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Abstract

Reactive systems represent a meta-framework aimed at deriving behavioral congruences for those specifi-
cation formalisms whose operational semantics is providedby rewriting rules.

The aim of this thesis is to address one of the main issues of the framework, concerning the adequacy of
the standard observational semantics (the IPO and the saturated one) in modelling the concrete semantics of
actual formalisms. The problem is that IPO-bisimilarity (obtained considering only minimal labels) is often
too discriminating, while the saturated one (via all labels) may be too coarse, and intermediate proposals
should then be put forward.

We then introduce a more expressive semantics for reactive systems which, thanks to its flexibility,
allows for recasting a wide variety of observational, bisimulation-based equivalences. In particular, we
propose suitable notions of barbed and weak barbed semantics for reactive systems, and an efficient char-
acterization of them through the IPO-transition systems.

We also propose a novel, more general behavioural equivalence: L-bisimilarity, which is able to re-
cast both its IPO and saturated counterparts, as well as the barbed one. The equivalence is parametric
with respect to a setL of reactive systems labels, and it is shown that under mild conditions onL it is a
congruence.

In order to provide a suitable test-bed, we instantiate our proposal over the asynchronous CCS and, most
importantly, over the mobile ambients calculus, whose semantics is still in a flux.
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Chapter 1

Introduction

The ever increasing diffusion of concurrent and distributed systems stimulated the development of novel
formalisms for their specification. Roughly, on the one sidewe have more classical, syntax-based frame-
works such as those related to process calculi; on the other side we witness the renewed interest towards
visual models based on graph rewriting. Nowadays, these formalisms usually provide an abstract presenta-
tion of the behaviour of a system by resorting to some kind of operational description, eventually exploiting
an observational equivalence.

Reduction semantics. At its simplest, the dynamics of a computational model is defined by means of
a reduction semantics1: a set representing the possible states of the system, plus an unlabelled relation
among these states, called reduction relation. The set of possible states is often provided by means of an
equational specification, denoted as “structural congruence” in the process calculi literature, stating which
presentations intuitively specify the same system, up-to asyntactical rearrangement of its components. The
reduction relation, usually denoted by→, describes the evolution of systems over time:P → Q means
that the stateP reduces toQ, that is,P can execute a computational step and it is transformed intoQ. The
reduction relation is closed under structural congruence and it is inductively generated by a set of axioms
and a set of structural rules, which close the relation undersome contexts. A reduction rule is a pair〈l, r〉,
wherel represents the left hand side of the rule andr is the right hand side. So, a stateP reduces into a
stateQ, P → Q, if the left hand sidel of a reduction rule occurs in it, that is,P = C[l]. In this case, the
left hand side is replaced by the right hand sider and thereforeQ = C[r].

For example, the reduction rule modelling the (asynchronous) CCS-like communication over a channel
a is a.P | ā → P . Intuitively, the rule says that a process sending a messageon a channela and a
process receiving on the same channel can react by consumingthe two actions and continuing asP . So,
the operational semantics of the processa.b.0 | ā | c̄ is obtained by instantiating the above rule tob.0 and
contextualizing it in the unary context− | c̄, hence obtaining the reductiona.b.0 | ā | c̄→ b.0 | c̄.

Despite the advantage of conveying the semantics with relatively few compact rewriting rules, the main
drawback of reduction semantics is that it may be quite hard to devise meaningful behavioral equivalences
(i.e., state equivalences based on the possible behaviour of systems), and more so if they are required to be
congruences (that is, closed with respect to all the contexts of the specification). Being a congruence is a
desirable property, since it allows one to replace a subsystem with an equivalent one without changing the
behaviour of the overall system, thus stimulating the need of defining similar equivalences for reduction-
based formalisms.

Barbed semantics. Various attempts of defining compositional behavioral equivalences starting from a
reduction semantics have been made. An intuitive proposal already appearing in the literature on func-
tional languages [4], and further expoited in the field of process calculi [54], is based on so-calledbarbed
equivalences, uniformly describing an equality between systems specified by using calculi equipped with a
reduction relation and a notion of predicate, calledbarb, which usually detects the possibility of performing
some action. In particular, in [54] the authors take into account CCS [48], by showing that for that calcu-
lus the congruence induced by so-calledbarbed bisimulationcoincides with standard, strong bisimulation.

1The reduction semantics is also called reduction semantics, so from now on we will use them indifferently.
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However, the framework proved successful also for other calculi as well (and we just mention here the case
of mobile ambients [16], as reported in [47]), each time adopting an ad-hoc notion of barb, specific for the
calculus at hand. However, these equivalences often require the quantification over all contexts, so proofs
of system equivalence can be very complex and hard to provide.

Labelled transition systems. An alternative approach equips the computational formalisms with an ob-
servational semantics by adding alabel to each reduction. A labelled transition system (LTS) consists of
a set of states and a labelled transition relation, i.e., an indexed relation among states, describing how the
system can interact with the environment. So, for instance,a transition with labelα from a stateP to the
stateQ, in symbolsP

α
−→ Q, means thatP can evolve toQ by interacting with the external environment,

and the labelα describes the interaction. Labels are exploited to define more abstract semantics by identify-
ing systems with the same observational behaviour, in orderto abstract aspects of system behaviour which
should be ignored. Often, these observational equivalences (let them be alternative variants such as trace,
testing, bisimulation . . . ) are compositional, that is, they are congruences with respect to all the possible
contexts of the specification.

These labelled semantics are usually less intuitive than the reduction ones, and it might be difficult
to identify the intuitively correct LTS specifying a given formalism. A case at hand is the calculus of
mobile ambients[16], for which only recently suitable labelled semantics were proposed [47, 60], while for
example forπ-calculus [49], there exist at least two main LTSs, the earlyand the late version, giving rise to
different behavioural equivalences.

Deriving bisimulation congruences from reductions. A series of papers recently addressed the need to
derive LTSs starting from a reduction semantics, in order toderive observational equivalences (and more
specifically, bisimulation equivalences [48, 56]) that arealso congruences. The most successful technique
adopted so far is represented by the theory ofreactive systems[45]. It is based on so-calledrelative pushouts
(RPOs), capturing in an abstract setting the intuitive notion of “minimal” environment into which a system
specification has to be inserted, in order to allow a reduction to occur. The idea is very simple: whenever
a system specified by a termC[P ], i.e., by a subtermP inserted into a (unary) “minimal” contextC[−],

may evolve to a stateQ, the associated LTS has a transitionP
C[−]
−−→ Q, i.e., the stateP evolves intoQ with

a labelC[−]. The resulting behavioural equivalence, calledIPO-bisimilarity, is a congruence if “enough”
RPOs exist.

Should all the possible contexts allowing a reduction be admitted, the resulting equivalence, denoted as
saturated bisimilarity, would also result in a congruence. However, it is usually untractable, since it has
to tackle a potentially infinite set of contexts. The problemhas been addressed in [13] by introducing an
“efficient” characterization (so-called semi-saturation) of these semantics, where one avoids considering
all possible contexts by using in a cunning way RPOs, at the price of modifying the standard, symmetric
presentation of the (either strong or weak) bisimulation equivalences.

In any case, providing the proof that e.g. a process calculussatisfies the requirements needed for apply-
ing the RPOs technique is often quite a daunting task, due to the intricacies of the structural congruence.
A way out of the impasse is to look for graphical encodings of processes, such that process congruence
is turned into graph isomorphism. Graph formalisms are moreamenable to the RPOs trappings, and once
the processes of a calculus have been encoded as graphs, a suitable LTS can thus be distilled. Indeed, the
main source of examples concerning RPOs have beenbigraphs[51], a graphical formalism introduced for
specifying concurrent and distributed systems.

It is noteworthy that, should the reduction relation over graphs be defined using the double pushout
(DPO) approach [2], these graphs are amenable to theborrowed contexts(BCs) technique [28], which
offers a constructive solution for calculating the minimalcontexts enabling a graph transformation rule.
Indeed, graphs form anadhesivecategory [44], and for these formalisms borrowed context and RPO may
be proved to be coincident notions [63].

1.1 Thesis Contribution
A less explored, yet a key issue in the theory of reactive systems concerns the adequacy of the observational
semantics associated to the distilled LTS. As discussed in [6], IPO-bisimilarity is often too strict (it identifies
less systems than expected), while the saturated one may be too coarse. As a paradigmatic case, the standard
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strong bisimilarity forCCS[48] coincides with the IPO-bisimilarity, and it is strictly included in the saturated
one [7]; while for the asynchronous version of the calculus [31] IPO-bisimilarity does not capture the
standard semantics (see below).

