS directly defined on pro-
cesses. In particular, as far as ACCS, we do not present &il tlee procedure needed to obtain the LTS
on process. This because it is very similar to the one uséd]ifof its synchronous version. For mobile
ambients, also a suitable set of SOS rules for the calculueisented, showing that the LB3Shey induce
coincides with the derived one. Finally, exploiting the S@8sentation, we prove that o8iris actually
equivalent with an alternative proposal presentedin [60].

In spite of the great interest received by mobile ambielhtstet are relatively few works concerning
a labelled characterization of the calculus. After earlgrapts by Cardelli and Gordon [37] andig

(Tav) £=€
P—Q

P=wA)(a.Q+M|R) a¢A (SND) P=(vA)(alQ) agA

(Rcv) s e X,
P—(vA)(QIR) P—=(rA)(Q|X1)

Figure 4.21: The LTSA

68 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

a graphical encoding) by Ferrari, Montanari and Tuosto,[8@ only papers that we are aware of are
by Merro and Zappa-Nardelli [47] and by Rathke and Sohskii [60]. We already addressed the LTS
introduced in the latter: we only remark that, analogouslptr work, Rathke and Sobdski employ a
general systematic procedure for deriving LTSs that theyipusly introduced in[59]. As for the former,
the LTS proposed by Merro and Zappa-Nardelli is restrictesystemsi.e., those processes obtained by the
parallel composition of ambients. For this reason, oursrile OPENand QuT have no counterpart in [47].
Instead, the rulesNAmMB, ColN and QuTAMB exactly correspond to the rules (Enter), (Co-Enter), (Emit
Table 6 of [47]. Moreover, our rule @OPENroughly corresponds to their (Open). Indeed the formertase
a process into the contextjopen n. X7, while the latter intdk[—|open n.X;|X2] (again, this difference is
due to the fact that the LTS df [47] is restricted to systerts$.important to note that, differently from our
LTS, the labels of the rules (Enter) and (Exit) contain theneaf the migrating ambient. This requires
defining two extra rules (Enter Shh) and (Exit Shh) for thesaskenn is restricted.

For a practitioner, the main interest of the results preskirt this chapter lies on the presentation of a
succinct LTS for mobile ambients, and the associated seO& files. However, we do believe that our
work represents a relevant case study for the theory ofiveasystems[[45]. As already pointed out in
the introduction, BC rewriting and bigraphical reactivestgms|[51] are both instances of this theory. Our
work, together with[[7], shows that the borrowed contextgrapch is quite effective in deriving LTS for
process calculi. In particular, it seems to confirm the athga of borrowed contexts over graphs with
interfaces with respect to bigraphs. In bigraphs, all titeicgion rules must be ground (i.e., they can not
contain process variables). As a result, also the labelstlaérriving states of the derived transitions
must be ground. Instead, rewriting with BCs allows to empgty non ground rules and thus the resulting
transitions have labels and arriving states containingdgss and name) variables. This feature was not
relevant for calculi such as asynchron@ss its synchronous version and because the variables in the
labels always occur “outside” of the arriving state and thas be forgotten. As an example, consider

the asynchronouscs transition.0 | a X 0 | X derived from the (non ground) reduction rule
a | a.X — X. The behaviour of the proce$d | X is trivially equivalent tob: their interaction is
basically restricted to processes offering action, and we can thus avoid to considér Instead, in

the case of mobile ambients, the ability of considering naugd states is fundamental, because process
variables may occur nested inside ambients in arrivingstat

la

la

m m m

011’ olP 011’

J F K

Figure 4.22: Ambient enters ambient:. This corresponds to the transiti¢mn) (n[in m.0]|m[out m.0]) — (vn)(m[n[0]|out m.0]).

AIVYINANS 0T'v

69

la

olp oip

K

olp

J

Figure 4.23: Ambient enters ambient: (from environment). This corresponds to the transitien)(n[in m.0]|m[out m.0])

—Im[X]

(vn)(mlout m.0)|m[n[0]|X]).

0.

SO0 SDNOYHONASY ANV SIN3IFIAY 37190 J04 SOILNVINTS Odd 7 431LdVHD

ola
om
olp ola ola o2p
.1:0 .117 o
J K
Figure 4.24: Ambient w (from environment) enters ambienin. This corresponds

(vn)(n[in m.0]|m[out m.0lw[X2|X1]]).

3a

o3p

to the transitiorivn)(n[in m.0]|m[out m.0])

—|wl[in m.X2|X1]
I b LN

AIVYINANS 0T'v

T.

72 CHAPTER 4. RPO SEMANTICS FOR MOBILE AMBIENTS AND ASYNCHRONGS CCS

—~ Kp— R

la
e o Sl o2
o2r o™ " m
2 " o o
o2 o
olp ol
Din, —~Jp,., — Fp,,, —~Kp,, —
1)
ola © ola o2
2 0o
] o o o v
2 o om
l])’ .47‘
/ n ¢
Din, —Jp, — Fo,,, —Kp;,, —
ola |
oa o
1
o o
.]T’ -‘r
Din, —Jp,,, — Fp,,, —Kp,,, —
'
“ o ;
ola om o oda
f
o'p
1 2 3
.1,..4,, ola o?r o3r
dr on om
Din, —~Jp,,, — —~Kp,,, —
90
' -
n m ot o o 3a
ola ° om oda
"
ol
.2 3
"p°47) o o2 &%
Jr on om
, .
D: — Jpr — Kpr
ins D, D,
D — 1] — 00— Rin

Figure 4.25: The minimal transitions generated by the pule

D — Jp — Fp — Kp—
90 |
0dg
1,
ola .
Qla ..Zp .313
ola 5 out ’—} otr m
o
olp on om
om
«— — «~—
DOUtl JDoutl KDoutl -
90|
o4,
ole &% 1 2 3
ola o2p 5
la 3p t ’—) 4p
L] out P
o on om
‘lp O" OIYI
on om
’
D — Jp Fp — Kp:
outy D, Dy, Diuty
1q o2 ola o2
o™ .lp OIYI
«— — «~—
JDout2 FDoth KDoth -

Figure 4.26: The minimal transitions generated by the pulg.

AIVYINANS 0T'v

€L

@

.Pl/HEH Os1 H[Zf—) ®po

/\/JE‘
®p, HEH ©sq {H ®po

Oa

b4

o a

’P1/4)EH Os1 H{Zf—) ®po

®p %H Osy HEH ®po

Oa

G+

b4

O(),

Figure 4.27: The BC transition correspondingt0 — 0.

[

/_/
o, pP1
P2 o0l Osq
R,
/\/@\
. P
P2 op% sy
Oa

172

SO0 SDNOYHONASY ANV SIN3IFIAY 37190 J04 SOILNVINTS Odd 7 431LdVHD

o
~ \\

R IS \\ S R
Ca T —{ snd a Oa
G G c
.y *p
0 *p 0q
y snd } Oa
J F K

Figure 4.28: The BC transition corresponding to the transitiar+- 7.0 mld alo.

AIVYINANS 0T'v

74

=

N .
D

N

N .
G

P

N |

®p Qs rev H o
N 7 ——

.y H[c Q—> sy {rev]

F

P 1 P1
Oa
IS
go

*p Osy ®py
Oa

.p 0;1 .1’1
Oa

Figure 4.29: The BC transition corresponding to the transiiioR’ XM ¢,

3
L sy
%a
Rs
»
o sy
%a

9.

SO0 SDNOYHONASY ANV SIN3IFIAY 37190 J04 SOILNVINTS Odd 7 431LdVHD

Chapter 5

Barbed semantics for reactive systems

As said in Sectiofi 211, reactive systems represent a mataefvork aimed at deriving behavioral con-
gruences for those specification formalisms whose opewtieemantics is provided by rewriting rules.
Despite its applicability, they suffered so far from somavadoacks. Among them, one of the most impor-
tant is that the efforts focused on strong bisimilarityregmrding weak and barbed semantics. As far as the
weak semantics is concerned, the only proposal we are af@eno43], where the author introduces a
notion of weak bisimilarity for bigraphs.

In this chapter we address this issue, by providing suitabte®ns of barbed and weak barbed satu-
rated semantics for reactive systems, and their charaatenm via transition systems labelled with minimal
contexts, by exploiting the semi-saturated game, wherenamal context may be matched by any context.

The results above may have potentially far reaching coresemps on the usability of the reactive sys-
tems formalism. However, their adequacy has to be propsthbéished, by checking it against suitable
case studies. To this end, we instantiate our proposal beecdlculus of mobile ambients, whose obser-
vational semantics is still in a flux, and over the asynchusnG@CS. In particular, for mobile ambients,
we prove that our proposal captures the behavioural seosafuti the calculus proposed by Rathke and
Sobocinski and by Merro and Zappa Nardelli, while for thera$yonous CCS we show that it is able to
capture the standard asynchronous bisimilarity (Defin[d.9).

The chapter is organized as follows. Secfion 5.1 discubsamobtivations leading us to introduce a new
semantics for reactive systems. Secfiod 5.2 recalls tbagtand weak behavioural equivalences for the
mobile ambients calculus. Section]s.3 presents the teghrice of the chapter, the introduction of barbed
and weak barbed semantics for reactive systems, and offalsbed characterization by means of their
semi-saturated counterparts. Finally, Sedfioh 5.4 prthatsthe two barbed semi-saturated bisimilarities we
introduced capture the barbed congruences proposed sur faobile ambients, while Section .5 applies
the framework to the asynchronous CCS.

5.1 Adequacy of IPO Semantics

Several attempts have been made to encode various spéwififtaalisms (Petri net5§ [50, 62], logic pro-
gramming [18],ccs[51,[4], A-calculus [52[28], asynchronouscalculus [42], fusion calculus [22], etc.)
as reactive systems, either hoping to recover the standesetvational equivalences, whenever such a be-
havioural semantics exists ¢S[48], pi-calculus[[49], etc.), or trying to distill a meamjful new semantics,

as in the previous chapter for the mobile ambients calcuibs. results are however not yet fully satisfac-
tory. On the one-side, IPO-bisimilarity is usually too figezined, and mobile ambients are no exception.
On the other side, saturated semantics are often too caargeas in the case afcs where the standard
strong bisimilarity is strictly included in the saturatedeo The saturated semantics is not indeed able to
distinguish certain processes with infinite internal bétay hence for example the (recursive) processes
Q = rec,7.z and® = 7.Q + a.Q are saturated bisimila [54], yet not strong bisimflaihis kind of prob-
lem becomes potentially serious when consideviggk semanticsintuitively, two systems are saturated
bisimilar if they cannot be distinguished by an externalessr that, in any moment of their execution,

n [7], the authors show that the IPO-semantics o& coincides with the standard bisimilarity.

78 CHAPTER 5. BARBED SEMANTICS FOR REACTIVE SYSTEMS

can insert them into some context and observe a reductiometdy, since in weak semantics reductions
cannot be observed, all systems are equivalent.

In the various formalisms this kind of problem has been &tlkly using different techniques. Among
these, the most famous in the context of process calculisedan the notion obarbed bisimulation
proposed by Milner and Sangiorgi in [54].

5.1.1 Barbed Semantics

Barbed bisimulation represents a general technique faergéng bisimulation-based equivalence for any
process calculus with a reduction relation and a notioimawb. Intuitively, a barb is just a predicate on the
states of a system, which simply detects the possibilityeofggming some observable action. For instance,
in Milner's ccs barbs express the ability of a process to perform an inpunoowput over a channel.
Barbed equivalences add the check of such predicates iridimeutation game: every time that a system
shows a barb, the equivalent systems has to show the sameahbédrbice-versa.

The advantage of this kind of semantics is that it does notoéxfabelled transition systems, and
therefore allows us to avoid several labelled transitiosteays for the same calculus that lead to different
behavioral equivalences, such as in the case aftb@lculus[[53]. Moreover, the flexibility of the definition
allows for recasting a wide variety of observational, bisiation-based equivalences. For example Milner
and Sangiorgi apply their proposal to thes, by proving that strong bisimulation afcs coincides with
the congruence induced by barbed bisimulation.

In the following, we fix a familyO of barbs, and we writé |, if P satisfies € O.

Definition 5.1 (Barbed Bisimilarity, Barbed Congruence) symmetric relatioiR is abarbed bisimulation
if wheneverP R @ then

o if P |,then@ |,;
o if P— P'thenQ) — Q' andP' R Q.

Barbed bisimilarity~? is the largest barbed bisimulatiobarbed congruence?” is the largest congruence
contained in~5.

Nevertheless, in the setting of reactive systems all effloaive been focussed so far on strong bisimilar-
ity, tackling neither weak nor barbed semantics. So, in tlewing sections we will introduce a suitable
notion of barbed and weak barbed saturated semantics faiveaystems, and their characterization via
transition systems labelled with minimal contexts, by eiplg the semi-saturated game.

5.2 Mobile Ambients

This section shortly introduces the strong and weak bebeai@quivalences of mobile ambients. We recall
to the reader that the calculus has been introduced in $sE8id, while in Section 4.1 we introduced its
extended version.

We begin by defining barbs for mobile ambients processesaiisiis the previous section, a bashs
a predicate over the states of a system, with,, denoting thatP satisfieso. In mobile ambientsp |,
denotes the presence at top-level of a unrestricted ambient

Definition 5.2 (Mobile ambients barbs)Let P be a pure process. It satisfies tbgong barhn, in symbols
P |, if P=(vA)(n[Q]|R) andn ¢ A, for some process&g and R and a set of restricted ambient names

Definition 5.3 (Mobile ambients weak barhs).et P be a pure process. It satisfies theak barbn, in
symbolsP |}, if there exists a procesB’ such thatP —* P’ and P’ |,,, where—* is the transitive and
reflexive closure of-.

The two notions above are exploited to give the definitiorstiming [60] and weak[47] reduction barbed
congruence, respectively. Before presenting them, wedntte MAscontexts they are MAs processes
with a hole—, formally generated by the following grammar (f8rmobile ambient process)

Cl=] == =, n[C[-]], M.C[], (vn)C[-], C[-]| R.

5.3. BARBED SEMANTICS FOR REACTIVE SYSTEMS 79

Definition 5.4 (Strong reduction barbed congruencé&trong reduction barbed congruensé’4 is the
largest symmetric relatio® such that whenevaP R @) then

e if P |, then@ |,;
o if P — P'thenQ — Q' and P’ RQ’;
o VO[], C[PIRC[Q].

Definition 5.5 (Weak reduction barbed congruencayeak reduction barbed congruensé M4 is the
largest symmetric relatio® such that wheneveaP R () then

e if P |, then@ |,;
o if P— P'thenQ) — Q' and P’ R(Q’;
o YC[-],C[P|RCIQ).

Labelled characterization of reduction barbed congrugmser mobile ambients processes are pre-
sented by Rathke and Sobiski for the strong casé [60], and by Merro and Zappa Narttllihe weak
one [47].

The main result we will present in this chapter is the proposa novel notion of barbed saturated
bisimilarity over reactive systems, both for the strong arehk case, that is able to capture the two be-
havioural semantics for mobile ambients defined above.

5.3 Barbed Semantics for Reactive Systems

This section proposes a notion béarbed saturated bisimilarityor reactive systems, showing that it is
efficiently characterized through the IPO-transition eyss by exploiting the semi-saturated gamke [6]:
Sectior[5.311 studies the strong case; Se€fionl5.3.2, thk aree.