Barbed semantics for reactive systems. From a theoretical point of view, possibly the main technical
contribution of this thesis is the introduction of suitablenotions of (weak) barbed semantics for reactive
systems, and their efficient characterization via transition systems labelled with minimal contexts, by ex-
ploiting the semi-saturated game. In order to properly establish the adequacy of the framework, we check
it against suitable case studies. To this end, we instantiate our proposal over the asynchronousCCS, and
most importantly, over the calculus of mobile ambients, whose observational semantics is still in a flux. In
particular, for the asynchronousCCS, we show that strong barbed semantics is able to capture the standard
asynchronous bisimilarity for the calculus, while for mobile ambients, we prove that the strong and the
weak reduction barbed congruence, proposed respectively in [60], and in [47], coincide with the strong and
weak barbed semantics for the calculus.

A more general behavioural equivalence for reactive systems. After the introduction of the more ex-
pressive barbed semantics for reactive systems, we take a step forward, by proposing a novel behavioural
equivalence: L-bisimilarity. The equivalence is so calledbecause it is parametric with respect to a setL
of minimal labels and we show that under mild conditions onL it is a congruence. The equivalence is
intermediate between its IPO and saturated counterparts: indeed, it is able to recover both of them, by sim-
ply varying the set of labelsL. Furthermore, L-bisimilarity can also recast the notion ofbarbed semantics
for reactive systems discussed above. With respect to the barbed case, L-bisimilarity admits a streamlined
definition, where state predicates play no role. It is thus ofsimpler verification, and its introduction may
have far reaching consequences over the usability of the reactive systems formalism. In order to provide a
suitable test-bed, we instantiate our proposal again by addressing the semantics of the asynchronousCCS

and of the calculus of mobile ambients.

Graphical encodings. For mobile ambients as well as asynchronousCCS, in order to identify the set
L of minimal labels we exploit two minimal LTSs distilled by means of graphical encodings. In order to
perform such a synthesis, processes are mapped into standard graphs such that process congruence is turned
into graph isomorphism, while the reduction relation over processes is captured by a set of graph rewriting
rules. In particular, while the graphical encoding for the asynchronousCCS is an adaptation of the one for
the synchronous version proposed in [7], we present a novel encoding for the mobile ambients calculus,
discussing its differences and advantages with respect to alternative proposals in literature, and providing
an in-depth study. We also discuss the concurrency featuresof the proposed graph transformation system
and we show how the information about dependencies among (causally related) rewriting steps offered
by the graph-based semantics of mobile ambients may be used to identify interferences between process
reductions, formalising the taxonomy proposed in [46].

Minimal LTSs via graphical encodings. Graphical encodings for mobile ambients and asynchronous
CCS, are used to distill LTSs on (processes encoded as) graphs, by applying the borrowed context mech-
anism, hence, an instance of the RPO technique. For each calculus, we then use the synthesized LTS in
order to infer a set of rules that is directly defined on the processes. As far as the mobile ambients calculus
is concerned, we also propose an alternative, yet equivalent presentation of that LTS, by means of a set of
structural rules, and we prove that it is the same as the one previously proposed in [60].

1.2 Outline of the Thesis
Chapter 2. Background on reactive systems: In this chapter we aim at giving a general introduction to
the theory of reactive systems [45] and its extension to 2-dimensional categories [61]. We also introduce
the borrowed context technique [28], addressing the problem of deriving labelled transitions systems from
unlabelled reduction rules in the context of the double-pushout (DPO) approach to graph rewriting. Finally,
a sketch of the connection between the two approaches is reported, as devised in [63].

Chapter 3. Graphical encodings for mobile ambients and asynchronous CCS: In this chapter we
present the graphical encodings for the two calculi on whichwe test the main results presented in the thesis,
namely, mobile ambients [16] and asynchronousCCS. In particular, here we briefly introduce the two
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calculi and for both of them we define an encoding mapping processes into graphs, showing its soundness
and completeness with respect to the reduction semantics ofthe calculus. Such encodings will be then used
in the next chapter for the synthesis of minimal labelled transition systems over graphs.

Much of the content of this chapter appeared first in the conference paper [34] and then in its journal
version [35]: only Section 3.9 can be found in the conferencepaper [12].

Chapter 4. RPO semantics for mobile ambients and asynchronous CCS: In this chapter we apply
the borrowed contexts technique to the two graphical encodings presented in the previous chapter. In
particular, for both mobile ambients and asynchronousCCS, we present a suitable LTS directly defined over
the structure of processes, obtained analyzing the synthesized LTS on graphs. These LTSs will be essential
in showing the adequacy of the results presented in the two following chapters.

The development about the synthesis of the labelled transition systems for mobile ambients first ap-
peared in the workshop paper [9] and in its submitted journalversion [8]. The part concerning the asyn-
chronousCCScan be found in [10] and [12].

Chapter 5. Barbed semantics for reactive systems: In this chapter we provide a framework for recasting
(weak) barbed equivalence in the reactive systems formalism. We prove that our proposal captures the
behavioural semantics for mobile ambients proposed in [60]and [47], as well as the standard semantics for
asynchronousCCS. To this end we exploit the minimal contexts semantics for these calculi presented in
Chapter 4.

Most of the results presented in this chapter were publishedin the conference paper [11].

Chapter 6. On barbs and labels in reactive systems: In this chapter we present a new, more general
semantics for reactive systems, namely L-semantics, whichis able to capture both its minimal and saturated
counterparts, as well as, under suitable conditions, the more expressive barbed semantics. We test the
proposed framework on the case studies, by showing that our proposal is able to capture the standard
semantics for the mobile ambients and asynchronousCCS.

Results of this chapter appeared in the workshop paper [10].

Chapter 7. Conclusions: In this chapter we summarize the main results of the thesis and sketch possible
future lines of research.

At the end of the thesis there are three technical Appendices, namely A, B and C, where we show the
proofs of the results presented in Chapters 3, 4 and 5, respectively.



Chapter 2

Background on reactive systems

This chapter aims at giving a general introduction to the theory of reactive systems (Section 2.1), and its
2-categorical extension (Section 2.2). The borrowed context technique is also presented, and a sketch of
its relationship with the general framework included (Section 2.3). In the presentation of the chapter we
assume some elementary knowledge of the basic notions of category theory (pushouts, pullbacks, . . . ).

2.1 The Theory of Reactive Systems
This section summarizes the main results concerning (the theory of) reactive systems introduced by Leifer
and Milner [45]. The aim of the formalism is deriving labelled transition systems for those specification for-
malisms whose operational semantics is provided by reduction rules, such that the associated bisimulation
equivalence is a congruence.

The framework is centered on the concepts ofcontext, termandreduction rules.
Roughly, a context is a term with a hole. Given a contextC[−] and a termt, we would like to plug

t into C[−] and obtain the termC[t]. Moreover, given two contextsC[−] andD[−], we would like to
compose them by substituting for example the first context within the second one so obtaining the new
contextD[C[−]]. This substitution operation between contexts should be also associative. This means
that the context we obtain by insertingC[−] insideD[−] and then the resultD[C[−]] insideE[−] should
coincide with the term obtained by first insertingD[−] insideE[−] and then plugging the contextC[−]
in the resulting contextE[D[−]]. Moreover, we would like to have an identity context−, such that the
context obtained by plugging a contextC[−] into − is exactlyC[−] itself. It is therefore quite natural to
model contexts as arrows of a category where composition of arrows is composition of contexts, and objects
describe the types of such contexts.

In order to model a term as a context with no hole, we need adistinguishedobject0 of the category,
which is a special object denoting the lack of holes, such that arrows having0 as domain represent terms.

Now, the last concept we need to introduce before giving the formal definition of reactive systems is
the one of reduction rules. They are pairs of (ground) terms (arrows with domain0) 〈l, r〉, wherel is the
left-hand side of the rule andr is the right-hand side. The reduction relation is hence obtained by closing
them under certain contexts, calledreactive contexts. Indeed, in general, there might be contexts inside
which reductions cannot occur. For example, if we consider the Milner’s CCS, we have thatb | b̄→ 0 yet
a.(b | b̄) has no reduction.

Now, we are ready to introduce the definition of reactive system. Given a categoryC, we denote the
class of morphisms with sourcem and targetn by C(m,n).

Definition 2.1 (Reactive System). A reactive systemC consists of

1. a categoryC;

2. a distinguished object0 ∈ C;

3. a composition-reflecting subcategoryD of reactive contexts;

4. a set of pairsR ⊆
⋃

I∈C C(0, I)×C(0, I) of reduction rules.
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By composition-reflecting we mean thatd; d′ ∈ D impliesd, d′ ∈ D. Note that the left-hand and right-
hand sides of reduction rules have the same codomain. This allows to obtain the definition of reduction
relation which is generated from the reduction rules by closing them under all reactive contexts.

Definition 2.2 (Reduction Relation). Given a reactive system〈C, 0,D,R〉, the reduction relation→ is
defined as follows:P → Q iff P = l; d andQ = r; d for some reduction rule〈l, r〉 ∈ R and reactive
contextd ∈ D (Figure 2.1).

I2

I1

d

OO

==

0

l

II
P

==

r

UU
Q

aa

Figure 2.1: Reduction relation

Example 2.1. Let us consider the Simple Process Calculus (SPC), a trivialsubset of the Milner’s CCS
proposed in [64]. The first row of Figure 2.2 shows the syntax of the calculus. We assume a setN of names
ranging over bya, b, c, . . . , and we letP,Q,R, . . . range over the set of processes.

The processes are considered up to the structural congruence (≡) induced by the only axioms in the
second row of Figure 2.2. In order to keep the example as simple as possible, no structural rule guaranteeing
that the0 process is the identity for parallel composition is added.

The transition relation→ is defined by the rules in the bottom of the same figure. The firstaxiom on the
left models the synchronization over a channela. The middle and the right rules instead model the closure
of the relation with respect to the parallel composition andthe structural congruence.

In the following we define the corresponding reactive systemCSPC = 〈C, 0,D,R〉.

The categoryC. It has only0 and1 as objects, and terms over the signatureΣ = 0 : 0, a : 0, ā : 0, | : 2
(corresponding to the SPC grammar) as arrows. Terms are considered quotiented by the associativity and
commutativity equations (second row of Figure 2.2) . In particular, the homsetC(0, 0) contains only the
identity arrow. There are no arrows from1 to 0. Arrows ofC(0, 1) represent ground terms, while arrows
of C(1, 1) represent contexts, that is, terms with just one hole.

Note that the composition of arrows models the substitutionof a context in the unique hole within
another context. In particular, two types of substitution are allowed: the composition between a closed term
P : 0 → 1 and a contextC[−] : 1 → 1 resulting in the closed termC[P ] : 0 → 1, and the composition
between a contextC[−] : 1→ 1 and a contextD[−] : 1→ 1 resulting in the contextD[C[−]] : 1→ 1.

The distinguished object.The object0 denoting the lack of hole.

P ::= 0, a, ā, P | P

(P | Q) | R ≡ P | (Q | R) P | Q ≡ Q | P

a | ā→ 0
P → Q

P | R→ Q | R
P ′ ≡ P, P → Q,Q ≡ Q′

P ′ → Q′

Figure 2.2: Syntax, structural congruence and reduction relation of SPC.
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Reactive contexts.All contexts are reactive.

Reduction rules.The set{〈a | ā,0〉 | a ∈ N}.

The behaviour of a reactive system is expressed as an unlabelled transition system. As previously said,
this kind of semantics is very natural and intuitive, but unfortunately it is not compositional. For example,
consider the two SPC processesa andb, neither of them can perform a transition, so since they havethe
same operational behavior they are considered equivalent.If we insert them into the context− | ā, the
former has a transition because it can execute the synchronization over the channela, instead the latter has
no transition. So, the equivalence is not preserved and hence it is not a congruence.

Labelled transition systems represent an alternative method used to give the operational semantics of
formalisms, often inducing compositional behavioural equivalences.

Figure 2.3 shows the LTS for the fragment of the CCS introduced in Example 2.1. We adopt the same
presentation used in [64]: the rules of the LTS are indeed notin the standard SOS style [57] and there is also
an explicit rule closing the transition relation under the structural congruence. The first two axioms model
the execution respectively of an input and an output over a channel. The middle axiom instead models
the internal computation, while the last two rules model theclosure of the labelled transition relation with
respect to the parallel composition and the structural congruence, respectively.

If we consider again the two SPC processes above, that is,a andb, we can easily note that the LTS
semantics above allows us to immediately distinguish them.The former indeed has the labelled transition

a
a
−→ 0, while the latter has no transition labelled witha, but just one labelled withb, b

b
−→ 0.

Intuitively, the transitiona
a
−→ 0 tell us that the processa can interact by performing an input over the

channela. In this case the label of the transition reflects an agent’s capability to perform a certain action.
If we shift our attention from the agent’s capability to the context allowing the agent to react, the labelled

transition above becomesa
−|ā
−→ 0. In this case, instead of observing thata can execute an input overa, we

observe that it can interact with a context offering an output overa.
So, by using this idea of having contexts as labels, we can derive an LTS from a reactive system. The

most immediate way to obtain it is plugging a termP into some contextC[−] and observe if a reduction

occurs. In this case we have thatP
C[−]
−−→. Categorically speaking, this means thatP ;C[−] matchesl; d

for some rule〈l, r〉 ∈ R and some reactive contextd. This situation is formally depicted in Figure 2.4. A
commuting diagram like this is calledredex square.

Definition 2.3 (Saturated transition system). Thesaturated transition system(STS) is defined as follows

• states: arrowsP : 0→ I in C, for arbitrary I;

• transitions:P
C[−]
→SAT Q if C[P ]→ Q.

Note thatC[P ] is a stand-in forP ;C[−]: in the rest of the thesis often we will use this notation to allow
an easier comparison with the process calculi notation.

Bisimilarity overSTS is a congruence and coincides with the definition below.

Definition 2.4 (Saturated bisimulation). A symmetric relationR is a saturated bisimulationif whenever
P RQ then∀C[−]

• if C[P ]→ P ′ thenC[Q]→ Q′ andP ′RQ′.

Saturated bisimilarity∼S is the largest saturated bisimulation.

a
a
−→ 0 ā

ā
−→ 0 a | ā

τ
−→ 0

P
λ
−→ Q

P | R
λ
−→ Q | R

P ≡ P ′ P ′
λ
−→ Q′Q′ ≡ Q

P
λ
−→ Q

Figure 2.3: Labelled transition system for the SPC.
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Figure 2.4: Redex square

Proposition 2.1. ∼S is the coarsest bisimulation on→ that is also a congruence.

Note thatSTS is often infinite-branching since all contexts allowing reductions may occur as labels.
Moreover, it has redundant transitions. For example, consider the SPC terma. We have both the transitions

a
−|ā
→SAT 0 anda

−|ā|P
→SAT 0 | P , yet P does not “concur” to the reduction. We thus need a notion of

“smallest context allowing a reduction”. In other words, wehave to determineC[−] andd of the redex
square in Figure 2.4 in a way such that they are a “least upper bound” ofP andl. Categorically, this means
to require that the square must be apushouts.

Unfortunately, in many interesting categories of terms, pushouts often do not exist. So, instead of
considering the smallest contexts allowing reductions, weconsider the “minimal ones” captured by the
notion of idem pushouts, which exist, unlike pushouts, in many categories of terms.Before giving the
definition of idem pushout, we give the definition of relativepushout.

Definition 2.5 (RPO). Let the diagrams in Figure 2.5 be in a categoryC, and let (i) be a commuting dia-
gram. Acandidatefor (i) is any tuple〈I5, e, f, g〉which makes (ii) commute. Arelative pushout (RPO)is the
smallest such candidate, i.e., it satisfies the universal property that given any other candidate〈I6, e′, f ′, g′〉,
there exists a unique morphismh : I5 → I6 such that (iii) and (iv) commute.

A commuting diagram is calledidem pushout(IPO) if it has an RPO of a special kind.

Definition 2.6 (IPO). A commuting square such as diagram (i) of Figure 2.5 is calledidem pushout (IPO)
if 〈I4, c, d, idI4

〉 is its RPO.

Hereafter, we say that a reactive systemhas redex RPOs(IPOs) if every redex square has an RPO (IPO)
as candidate.

IPOs form the basis of the following definition of labelled transition system.

Definition 2.7 (IPO-labelled transition system). The IPO-labelled transition system(ITS) is defined as
follows

• states:P : 0→ I in C, for arbitrary I;

• transitions:P
C[−]
→IPO r; d if d ∈ D, 〈l, r〉 ∈ R, and the redex square of Figure 2.4 is an IPO.