5.3.1 Barbed Saturated Bisimilarity

Barbed congruence introduced in Definition]5.1 is clearlyoagtuence, but there is no guarantee that
it is also a bisimulation. Here we consider a different notad behavioural equivalence that is both a
bisimulation and a congruence.

Definition 5.6 (Barbed saturated bisimulation®\ symmetric relatiorR is abarbed saturated bisimulation
if wheneverP R Q thenvC/[—]

o if C[P] |, thenC[Q] lo;
e if C[P] — P’ thenC[Q] — Q' and P’ RQ’.
Barbed saturated bisimilarity?° is the largest barbed saturated bisimulation.

It is easy to see that? is the largest barbed bisimulation that is also a congruemoe that it is
finer than~* (the largest congruence contained into barbed bisimjlarintuitively, in the former case
the external observer can plug systems into contexts attapyo$ their execution, while in the latter the
observer can contextualize systems only at the beginnihg.fdrmer observer is more powerful than the
latter, thus proving that 9 is indeed finer than-?.

It is our opinion that~"% is more appropriate, in order to model concurrent intevacsystems em-
bedded in an environment that continuously changes. Andevihiseveral formalisms the two notions
coincide [31], for mobile ambients calculus the standarublveural equivalence- ™4 (Definition[5.4) is
clearly an instance of 2.

Most importantly, though, barbed saturated bisimilarign de efficiently characterized through the
IPO-transition system via the semi-saturated game.

Definition 5.7 (Barbed semi-saturated bisimulatior symmetric relatioR is a barbed semi-saturated
bisimulationif wheneverP R @) then

80 CHAPTER 5. BARBED SEMANTICS FOR REACTIVE SYSTEMS

o VC[-],if C[P] |, thenC[Q)] lo;

o it P Sipb P'thenC[Q] — Q' and P’ R (.
Barbed semi-saturated bisimilarity®S is the largest barbed semi-saturated bisimulation.
Proposition 5.1. In a reactive system having redex-1IPQg;%5 =~55,

The proof of Proposition 511 is shown in Section]C.1 (App&itd).

Reasoning on-?°9 s easier than or 2%, because instead of looking at the reductions in all coatext
we consider only IPO-transitions. Even if barbs are stilinfified over all contexts, for many formalisms
(as for mobile ambients) it is actually enough to checRif, implies@ |,, since this condition implies
thatvC[—], if C[P] |, thenC[Q] |,. Barbs satisfying this property are calleohtextuabarbs.

Definition 5.8 (Contextual barbs)A barbo is acontextual barlif whenever” |, implies@ |, thenvC[—],
C[P] |, impliesC[Q] |,.

5.3.2 Weak Barbed Saturated Bisimilarity

This section introduces weak barbed (semi-)saturatechitésity. We begin by recalling weak barbs. A
stateP satisfies the weak barb(written P |},,) if there exists a stat®”’ such that? —* P’ andP’ |,,.

Definition 5.9 (Weak barbed saturated bisimulatio® symmetric relatioriR is a weak barbed saturated
bisimulationif wheneverP R () thenvVC|[—]

o if C[P] . thenC|Q] {o;
o if C[P] —* P'thenC[Q] —* Q' and P’ R Q.
Weak barbed saturated bisimilarityV 29 is the largest weak barbed saturated bisimulation.

By following the strong case, also weak barbed saturatacthibésity can be efficiently characterized
through the IPO-transition system via the semi-saturaseoey

Definition 5.10 (Weak barbed semi-saturated bisimulatioA)symmetric relatiorR is aweak barbed semi-
saturated bisimulatioi wheneverP R () then

o YC[-],if C[P] |, thenC[Q] Io;

o it P Stob P'thenC[Q] —* Q' and P' R’

Weak barbed semi-saturated bisimilarity¥ 255 is the largest weak barbed semi-saturated bisimulation.
The correspondence result is stated below.
Proposition 5.2. In a reactive system having redex-1P@gY 855 =~ WBS,

The proof of Proposition 512 is shown in Section]C.1 (App&i{td).

Now we introduce weak contextual barbs. Analogously to theng case, for those formalisms whose
barbs are weakly contextual the first condition of Definifladd becomes simpler: indeed, it suffices to
checkifP |, implies@ .

Definition 5.11 (Weak contextual barbs)A barb o is a weak contextual barf wheneverP |, implies
Q |, thenvC[—], C[P] |, impliesC[Q] {o.

5.4. LABELLED CHARACTERIZATIONS OF BARBED CONGRUENCES FOROBILE AMBIENTS 81

5.4 Labelled Characterizations of Barbed Congruences for Mobile
Ambients

This section proposes a labelled characterization of bmtimng and weak reduction barbed congruences
for mobile ambients, presented in Section 5.2. Indeed, m@bients can be seen as a reactive system,
with pure processes (up-to structural congruence) as groerms and with the contexts generated by
the following grammar (forR mobile ambient process)[—] ::= —, n[C[-]], (vn)C[-], C[-] | R as
contexts. As shown in ChaptEl 3, pure processes must firshdémded into graphs, and the reduction
semantics simulated by graph rewriting. We can then ap@ypdirowed contextgechnique for distilling
IPOs, which is proved to be an instance of the reactive systamstruction. The resulting ITS is the one
that we presented in Sectibn4.6. Therefore, we can applydtiens of (weak) barbed saturated and semi-
saturated bisimilarities, shown in the previous sectipmyrder to capture the two behavioural semantics of
mobile ambients.

The first step is stated by the proposition below.

Proposition 5.3. Strong reduction barbed congruence over mobile ambieftd coincides with barbed
saturated bisimilarity~25 for the calculus. Similarly, weak reduction barbed congageover mobile
ambients~"V*4 coincides with weak barbed saturated bisimilasitf 2° for the calculus.

Note that, in spite of-4 and~""M4 consider more contexts (they consider also contexts ofrthpes
M.—) than~B3 and~"BS respectively, in both cases the correspondence trivilgls. This is due to
the fact that processes of the shadgel” have no reduction.

As shown in Section 5l 3, we can efficiently characterize kybarbed saturated bisimilarity through the
IPO-transition system, and the semi-saturated game. Weéheancharacterize strong and weak reduction
barbed congruence over mobile ambients by instantiatiffinfiens[5.7 and’5.710, respectively, with the
ITS Dy introduced in Section 41.6.

Moreover, the quantification over all contexts can be rerddr@m the first condition of both definitions
of strong and weak semi-saturated bisimulation.

Proposition 5.4. Mobile ambients barbs are both strong and weak contextubtba

The proof of Proposition 514 is shown in Section]C.2 (App&f{td).
We then obtain a simpler definition of (weak) semi-saturdisdnilarity.

Definition 5.12 (Barbed semi-saturated bisimulations for mobile amb)emssymmetric relatioR is a
barbed semi-saturated bisimulatifmn mobile ambients if whenevétR Q then

e if P |, then@ |,;

o it P, P thenCQ] — @ and P’ R

Barbed semi-saturated bisimilarity?5* is the largest barbed semi-saturated bisimulation.
A symmetric relatioR is aweak barbed semi-saturated bisimulatfonmobile ambients if whenever
PRQ then

e if P |, then@ |,;

o it P, P thenC[Q] —* @ and P’ R QY.

Weak barbed semi-saturated bisimilarit}’ 759 is the largest weak barbed semi-saturated bisimulation.
We finally introduce the main characterization theorem efdhapter.

Theorem 5.1. Barbed semi-saturated bisimilarity for mobile ambient§5° coincides with strong reduc-
tion barbed congruence ™ 4. Similarly, weak barbed semi-saturated bisimilarity’ 255 coincides with
weak reduction barbed congrueneé” M4,

It is easy to note that the two statements of the theorem afotieev from Propositiorf 5.8, and from
Propositio 5.1l and 5.2, respectively.

82 CHAPTER 5. BARBED SEMANTICS FOR REACTIVE SYSTEMS

5.4.1 On Observing Ambient Migration

An alternative labelled characterization of weak reducharbed congruence is presentediin [47] by Merro
and Zappa Nardelli. However, the bisimulation that theyppse is not defined in the standard way. They
indeed note that in mobile ambients the ability of a (re&dg ambient to migrate is unobservable, there-
fore in order to take this phenomenon into account they memomodification of the usual definition of
bisimulation. On the contrary, Rathke and Solbski use instead i [60] the ordinary bisimilarity for char-
acterizing the strong reduction barbed congruence. Hawdvey are forced to add a set of what they
call Honda-Tokoro rules, in order to account for the samenpheenon about ambient migrations. We re-
mark that in our proposal we are never able to observe migratf private ambients, thanks to the use of
semi-saturations: this is shown by the following examplelie weak semi-saturated case.

Example 5.1. Let us consider the example below, originally proposed #j,[#hich illustrates two weak
reduction barbed congruent processes

P = (vn)nlin k.0] and Q=0

The two processeB and(@ are distinguished by the standard weak equivalence overT&D, since

P can interact with a context|k[R], while 0 cannot. The weak barbed semi-saturated bisimulationadste

does not observe the migration of the private ambierthe transitionP ﬂl% (vn)k[n[0]|R] is indeed

matched by|k[R] —* 0|k[R]. Moreover, sincévn)k[n[0]| R] and0|k[R] are weak barbed semi-saturated
equivalent, alsa® and(are so.

5.5 Labelled Characterizations of Asynchronous Bisimilarity

This section proposes a labelled characterization of thiecisonous bisimilarity for the asynchronotiss
(Sectior3:D), by exploiting the IPO LTS presented in Sedid. As mobile ambients, asynchronass
can indeed be seen as a reactive system, with pure procagstsdtructural congruence) as ground terms
and with the contexts generated by the following gram@igf] ::= —, (vn)C[—], C[-] | R (for R ACCS
process) as contexts.

We begin by introducing the definition of barb for the asymeimusccs The main difference with
respect to the synchronous version of the calculus liessimttiion of observation. Since sending messages
is non-blocking, an external observer can just send mesgagge system without knowing if they will be
received or not. For this reason receiving should not berghbke and thus barbs take into account only
outputs.

Definition 5.13 (Accs barbs) Let P be a pure process. It satisfies thgong barkz, in symbolsP |z, if
P=(wA)(a| Q)anda ¢ A, for some proces§ and a set of restricted channel namés

Now, the first step is stated by the proposition belolv [1],akHs confirmed by the results presented in
Sectior 6.B.

Proposition 5.5. Asynchronous bisimilarity-“ coincides with barbed saturated bisimilaritf* for the
asynchronouscs.

We can efficiently characterize barbed saturated bisiityilrrough the IPO-transition system, and the
semi-saturated game. So, we can characterize asynchrbisiudarity by instantiating Definitiong 5.7,
with the ITSA; (SectiofZ.D).

Moreover, we can remove the quantification over all contéxis the first condition of the definition
of (semi-)saturated bisimulation.

Proposition 5.6. Asynchronousccsbarbs are strong contextual barbs.

The proof of Proposition 516 can be obtained by following dhe of Propositiof 514.
We then obtain a simpler definition of semi-saturated bisirity.

Definition 5.14 (Barbed semi-Saturated bisimulations A@rcs). A symmetric relatioiR is abarbed semi-
saturated bisimulatiofor Accsif wheneverP R () then

5.6. SUMMARY 83

e if P |zthenQ |z;

o it P, PrthenclQ] — @ and P’ R Q.

Barbed semi-saturated bisimilarity?°* is the largest barbed semi-saturated bisimulation.

Theorem 5.2. Barbed semi-saturated bisimilarity feiccs ~£9% coincides with asynchronous bisimilar-
ity ~4 (Definition[3.19).

The theorem above follows from Propositidns| 5.5 5.1.

5.6 Summary

The main issues of this chapter have been the introductibardifed bisimilarities in reactive systems, and
their exploitation for recasting the semantics of mobilé@nts and asynchronoass.

In particular, we proposed the novel notions of barbed andkwearbed saturated bisimilarity over
reactive systems, showing that they can be efficiently cterzed through the IPO-transition systems by
employing the semi-saturated game. We applied the franmletwomobile ambients, proving that it can
capture the strong and the weak reduction barbed congrdentiee calculus, proposed by Rathke and
Sobochski [60], and by Merro and Zappa Nardelli [47], respectiveMoreover, also for asynchronous
ccs we showed that our proposal is able to address the stanelaa@hsics of the calculus.

We thus obtained a labelled characterization for the badeedruences of mobile ambients and the
asynchronous bisimilarity, exploiting the two ITSs for skecalculi previously proposed in Chagiér 4.

As far as the mobile ambients calculus, as discussed ind®&s#, we recall that an alternative, labelled
characterization of the strong reduction barbed congriénpresented iri [60]. Rathke and Soldsi
use there the standard bisimilarity to capture the congmielut they are forced to add a set of Honda-
Tokoro rules to deal with the unobservability of ambient ratgpns. Our solution instead accounts for this
phenomenon by the use of the barbed semi-saturated bisiomuldt is true however that the proposal
in [60] does not need any additional observation, while in approach the choice of the right notion of
barb is left to the ingenuity of the researcher.

84

CHAPTER 5. BARBED SEMANTICS FOR REACTIVE SYSTEMS

Chapter 6

On barbs and labels in reactive systems

In this chapter we move one further step in dealing with theqadcy issue of the standard semantics (the
IPO and the saturated one) for reactive systems. In paatiowe propose a novel behavioural equivalence
for reactive systems, namelf;-bisimulation: a flexible tool, since it is parametric wittspect to a set of
minimal labelsL. Also in this case the idea is very simple, and it just asymicedty refines the standard

bisimulation game. If the minimal LTS has a transitiBnCLl Q, then a bisimilarP’ has to react via a

minimal transitionP’ <} Q’, whenevelC[—] € L; or it must ensure thaf'[P’'] may evolve intaQ’ (thus
requiring no minimality forC[—] w.r.t. P’), otherwise. The associated bisimilarity is intermedizaveen
the standard semantics (i.e., minimal and saturated) fmtike systems: indeed, it is able to recover both
of them, by simply varying the set and exploiting the so-called semi-saturated semanticgaritbe
proved that, under mild closure conditions on the kel.-bisimilarity is a congruence; and moreover, it
can be shown that barbed saturated semantics can be rechsigasl satisfies suitable barb-capturing
properties.

With respect to barbed saturated semantiebjsimilarity admits a streamlined definition, where state
predicates play no role, so resulting in simpler verifioatidVe test its adequacy and ease of use against
suitable case studies. We thus consider the minimal coseaxiantics for mobile ambients andcs
introduced in Sectiofl4 and we show that in those cases, /a seiinimal labels can be identified, such
that L-bisimilarity precisely captures the standard semanti¢secalculus at hand.

The paper is organized as follows. Secfiod 6.1 presentsthaical core of the chapter: the introduction
of L-bisimilarity for reactive systems, the proof that (undeldnconditions onL) it is a congruence, and
moreover its correspondence with barbed semantics. Figattiod 6.2 and Sectién 6.3 prove that, suitably
varying the sef., the newly defined.-bisimilarity captures the standard equivalences for hecdninbients
and for asynchronouscs, respectively.

6.1 A New Semantics for Reactive Systemd:-Bisimilarity

As shown [[7], in the case afcs, IPO-bisimilarity coincides with the ordinary bisimilayi However, for
many interesting cases, such as mobile ambientsaaras (as discussed in Chapter 5), it is often too
fine-grained. On the other side, as fors saturated bisimilarity is often too coarse.