In other words, if insertingP into the contextC[−] matchesl; d, andC[−] is the “smallest” such context
(according to the IPO condition), thenP transforms tor; d with labelC[−].
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Figure 2.5: RPO



2.2. THE THEORY OF G-REACTIVE SYSTEMS 17

Bisimilarity on ITS is referred to asIPO-bisimilarity (∼I ).
In [45], the authors showed that if the reactive system has redex RPOs, then∼I is a congruence. To do

this they use the composition and decomposition property ofIPOs.

Proposition 2.2 (Composition and decomposition). Suppose that diagram (i) of Figure 2.6 has an RPO.
Then:

1. (Composition.) if both squares in diagram (ii) of Figure 2.6 are IPOs then so is the exterior rectangle
(diagram (iii) of the same figure);

2. (Decomposition.) if the lower square and the exterior one(diagram (iii) of Figure 2.6) of diagram (ii)
of Figure 2.6 are IPOs then so is the upper square.

Theorem 2.1. In a reactive system having redex-RPOs,∼I is a congruence.

From the above theorem and Proposition 2.1, it follows that∼I⊆∼S . In [13, 6] the authors show that
this inclusion is strict for many formalisms. Moreover, they introduce an efficient characterization of the
saturated semantics, calledsemi-saturatedsemantics. It avoids to consider the wholeSTSthat is usually too
big, since it is labelled with all possible contexts allowing reductions, and it uses the ITS, whose labels are
just the minimal contexts. So, the abstract semantics is defined in the following way.

Definition 2.8 (Semi-saturated bisimulation). A symmetric relationR is a semi-saturated bisimulationif
wheneverP RQ, then

• if P
C[−]
→IPO P ′ thenC[Q]→ Q′ andP ′RQ′.

Semi-saturated bisimilarity∼SS is the largest semi-saturated bisimulation.

Semi-saturated bisimulations coincide with saturated ones whenever the reactive system has redex IPOs.

Theorem 2.2. In a reactive system having redex-IPOs,∼SS=∼S .

2.2 The Theory of G-reactive Systems
In several natural examples where process calculi with evensimple structural congruences are considered,
RPOs either do not exist or do not give the expected equivalence. Therefore, in [64, 63], Sassone and
Sobocínski proposed an extension of the theory of reactive systemsto the 2-categorical setting, in order to
consider the structural congruence as an integral part of the theory.

We begin by showing why in a simple calculus with an associative and commutative parallel operator,
such as the fragment of the CCS presented in Example 2.1, the application of the theory of RPOs fails.

Example 2.2. Let us consider the reactive systemCSPC shown in Example 2.1 which models a fragment
of the CCS, and the two SPC termsa | ā and b | b̄. It is easy to verify that both terms have just one
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Figure 2.6: IPOs composition and decomposition
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Figure 2.7: IPOs for the termsa | ā andb | b̄ (left to right).

IPO transition labelled with the identity contexts−, which are shown in Figure 2.7. Therefore, against the
intuition, they result to be IPO-bisimilar.

If we indeed consider the standard LTS semantics for the calculus (Figure 2.3), we can distinguish these
two terms, since the former has also the two transitionsa | ā

a
−→ 0 | ā anda | ā

ā
−→ a | 0, denoting the fact

that the term can interact with the environment offering an input, respectively an output, over the channel
a. Obviously, the latter term has no transitions with these labels, and so they are not equivalent.

So, going back to the IPO LTS, we would like to derive also the two transitions for the terma | ā
corresponding to the ones of the standard LTS semantics shown before. This would mean requiring that
also the upper bounds of the two squares of Figure 2.8 are in some sense minimal. Here, to better explain the
motivations, we numerate the different occurrences ofa to distinguish them, but obviously, it is impossible
in our category, where terms are up to structural congruence. It is easy to see that in our category the
two squares are not IPOs. In both cases, indeed, the smallestcandidate is the quadruple〈1,−,−,− | a〉.
However, if we could distinguish the different occurrencesof a, the upper bound of the left square in Figure
2.8 would be the minimal one where the synchronization uses only the subterma and the output over the
same channel is offered by the context. Similarly, the upperbound of the right square in Figure 2.8 would be
the minimal one where the synchronization uses only the subterm ā and the input is offered by the context.

So, summing up, the fact that in our category, terms are quotiented with respect to the structural con-
gruence makes impossible first to exactly determine which occurrences of a term belong to the redex and
consequently to obtain the right LTS.
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Figure 2.8: Redex squares for the SPC.

The approach proposed in [64, 63] to solve the problems of thetheory of reactive systems discussed
above consists in keeping explicitly the derivation of structural congruence between terms by using cate-
gories which have a 2-dimensional structure, that is, “arrows between arrows”, called2-cells.

Before introducing the generalization of the notions of reactive system, RPO and IPO to the setting of
2-categories, we shortly recall the definition of 2-categories.

Definition 2.9 (2-category). A 2-categoryC is a category consisting of

1. a class of objectsX,Y,Z, . . .

2. for anyX,Y ∈ C, a categoryC(X,Y ). The objects ofC(X,Y ) are arrows, and they are called
1-cells, or simply arrows, and denoted byf : X → Y . Identity arrows are instead denoted by
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idX : X → X. The morphisms ofC(X,Y ) are called2-cells. They are denoted byα : f ⇒ g and
represented as in Figure 2.9. Composition inC(X,Y ) is referred to as “vertical” composition and
it is denoted by•. Identity 2-cells are denoted by1f : f ⇒ f .

3. for eachX,Y,Z ∈ C a functor∗ : C(Y,Z)×C(X,Y ) −→ C(X,Z), called “horizontal” compo-
sition, which is associative and admits1idX as identities.

The role of 2-cells in the approach proposed in [64, 63] is to represent structural congruences. This
means that if there exists a 2-cellα : f ⇒ g, thenf andg represent two terms structurally equivalent,
andα is a proof of this equivalence. They therefore consider 2-categories whose 2-cells are isomorphisms.
Since the categories whose morphisms are all isomorphisms are commonly known as groupoids, these
2-categories are precisely the groupoid-enriched categories, or G-categories.

Definition 2.10 (G-Category). A G-category is a 2-category whose 2-cells are all isomorphisms.

Now, we can introduce the generalization of the notion of reactive system to the setting of G-categories.

Definition 2.11 (G-reactive System). A G-reactive systemC consists of

1. a G-categoryC;

2. a distinguished object0 ∈ C;

3. a setD ⊆ C of 2-cells closed, composition-reflectingreactive contexts;

4. a set of pairsR ⊆
⋃

I∈C C(0, I)×C(0, I) of reduction rules.

The closure property means that givend ∈ D andα : d⇒ d′ in C thend′ ∈ D.

Definition 2.12(Reduction Relation). Given a G-reactive system〈C, 0,D,R〉, the reduction relation→ is
defined as follows:P → Q if there exist 2-cellsP ⇒ l; d andr; d⇒ Q for some reduction rule〈l, r〉 ∈ R

and a reactive contextd ∈ D (Figure 2.10).

In the following, we present a G-reactive systems modeling SPC .

Example 2.3. Let us consider again the fragment of Milner’s CCS introduced in Example 2.1. The corre-
sponding G-reactive systemCSPC = 〈C, 0,D,R〉 is defined as follows.

The 2-categoryC has the same objects and arrows of the category underlying the reactive system defined
in Example 2.1. The only difference is that here terms are considered quotiented only by the associativity
equation (the left rule in the second row of Figure 2.2). Intuitively, here arrows could be seen as sequences
where the order of the elements is important, while in Example 2.1 as multisets.

Isomorphic 2-cells between terms intuitively correspond to the commutativity axiom of the structural
congruence (the right rule in the second row of Figure 2.2). So, a 2-cell between two terms is a permutation
which swaps parallel components (where by component we meanan occurrence of an input/output on a
channel or a hole). So, an arrow representing a term composedof n parallel components is the source of
n! 2-cells determined by the permutations of its components inparallel. Thus, for instance, there are two
automorphisms ona | a : 0→ 1, the identity, and the automorphism which swaps the two copies ofa.

The distinguished object, the reactive contexts and the reduction rules are defined as in Example 2.1.

X ⇓α

f

##

g

;; Y

Figure 2.9: The 2-cellα : f ⇒ g.
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Figure 2.10: Reduction relation for G-reactive systems

In this setting, a redex square is a diagram as the one in Figure 2.11, where there exists an explicit
isomorphismα between the terms obtained by pluggingP into the contextC[−] and the redexl into the
reactive contextd.

In the following, we present a generalization of the notion of RPO to G-categories. This notion is used
to formalize the idea of the “smallest” context allowing a reduction in a G-reactive system. We refer the
reader to [61] for a more detailed presentation.

Definition 2.13 (GRPO). Let the diagrams in Figure 2.12 be in a G-categoryC. A candidate for the
diagram (i) is any tuple〈I5, n, o, p, β, γ, δ〉 such that(1h ∗ γ) • (β ∗ 1p) • (1g ∗ δ) = α. This means that the
2-cellsγ, β, δ, illustrated in diagram (ii), paste together to giveα. Agroupoidal-relative-pushout(GRPO) is
a candidate which satisfies the universal property, i.e., for any other candidate〈I6, n′, o′, p′, β′, γ′, δ′〉 there
exists amediating morphism, that is, a quadruple〈q : I5 → I6, ϕ : n′ ⇒ n; q, ψ : o; q ⇒ o′, τ : q; p′ ⇒ p〉
illustrated in diagrams (iii) and (iv). The equations that need to be satisfied are:1)γ′•(ϕ∗1p′)•(1n∗τ) = γ;
2)(1o ∗ τ

−1) • (ψ ∗ 1p′) • δ′ = δ; 3)(1h ∗ ϕ) • (β ∗ 1q) • (1g ∗ ψ) = β′. Such a mediating morphism
must be essentially unique, namely, for any other mediatingmorphism〈q′, ϕ′, ψ′, τ ′〉 there must exist a
unique 2-cellξ : q ⇒ q′ which makes the two mediating morphisms compatible, i.e.:1)ϕ • (1n ∗ ξ) = ϕ′;
2)(1o ∗ ξ

−1) • ψ = ψ′; 3)(ξ ∗ 1p′) • τ ′ = τ .

Diagram (i) of Figure 2.12 is a GIPO if it has a special kind of GRPO.

Definition 2.14 (GIPO). A square such as diagram (i) of Figure 2.12 is called G-idem pushout (GIPO) if
〈I4, f,m, idI4

, α, 1f , 1m〉 is its GRPO.

Analogously to reactive systems, we say that a G-reactive system has redex GRPOs (GIPOs) if every
redex square has a GRPO (GIPO) as candidate.

In the following we define an LTS by using the notion of GIPO.

Definition 2.15(GIPO-labelled transition system). LetC be a G-reactive system and letC be its underlying
2-category. TheGIPO-labelled transition systemGLTS(C) is defined as follows

• states:P : 0→ I in C, for arbitrary I;

• transitions:P
C[−]
−→GIPO P ′ if there existsd ∈ D, 〈l, r〉 ∈ R, and a 2-cellα : P ;C[−] ⇒ l; d such

that the redex square in Figure 2.11 is a GIPO andP ′ is isomorphic tor; d.

Bisimilarity onGLTS(C) is referred to as GIPO-bisimilarity (∼GIPO).

I4

I2

C[−] ??~~~
α +3 I3

d__@@@

0
P

``AAAA
l

>>}}}}

Figure 2.11: Redex square in G-reactive systems
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Figure 2.12: GRPO

Example 2.4. Let us consider the G-reactive systemCSPC previously defined in Example 2.3. It is easy
to verify that in its underlying 2-category, the two diagrams in Figure 2.8 are GIPOs, by considering for the
left square the 2-cellα : a1 | ā2 | ā3 ⇒ a1 | ā3 | ā2, which swaps the two outputs overa, and for the right
square the 2-cellα′ : a1 | ā2 | a3 ⇒ a3 | ā2 | a1, which swaps the two inputs overa.

Theorem 2.3. In a reactive system having redex-GRPOs,∼GIPO is a congruence.

2.3 Graph Transformation and the Borrowed Context Technique
In previous sections, we presented the theory of (G-)reactive systems aimed at deriving behavioral congru-
ences for those specification formalisms whose operationalsemantics is provided by unlabelled rewriting
rules. Theborrowed contexts(BCs) technique, developed by Ehrig and König [27, 28], offers a solution to
the same problem in the double-pushout (DPO) approach to graph rewriting.

In the following, we first introduce the BC mechanism (Section 2.3.1) and then we briefly show the
relationship with the theory of G-reactive systems.

2.3.1 DPO Rewriting with Borrowed Contexts
This section introducesdouble-pushout(DPO) rewriting and its interactive extension withborrowed con-
texts(BCs) [27, 28]. We present them by relying on adhesive categories as in [64]. Adhesive categories
were introduced by Lack and Sobocinski in [44]. They are categories in which pushouts along monomor-
phisms are well-behaved. Various graphical structures used in computer science form adhesive categories.
Some examples are directed graphs, typed graphs and hypergraphs.

Below we recall the definition of adhesive categories.

Definition 2.16 (Adhesive Categories). A category is calledadhesiveif

• it has pushouts along monos;

• it has pullbacks;

• pushouts along monos areVan Kampen(VK ) squares.

Referring to Figure 2.13, aVK square is a pushout like(i), such that for each commuting cube as in(ii)
having(i) as bottom face and the back faces of which are pullbacks, the front faces are pullbacks if and
only if the top face is a pushout.

As shown in [64], adhesive categories provide an elegant setting in which one can develop the well-
known theory of double-pushout graph rewriting [29, 26].

In order to uniformly introduce DPO and BCs, we consider DPO derivations forsystems with interface:
morphismsJ → G whereG represents a system andJ its interface.

Definition 2.17 (Production). LetA an adhesive category. Aproductionor rewrite rulep : (L  I → R)
is a a production namep and a spanL  I → R in A, where the left-hand sideI  L is monic.
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Figure 2.13: A pushout square(i), and a commutative cube(ii).

Definition 2.18(DPO adhesive rewriting system). ADPO adhesive rewriting system(ARS) is a pair〈A, P 〉,
whereA is an adhesive category andP is a set of productions with different names.

In the definitions below, we refer to a chosen ARSS = 〈A, P 〉.

Definition 2.19(DPO derivation for systems with interfaces). LetJ → G andJ → H be two systems with
interface andp : (L  I → R) a production. Amatchof p in G is a morphismm : L → G. A direct
derivationfromJ → G to J → H via p andm is a commuting diagram as depicted below, where (1) and
(2) are pushouts and the bottom triangles commute. In this case we writeJ → G =⇒ J → H.

L

m

��

(1)

I //oooo

��

(2)

R

��

G C //oooo H

J

__@@@@@@@
k

OO >>~~~~~~~~

The morphismk : J → C (making the left triangle commute) is unique, whenever it exists. If such a
morphism does not exist, the rewriting step is not feasible.Note that the standard DPO derivations can be
seen as a special instance of these, obtained considering asinterface J the empty graph.

In these derivations, the left-hand sideL of a production must then occur completely inG. In a BC
derivationL might occur partially inG, since the latter may interact with the environment throughthe
interfaceJ in order to exactly matchL. Those BCs are the “smallest” contexts needed to obtain the image
of L in G, and they may be used as suitable labels. Given an ARSS, BC(S) denotes the LTS derived via
the BC mechanism defined below.

Definition 2.20 (Rewriting with borrowed contexts). Given a productionp : L  I → R, a system with
interfaceJ → G and a span of monosd : G  D  L, we say thatJ → G reduces toK → H with label
J  F ← K via p andd if there are objectsG+,C and additional morphisms such that the diagram below

commutes and the squares are either pushouts (PO) or pullbacks (PB). We writeJ → G
JF←K
−−−−−→ K → H,

called rewriting step with borrowed context.
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Consider the diagram above. The upper left-hand square merges the left-hand sideL and the objectG
to be rewritten according to a partial matchG  D  L. The resultingG+ contains a total match ofL
and is rewritten as in the DPO approach, producing the two other squares in the upper row. The pushout in
the lower row gives the borrowed (or minimal) contextF which is missing for obtaining a total match of
L, along with a morphismJ  F indicating howF should be pasted toG. Finally, the interface forH is
obtained by “intersecting”F andC via a pullback.

The two pushout complements that are needed in Definition 2.20, namelyC andF , may not exist. In
this case, the rewriting step is not feasible.

Note that some morphisms that in the diagram of Definition 2.19 can be arbitrary, in the diagram of
Definition 2.20 are instead required to be mono. This is necessary in order to obtain a bisimilarity over the
derived LTS which is a congruence.

2.3.2 Relating Borrowed Contexts and G-Reactive Systems
We are now ready for showing that adhesive rewriting systemsare instances of G-reactive systems, as
previously proved in [63]. We consider cospans as contexts,and for this reason we need to work in bicate-
gories [5] (with iso 2-cells) instead of G-categories. For our aim it is enough to know that a bicategory can
be described, roughly, as a 2-category where associative and identity laws of composition hold up to iso-
morphism. In order to transfer the notions of GIPOs and GRPOs(in Section 2.2) to bicategories, it suffices
to introduce the coherent associativity isomorphisms where necessary.