In this section we introducé-indexed bisimilarity (shortlyL-bisimilarity), a novel kind of bisimilarity
parametric with respect to a class of contexts (also redéoasabelg L. For each clas$ satisfying some
closure properties, the new equivalence is a congruence and/ C~LC~5,

Intuitively, L-bisimulations can be thought as something in between IB{Drblations and semi-saturated

bisimulations: whenP g}}%, if C[—] belongs toL, then@ must perform@ 3}}]0 (as in the IPO-
bisimulation), otherwis€'[Q)] — (as in the semi-saturated bisimulation).

Definition 6.1 (L-Bisimulation) Let L be a class of contexts. A symmetric relati®is an L-bisimulation
if wheneverP R @ then

86 CHAPTER 6. ON BARBS AND LABELS IN REACTIVE SYSTEMS

0[7] / / H
if P —C;I[I;]O P’ then Q —ipo Q and P fRQ/, if C[*}_G L
ClQ] - Q andP'R(Q’, otherwise.

L-bisimilarity ~” is the largest_-bisimulation.

It is easy to note that-” generalizes both-’ and~°* (and thus~®). Indeed, in order to characterize
the former, it is enough to take dsthe whole class of contexts, while to characterize therlatte take as
L the empty class. In Subsectibn 6]1.1, we will show that fonesd, L-bisimilarity also coincides with
barbed saturated bisimilarity. In the remainder of thigise¢ we show that-” is a congruence. In order
to prove this, we have to require the following conditionion

Definition 6.2. Let L. be a class of arrows of a category. We say thais IPO-closed, if whenever the
following diagram is an IPO and € L, then alsac € L.

7N
AN

It is often hard to prove that a class of contexts is IPO-do#ehecomes easier with concrete instances
of reactive systems that supply a constructive definitionP@®s, such as borrowed contexts.

Proposition 6.1. Let us consider a reactive system with redex RPOs and an IéX@etclasd. of contexts.
Then,~" is a congruence.

:—J/ o o J[—]/ o Naz[—] J[—]/ o \Dz[—]
)) \J[/ Yl[\ / \
AN N

(@) (w) (m)
Proof. In order to prove this theorem we will use the composition dadomposition property of IPOs
(Propositio Z.R). We have to prove thatif~% @ thenC[P] ~% C[Q]. We show thalR = {(C[P], C[Q])

s.t. P ~% Q} is an L-bisimulation.

Suppose thaf'[P] ng]o P’. Then there exists an IPO square like diagram (i) above, eviierR) <

R, D[] € D andP’ = DI[R]. Since, by hypothesis, the reactive system has redex RR@swe can
construct an RPO as the one in diagram (ii) above. In thisrdragthe lower square is an IPO, since RPOs
are also IPOs (Proposition 1 6f[45]). Since the outer sqgisaa@ IPO and the lower square is an IPO, by
IPO decomposition property, it follows that also the uppgrese is an IPO.

SinceD is composition-reflecting, then bofb, [—] and D2[—] belong toD and thenP —J>1[;>]O Dy [R).
Now there are two cases: eithéf—] € L or J[—] ¢ L.

If J[-] € L, then alsoJ’[—] € L, becausd. is IPO-closed, by hypothesis. Sinée ~% @, then

Q —J>[[1§]O Q" and D;[R] ~F Q”. This means that there exists an IPO square like the lowearequ

of diagram (iii) above, wheréL’, R’) € R, E[—| € D andE[R] = Q". Now recall by the previous
observation that the upper square of diagram (iii) is alsdP#h and then, by IPO composition, also the

outer square is an IPO. This means théf)] J}}]O D,[Q"]. SinceDy[R] ~* Q", thenP’ = D[R] =

Ds[D:[R]] R Do[Q").

If J[-] ¢ L, then eitherJ'[—] € L or J'[—] ¢ L. In both cases, fron? —‘i};]o D[R] we derive that
J'[Q] — Q" and D[R] ~* @Q". This means that the lower square of diagram (iii) above catem Since
also the upper square commutes, then also the outer squarsutes. This means th&t{Q] — D2[Q"].
SinceD; [R] ~ Q", thenP’ = D[R] = Dy[Dy[R]] R D2[Q"]. O

6.2. L-BISIMILARITY FOR MOBILE AMBIENTS 87

6.1.1 Barbed Saturated Bisimilarity via L-bisimilarity

Here we show that-bisimilarity can also characterize barbed saturatedriiarity, whenever barbs and
the set of labeld. satisfies suitable conditions. This result will be used ter@ections in order to show
that L-bisimilarity captures the correct equivalences for mebimnbients andccs.

In order to guarantee that” C~55, we need some conditions ensuring that the checking of ludrbs
~B3 s already done in-“ by the labels inl..

Definition 6.3. Let L be a set of labels and €2 be a set of barbs. We say thats O-capturingif for each
barb o there exists a label’|—] € L such that for each proces®, P |, if and only if P —C;I[;}O P’
The next two definitions are needed to ensure 4Wat C~L.

Definition 6.4. Let R be a relation and letP(X,Y") be a binary predicate on processes. We say that
P(X,Y) is stable undefR if wheneverPRQ andP(P, P’) there exists)’ such thatP(Q, Q') and P’RQ’.

For example, the predicates in Figlirel6.1 and Fifure 6.2tabdesunder 55,

Definition 6.5. Let R be a relation and leC[—] be a label. We say that'[—] is stable undefR if the
predicateP(X,Y) = X —(51[}}0 Y is stable undefR.

Note that the definition above says that the relaffois a bisimulation for the label'[—]. We will use
it to ensure that-?° is a bisimulation for all the labels i.
We can finally state a first correspondence result.

Proposition 6.2. Let us consider a reactive system with redex RPOs, @s#tcontextual barbs and a set
L of labels. If L is O-capturing and all its labels are stable undét®, then~2% coincides with~".

Proof. In order to prove that-?5C~", we show thaR = {(P, Q) s.t. P ~B% Q} is an L-bisimulation.

Suppose thaP —C>I[}_>]o P’. We have two cases: eithél{—] € LorC[—] ¢ L. If C[-] € L, thenC[-]

is stable under-ZS and thus, sinc® ~5 Q, Q 5}}]0 Q" andP’ ~B5 @Q'. For the case that[-] ¢ L,

it is enough to note that, sind@ i P thenC[P] — P'. SinceP ~B% @, thenC[Q] — Q' and

P’ ~BS Q/-

Now we show thaR = {(P, Q) s.t. P ~* Q} is a barbed semi-saturated bisimulation (ke C~?5%)
and thus, since the reactive system has redex IPOs, by Riop&&] it follows that~"C~ 5%,

At first, we note that, sincé is a set of contextual barbs, in order to show tRasatisfies the first
condition of Definitio 5.1 it suffices to show th&t |, impliesQ |,. SinceL is O-capturing, ifP |, then

there is a labeC’[—] € L such thatP |, if and only if P —C;}}]o. SinceP ~ @, then alsa —9}}]0 and
Q lo-

In order to prove the second condition of Definit[on]5.7, ieiough to note that iP 5}}10 P’ then,
in both the case that[-] € L andC[-] ¢ L, C[Q] — Q' with P' ~L @'. O

As a corollary of the previous definition, we obtain the fallng property that allows to check whenever
IPO-bisimilarity coincides with barbed saturated one.

Lemma 6.1. Let us consider a reactive system with redex IPOs. If the$arb contextual, the set of all
labels isO-capturing, and each label is stable undef*, then~' coincides with~5%.

6.2 L-Bisimilarity for Mobile Ambients

This section proposes a new labelled characterizationeofétluction barbed congruence for mobile am-
bients, presented in Sectibnb.2 (Definitionl 5.4). In patég by using the IPO LTD; (in Sectio 4.B)
we define ar_-bisimilarity that captures barbed saturated bisimijaior mobile ambients, coinciding with
reduction barbed congruence as shown in Se€fidn 5.4 (Rtigpds.3).

As discussed in Sectidn 6.1.1, we can characterize barhecszd bisimilarity on a set of contextual
barbsO through the IPO transition system and a set of laliels particular, as required by Proposit[onl6.2,
the setl, must beO-capturing and eacti|—] € L must be stable under the barbed saturated bisimilarity.

88 CHAPTER 6. ON BARBS AND LABELS IN REACTIVE SYSTEMS

We denote byO,, , the set of barbs of mobile ambients, recalling that mobil®iamts barbs are con-
textual barbs (Propositidn 5.4).

Proposition 6.3. O,, , is a set of contextual barbs.

Therefore, we can characterize reduction barbed congeuewer mobile ambients by instantiating
Definitions[6.1 with the IPO LTD, and a sef. of labels having the two properties said above.

First of all, we find some labels @b, that capture the barbs of mobile ambients. This ensureshbat
checking of barbs of the barbed saturated bisimilarity isedm the L-bisimilarity by the first condition
of its definition. It is easy to note that a mobile ambientscpssP observes a unrestricted ambientt
top-level, in symbolsP |,,, if and only if it can execute a transition labelled with| open n.T} or with
— | m[in n. Ty | T»]. Therefore,L is O, 4-capturing if it contains at least one kind of these labele W
choose to consider labels of the first type, that is, haviegstiape- | open n.T7, for n ambient name and
T pure process.

Itis possible to prove that these labels are stable undgr. Therefore, if we consider the setdefined
below, we obtain ar.-bisimilarity for mobile ambients that is able to charaer 25

MA*®

Proposition 6.4. Let Ly, 4 be the set of all labels of the IT®; having the shape | open n.T}, for n
ambient name and; pure process. Thetd,, 4 is O,, ,-capturing.

Proof. We have to show that for each batbe O,,, there exists a label'[—] € Ly;4 such that for each

processP, P |, if and only if P c‘[;]% P
It is easy to note that, given a barbc O,,,, we have that for each process P |, if and only if

—|open n. Ty
5

P », P’, with T} pure process. Since we know that, 4 contains all labels having the shape
— | open n.Ty, for n ambient name an@; pure process, we can conclude that 4 is O,, ,-capturing. [

Now, in order to prove that eaofi[—] € Ljsa is stable under-B5, we exploit a predicate such
that it is stable under25 and equivalent to the one of Definitin 5.5. More explicitiye will prove

—|open n.Ty

that the predicate in Figufe .1 coincides WithX,Y) = X ——— 4, Y. Indeed, the fact that
p~loren n.Ti (P P') holds, means tha® inside the contex€’[—] can evolve intaP” that observen, and
sincem is fresh, it means that the capabilityen n has been performed. Moreover, the conditionfgn
ensures that the resulting states of the two predicatesidein

Lemma 6.2. LetP~loren »-Ti (X Y') be the binary predicate on mobile ambients processes shoigiire
[6.1, forn ambient name and; pure process. Thet®,~lore» »T1 (X Y) is stable under2S and for each

PandP', p-loren Ty (PP it and only if P T, P,

Proof. We begin by proving that the predicake [°7¢” »T1 (X, Y') is stable under 5.

Assume thatP ~B5 @ and®P~loren »Ti(p, P') holds. SinceP~loper »Ti (P P’) holds, then there
exists a proces®” and an ambient: fresh for P and@, such that’[P] — P”, P" |,,, P” — P’ and
P’ Y, with C'[—] = — | open n.(m[0] | open m.T1).

SinceC’[P] — P" andP ~B5 @, thenC’[Q] — Q" andP" ~B35 Q. Therefore, it is obvious that

alsoQ"” |,,. Now, we know that”” — P’, hence we can say th&t’ — @’ and P’ ~55 @’. From this
follows that, sinceP’ J,,, then alsaQ’ J,,. So, we can conclude th& l°re» T1(Q, Q') holds, hence

Pploven n.T1 (X V) s stable undeR.

Now we show that for eack and P, P~loren »Ti(p, P’ iff P », P’

Assume thatP—lever » 71 (P, P') holds. This means that there exists a prod@ésand an ambient»
fresh for P, such that”’[P] — P”, P"” |,,, P — P’ andP’ |/,,, with C'[-] = — | open n.(m[0] |
open m.Ty). The fact thaC’[P] — P” andP” |,, means that the capabilippen n has been executed,
hence there must be a unrestricted ambigaittop-level ofP, i.e.,P = (vA)(n[P1] | P2) andn ¢ A. From
this follows thatP” = (vA)(Py | P2) | m[0] | open m.Ty, and sinceP’ [, thenP’ = (vA)(P, | P2) |

—|open n. Ty

T,. Moreover, by knowing thaP = (vA)(n[Py] | P2) andn ¢ A, we can conclude thd?d ——— o,
P

Assume thatP P’. This means thaP = Q, whereQ = (vA)(n[P] | P»),n ¢ A and
P = (WA)(Py | P») | T1. We consider the context’[—] = — | open n.(m[0] | open m.Ty) with

D J

—|open n. T,
_

—|open n. Ty
=

6.3. L-BISIMILARITY FOR ASYNCHRONOUS CCS 89

m & fn(P). Itis easy to note that’[Q)] — P” s.t. P" = (vA)(Py | P2) | m[0] | open m. Ty andP” |,,.
Therefore, sinc€’[P] = C'[Q], we also have that’[P] — P”. Now, we can note tha?” — P’ and,
sincem is fresh forP, P’ [/,,,. O

Proposition 6.5. All labels in L,, 4 are stable under25

MA*

The proof of the proposition above trivially follows from iena[6.2.
We finally introduce the main characterization proposition

iti BS___L
Proposition 6.6. ~,5=~"M4,

Proof. First of all, by Propositio 6]3, we know that mobile ambg&h#rbs are contextual. Moreover, by
Proposition§ 614 ard 8.5, we know thais O,, ,-capturing and it contains only labels stable ungéj®.
Therefore, thanks to Propositibn .2, we can conclude-tfi=~ 4. O

The L-bisimilarity ~*»4 presented above is not the only one which is able to chaizetbarbed
saturated bisimilarity-25. For example, as said before, we can choose to considebalklaf the shape
— | mlinn.Ty | T3], which besides being able to capture mobile ambients bémby, are also stable
under~25 . However, generally, we can consider the detsontaining at least all the labels of the shape

— | open n.Ty or — | m[in n.Ty | T3] to capture barbs, and other labels®f that are stable under
~B5i.e., labels such that it is possible to define a predicatogous to the one we defined for the labels
— | open n.Ty.

6.3 L-Bisimilarity for Asynchronous ccs

In this section we first show thdi-bisimilarity is able to capture the standard semanticssghahronous
ccsand then we prove that it also coincides with its barbed atgdrbisimilarity.

L-Bisimilarity for Asynchronous ccs. In asynchronous bisimulation (Definition_3]119), transigda-
belled with7 anda (corresponding te- and— | a.T; in A;, respectively) must be matched by transitions
with the same labels. Moreover, whéh-% P’ (corresponding ta® - P’ in Aj) then either) % Q'
andP'RQ' orQ = Q" andP' R Q' | a. This is equivalent to require thét | @ — Q" andP’ RQ'. Thus,

in order to characterize* as L-bisimilarity, it suffices to choose dsthe set of labels correspondingto
anda.

Proposition 6.7. Let L4 be the set containing the labels of the IA$ of the shape- and— | a.T3, for
a € NandT; € P. Then,~La=~A,

From L-Bisimilarity to Barbed Saturated Bisimilarity. It is important to note that the choice 6f; is
not arbitrary. Indeedy-“4 coincides with the barbed saturated bisimilarity for thgneronousccs. This

is not a new result, but it is interesting to see that it candssly proved by following the same approach
that we have used for mobile ambients in Sedfioh 6.2.