Bicategories of Cospans. Let A be an adhesive category with chosen pushouts. This means that for each
spanA← B → C, there exists a unique chosen cospanA→ A+B C ← C such that the resulting square

is a pushout. The bicategory of cospans ofA has the same objects asA and morphism pairsI1
iC−→ C

oC← I2
as arrows fromI1 to I2, denotedCoC

iC
: I1 → I2. ObjectsI1 andI2 are thought of as the input and the

output interface ofCiC
oC .

Given the cospansCoC
iC

: I1 → I2 andDoD
iD

: I2 → I3, their compositionCoC
iC

;DoD
iD

: I1 → I3 is the
cospan obtained by taking the chosen pushout ofoC andiD, as depicted in Figure 2.14. Note that, since
arrows composition is a chosen pushout, it is associative only up to isomorphism. This is the reason why
cospans form a bicategory and not a 2-category.

A 2-cell h : CoC
iC
⇒ DoD

iD
: I1 → I2 is an arrowh : C → D in A satisfyingiC ;h = iD and

oC ;h = oD, and it isisomorphicif h is an isomorphism inA.
A cospanCoC

iC
is input linearwheniC is mono inA, and the composition of two input linear cospans

yields another input linear cospan. For this reason, we can define theinput linear cospans bicategoryover
A, denoted byILC(A), as the bicategory consisting of input linear cospans and isomorphic 2-cells.

From adhesive rewriting systems to G-reactive systems.Consider an ARSS = 〈A, P 〉, where the
adhesive categoryA has initial object0. This can be seen as a G-reactive system where

• the base category isILC(A),

• the distinguished object is0 (the initial object),

• all arrows inILC(A) are reactive,

• rules are pairs〈0→ L  I, 0→ R← I〉 for anyL  I → R rule inP .

For an ARSS, CS denotes its associated G-reactive system. A system with interfaceJ → G in S can
be thought as the arrow0→ G← J of ILC(A).

C +I2
D

I1 iC
// C

;;wwwwwwwww
I2oC

oo
iD

//

PO

D

ccGGGGGGGGG

I3oD
oo

Figure 2.14: Cospans composition.
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The translation presented above preserves semantics.

Proposition 2.3([33]). (J → G) =⇒ (J → H) in S iff (J → G)→ (J → H) in CS .

The above result allows for stating the correspondence between ARSs and BCs: GIPOs for G-reactive
systems over input linear cospans are equivalent to BCs for ARSs.

Proposition 2.4([63]). BC(S) = GLTS(CS).



Chapter 3

Graphical encodings for mobile
ambients and asynchronousCCS

This chapter present two graphical encodings for the mobileambients calculus [16] and the asynchronous
CCS [31], respectively. In particular, the graphical encodingof the asynchronousCCS is basically an adap-
tation of the one for the synchronous version in [7]. We instead present a new encoding for the mobile
ambients calculus and we provide an in-depth study of its features. Both encodings will be useful for the
examples we will use to illustrate the adequacy of the results presented in Chapters 5 and 6.

For both calculi, the proposed encodings use unstructured (i.e., non-hierarchical) graphs and they are
sound and complete with respect to the structural congruence of the corresponding calculus (i.e., two pro-
cesses are equivalent if and only if mapped to isomorphic graphs). As far as the mobile ambients calculus
is concerned, with respect to alternative proposals for thegraphical implementation of the calculus, our
encoding exploits the dichotomy between the tree structureof a process and the topology associated to
its activation points, i.e., to those ambients that actually allow for the evolution of the subprocesses they
contain. In the encoding for the asynchronousCCS this is not necessary, because the syntactical and the
activation dependence between the operators of a process exactly coincide. For both calculi the encoding
is then exploited to recast the operational semantics of thecalculus by an easy and natural presentation via
DPO rules, thus inheriting the wealth of tools and techniques for system analysis that are available for graph
transformation. Moreover, in the case of mobile ambients our solution faithfully captures a basic feature of
the calculus: ambients can be nested and reductions are propagated across the nesting.

The adoption of graph transformation for simulating the reduction semantics of process calculi allowed
for some technology transfer. One of its foremost applications has been the distillation of observational
semantics for such calculi, by relying on the borrowed context mechanism: an application of this method-
ology to mobile ambients and asynchronousCCS will be shown in Chapter 4. In this chapter, instead, we
profitably exploit another feature of the graph transformation formalism, namely, the possibility of defining
suitable concurrent semantics. This allows for obtaining such a semantics also for any encoded calcu-
lus, hence offering a better understanding of process behaviour. In particular, we exploit the information
about dependencies among (causally related) rewriting steps offered by the concurrent semantics of mobile
ambients to identifyinterferencesbetween process reductions, formalising the taxonomy proposed in [46].

This chapter is organised as follows. Section 3.1 briefly recalls the calculus of mobile ambients. In Sec-
tion 3.2 we present the main definitions concerning (typed hyper-)graphs and their extension with interfaces,
while Section 3.3 recalls the DPO approach to their rewriting. Then, in Section 3.4 we introduce a graph-
ical encoding for processes of the mobile ambients calculus, and we present our first result, namely, that
our encoding is sound and complete with respect to a slight variant of the structural congruence of mobile
ambients. The main result of our work is presented in Section3.5, which introduces a graph transforma-
tion system for modelling the reduction semantics of mobileambients. In Section 3.6 instead we propose a
graph transformation system to recover a normal form for each graphical encoding of a process. This allows
us to recast the standard structural congruence of mobile ambients in terms of graph isomorphism. Section
3.7 discusses the concurrency features of our graph transformation system for mobile ambients, and shows
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how the notion of independence between rewriting steps may be used for giving a formal definition of both
plain andgrave interferencesamong process reductions, as introduced in [46]. Then, Section 3.8 discusses
related work for the encoding of mobile ambients, while Section 3.9 briefly introduces the asynchronous
CCS, a graphical encoding for it, and a graph transformation system modelling its reduction semantics.

3.1 Mobile Ambients
In this section we (very) briefly recall the calculus of mobile ambients [16]. In particular, we introduce the
syntax and the reduction semantics for its (finite) fragmentwithout the communication primitives.

Figure 3.1 shows the syntax of the calculus. We assume a setN of namesranging over bym,n, o, . . ..
Also, we letP,Q,R, . . . range over the setP of processes.

The restriction operator(νn)P bindsn in P . A namen occurring in the scope of the operator(νn) is
calledbound, otherwise it is calledfree. We denote the set of free names of a processP by fn(P ). We
adopt the standard notion ofα-conversion of bound names and the standard definition for name substitution.
We writeP{m/n} for the process obtained by replacing each free occurrence of n in P with m, and by
α-converting the bound names to avoid conflicts withm.

The semantics of the mobile ambients calculus is given by thecombination of an equivalence between
processes and a pre-order relation among them. Thestructural congruence, denoted by≡, is the least
relation on processes that satisfies the equations and the rules shown in Figure 3.2. The congruence relates
processes which intuitively specify the same system, up-toa syntactical rearrangement of its components,
and it is used to define the operational semantics.

The reduction relation, denoted by→, describes the evolution of processes over time:P → Q means
thatP reduces toQ, that is,P can execute a computational step and it is transformed intoQ. Figure 3.3
shows the reduction rules. The first three rules are the only three axioms for the reduction relation. In
particular, theRed-Inrule enables an ambientn to enter a sibling ambientm. TheRed-Outrule enables an
ambientn to get out of its parent ambientm. Finally, the last axiom allows to dissolve the boundary of an
ambientn. TheRed-Res, Red-AmbandRed-Parrules say that a reduction can occur underneath restriction,
ambient and parallel composition, respectively. Finally,the last rule says that the reduction relation is closed
under the structural congruence≡.

3.1.1 An alternative congruence
As we stated above, the structural congruence is pivotal in the definition of the reduction relation. It is
possible to take into account different structural congruence relations. We denote by≡′ the least relation
that satisfies also the equation in Figure 3.4 besides those in Figure 3.2, and by→′ the reduction relation
defined by the rules shown in Figure 3.3, but closed under the structural congruence≡′.

Note that considering the structural congruence≡′ does not change substantially the reduction seman-
tics. Indeed, the mapping from abstract processes according to≡ into abstract processes according to≡′

P,Q ::= processes
0 inactivity
n[P ] ambient
M.P action
(νn)P restriction
P1 | P2 composition

M ::= capabilities
in n can entern
out n can exitn
open n can openn

Figure 3.1: Syntax of mobile ambients.
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P | Q ≡ Q | P (Cong-Par-Comm)
(P | Q) | R ≡ P | (Q | R) (Cong-Par-Ass)
(νn)(νm)P ≡ (νm)(νn)P (Cong-Res-Res)
(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P ) (Cong-Res-Par)
(νn)m[P ] ≡ m[(νn)P ] if n 6= m (Cong-Res-Amb)
P | 0 ≡ P (Cong-Zero-Par)
(νn)P ≡ (νm)(P{m/n}) if m /∈ fn(P ) (Cong-α)

Figure 3.2: Axioms of the structural congruence without the axiom(νn)0 ≡ 0.

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] (Red-In)
m[n[out m.P | Q] | R]→ n[P | Q] | m[R] (Red-Out)
open n.P | n[Q]→ P | Q (Red-Open)
P → Q⇒ (νn)P → (νn)Q (Red-Res)
P → Q⇒ n[P ]→ n[Q] (Red-Amb)
P → Q⇒ P | R→ Q | R (Red-Par)
(P ′ ≡ P, P ′ → Q′, Q′ ≡ Q)⇒ P → Q (Red-Cong)

Figure 3.3: Reduction relation.

(νn)0 ≡′ 0 (Cong-Zero-Res)

Figure 3.4: The additional axiom of the structural congruence≡′.
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faithfully preserves the reduction semantics, as discussed in [36] and stated by next proposition.

Proposition 3.1. LetP,Q be processes. IfP → Q, thenP →′ Q. Vice versa, ifP →′ Q, then there exists
a processR, such thatP → R andQ ≡′ R.

3.2 Graphs and Graphs with interfaces
This section presents some definitions concerning (hyper-)graphs, typed graphs and graphs with interfaces.
It also introduces two operators on graphs with interfaces.We refer to [15] and [19] for a detailed introduc-
tion.

Definition 3.1 (Graphs). A (hyper-)graph is a quadruple〈V,E, s, t〉 whereV is the set of nodes,E is the
set of edges ands, t : E → V ∗ are the source and target functions.

From now on we denote the components of a graphG by VG, EG, sG andtG.

Definition 3.2 ((Partial) graph morphisms). LetG,G′ be graphs. A (hyper-)partial graph morphismf :
G → G′ is a pair of partial functions〈fV , fE〉 such thatfV : VG → VG′ , fE : EG → EG′ and they
preserve the source and target functions, i.e., iffE(e) is defined, then(fV )∗(sG(e)) = sG′(fE(e)) and
(fV )∗(tG(e)) = tG′(fE(e)). We say that the graph morphism is total iffV andfE are so.

In the following, if not differently specified, morphisms will be total.
The category of graphs and total morphisms is denoted byGraph. We now give the definition of typed

graph [20], i.e., a graph labelled over a structure that is itself a graph.

Definition 3.3 (Typed graphs). Let T be a graph. Atyped graphG overT is a graph|G| with a graph
morphismτG : |G| → T .

Definition 3.4 (Typed graph morphisms). Let G,G′ be typed graphs overT . A typed graph morphism
f : G→ G′ is a graph morphismf : |G| → |G′| consistent with the typing, i.e., such thatτG = τG′ ◦ f .

The category of graphs typed overT is denoted byT -Graph. In the following, we assume a chosen
type graphT .

To define the encoding for processes inductively, we need operations to compose graphs. So, we equip
typed graphs with suitable “handles” for interacting with an environment. The following definition intro-
duces graphs with interfaces.

Definition 3.5 (Graphs with interfaces). Let J,K be typed graphs. A graph with input interfaceJ and
output interfaceK is a triple G = 〈j,G, k〉, whereG is a typed graph,j : J → G andk : K → G are
injective typed graph morphisms, and they are called input and output morphisms, respectively.

Definition 3.6 (Interface graph morphisms). Let G,G′ be graphs with the same interface. An interface
graph morphismf : G⇒ G

′ is a typed graph morphismf : G→ G′ between the underlying typed graphs
that preserves the input and output morphisms.

We denote byJ
j
−→ G

k
← K a graph with input interfaceJ and output interfaceK. If the interfacesJ

andK arediscrete, i.e., they contain only nodes, we represent them by sets. With an abuse of notation, in the
following we refer to the nodes belonging to the image of the input (output) morphism as inputs (outputs,
respectively). We often refer implicitly to a graph with interfaces as the representative of its isomorphism
class. Moreover, we sometimes denote the class of isomorphic graphs and its components by the same
symbol.

3.2.1 Two operations on graphs
Now, we define two binary operators on graphs with discrete interfaces.

Definition 3.7 (Sequential composition). Let G = J
j
−→ G

k
← K and G

′ = K
j′

−→ G′
k′

← I be graphs

with discrete interfaces. Their sequential composition isthe graph with discrete interfacesG ◦G
′ = J

j′′

−→

G′′
k′′

← I, whereG′′ is the disjoint unionG⊎G′, modulo the equivalence on nodes induced byk(x) = j′(x)
for all x ∈ VK and with the obvious source and target functions, andj′′ andk′′ are the uniquely induced
arrows.
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Before defining the parallel composition between graphs with interfaces, we introduce the definition of
compatible graphs.

Definition 3.8 (Compatible graphs). Let G = J
j
−→ G

k
← K andG

′ = J ′
j′

−→ G′
k′

← K ′ be graphs with
discrete interfaces. We say thatG and G

′ are compatibleif τJ(x) = τJ ′(x) for all x ∈ VJ ∩ VJ ′ and
τK(y) = τK′(y) for all y ∈ VK ∩ VK′ .

Definition 3.9 (Parallel composition). Let G = J
j
−→ G

k
← K andG

′ = J ′
j′

−→ G′
k′

← K ′ be compatible
graphs with discrete interfaces. Their parallel composition is the graph with discrete interfacesG⊗G

′ =

(J ∪ J ′)
j′′

−→ G′′
k′′

← (K ∪K ′), whereG′′ is the disjoint unionG ⊎ G′, modulo the equivalence on nodes
induced byj(x) = j′(x) for all x ∈ VJ ∩ VJ ′ andk(y) = k′(y) for all y ∈ VK ∩ VK′ and with the obvious
source and target functions, andj′′, k′′ are the uniquely induced arrows.

Intuitively, the sequential compositionG ◦ G
′ is obtained by taking the disjoint union of the graphs

underlyingG andG
′, and gluing the outputs ofG with the corresponding inputs ofG′. Similarly, the

parallel compositionG⊗G
′ is obtained by taking the disjoint union of the graphs underlying G andG

′, and
gluing the inputs (outputs) ofG with the corresponding inputs (outputs) ofG

′. Note that both operations
are defined on “concrete” graphs. However, their results do not depend on the choice of the representatives
of their isomorphism classes.

Definition 3.10 (Graph expression). A graph expressionis a term over the syntax containing all graphs
with discrete interfaces as constants, and parallel and sequential composition as binary operators. We say
that an expression iswell-formed if all the occurrences of both sequential and parallel composition are
defined for the interfaces of their arguments, according to Definitions 3.7 and 3.9.

The interfaces of a well-formed graph expression are computed inductively from the interfaces of the
graphs occurring in it; the value of the expression is the graph obtained by evaluating all its operators.

3.2.2 Applying the operations
Let us consider the graphs with interfacesGamb = {a, p} → Gamb ← {a, p, n} andGin = {a, p, n} →
Gin ← {m} depicted in Figure 3.5. The graph on the left is just composedof the hyper edgeamb, which
has two source nodes, one of type⋄ and another one of type•, while the two target nodes are respectively
of type◦ and•. The source nodes are in the input interface, while the output interface is composed of the
target nodes plus the source node⋄. Note that the dotted arrows represent input and output morphisms. The
graph on the right is instead composed of a node◦ plus the hyper edgein, which has two source nodes
respectively of type⋄ and•, and three target nodes respectively of type◦, • and⋄. The input interface is
composed of the source nodes of thein edge plus the isolated◦ node, while the output interface, besides of
this last node, contains the target nodes ofin.

As we will see later, the two graphs above respectively represent the graphical operator modelling an
ambientn, and the graphical encoding for the processin m.0, plus an isolated node◦.

Since the output interface of the graphGamb coincides with the input interface ofGin, we can compute
their sequential composition, which results in the graph with interfaces shown on the left of Figure 3.6. It
is obtained by the disjoint union ofGamb andGin, gluing the nodes of the former that are in the output
interface with the nodes of the latter that are in the input interface. Moreover, as it will become clearer
later, the graph obtained by the sequential composition represents the graphical encoding of the process
P = n[in m.0].