Recall thatL 4 only contains labels of the form and— | a.7} (corresponding to labelsanda in the
ordinary LTS). Since only output barbg are defined, thet 4 is barb capturing.

We also know that these barbs are contextual, hence, in tvdese Proposition 612, we only have to
prove that all the labels i 4 are stable under barbed congruence. Analogously to mofitgests, we
define some additional predicates. These are shown in H@Brdt is easy to see that for each labgl-|
inLy, X CLJ Y in Ay if and only if PCl-] (X,Y). ltis also easy to show that all of them are stable under
__BS

p-loven n.Ti(X YY) IP" andm & fn(X)S.t.P" |, C'[X] — P" — Y andY [,
with C'[—] = — | open n.(m[0] | open m.Ty)

Figure 6.1: Predicate for the label| open n.T1.

90 CHAPTER 6. ON BARBS AND LABELS IN REACTIVE SYSTEMS

p-laTi(X,Y) 3P andi ¢ fn(X) st P’ | iandX|a.(i|T1)i — P' —Y i
P (X,Y) XY

Figure 6.2: Predicates ferccs

Note that the labels of the form | a are not stable under?S. It is indeed impossible to define a
predicate analogous to the ones in Fiduré 6.2-fdra. Ty, since outputs have no continuation.

6.4 Summary

The chapter introduces a novel behavioural equivalenceefactive systems, namely,-bisimulation: a
flexible tool, since it is parametric with respect to a setadfdis.. The associated bisimilarity is proved
to be a congruence, and it is shown to be intermediate betiheestandard IPO and saturated semantics
for reactive systems: indeed, it is able to recover both efrthby simply varying the set of labels More
importantly, also the more expressive barbed semanticbeaecast, as long as the desatisfies suitable
conditions.

As for any newly proposed semantics, we tested its exprerssss and ease of use against suitable case
studies, by using again the mobile ambients and¢s. We thus considered the IPO transition systems
for these calculi proposed in Chapfdr 4. We showed that ih Hmtse cases, for a right choice bf
L-bisimilarity precisely captures the standard semantcé$e calculus at hand.

Chapter 7

Conclusions and Future Work

This thesis tackles some issues concerning the adequadye aftdandard semantics (IPO and saturated
ones) of reactive systenis [45], in modelling the concreteaseics of actual formalisms. As discussed in
the introduction, the problem is that IPO-bisimilarity item too fine-grained, as we showed for mobile
ambients and asynchronoass, while the saturated one may be too coarse, as in the casedirsynous
ccs

Theoretically, one of the main contributions of our worktie introduction of a more expressive seman-
tics for reactive systems which, thanks to its flexibilitypevs for recasting a wide variety of observational,
bisimulation-based equivalences. In particular, we psepsuitable notions of barbed and weak barbed
semantics for reactive systems, and their efficient charaetion through the IPO-transition systems by
exploiting the semi-saturated game.

Another contribution of this thesis is the introduction ai@vel, more general behavioural equivalence
for reactive systems, namelf-bisimulation, which is parametric with respect to a set @fimal labels
L. We proved that under mild conditions dnthe equivalence is a congruence, and most importantly, it is
shown to be intermediate between the standard IPO and satig@mantics for reactive system, recasting
both of them by varying the set of labels Moreover, also the barbed semantics can be recast, as long
as the sef. satisfies suitable conditions. With respect to barbed s@osar -bisimilarity is of simpler
verification: It indeed admits a streamlined definition, wehstates predicates play no role.

In order to test the adequacy of our proposals, we instadtititem over the asynchronoass and,
most importantly, over the calculus of mobile ambients, s¢hobservational semantics is still in a flux. To
this end, for each of these two calculi, we described a mihaoatext semantics, distilled by means of a
graphical encoding of the calculus.

The approach we pursued to derive the two LTSs is quite $ttfaigvard: for each calculus we proposed
a graphical encoding (over standard graphs) such thatgs@omgruence is preserved, and we captured the
reduction semantics by a set of graph transformation rgjgscified using the DPO approach. An IPO-
LTS on (processes encoded as) graphs is thus immediat¢ijedisby applying the borrowed contexts
technique, which is an instance of the theory of reactivéesys. The derived LTS is then used to define
one over processes. So, as far as the LTS for mobile ambgntsicerned, it resulted pivotal in proving
one of our main practical results, namely, that barbed anakvikarbed semantics for mobile ambients
do capture the stron@ [60] and weak][47] barbed congruemeehé calculus. Similarly, the LTS for the
asynchronouscswas used to show that strong barbed semantics coincidesheiitandard semantics of
the calculus. We also showed that in both cases, & £dtminimal labels can be identified, such that the
resultingL-bisimilarity precisely captures the standard semanti¢eecalculus at hand.

We do believe that the work presented in this thesis can beidered relevant for the theory of reactive
systems for different reasons. First of all, it addressesattequacy issue for reactive systems, showing the
shortcomings of the standard definitions, providing a fraoré& for recasting (weak) barbed equivalence
in the framework, and finally proposing a more general seitgnhamelyL-bisimulation. Moreover, it
offers a relevant application for the reactive systems &ism, by applying it to a full-fledged calculus, at
the same time showing how borrowed contexts rewriting (ataimce of the theory) can be quite effective
in deriving LTSs.

92 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

We can foresee at least two further extensions of our work.

As far as (weak) barbed equivalence is concerned, we shadwaethe framework is general enough to
capture the abstract semantics of important formalismb sscmobile ambients and asynchronas.
However, it is parametric with respect to the choice of theo§barbs and defining the “right” barbs is not
a trivial task, as witnessed by several papers about this #p. [58,40]. So, it would be interesting to
extend our framework by considering an automatically aetimotion of barb for reactive systems. [In][12],
authors introduce barbs for adhesive rewriting systergggrto keep in line with the constructive nature
of the borrowed contexts mechanism. To this end, theirtiotwis driven by the graphical encodings of
calculi, and by the nature of barbs in most examples fromghting, there basically (a) barbs check the
presence of a suitable subsystem, (b) such that it is needsatform an interaction with the environment.
For instance, in asynchronouss, barbs are parallel outpufsl[1], formally (B) |z if P = P, | @ and (b)
these outputs can interact with the environment throughtlez | «.QQ + M — Q. In mobile ambients,
barbs are ambients at the topmost level [47], formallyRa),, if P = m|[P;] | P, and (b) these ambients
can be interact with the environment via the rulen m.Q1 | m[Q2] — Q1 | Q2. S0, a simple notion of
barb for adhesive rewriting systems is given: a barb for #esys- is defined as a subsystem occurring in
it, also occurring in the left-hand-side of some rewritinger We do believe that this general mechanism
to define barbs for adhesive rewriting systems may help uslt@ she problem of automatically identify
suitable barbs for reactive systems, along the line of thetisa proposed in[[38] for bigraphical reactive
systems.

As far asL-bisimulation is concerned, first of all, we would like to pigely understand the notion of
IPO-closedness, which is required for the set of laliglén order for L-bisimilarity to be a congruence.
We would like to establish suitable and more manageableitons under which a set of arrows of a
given category satisfies that property, especially foréhesctive systems where IPOs have an inductive
presentation (such as for those induced by the borrowedexbntechanism). In more general terms, it
would be interesting to further elaborate on the connedtigiveenL-bisimilarity and barbed semantics,
moving after the preliminary results presented in Sedfidnl6 As a start, in order to establish conditions
ensuring that barbs satisfy the pivotal property of beingtextual; and, more to the point, for checking
whenever a set of labels is barb capturing and contains abbl$ stable under barbed bisimilarity. As far
as the specific case study of mobile ambients is concernest,ohthe IPO labels occurring in our transition
system are indeed stable, i.e., the relative labelleditrans can be characterized by a predicate which is
stable under the barbed saturated bisimilarity. The otiglithat are not stable are those ones of the shape
—|m[P] andm[—|P] of the rule NAMB and QuTAMB (Figure[4.18), respectively. It seems intriguing that
those same labels required the introduction of so-callendderokoro inference rules in[60] for capturing
the reduction barbed congruence by means of standard laisiyi

Appendix A

Proofs of Chapter 3

A.1 Mobile Ambients Congruence= versus Graph Isomorphism

In this section we show the proof of Theoréml3.1, which foises the relation between the structural
congruence= and the encoding introduced in Definitibn 3.16. In order tovslthe correspondence, we
first prove the soundness of the encoding with respect tottbetsral congruence (Propositibn A.2), and
then we prove the completeness (Propos(iiod A.4).

We begin by recalling that two processes that are structmadjruent have the same free names, as
stated by the proposition below.

Proposition A.1. Let P, Q be processes. P = @, thenfn(P) = fn(Q).
The proposition below states the soundness result.

Proposition A.2. Let P, be processes and [Etbe a set of names, such that(P) C T. If P = @, then
[[P]]F = [[Q]]F
Proof. We proceed by induction on the depth of the inferenc® af . Since the proof is straightforward

for the laws stating that the parallel operator is assagatommutative and with identity, we do no tackle
these cases.

e Suppose that? = @ by the Cong-Res-Resule. It means thatP = (vn)(vm)P; and Q =
(vm)(vn)Py. If n =m, thenP = @ and their encodings are obviously the same. Vice versaAf
m, then by definitio P = {v, @ {(vs @ [Pi{r/n}{s/m}]r q,)0 (0s®@idru(ry)} o (0, ®idr),
forr,s ¢ I" andr # s. We notice that the value of the last expression is isomorfzhthe value of
(vr @ vs @ [Pr{r/n}{s/m}]p g 6) © (0s ® 0, @ idr). Sincer, s ¢ I' andr # s, we can write the
encoding[Q[. of Q as{vs @ {(v» @ [P1{s/m}Mr/n}]p s,0) © (0r @idrogsy) o (0s @idr). Now,
the value of the latter expression is isomorphic to the vafue, @ v, @ [P1{s/m}{r/n}]r ¢ .4)°
(0, ® 05 ®idr). Moreover, we notice tha?, {r/n}{s/m} = Pi{s/m}{r/n}, hence[P], = [Q]
holds.

e Suppose thaP = @ by theCong-Res-Parule. It means thaP = (vn)(P; | P2), Q = Py | (vn)Ps
andn ¢ fn(Py). By definition, [P];. = {vim @ ([Pr{m/n}]r(ny ® [Po{m/n}rgny)} 0 (0m ®
idr), form ¢ I'. Sincen ¢ fn(P1), we havePi{m/n} = Pi, and so[Pi{m/n}]r (,, =
[P1]rygmy - Now, we notice that the value of, @ ([Pl) ® [P2{m/n}ry) is isomorphic
to the value of| 1 @ (vim ® [P2{m/n}]ryqy). We also note that the graph represented by this
last expression has the same output interface of the grapesented by, ® [Pa{m/n}]r (.,
hence the sequential composition,, © [Pa{m/n}]r ;) © (0m © idr) is defined. Moreover,
sincem is not in the output interface dfP; |-, we can easily see that the value{d® | @ (v, ®
[P2{m/n}]rgmy)} o (0 ®idr) is isomorphic to the value i1 [@ { (v @ [Po{m/n}p(ny) ©
(0., ® idr)}. Since the value of the latter expression is also isomorfhtbe value of graphical
encoding[Q], then we can conclude thiP]. = [Q].

94 APPENDIX A. PROOFS OF CHAPTER 3

e Suppose thaP = @ by theCong-Res-Amtule. This means tha® = (vn)m[Pi], Q@ = m[(vn)P]
andn # m. By definition, [P]. = {v; ® [amby, o (idm @ [Pi{r/n}]r ()]} © (0, @ idr) and
[Qlr = amby, o{idy @ (v, @ [Pi{r/n}])0 (0-@idr)]}, forr ¢ I'. Now, the value of the latter
expression is isomorphic to the valueahb,,, o { (idy, @ vy @ [Pr{r/n}]r) 0 (0 @idr)}, which
thanks to the associativity ofis isomorphic tdamb,, o (id,, @ v, ® [[Pl{r/n}]]ru{r})] o (0, ®idr).
Since the operatay,. is linked to ac node that is both in the output and in the Iinput interface ef th
graphamb,, we can conclude thjQ[. = {v, ®[amby, o (idy, @ [Pr{r/n}]p)]} o (0, @idr) =
[Pl

e Suppose thaf’ and @ are a-equivalent. It means tha® = (vn)P;, Q@ = (vm)P;{m/n} and
m & fn(P1). By construction,[P]. = (v @ [Pi{r/n}]r) © (0, @ idr), while [Q]. =
(vr ® [Pr{m/n,r/m}]) © (0, ®idr), for r ¢ T'. Now, we notice that, sinc@ {r/n} =
P{m/n,r/m}, then[Pi{r/n}]r ¢y = [Pr{m/n,r/m}]p ., and thereforg P = [Q] .

O

The completeness of our encoding with respect to the stralatangruences is more difficult to prove.
So, we need to introduce some additional lemmas. The fallgemma allows us to restrict attention to
encodings with respect to the set of free names of a process.

Lemma A.1. Let P be a process, and ldt be a set of names, such that(P) C T'. Then,[P]. =
[[Pﬂfn(P) ® freer.

Proof. The proof proceeds by induction on the structurd’of

e Suppose thaP = 0. By definition, we havg0]. = 0,,,® freer. Since[0], = 0, ,, itisimmediate
to see thaf0] . = [0], ® freer.

e The cases” = n[P;] and P = M.P, are similar. As an example, we considér= n[P;]. By
definition, we have[P]. = amb, o (id, ® [P];). Since, by induction hypothesi§p;], =
[Pi] 4 pyy ® freer, then we havg P[. = amb,, o (id, ® [P1] 4, p,) ® freer). Now we notice that
the value of the latter expression is isomorphic to the vafuemb,, o (id,, ® [P1];,,p))] @ freer.
Since by definition, we havgP] ;,, p) = amby, o (idy, @ [Pi],p)), itis easy to see thdt’]. =
[Pl cp) ® freer.

e Suppose thal” = (vn)P;. By definition, we have(vn) Pr . = (vim @ [Pr{m/n}]r) © (0m ®
idr), form ¢ T'. Since by induction hypothesigPy {m/n}[r (= [Pr{m/n}] 1 py (mjny) ©
freerumy, then we havg(vn) P, = (v, ® [[Pl{m/n}ﬂfn(Pl{m/n}) ® freeruimy) © (Om ®
idr). Now, we notice that the value of the latter expression isnsghic to the value of (v, ®
[Pr{m/n}] 4y mjmyy) © (Om @ idpp(p))} @ freer. Moreover, sincen ¢ T, thenm ¢ fn(P),
hence, by definition, we ha\igvn) P1[;,, py = (vm @ [Pr{m/n}] 1, (pyum}) © (Om @idpn(p)). SO,
sincefn(Pi{m/n}) = fn(P)U{m}, then we can easily conclude tadt].. = [P], p) ® freer.

e Suppose thaP = P, | P». By definition, we havg P]. = [P1] ® [P-]. Moreover, by induction
hypothesis,[P1]. = [Pi]y,(p,) ® freer, and analogouslyP;]y. = [P];,p,) ® freer. So,
we have[P[. = ([Pi]y,p,) ® freer) @ ([Pl t,p,) ® freer). Thanks to the commutativity
and the associativity of, we obtain the graph expressi@f]. = ([P1],p,) ® [P2]s0(p,) ©
(freer® freer). Now, we notice thafreer® freer = freer, and since, by definitior‘[,P]]fn(P) =
[Pl fncp) @ [P2] 40Py, We can easily conclude th@P]. = [P, p) @ freer, thanks to the
induction hypothesis and to the hypothesis thatP) C T.

O

A.1l. MOBILE AMBIENTS CONGRUENCE= VERSUS GRAPH ISOMORPHISM 95

To prove the completeness result, we need to introduce aatdonm for processes. First, for a set of
namesN = {ni,...,n,} such that alln;'s are pairwise distinct, let us/N') denote a shorthand for the
composition(vny) ... (vng).

Proposition A.3 (Normal forms) Let P be a process. There exists a set of nafigsV, and a process
nf(P), the normal form ofP, such thatP = nf(P) and the process f(P) has the shapgvN.,.)S) |
((vNy)0), for S = my[A1] | ... | mp[A4,] | M1.B:1 | ... | M,.B, and such that all{;’s and B;’s are in
normal form (yetA;’s have no restrictions at top level) angd. C fn(S).

Lemma A.2. Let P, (Q be processes. ﬂfPﬂfn(P) = [[Qﬂfn(Q), thenP = Q.

Proof. Let P’ and(Q’ be the normal forms of” andQ, respectively. Note that, sindé = P’ andQ@Q =
(', thanks to the soundness of our encoding and to the hypst[@ﬁ}n(m = [[Q}]fn(Q), we have that
[P'] Py @and[Q'] 4, o) denote isomorphic graphs.

The proof proceeds by induction on the structuréaf

e Suppose that”” = 0. By definition, we havel '], pi) = 04, @ frees,pry. Since,[P];, pr
and[Q'];,, o denote isomorphic graphs, they have the same interfaceselfe (') = fn(Q’).
Furthermore, there must be a bijective correspondencecieetihe set of edges attached to the image
of the inputp of the grapkﬂP’]]fn(P,), and the set of edges attached to the image of the mptithe
graph[[Q’]]fn(Q,). Analogously, there must be a bijective correspondenosdmi the sets of edges
attached to the image of the input®f both graphs. So, since ﬁP’]]fn(P,) both sets of edges are
empty, it is obvious thaf)’ = 0, and hence”’ = Q'.

e The cases”’ = n[S;] and P’ = M.S; are similar. As an example, we considef = n[S].
By definition, [P'] ;,,p,) = amby, o (id, @ [S1]},,(pr))- Since[P'];, py and[Q'] o/ denote
isomorphic graphs, they have the same interfaces, hémc@’') = fn(Q’). Furthermore, there must
be a bijective correspondence between the set of edgeseadtac the image of the inpuyt of the
graph[[P’]]fn(P,), and the set of edges attached to the image of the inpfithe grapH]Q’]]fn(Q,).
Analogously, there must be a bijective correspondence dmivthe sets of edges attached to the
image of the inputa of both graphs. This means th@t = »n[T}], for some process;. We consider
the graphical encoding f@p’. By definition, we havdQ'[;,, o/, = amby, o (id, @ [T1]},,q))- We
know that[P’] ;,, pry = [Q'] },,(q). hence itis obvious thdtS:] ;,, p) = [T1]},,(q- Since we also
know thatfn(P’) = fn(Q'), then by using Lemmia Al1, we deduce thét],, s = [T1] 1, (r,)-
Now, by applying the induction hypothesis, we hae= T}, and therefore, thanks to tikong-Amb
rule,S=T.

e Suppose that” = 5y | Sp. By definition[P'] ., p) = [S1] 1, pr) ® [S2](pry- SiNCE[P'] 4, pry
and[Q'] ;o denote isomorphic graphs, they have the same interfaceselfie(F’) = fn(Q').
Furthermore, there must be a bijective correspondencedeetthe set of edges attached to the image
of the inputp of the graph[[P’]]fn(P,), and the set of edges attached to the image of the injotit
the graph[[Q/]]fn(Q,). Analogously, there must be a bijective correspondencedmst the sets of
edges attached to the image of the inputd both graphs. This means that andQ’ have the same
number of processes in parallel. So, sifi¢¥];, .y = [Q'], g then there exist two processes
Ty andTy, suchthatl’ = 7' | T3, and[S1];,,py = [11] @y @Nd[S2] 1, pry = [12] 40y~ Since
we know thatfn(P’) = fn(Q"), then by Lemm&All, we deduce th:], s,y = [T1] (7))
and ﬂ52ﬂfn(s2) = [[TQ}]fn(T,z). Now, by applying the induction hypothesis, we ha4e= T; and
S, = Ty. So, thanks to th€ong-Parrule, P’ = Q’.

e Suppose thaP’ = (¢vN)S. By definition, we have

[P] snpry = {¥n @{{vn, @1 . . @{(n, ®[S] 4 (pryor .,) 0 (O, ®id pn(pryur o\ (ni}) } 0
. }} ° (Onz ® den(P/)U{m})}} © (Onl ® den(P/))

96 APPENDIX A. PROOFS OF CHAPTER 3

wherel'p: = {nq,...,n;} = N. The value of the expression above is isomorphic to the \aflue

(Wny ® .. @ vn, @ [S] pryyur,,) © (O, @ ddgn(ery) -

Since[P];,,pr and[Q'] ;) denote isomorphic graphs, they have the same interfacetseamoe
fn(P) = fn(Q).

Furthermore, there must be a bijective correspondencedeetthe set of edges attached to the image
of the inputa of the graph[[P’]]fn(P,), and the set of edges attached to the image of the imiit

the graph[[Q’}]fn(Q,). Analogously, there must be a bijective correspondencedsst the sets of
nodeso of both graphs. This means that andQ’ have the same number of restricted names, hence,
Q' = (vmq)...(vm;)T for some proces¥.

By definition, we have

[Q fniary = {Vmi @ H{wm, 1. - {(Wm, O[T 10 (ryur)0 (Om: Rid n(@ryur g (m.}) }o
. }} (e} (07”2 ® idfn(Q’)U{m]})}} o (0m1 ® den(Q’))

wherel'g: = {m1,...,m;}. The value of the expression above is isomorphic to the waflue
(l/,m1 ®R...Q Vm,; ® [[Tﬂfn(Q’))UFQ/) o (OFQ, ® den(Q’))

Since[P'[1, pry = [Q'] (g and P’ andQ’ have the same number of restricted names, then there
exists a substitution such that?”” = (vm,) . .. (vm;)So is a-equivalentta” and[.So] ,, piyor,, =
[[T]]fn(Q,)UFQ,. We know thatfn(P") = fn(Q"), hence by using Lemnja A.1 we dedy& |, s, =
[[T]]fn(T). Now, we can apply the induction hypothesis and say$laat= T'. So, thanks to th€ong-

Resrule, we conclude thaP” = Q’. Moreover, since”?” = P’, and by Proposition Al3 we know
that P’ = P andQ’ = Q, then it is easy to conclude th&t= Q.

Now we show the completeness result by using Lelnmé A.2 andiatfml.

Proposition A.4. Let P, @ be processes and IEtbe a set of names, such that(P) U fn(Q) C T. If
[P]r = [Ql, thenP = Q.

Proof. By Lemm&A.l, we hav§P]. = [P];,p) ® freer, and analogouslfQ] . = [Q] ;,,q) ® freer.

Since, by hypothesidP[. = [Q]r, then we havdP],, p) = [Q];,q)- So, we can apply Lemnia A.2
and conclude thaP = Q. |

A.2 From reduction relation — to graph rewriting

In this appendix we present the proofs of the two main resflShaptefB. In particular, first we prove
Theoren 3R, which relates process reductions to grapliteswiThen, we show the proof of the reverse
direction, Theoreri 313.

We begin by stating a useful lemma, saying that derivatioapeeserved under closure with respect to
graph contexts. Intuitively, a graph context is a graph eggion “with a hole”, i.e., the single occurrence
of a novel constant-.

Lemma A.3. LetG be a graph with discrete interfaces, and{eft—| be a graph context such that the graph
expressiorC[G] is well-defined. IfR,,,;, entails a direct derivatiorlz = H, then it also entails a direct
derivationC[G] = C[H].

A.2. FROM REDUCTION RELATION— TO GRAPH REWRITING 97

A proof of a variant of the lemma above can be foundid [32, LenB18].

In order to prove the soundness and completeness resultalsa@eed to introduce an extension of
the encoding of processes into graphs, presented in DefifBfilé. So, in the following, we consider the
process encoding as parametric with respect to the inperfatte. We denote by ' [P]. the graph with
interfaces({a1,p1},T") that represent®, whereT is a set of names such th#h(P) C T'. Note that
[Plr = “P[P]p.

Moreover, we use’*P1amb®2'P2 to denote the constant graph with interfa¢és;, p1 }, {az, p2,n}),
corresponding tamb,,. Analogously, we usé-P1qct?-P2 to denote the constant graph with interfaces
({a1,p1}, {az, p2,n}), corresponding tact,,, while we write “ go for the constant graph with interfaces
({a1},0), corresponding tgo. Finally, we use® ?1id}2;P> as shorthand fortidj> @ Ptidb?, where
“idg> and Pridb? respectively denote the constant graphs with interfa¢es}, {CLQ}) and({pl} {p2}),
obwously correspondlng tal,,.

Now, we prove that our encoding is sound with respeetto

Proof of Theoreri:3]2By induction on the depth of the derivation Bf — Q.

In order to prove the casesREd-In Red-OutandRed-Opemules, we follow the same pattern proposed
in [32, Lemma C.1] to show the soundness of encoding withe®tdp the reduction semantics (even if for
mobile ambients the case analysis is quite cumbersomegdétr of these reduction rules, first, we choose
a graph expression corresponding to the left-hand sideeofebpective rule itR,,,,. Then, we compute
a graph expression corresponding to the application ofuleeto the given graph expression. Finally, we
show how the left-hand side occurs in the encodift§.’, and we apply LemniaAl 3.

e Assume thatP — @ by Red-Inrule. This means thaP = n[in m.Ry | R1] | m[Rs] andQ =
First of all, we consider a graph expression correspondinipé left-hand side of the rulg;,, in
Ramb, and such that the source of theedge occurs in the input interface, namely,

Lin = “go ® [*Pamb®? o (id, ® (l,pidg"lz;pl ® “Pini2P2)] @ “"pambﬁf’m .

The application of the;,, rule with the identity match results in the value of

R, = ago ® [a,pambgﬁp o (idm ® ﬂ,pambz,P ® aypidg?z;pa) o
(de ® Zd" ® as»PﬂdZ:}[;p:s ® “’pde},;pl ® a’pldgfém)] .

Now, we consider the graphical encoding for By definition, we have

[P]]go = {{amb,, o {id,, @ [iny, o (id,, ® [[RQ]]F)] & [[Rlﬂl“}} ®
[ambm o (idy ® [[R3HI‘)]} @ go .

The expression above can be rewritteri.tg o C, where
C = id, @ id,, @ *2P2 [[RQHF ® @1,P1 [[Rl]]p ® @3:P3 [[RS]]F .
Since, by applying the,, rule,L;,, = R;,,, then by Lemm&aAl3 we hayg”];” = R;,, o C.

Now, we have to show that the value &f, o C is isomorphic to the value quﬁ. So, let us
consider the graphical encoding fQr By definition

QY = {amby, o {id,, ® [amby, o (id,, ® [R1]p @ [Ra]p)] ®
HRB]]F}} ® go .

It is easy to check that the value of the last expression mmasphic to the value oR;,, o C, hence
the result holds.

APPENDIX A. PROOFS OF CHAPTER 3

e Suppose thaP — @ has been obtained by applyiRgd-Outule. It means thaP = m[n[out m.R; |
R2] | Rg] andQ = TL[Rl | RQ] | m[Rg]
Similarly as in the preceding case, first, we consider a geaphession corresponding to the left-hand
side of the rulep,.; in R..mp, and such that the source of the edge occurs in the input interface,
namely,

Lout — “gO ® [aJ’amb%” o (’idm R a,pambzw ® a,pidg?z;ps) o
(de ® Zdn ® a“’p%dg'f'];m ® (l»l)outﬁiypl ® a,pld;l’zi)m)] .

The application op,,,; with the identity match results in the value of

Rout = “go @ [*Pamby® o (id, @ “PidglP* @ “Pidg2P?)] @
PP

Now, we consider the graphical encoding fér By definition

[P = {amby, o {id,, ® {amb,, o {id,, ® [outy, o (idy, @ [R1]p)] @
[Ro]r}} @ [Rs]p}} @ go .

The expression above can be rewrittefi.tg; o C, where
C =1id, ®id,, ® P [[Rlﬂr‘ ® 92:P2 [[RQHF ® @3:P3 [[RB]]F .

Since, by applying th@,,: rule,Lo,; = Ry, then by Lemm&Al3 we haygP];” = R,y o C.
Now, we have to show that the value &f,,; o C is isomorphic to the value qlfQ]]i‘i(’. So, let us
consider the graphical encoding fQr By definition

[Q]¥ = [amby, o (id, @ [Ri] @ [Ra]p)] © [amby, o (idm @
[Rs]p)] @ go

It is easy to check that the value of the last expression masphic to the value oR,,,; o C, hence
the result holds.

e Assume thaPP — @ by Red-Openule. It means thaP = open n.R; | n[Rs] and@ = R; | Ra.
Consider a graph expression corresponding to the left-baledof the rule,,e,, in Ryrmp, and such
that the source of thgo edge occurs in the input interface, namely,

Lopen = “go® “Popengt Pt @ “Pambg2P? .

The application op,y.,, with the identity match results in the value of
Ropen = “go ® “Pidgl Pt @ “Pidg%P? @ free, .

Now, we consider the graphical encoding fér By definition

[P = {lopeny, o (id, @ [R1]p)] @ [amb,, o (id, @ [Ra]p)]} ®
go .

The expression above can be rewrittefi.tg.,, o C, where
C =id,, @ “P1 [[Rl]]p ® @2:P2 [RQHF .

Since, by applying th@,pe, rule Loye, = Ropen, then by Lemmd Al3, we havﬁaP]]lgf’ ==
Ropen o (C

Now, we have to show that the value Rf,,.,, o C is isomorphic to the value dfQ[?’. So, let us
consider the graphical encoding fQr By definition

A.2. FROM REDUCTION RELATION— TO GRAPH REWRITING 99

[Qlr" = ([Ra]r ® [Ra]lr) ® go -

Itis easy to check that the value of the last expression isasphic to the value of *go® “Pidg ;P @
CPidg2r2) o (PR] @ “2P2[Ry]p). Sincen € T, itis immediate to conclude that the value of
[[Q]]lgf’ is isomorphic to the value @&,,.,, o C, hence the result holds.

e Suppose thaP — @ has been obtained by applyifed-Resule. It means tha = (vn)P;,
Q = (vn)Q1 andP; — Q. Consider the graph encodingB]7” and[Q]{’. By definition

[PIF = [(vm @ [Pr{m/n}rygmy) © (Om ® idr)] @ go
[QIF" = [(vm @ [Qu{m/n}]rugmy) © (Om ® idr)] @ go

form ¢ T. Itis easy to see that the value of the first expression alsmig®morphic to the value of
the expression

(vm @ [Pr{m/n}] ny) © (Om @ idr)

SinceP, — Qq, thenP,{m/n} — @Q1{m/n}, and by induction hypothesig,,,;, entails a direct
derivation[P {m/n}]y ;,,, = Gi, suchthaG, = [Qi{m/n}]{},,,,- SO, we can apply Lemma
[A3and say thafP[7" = (v, © [[Ql{m/n}]]{iou{m}) o (0,, ®idr). We conclude by observing that
the value of(v,, ® [Q1{m/n}[{ ;) © (0, ® idr) is isomorphic to the value Q]

e Assume that” — @ by Red-Ambrule. This means tha? = n[P], @ = n[Q1] andP; — Q.
Now, we consider the graph encoding3]{” and[Q[’. By definition

[P]]%o = [amby, o (id, ® [[Plﬂr)] ®go ,
HQ]]iq“o = [ambn © (idn ® [[Ql]]r)] ®go .

It is easy to see that the value of the first expression abdserisorphic to the value of the following
expression

amby, o (id, ® [P1]{) -

SinceP; — @1, by induction hypothesi®,,,;, entails a direct derivatiofiP; [%° = G, such that
G1 = [@:1]7°. So, we can apply LemniaA.3 and say th&{;" = amb,, o (id, @ [Q1]L"). We
conclude by observing that the valuewfb,, o (id, ® [Q1]%’) is isomorphic to the value diQ]?’.

e Suppose thaP — (@ has been obtained by applyifed-Parrule. It means thaP = P, | R,
Q=Q:|RandP, — Q.
Now, we consider the graph encodirfgg]{’ and[Q]{’. By definition

[Pl = ([P1]r ® [R]p) @ go
[QIF" = (Il @ [R) © go -

It is easy to see that the value of the first expression abdsernsorphic to the value of the following
expression:

[A] ® [R]p -
SinceP; — @1, by induction hypothesi®,,,;, entails a direct derivatiof”;, |.° = G, such that

Gy = [@1]%°. So, we conclude by observing that, by LenimalAB]?" — [Q1]}° ® [R]y, and
the value of|Q:]7’ @ [R] is isomorphic to the value diQ]7’

100 APPENDIX A. PROOFS OF CHAPTER 3

e Suppose thal” — @ has been obtained by applyiRed-Congrule. This means thaP = Py,
P — QpandQ; = Q.
SinceP = Py, by Theoreni 311, we hav’]. = [P1]... Analogously, sinc&); = Q, we have
[Q]; = [@1]. Moreover, by hypothesis we havg — @+, so we can apply the induction hypoth-
esis and say thak,,,,, entails a direct derivatiofi;, [%° = G, such thatG = [Q1]%’. Now, we
can notice that, sincg”] = [P1], then[P]{’ = [P1]{’, and similarly sincd Q[= [Q1]r, then
Q¥ = [@1]{. So, itis immediate to conclude that,,,,;, entails a direct derivatioh”]%” —> G,
such thatG = [Q]%".

O

To prove the completeness of our encoding with respect toetthgction relation—, we need to intro-
duce two technical lemmas. The first states a property treacterises those graphs with interfaces in the
image of the encoding.

Lemma A.4. Let P be a process. IR, entails a derivatiorf P]{” = G, then the graph with interfaces
G satisfies the following property: the underlying graph igei and onlyc nodes may have more than
one incoming tentacle. Moreover, the inputs (the node inirttege ofp and the node in the image aj
have no predecessors, and the outputs (the nodes in the imh&yédave no successors.

Sketch.The property clearly holds for all the graph constants usdtié encoding. It is also easy to see
that it is true for the graph expressions resulting from theoeling. In fact, the property is preserved by the
parallel and sequential composition operators, becagsmtérfaces are discrete. Moreover, since all the
rules inR ., also preserve the property, then the lemma holds. O

Now we introduce a simple result concerning the applicatibmles inR ;.-

Lemma A.5. Let G be a graph with discrete interfaces, and &{—] be a graph context, such that the
graph expressio@|[G]| is well-defined and the obvious morphi§in— C[G] is mono. Moreover, letr be

a match for the rule in R, such thatp/m : C[G] = H'. If m covers the subgraply, then there
exists a graph with interfacE, such thatG = H andH’ = C[H].

We now prove the completeness of our encoding with respebitoeduction semantics for processes
with no restrictions on top.

Lemma A.6. Let S be a process with no restriction operators on top andlldte a set of names, such
that fn(S) C I. If R, entails a direct derivatiof S]{” = G, then there exists a procesé such that
S — S andG = [S']{".

Proof. The proof proceeds by induction on the structureSofshich, with no loss of generality, could be
considered in normal form

e AssumeS = 0 or S = M.S;. In both cases the proof is trivial, because there is no dtonr from
ST

e AssumeS = n[S;]. By definition, we havdn[S;]]}" = [amb,, o (id, ® [Si]y)] ® go. We notice
that this last expression can be rewrittemtab,, o (id,, ® [S1]7). Moreover, note that the derivation
[S]% = G via productionp and matchn’ could have been obtained in two ways:

1. the match covers only the grapi; [7’;
2. the match covers both the gradi$s[%” andamb,,.

1. Suppose that the mateh’ covers only the grapfiS;];’. So, by Lemmd A, there exists
a graph with interface&; such that[S;]¥" = G, andG = amb, o (id, ® G;). Since
[S1]¥° = G4, we can apply the induction hypothesis and say that thestseaiprocess;,
such thatS; — S7 andG, = [S1]7.

Let us recall that we have to prove that there exists a pragesach thatS — S’ andG =
[S']E°. We takeS’ = n[Si]. SinceS; — Si, then by applying th&ked-Ambrule we have

A.2. FROM REDUCTION RELATION— TO GRAPH REWRITING 101

S — S’. Moreover, we know thaE, = [S{]{’, hence we hav& = amb,, o (id, @ [S1]").
We conclude by observing that the valueaofb,, o (id, @ [S;]{’) is isomorphic to the value
of [n[S1]]7.

2. Assume that the mateh’ covers both the grapHs;]%” andamb,. In this case, the rewriting
step could have been obtained only by applyinggthe rule. The grapHS]{” has interfaces
({a,p},T) and exactly one occurrence ofja edge, which is outgoing from the image of the
inputa. Moreover, sincd S]%’ satisfies the property stated in LemmalA.4, any matéHor
the rulep,.; has to be injective, at most coalescing theodes corresponding to the names
andn of rule p,.; in Figure[3.16. So, the graphical encoding fohas to have the following
shape

[SIE” =Lout o C

whereC = id,, ® id,, ® “VP [T1] ® *>P2[T5] @ **P3[T3], for Ty, T> andT3 processes
andn andm ambient names, whilg,,; is the expression corresponding to the left-hand side
of thep,..: rule, shown in the proof of Theorem B.2. So, we have that R,,; o C.

Now, we notice that the value §F]7.” is isomorphic to the value '] %, for T = m[n[out m.T} |
T»] | T5]. So, by Theoreri 3|8 = 7.

Let us recall that we have to prove that there exists a proSésaich thatS — S’ and
Ryt 0 C = [S']7°. We takeS’ = n[T} | T»] | m[T3]. SinceT — S’ by applyingRed-
Outrule, andS = T', we haveS — S’ by Red-Congule.

Now, we consider the graphical encoding &r By definition, we have

[S12° = [amby, o (id, ® [T1]p @ [Ta]p)] @ [amby, o (id,, ®
[T5]p)] @ go

It is easy to check that the value of the last expression mdsphic to the value oR,,; o C,
hence the result holds.

e AssumeS = S; | S,. By definition, we havdS; | S2]7" = [[Si]} @ [S2]1] ® go. We notice that
this last expression can be rewritten[)]£° @ [S2] or to [S1] @ [S2]%°. Moreover, we note that
the derivationS]{" = G via productionp and matchn’ could have been obtained in three ways

1. the match covers only one of graghts |{” and[S2]{;
2. the match covers both the gragi$s |%° and[S:] . andp;,, rule has been applied;
3. the match covers both the grafdlsg[%° and[S2] andp,yer, rule has been applied.

1. Suppose thatthe matelf covers only the grapfs;[%°. So, by LemmB&AD, there exists a graph
with interfacesG,, such thaf(S;] = G, andG = G; @ [Sa]. Since[S:]%” = G4, we
can apply the induction hypothesis and say that there exiptecessS], such thatS; — 5]
andG; = [S7]{".

Let us recall that we have to prove that there exists a pragessich thatS — S’ andG =
[S]1°. We takeS” = S} | S. SinceS; — 57, then by applyindRed-Parrule we haveS — 5.
Moreover, we know tha, = [S{]7’, hence we hav& = [S{]%° ® [S2]. We conclude by
observing that the value ¢5/]%° ® [S2] is isomorphic to the value dfS;] | So]{.

2. Assume that the match’ covers both graph$S;]%° and [S>] and thep,,, rule has been
applied. It means that the gluing condition is satisfied ceeamy matchn’ for the rulep;,, can
not identify the twoamb edges of the left-hand side of the, rule in Figurd 3.16. Moreover,
the graph[S]{’ satisfies the property stated in LemmalA.4. Hence, any matdor the rule
pin has to be injective, at most coalescing theodes corresponding to the namesandn of
thep,,, rule in Figurd.3.16. We note that the graf#i{” has interface${a, p},I") and exactly
one occurrence of go edge, which is outgoing from the image of the inpuFrom this follows
that the graphical encoding férhas to have the following shape

[S1¥ = (Lin © C) & [S5] -

102 APPENDIX A. PROOFS OF CHAPTER 3

whereC = id,, ®@id,, ® “ P [T @ 2P [T5] @ *3P3[T3] ., for Ty, T>, T3 and.Ss processes,
andn andm ambient names, while;,, is the expression corresponding to the left-hand side of
thep;,, rule, shown in the proof of Theordm3.2. So, we have that (R;,, o C) ® [S3]-

Now, we note that the value §5];.” is isomorphic to that of ']7’, for T = n[in m.T | T1] |
m[T3] | S3. S0S = T by Theoreni 311.

Let us recall that we have to prove that there exists a progessich thatS — S’ and(R;,, o

C) ® [Ss]p = [S]E. We takeS’ = m[n[Ty | T3] | T3] | S5. SinceT' — S’ by applying
Red-InandRed-Parrules, andS = T, we haveS — S’ by Red-Congule.

Now, we consider the graphical encoding &r By definition, we have

[S']%° = {amb,, o {id,, ® [amb,, o (id, @ [T1]} @ [T2]})] ®
[T5]r}} @ [Ss]r ® go .

Itis easy to check that the value of the last expression masphic to the value ofR;,, o C) ®
[Ss]r, hence the result holds.

3. Suppose that the mateh’ covers both graph§S;[%° and[Sz] and thep,e,, rule has been
applied. The grapljS]7’ has interface${a, p},I') and exactly one occurrence ofja edge,
which is outgoing from the image of the input Moreover, sincdS];.” satisfies the property
stated in LemmB_Al4, any mateh’ for the rulep,.; has to be injective. So, we have that the
graphical encoding fof has to have the following shape

[[S]]izo = (Lopen 0 C) ® [[53]]1“

whereC = id,,® P [T1] ® *>P2[T5], for T1, T, andS; processes andan ambient name,
while L., is the expression corresponding to the left-hand side afghe, rule, shown in the
proof of Theoreni 3]2. So, we have tifat= (Ropen © C) @ [Ss]p-

Now, we notice that the value §&]7’ is isomorphic to the value gf']7’, for T = open n.T; |
n[Ts] | S3. HenceS = T by Theoreni 311.

Let us recall that we have to prove that there exists a progessuch thatS — S” andG =
[S']%°. We takeS” = Ty | T» | Ss. SinceT — S’ by applyingRed-OperandRed-Parrules,
andS = T, we haveS — S’ by Red-Congule.

Now, we consider the graphical encoding &r By definition, we have

[S1% = [Ti]y © [T2]r ® [Ss]r ® go -

It is easy to check that the value of the last expression mdsphic to the value ofR,e,, ©
C) ® [S3], hence the result holds.

]
Now, we can at last show the proof of Theorem 3.3.

Proof of Theoreri 3]3Let P’ = (vn1)...(vn;)S be the normal form of?, such thatvj : n; ¢ T. If
i = 0, that is,P’ is a process without restrictions as top operators, thetdeslds thanks to Lemnm{aAlL6. If
1 > 0, by definition, we have

[[P]]F = {an ® {{VTLQ ® { - ® {(Vnz ® [[SHFUFP/) o (Om ® idFUFP’\{ni})} ©
t }} o (On’z ® Z‘dl—‘U{nl})}} o (Onl ® ZdF)

wherel'pr = {ny,...,n;}.
The value of the expression above is isomorphic to the véltieedfollowing

(an ®...0 Vn, ® [[S]]FUFP/) °© (OFP/ ®ZdF) .
Note that, by Propositidn A3, we have= P’, hence[P]{’ = [P']{°. Since, by hypothesigP];" —

G, and any match covers onf8]. . ,, by LemmdAb, there exists a graph, such tha{S] . , =
G, andG = Gy o (Op,, ® idyp). Since[[S]]FUFP, = Gy, we can apply Lemma_Al6 and say that there

A.3. COLLECTING USELESS RESTRICTIONS 103

exists a process’, such thats — S” andG, = [S']{ -

Let us recall that we have to prove that there exists a pra@essich that? — @ andG = [Q[¥’. We
take@ = (vni)...(vn;)S’. SinceS — S’, then by applyingRed-Resule, we haveP’ — Q. We
also know thatP? = P’, so byRed-Congule we haveP — Q. Moreover, sinceéz; = [S’ %er,v then

G = (Vn, ®@...0 v, @[S]Pr,,) 0 (Or,, ®idr). We conclude by observing that the value of the last

expression is isomorphic to the value[6f];.. O

A.3 Collecting useless restrictions

In this appendix we turn our attention to the proofs of Prajpms[3.3 and Theorerm 3.4, which formalise
respectively the relation between the structural congreest and the encoding introduced in Definition
[3:18, and the relation between process reductions aceptalin’ and graph rewrites.

We begin by a lemma showing that the encoding of reductiomslased with respect to the removal of
restrictions.

LemmaA.7. Let P, @ be processes and IEtbe a set of names, such that(P)U fn(Q) CT. If P — Q
thennf([P]p) = nf([Qlr)-

The proof exploits an obvious extension of Proposifiod 8vBich is applied to finite sequences of
derivations.

Lemma A.8. Let P, Q be processes and IEtbe a set of names, such thai(P)U fn(Q) CT. If P =" Q
thennf([P]r) = nf([Q]r)-

The proof of the result above, the soundness of Propogif@nis8 straightforward: eitheP = Q, or
at least once the lawn)0 = 0 has been applied. Singg /id : [(vn)0]. = [0], the proof goes by
induction on the derivation, proving that rewrites wijthare closed with respect to context application.

The completeness amounts to prove the following propasitio

Proposition A.5. If p,/m : [P]. = G then there exist§) such that? =" Q and[Q] = G.

The proof proceeds by induction on the structureFPofvhich, with no loss of generality, could be
considered in normal form. The only interesting case is wRes ((vN,)S) | ((vNy)0). Itis easy to
check that ifp, /m : [P]. = G, thenG is [P] without the graphical restriction operator for a name
in N,. Itis the graphical encoding @ = ((vN,.)S) | ((v(Ny \ {n;})0), and obviouslyP =’ Q.

Proof of Theoreri 3l4Let us assume thd —’ Q. Then, there exist® such that? — R andR =’ Q by
Propositio 311. This implies thatf ([P]..) = nf([R]y) andnf([P].) = nf([R]y) by the lemmas
above.

Vice versa, let us assume thaf ([P].) = G. Then, there exist& such thaflP]. = H andH
reached by a sequence of derivations applying the role sonf(H) = nf(G). HenceP — @ and

[Qr = H, sonf([P]p) = nf([Qlr) andnf([Q]r) = nf(G). H

104 APPENDIX A. PROOFS OF CHAPTER 3

Appendix B

Proofs of Chapter 4

B.1 Equivalence between the LTSD; and the LTS 84

This section discusses the equivalence between theldf,Jresented in Sectidn 4.6, and the LS
introduced in Section 4l.7. In particular, we provide a prmiofheoreni 4.2, and to this end, in the following
we introduce two useful propositions.

Proposition B.1. Let P be a pure process. R —>93 Q. then there exists a well-formed procé&gssuch
that P s s Q. and for each substitution, Q.0 = Q’o.

Sketch.We begin by observing that the rules in Figlre .17 and thessrinl the first two rows of Figufe 4.19
exactly derive the same transition relation of the reductiglation of mobile ambients. So for them the
proposition trivially holds.

The proof is by cases on the rules to obtﬁm—@ Q..
For the rules in Figure 4:18 we show as an example the case @i thule.

Assume thatP C‘ilg; Q. by IN rule. It means thatt = (vA)(in m.Py|P), m ¢ A, Q. =
(vA)(mlz[Py|Po| X1]| Xz]) andCe[—] = x[—[X1]|m[Xo].

We can note that, by applyingJIruIe inm.Pp Mlg

— X1]|m[Xo]
—>

m[z[Py|X1]|X3]. So, we can applyN-
m[z[Py|P2] X1]| X2]. Since we also known ¢ A, thanks

w—>[| X1]lm{X] Qe,thereforepw Q€

PAR rule and obtairin m.Py|P»

to the rule NRES, we can concludév A)(in m.Py|Ps)
and trivially, for each substitution, Q.c = Q.o.

Proposition B.2. Let P be a pure process. P —>5 Q. then there exists a well-formed procé&gssuch
C[—]ig; Q. and for each substitution, Q.o = Q0.

Sketch.We proceed by induction on the depth of the derivationﬁ’o?[;]?g Q.

As in the proof above, for the rules in the first two rows of FeJd.19 the proposition trivially holds.
Instead, for the remaining rules of the same figure, we shoanasxample the cases fax,l INPAR and
CoNGrrules.

e Assume thaP Ce—[_ls Q. by INrule of Figurd4.IP. It means th&t= in m. P, Q. = m[z[P|X1]| X3)

andC.[—] = z[—|X1]|m[X2]. Itis easy to check thd? MD Q. by IN rule of Figurd 4.1B,
so the proposition trivially holds.

o Assume tha? 2 s Q. by INPAR rule. This means thaP = P'|R/, C.[—] = z[—|X1]|m[X2],
P Y5 QL andQ. = Q{1 /x,).

106 APPENDIX B. PROOFS OF CHAPTER 4

By induction hypothesis, we have/ eI Xa]imXs]

m ¢ AandQ{ = (vA)(m[z[P1|P|X1][Xz]).
Note thatP’'|R’ = (vA)(in m.P;|P)|R" and(vA)(in m.Py|P2)|R' = (vA")(in m.Pj|Py|R'), b
consideringvA)(in m.Py|Py) a-equivalent talv A’) (in m.P{|Py) and A’ N fn(R’) = 0.

Q. This means thaP’ = (vA)(in m.Py|P,),

So, thanks to rule, P'|R XX S whereQ! = (vA')(mlz[PPy R'|X1]|X5)) and it

is easy to check that for each substitutiorQ.c = Q’o.

e Assume thatP —>3 Q. by CoNG rule. This means thaP = P/, P/ —— il g Q.. By induction

6[‘[

hypothesis, we have’ —— Q., hence als®® —p Q. and so the proposition trivially holds.

O]
Theoreni Z.P trivially follows from the two propositions atecand from DefinitionE 416 and 4.7.

B.2 Correspondence between the LTS, and the LTS CA

This section shows the proofs of Propositibnd 4.3[anH 4.4 tséormally prove the correspondence be-
tween our LTSS, defined on pure processes of mobile ambients, and the@A4 $or mobile ambients
proposed by Rathke and Sobiski in [60].

First of all, we introduce the proof of Propositibn ¥.3, negdo prove the first statement of Theorem

3.

Proof sketch of Propositidn 4.3The proof is by cases on the rules to obtﬁ’iﬁ)’%eﬂ Q. We only show
the proof for some rules, because the other cases are analogo

e Assume thal’ M@A QbyCArule. tmeansthaP 5S¢ A, A M—alm Q anda & {[inm],openmn, T}.
Now we proceed by cases on the rules to obfaire A with o ¢ {[inm], openn, 7}. As an ex-
ample, we show the cases of thednd||IN rules.

Assume thatP % A by IN rule. It means thaP = in m.P;, A = AXzY.m[z[P;|X]|Y] and
o = in m. We assume that/® = R,n, S, for R, S processes and ambient name, therefore we
haveQ = mn[Py|R]|S].

We have to show that there exiss, such thatP —L[ls Q. andQ = Q.o%;, with 0§, =

{B)x," /2% /x,}. We takeQ, = m[z[P1|X1]|X2]. Itis easy to check thatn m.P; "]
m[z[Py|X1]|X2] by IN rule. Moreover, we haven[z[P1| X1]| X2]o$;, = m[n][Py|R]|S].

8

mm

Assume thatP % A by ||IN rule. It means thate = inm, P = P|P,, P, ©“%¢ A/, and
A = AX.A'(P|X). We assume that/® = R,n,S, for R, S processes and ambient name,

therefore we havé) = A'(P,|R,n, S). Let us considedl’™ = P,|R,n, S. SinceA M Q, then

A’ —>A Q. Therefore, we havé’, %eﬂ (. By induction hypothesis, there exigfg such

177,m[]

that P, S Q! andQ = Q’o—M,, wherea$,, = {7215/ " /.5 /x,}. We have to show that

there existg)., such thatP —>5 Q. andQ = Q.0%, witho§, = {£/x,," /+,° /x,}. We

in m

takeQ. = Q' {X1/x). Itis easy to check thal; | P, o QU=IX Y by INPAR rule
Moreover, it is obvious tha®” {21X1 / x W /x,.," /2% /x,} = Q’{P?“R/X1 T e Ix,) =

[in'm)]

e Assume thatP —>eA Q by coINA rule. This means that = [inm], P ——¢ A, Me =

R, S,n andAAXY Za.m[z[Y| 2] X]) 22
P

——= 4 Q. Now we proceed by cases on the rules to obtain

e A. As an example, we show the case of t@N rule.

Assume thaf? [m—mle A by colIN rule. It means thaP = m[P;] andA = \Z.Z(P,), and hence we
have@ = m[n[R|S]|P].

B.2. CORRESPONDENCE BETWEEN THE LTS AND THE LTS CA 107

finm][_
We have to show that there exigig, such thatP QJS Qe andQ = Q.08 with o, =
[in m][i]

{7)%,,% /x5," /). We takeQ. = m[z[X1|X,]|P]. Itis easy to check that[P;] CE—>§
m[z[X1]|Xz]|P1] by CoIN rule. andm[z[X1 | Xa]|PI{F/x,,° /x»," [« } = m[n[R|S]| P1].

]
Now we show the proof of Propositidn 4.4, needed to prove ¢leersd statement of TheorédmW.3.

Proof sketch of Propositidn 4.4The proof proceeds by induction on the depth of the derimaﬂoﬁs
Q.. We only show some cases, because the other ones are arglogou
e Assume thatP CE—[_JS Q. by IN rule. This means that = inm, P = in m.P;, C"™[-] =
x[—|X1]Im[X2] andQ. = m[x[P1|X1]|X2]. Moreover, the substitutios has the following shape
{P2/x,," /,F* /x,}, for some ambient name and some processdy and P,. Therefore, we
haveQ = Q.0 = m[z[Py| X1]| X2]{"2/x,," /=,"* /x,} = m[n[P|P]|Ps]. We have to show that
P MGA Q, whereM® = P, n, Ps. Itis easy to check thaP Al AXzY.m[z[P| X]|Y]
tanks to N rule in Figure 6 of{[60]. Moreover, we can applysT rule shown in Figure 7 of [€0], and

say X zY.m[z[P| X]|Y] M—‘?lm m[n[Py|P,]|Ps]. Therefore, thanks to Crule in Figure 8 of[[60],

P—3

m[n[Py|Ps]|Ps], and by SRCNG rule P ———5% Q.

e Assume thatP (ilg Q. by INPAR rule. This means that = in m, P = P;|Q, CI"™[-] =

x[—|X1]|m[Xs], Py < H b andQ. = P.{%1X1/x }. Moreover, the substitution has the
following shape{™2/x,," /.,"* /x, }, for some ambient nameand some processé and P».

Let us consider the substitutiort = {2121/ /. .7 /x.}. Note thatP.o’ = Q.0 = Q. Since
Py C—[fls P,, thenP, Ceﬂ—HiSj P.o'. Therefore, by applying the induction hypothesis, we
inmlﬂt‘;‘,

haveP;, ———%e4 P.o’, WhereJ\7[§ = P|Q1,n, Ps.

We have to show tha®? MGA Q, whereM[;‘ = P, n, P;. We know thatP; inm—lM:?@A P.o'.

This means thaP; m—”% AandA Mi'lm P.o’. SinceP, i”—"?@ A, thanks to||IN rule of Figure
6 in [60], we haveP; |Q; iAo AX.A(Q1]X). Itis easy to check that ift %A P.o’', then we
also have\ X.A(Q+]X) M_;w}ﬂ P.o’. Therefore, by applying £rule in Figure 8 of[[6D], we obtain

i M) M
Q) "M - P’ and by SRCNG rule Pi|Q; e, 0.

o Assume that? “<J; Q. by CoIN rule. This means that = [in m], P = m[Py], C*"™[-] =
—lz[in m.X1|X2] and@. = m[z][X1|X2]|P1]. Moreover, the substitutiom has the following shape
{P2/ P35 /x,™ /. }, for some ambient name and some processés and P,. So, we have) =
Qea = m[n[P2|P3]\P1]

[inm]| Mg [in'm]

We have to show tha® ea Qeo, WhereMg‘ = P,, P3,n. Itis easy to check tha? ——
\Z.Z(Py), by ColN rule in Figure 6 of[[60]. Moreover, byNsT rule shown in Figure 7 of[€0],
(NZ.Z(P))(AXY Zz.m[z[Y|Z]|X]) @A m[n[Py| Ps]|P1]. Therefore, thanks to @NA rule of

[in m] M2 [in m]| M
—_—

m[n[P2|P3]|P1}, and soP ———5% Q

Figure 8 of [60], we can conclude

108 APPENDIX B. PROOFS OF CHAPTER 4

Appendix C

Proofs of Chapter 5

C1 ~(W)BSS__ (W)BS

The proof of Proposition 5l 1 is analogous to the proof of BelpN[5.2.
In order to prove Propositidn 3.2 we give two additional défins of weak barbed saturated bisimula-
tion and we prove that they are all equivalent.

Definition C.1 (Weak Barbed Saturated Bisimulatiord symmetric relatiorR is aweak barbed saturated
bisimulationiff wheneverP R @, then

1. if P |, then@ {,,
2. VC[-], if C[P] —* P'thenC[Q] —* Q' and P’ RQ’.
Proposition C.1. Definition[5.9 and Definitiof Cl1 coincide.

Proof. First of all notice that the second conditions of both definittoincide.

Now, let R be a symmetric relation that satisfies the Definifion 5.9. nTRealso satisfies the first
condition of Definition[CIL. Indeed, suppose thatR Q. If P |,, thenP |, and, sinceR satisfies
Definition[5.9, ther® |..

Now, let R be a symmetric relation that satisfies the Definifion] C.1. nTRealso satisfies the first
condition of Definition[5.D. Indeed, suppose thatR Q. If C[P] |, then there existd”’ such that
C[P] —* P"andP’ |,. SinceR satisfies the second condition of DefinitionIC.1, then theigt®Q’ such
thatC[Q] —* Q" andP’ R Q’. Now, sinceR satisfies the first condition of Definitian C.1, théx |, i.e.,

Q' =" Q" 1o S0,C[Q] =" Q" =" Q" |,,i.e.,C[Q] o O

Definition C.2 (Weak Barbed Saturated Bisimulatiord symmetric relatiorR is aweak barbed saturated
bisimulationiff wheneverP R @, then

1. if P |, then@ {,,
2. VO[], if C[P] — P’ thenC[Q] —* Q' and P’ R Q.
Proposition C.2. Definition[C. and Definitiof C]2 coincide.

Proof. First of all notice that the first conditions of both definitecoincide.

Now, letR be a symmetric relation that satisfies the Definifion] C.1. nTRealso satisfies the second
condition of Definitio . CR. Indeed, suppose ti#aR Q. If C[P] — P’, then alsaC[P] —* P’ and, since
R satisfies Definitiol Cl1, then there exi§$such thaC[Q] —* Q" andP’ RQ'.

Now, letR be a symmetric relation that satisfies the Definifion] C.2. riTRealso satisfies the second
condition of Definitio CIL. Indeed, suppose tiaR Q. If C[P] —* P’ then there exisP] ... P, such
that P/ = P’ andC[P] — P{ — ... — P/. SinceR satisfies the second condition of Definition IC.2,
then there exis® ... Q,, such thatC[Q] —* Q) —* ... =* @), andVi € 1...n, P/ R Q). Thus,
ClQ] —* @), such thatP’ = P/ RQ",. O

110 APPENDIX C. PROOFS OF CHAPTER 5

Now we can prove Propositidn’5.2.

Proof of Propositio 52 We prove that."V 555 C ~WE5S 'showing that the contextual closuseof weak
barbed semi-saturated bisimilarity

S={(C[P],C[Q)) | P~"P55Q, C e C}

is a weak barbed saturated bisimulation with respect to DiefriC.2. Suppose that|P] S C[Q]. The first
condition of Definitio C.P is trivially satisfied, sind@ ~" 259 (.

/\ /\
\/\ \/\

A N

(i)

Suppose thaf[C[P]] — P’.

Then for somgl,r) € YR andd € D we have that the exterior square of diagrajncommutes and
P’ = d[r]. SinceR has redex IPOs we are able to construct an IPO as the loweresqfidiagram 4)
and thenP —/po d'[r]. SinceP ~V555 Q we have thay[Q] —* Q" with d'[r] ~"55% Q'. Now,
sinced”[—] is reactive, we have thaf[C[Q]] = d"[g[Q]] —* d”[Q']. Sinced'[r] ~WEBSS @', then
P'=d"[d[r]] S d"[Q).

In order to prove that"V B3 C ~WBSS it is enough to consider Definitidn 5.9 and to observe that if
C[P] |, thenC|[P] |, and that ifP 51 P’ thenC[P] —* P O

C.2 Mobile Ambients Barbs are Contextual

Before proving Propositidn 3.4, we recall the mobile amtsidvarbs and mobile ambients contexts.
Given a mobile ambients proce$y we haveP |, if P = (vA)(n[Q]|R) andn ¢ A, for some
processe$) and R and a set of restricted namds
Mobile ambients contexts are terms of the extended syntixamiole—, formally, they are generated
by the following grammar:

Cl=]w= =, Cl-][R, (vn)C[=],n[C[-]]

whereR is an arbitrary process.
Now we show the proof of Propositien.4.

Proof of Propositiof. 54 We only prove that mobile ambients barbs are strong cora&karbs. The proof
for the weak case is similar.
We have to show that whenevEr|,, implies@ |,, then for all contexC[—], C[P] |, impliesC[Q] | .
We assumé® |,, implies@ |,, and we prove thatC[—], C[P] |, impliesC[Q] |,. The proof proceeds
by structural induction on the conte&—]|.

e Assume thatU[—] = —. It means tha[P] = P andC[Q] = Q. SinceP |, implies@ |,, itis
obvious thaC[P] |,, impliesC[Q)] |.

e Assume thaC[—] = C’'[-]|R. It means thaC'[P] = C'[P]|R andC|[Q] = C'[Q]|R. If C'[P]|R |n,
then eitherC’[P] |, or R |,,. If C'[P] |,, then we can apply the induction hypothesis and say that
C'Q] ln, and hence als6”’[Q]|R | . In the case oR |, it obvious that als@’[Q]|R | .

BIBLIOGRAPHY 111

e Assume thaC[—] = (vm)C’[—]. It means thaC[P] = (vm)C’'[P] andC|[Q] = (vm)C'[Q)]. If
(vm)C'[P] |n, thenC'[P] |, andn # m. Therefore, we can apply the induction hypothesis and
say thatC’[Q] |,,, and hence alsevm)C’[Q] | .

e Assume thatC[—] = m[C'[-]]. It means thalC[P] = m[C'[P]] and C[Q] = m[C'[Q]]. If
m[C'[P]] |, thenn = m. Therefore, it is obvious that[Q)] |,,.

O

112 BIBLIOGRAPHY

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]
(16]
(17]
(18]
(19]

(20]

R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for theelyonousr-calculus. TCS 195(2):291—
324, 1998.

P. Baldan, A. Corradini, H. Ehrig, M. &we, U. Montanari, and F. Rossi. Concurrent semantics of algebraic
graph transformation. In H. Ehrig, H.-J. Kreowski, U. Montanarg & Rozenberg, editorslandbook of Graph
Grammars and Computing by Graph Transformatieolume 3, pages 107-187. World Scientific, 1999.

P. Baldan, H. Ehrig, and B. #hig. Composition and decomposition of DPO transformations with boxdowe
context. InNICGT'06, volume 4178 o£. NCS pages 153-167. Springer, 2006.

H. Barendregt. The Lambda Calculus — Its Syntax and Semanticdume 103 ofStudies in Logic and the
Foundations of Mathematic&North-Holland, 1984.

J. Bénabou. Introduction to bicategories. Midwest Category Seminavolume 47 ofLectures Notes in Mathe-
matics pages 1-77. Springer, 1967.

F. Bonchi. Abstract Semantics by Observable Contex@D thesis, Department of Informatics, University of
Pisa, 2008.

F. Bonchi, F. Gadducci, and B.dfig. Process bisimulation via a graphical encodingQ&T'06, volume 4178
of LNCS pages 168-183. Springer, 2006.

F. Bonchi, F. Gadducci, and G. V. Monreale. RPO semantics focah®ilus of mobile ambientsviathematical
Structures in Computer Scienibmitted.

F. Bonchi, F. Gadducci, and G. V. Monreale. Labelled transitiomsnfobile ambients (as synthesized via a
graphical encoding). IEXPRESS’08volume 242(1) oENTCS pages 73-98, 2009.

F. Bonchi, F. Gadducci, and G. V. Monreale. On barbs and labekactive systems. 180S’09 volume 18 of
EPTCS pages 46-61, 2009.

F. Bonchi, F. Gadducci, and G. V. Monreale. Reactive systéaded semantics, and the mobile ambients. In
FOSSACS’'09volume 5504 o£ NCS pages 272-287. Springer, 2009.

F. Bonchi, F. Gadducci, G. V. Monreale, and U Montanari. Satar&TSs for adhesive rewriting systems. In
ICGT’10, volume 6372 oLNCS Springer, 2010.

F. Bonchi, B. Kdnig, and U. Montanari. Saturated semantics for reactive systeniegin in Computer Sciengce
pages 69-80. IEEE Computer Society, 2006.

M. Boreale, R. De Nicola, and R. Pugliese. Asynchronous ebsens of processes. In M. Nivat, edit¢i0S-
SaCS’'98volume 1378 oL NCS pages 95-109. Springer, 1998.

R. Bruni, F. Gadducci, and U. Montanari. Normal forms for &lge of connectionsICS 286(2):247-292, 2002.
L. Cardelli and A. Gordon. Mobile ambient$CS 240(1):177-213, 2000.

I. Castellani and M. Hennessy. Testing theories for asynclusitanguages. In V. Arvind and R. Ramanujam,
editors,Foundations of Software Technology and Theoretical Computer Scieoleene 1530 ofLNCS pages
90-101. Springer, 1998.

P. Cenciarelli, I. Talamo, and A. Tiberi. Ambient graph rewriting.N. Marti-Oliet, editor,Rewriting Logic and
its Applications volume 117 oENTCS pages 335-351. Elsevier, 2005.

A. Corradini and F. Gadducci. An algebraic presentation of teraplgs, via gs-monoidal categorieApplied
Categorical Structures’:299-331, 1999.

A. Corradini, U. Montanari, and F. Rossi. Graph procesBesdamenta Informatica®6(3/4):241-265, 1996.

114

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]
[41]

[42]
[43]
(44]

[45]

BIBLIOGRAPHY

A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, andlNwe. Algebraic approaches to graph transfor-
mation |: Basic concepts and double pushout approach. In G. RemgrdditorHandbook of Graph Grammars
and Computing by Graph Transformatiorolume 1, pages 163—-245. World Scientific, 1997.

Grohmann. D. and M. Miculan. Reactive systems over directethpits. INCONCUR ’'07 volume 4703 of
LNCS pages 380-394. Springer, 2007.

P. Di Gianantonio, F. Honsel, and M. Lenisa. Rpo, secondrazdatexts, and\-calculus. InFoSSaCS ’'08
volume 4962 oLNCS pages 334-349. Springer, 2008.

F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge reptem® graph grammars. In G. Rozenberg, editor,
Handbook of Graph Grammars and Computing by Graph Transformatiolume 1, pages 95-162. World Sci-
entific, 1997.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentz&undamentals of Algebraic Graph Transformatio8pringer,
2006.

H. Ehrig, G. Engels, Kreowski H. J., U. Montanari, and G. Rum¥g, editorsHandbook of Graph Grammars
and Computing by Graph Transformatiorolume 1-3. World Scientific, 1997-1999.

H. Ehrig and B. Knig. Deriving bisimulation congruences in the DPO approach to graphtireg. In FoS-
SaCS’04volume 2987 ot NCS pages 151-166. Springer, 2004.

H. Ehrig and B. Konig. Deriving bisimulation congruences in the DPO approach to grapfitireg with borrowed
contexts.Mathematical Structures in Computer Scient&(6):1133-1163, 2006.

H. Ehrig, M. Pfender, and Schneider H. J. Graph-grammensalgebraic approach. Bwitching and Automata
Theory pages 167-180. IEEE Computer Society Press, 1973.

G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of antbigia graph synchronization with mobility. In
A. Restivo, S. Ronchi Della Rocca, and L. Roversi, edittiedian Conference on Theoretical Computer Science
volume 2202 oLNCS pages 1-16. Springer, 2001.

C. Fournet and Gonthier. G. A hierarchy of equivalences §gnahronous calculi. IlCALP, pages 844-855,
1998.

F. Gadducci. Graph rewriting for the-calculus.Mathematical Structures in Computer Scient@é(3):407—437,
2007.

F. Gadducci and R. Heckel. An inductive view of graph transfation. In F. Parisi-Presicce, edit®ecent Trends
in Algebraic Development Techniqueslume 1376 oL NCS pages 219-233. Springer, 1997.

F. Gadducci and G. V. Monreale. A decentralized implementationadfile ambients. I"RCGT’08, volume 5214
of LNCS pages 115-130. Springer, 2008.

F. Gadducci and G. V. Monreale. A decentralised graphical implgation of mobile ambientgournal of Logic
and Algebraic Programmindg0(2):113-136, 2011.

F. Gadducci and U. Montanari. A concurrent graph semargicsibbile ambients. In S. Brookes and M. Mislove,
editors,Mathematical Foundations of Programming Semanticdume 45 ofENTCS Elsevier Science, 2001.

A. D. Gordon and L. Cardelli. Equational properties of mobile amtsieMathematical Structures in Computer
Science13(3):371-408, 2003.

D. Grohmann and M. Miculan. Deriving barbed bisimulations forrdjhical reactive systems. I€GT'08 -
Doctoral Symposiurvolume 16 ofECEASSTEASST, 2008.

A. Habel, J. Miller, and P. Plump. Double-pushout graph transformation revisitathematical Structures in
Computer Sciencd 1(5):637-688, 2001.

K. Honda and N. Yoshida. On reduction-based process seraah@S 151(2):437-486, 1995.

0. Jensen and R. Milner. Bigraphs and mobile processes. ibe¢tReport 580, Computer Laboratory, University
of Cambridge, 2003.

O. H. Jensen and R. Milner. Bigraphs and transition®?@PL, pages 38—49, 2003.
0O.H. JensenMobile Processes in Bigraph®hD thesis, University of Aalborg, 2008.

S. Lack and P. Sobatski. Adhesive and quasiadhesive categori€seoretical Informatics and Applications
39(3):511-545, 2005.

J. Leifer and R. Milner. Deriving bisimulation congruences faative systems. I€oncurrency Theorwolume
1877 ofLNCS pages 243-258. Springer, 2000.

C.2.

[46]

[47]

(48]
[49]
[50]

[51]
[52]
(53]

(54]

[55]

[56]
[57]

(58]

[59]

(60]

(61]

[62]

(63]

(64]

BIBLIOGRAPHY 115

F. Levi and D. Sangiorgi. Controlling interference in ambientsP@PL, pages 352—364, 2000.

M. Merro and F. Zappa Nardelli. Behavioral theory for mobile @&nks. Journal of the ACM52(6):961-1023,
2005.

R. Milner. Communication and Concurrenci?rentice Hall, 1989.
R. Milner. Communicating and Mobile Systems: th&€alculus Cambridge University Press, 1999.

R. Milner. Bigraphs for petri nets. I€oncurrency and Petri Nets/olume 3098 ofLNCS pages 686—-701.
Springer, 2004.

R. Milner. Pure bigraphs: Structure and dynamicgormation and Computatiqr204(1):60-122, 2006.
R. Milner. Local bigraphs and confluence: Two conjectugSTCS 175(3):65-73, 2007.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile proessgarts | and llinformation and Computatign
100(1):1-77, 1992.

R. Milner and D. Sangiorgi. Barbed bisimulation. IBALP, volume 623 ofLNCS pages 685-695. Springer,
1992.

N. Mylonakis and F. Orejas. Another fully abstract graph semaifiticthe ambient calculus. Presente@aaph
Transformation - Verification and Concurrency 2007

D. M. R. Park. Concurrency and automata on infinite sequenvodsme 104 olLNCS Springer, 1980.

G. D. Plotkin. A structural approach to operational semantilmurnal of Logic and Algebraic Programming
60-61:17-139, 2004.

J. Rathke, V. Sassone, and P. Soheki. Semantic barbs and biorthogonality. FoSSaCS’0;7volume 4423 of
LNCS pages 302-316. Springer, 2007.

J. Rathke and P. Sobdski. Deconstructing behavioural theories of mobility. Timeoretical Computer Science
volume 273 ofLNCS pages 507-520. Springer, 2008.

J. Rathke and P. Sobdski. Deriving structural labelled transitions for mobile ambient€Cémcurrency Theory
volume 5201 oL NCS pages 462-476. Springer, 2008.

V. Sassone and P. Sobaski. Deriving bisimulation congruences using 2-categoiasdic Journal of Comput-
ing, 10(2):163-183, 2003.

V. Sassone and P. Sobbski. A congruence for Petri nets. Retri Nets and Graph Transformatipmolume 127
of ENTCS pages 107-120. Elsevier, 2005.

V. Sassone and P. Sobbski. Reactive systems over cospans.Lagic in Computer Scienc@ages 311-320,
2005.

P. Soboduski. Deriving bisimulation congruences from reduction systeikD thesis, BRICS, Department of
Computer Science, University of Aaurhus, 2004.

	Introduction
	Thesis Contribution
	Outline of the Thesis

	Background on reactive systems
	The Theory of Reactive Systems
	The Theory of G-reactive Systems
	Graph Transformation and the Borrowed Context Technique
	DPO Rewriting with Borrowed Contexts
	Relating Borrowed Contexts and G-Reactive Systems

	Graphical encodings for mobile ambients and asynchronous ccs
	Mobile Ambients
	An alternative congruence

	Graphs and Graphs with interfaces
	Two operations on graphs
	Applying the operations

	Graph Rewriting
	Parallel Independence and Confluence

	Graphical Encoding for Processes of Mobile Ambients
	A Graph Transformation System for Mobile Ambients
	Collecting useless restrictions
	Concurrency and Interference
	Related Work
	Graphical Encoding for Asynchronous ccs
	Summary

	RPO semantics for mobile ambients and asynchronous ccs
	Extended Mobile Ambients
	DPO Rewriting for Graphs with Interfaces
	Graphical Encoding for Extended Mobile Ambients Processes
	Graph Transformation for the Extended Mobile Ambients
	The Synthesized Transition System
	Process variables, graphically
	Examples of borrowed transitions
	Reducing the Borrowing
	Minimal transitions

	A New LTS for Mobile Ambients
	The labelled rules on processes...
	...from the borrowed rules on graphs

	An SOS Presentation for the Derived LTS D
	Equivalence between LTSs
	A Labelled Transition System for the Asynchronous ccs
	Summary

	Barbed semantics for reactive systems
	Adequacy of IPO Semantics
	Barbed Semantics

	Mobile Ambients
	Barbed Semantics for Reactive Systems
	Barbed Saturated Bisimilarity
	Weak Barbed Saturated Bisimilarity

	Labelled Characterizations of Barbed Congruences for Mobile Ambients
	On Observing Ambient Migration

	Labelled Characterizations of Asynchronous Bisimilarity
	Summary

	On barbs and labels in reactive systems
	A New Semantics for Reactive Systems: L-Bisimilarity
	Barbed Saturated Bisimilarity via L-bisimilarity

	L-Bisimilarity for Mobile Ambients
	L-Bisimilarity for Asynchronous ccs
	Summary

	Conclusions and Future Work
	Proofs of Chapter 3
	 Mobile Ambients Congruence versus Graph Isomorphism
	 From reduction relation to graph rewriting
	 Collecting useless restrictions

	Proofs of Chapter 4
	Equivalence between the LTS DI and the LTS SI
	Correspondence between the LTS SI and the LTS CA

	Proofs of Chapter 5
	 (W)BSS=(W)BS
	Mobile Ambients Barbs are Contextual

	Bibliography