⋄a

~~
⋄a // ⋄ // amb //

  

• •poo

•p // •

>>

◦ ◦noo

⋄a // ⋄

  

⋄

•p // • // in //

��

??

•

◦n // ◦ ◦noo ◦ ◦moo

Figure 3.5: Graphs with interfacesGamb andGin (left to right).
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To provide an example of parallel composition, let us consider the graphs with interfacesG = {a, p} →
G← {n,m} andG

′ = {a, p} → G′ ← {m} depicted in Figure 3.6. As said above, the graphG represents
the graphical encoding of the processesP = n[in m.0], instead, as we will see later, the graphG

′ is the
graph encoding of the processesQ = m[out m.0].

For the moment, the reader can ignore how these encodings areobtained. We only observe that in the
graphG there is an edgeambrepresenting the ambientn and an edgein simulating the capabilityin m.
Analogously, in the graphG′ there is an edgeambrepresenting the ambientm and an edgeout simulating
the capabilityout m. Moreover, ambient names are represented by nodes of type◦ that are in the output
interfaces, and processes (subprocesses) are representedby graphs (subgraphs) that have as roots a pair
of nodes〈•, ⋄〉. Only the root nodes〈•, ⋄〉 of the graphs representing the processesP andQ are in the
input interfaces of the corresponding graphs. Moreover, aswe can note, each subprocess is represented by
a subgraph that has a different• root node, while sometimes subgraphs representing different sub-terms
share the⋄ root node. We will see later why this occurs.

The two graphsG andG
′ are compatible. Indeed, the type of the nodes belonging to both input inter-

faces coincides, and the same also holds for those nodes belonging to both output interfaces. Therefore, it is
possible to compute the parallel composition of the graphsG andG

′, resulting in the graph with interfaces
shown in Figure 3.7. It is easy to note that it is obtained by the union of the input interfaces and of the
output interfaces, respectively, and the disjoint union ofG andG′, gluing the root nodes of both graphs and
the nodes representing the namem. As we will see later, the graph with interfaces obtained by the parallel
composition ofG andG

′ represents the process obtained by making the parallel composition betweenP
andQ, that is, the processR = P | Q.

3.3 Graph Rewriting
This section introduces the basic definitions for the DPO approach to the rewriting of (typed hyper-)graphs
[21, 24] and graphs with interfaces. Some of them have already been presented in Section 2.3 in the more
general setting of adhesive categories. However, since later on we are going to need the track function, we
introduce a different definition of derivation between (systems as) graphs with interfaces using it.

Definition 3.11 (Graph production). A T -typed graph productionp : (L
l
←− I

r
−→ R) is a production

namep and a span of graph morphisms(L
l
←− I

r
−→ R) with l mono inT -Graph. A T -typed graph

transformation system (GTS) G is a pair 〈T, P 〉, whereT is a type graph andP is a set of productions with
different names.

Definition 3.12 (Graph derivation). Let p : (L
l
←− I

r
−→ R) be aT -typed graph production andG a

T -typed graph. A match ofp in G is a morphismmL : L → G. A direct derivation fromG to H via
productionp and matchmL is a diagram as depicted in Figure 3.8, where (1) and (2) are pushouts in
T -Graph. We denote this derivation byp/m : G =⇒ H, form = 〈mL,mI ,mR〉, or simply byG =⇒ H.

Before giving the definition of derivation between graphs with interfaces, we introduce the notion of
track function.

Definition 3.13 (Track function). Letp be a graph production and letp/m : G =⇒ H be a direct deriva-
tion, as in Figure 3.8. The track functiontr(p/m) associated with the derivation is the partial graph
morphismr∗ ◦ (l∗)−1 : G→ H.

The track function identifies the items before and after a derivation. It is used to give the definition of
derivation between graphs with interfaces.

⋄

⋄a // ⋄
!!

// amb //

  

• // in

>>

//

��

•

•p // •

>>

◦ ◦noo ◦ ◦moo

⋄

⋄a // ⋄
!!

// amb //

//

• // out

>>

//

  

•

•p // •

>>

◦ ◦moo

Figure 3.6: Graphs with interfacesG andG
′ (left to right).
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⋄

⋄a // ⋄
""

//

## &&

amb //

  

• // in

>>

//

""

•

◦ ◦noo ⋄ ◦ ◦moo

•p // •

??

// amb

KK

// • // out

>>

//

@@

•

Figure 3.7: Graph with interfacesG ⊗ G
′.

Definition 3.14 (Graph with interfaces derivation). Let G = J
j
−→ G

k
←− K andH = J

j′

−→ H
k′

←− K
be graphs with interfaces, and letp/m : G =⇒ H be a direct derivation such that the track function
tr(p/m) is total onj(J) and k(K). We say thatp/m : G =⇒ H is a direct derivation of graphs with
interfaces ifj′ = tr(p/m) ◦ j andk′ = tr(p/m) ◦ k.

Intuitively, a derivation between graphs with interfaces is a direct derivation between the underlying
graphs, such that inputs and outputs are preserved.

3.3.1 Parallel Independence and Confluence
We recall the classical notion of parallel independence, and states its connection with local confluence. A
more general version (with sequential independence replacing confluence) can be found in [39, Section 3.3].

Definition 3.15 (Parallel independence). Let p1/m1 : G =⇒ H1 andp2/m2 : G =⇒ H2 be two direct
derivations as in Figure 3.9. These derivations areparallel independentif there exists anindependence pair
among them, i.e., two graph morphismsi1 : L1 → C2 and i2 : L2 → C1 such thatl∗2 ◦ i1 = mL2

and
l∗1 ◦ i2 = mL1

.

Intuitively, two derivations as in Figure 3.9 are parallel independent if they act on disjoint items of the
graphG, or at least on items that are simply read, and thus not deleted, by any of the two rule applications.
The proposition below is a classical result relating parallel independence with rule sequentialisation (see
e.g. [21]).

Proposition 3.2 (Confluence from independence). Let p1/m1 : G =⇒ H1 and p2/m2 : G =⇒ H2

be two direct derivations as in Figure 3.9 such that they are parallel independent with independence pair
i1 : L1 → C2 andi2 : L2 → C1. Then, there exists a graphH and two derivationsp2/m

∗
2 : H1 =⇒ H,

with matchr∗2 ◦ i2, andp1/m
∗
1 : H2 =⇒ H, with matchr∗1 ◦ i1, such thattr(p2/m

∗
2) ◦ tr(p1/m1) =

tr(p1/m
∗
1) ◦ tr(p2/m2).

Local confluence is thus implied by the standard notion of parallel independence. The notion is stronger
than the corresponding property in e.g. term rewriting, since the preservation of the track function implies
not only that the two derivations reach the same graph, but that the items of the starting graph are preserved.
In particular, this implies that also the interface morphisms are preserved.

3.4 Graphical Encoding for Processes of Mobile Ambients
This section introduces a graphical encoding for processesof the mobile ambients calculus. First of all,
we present a suitable type graph, depicted in Figure 3.10, and then we define an inductive encoding by
exploiting the composition operators introduced in Definitions 3.7 and 3.9. This corresponds to a variant of

Lp :

mL

��

(1)

I
r //loo

mI

��

(2)

R

mR

��

G C
r∗

//
l∗

oo H

Figure 3.8: A direct derivation.
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R1

mR1

��

I1

r1oo
l1 //

mI1

��

L1

mL1

???

��
??

?
!!

L2

mL2
���

����
�

}}

I2

l2oo
r2 //

mI2

��

R2

mR2

��
H1 C1

r∗
1

oo
l∗1

// G C2
l∗2

oo
r∗
2

// H2

Figure 3.9: Parallel independence forp1/mL1 : G =⇒ H1 andp2/mL2 : G =⇒ H2.

the usual construction of the tree for a term of an algebra: names are interpreted as variables, so they are
mapped to leaves of the graph and can be safely shared.

As we can see, in the type graph there are three types of node: the type of a node is denoted by its
shape. Intuitively, a node of type◦ represents an ambient name, while a graph that has as roots a pair of
nodes〈⋄, •〉 represents a process. More precisely, the node of type⋄ represents the activating point for
reductions of the process represented by the graph. We need two different types of node to model processes
by graphs because each graph has to model both the syntactical and the activation dependences between the
operators of a process. Indeed, in mobile ambients the nesting of operators does not reflect the activation
dependences between them, since reductions can occur inside ambients. So, in order to model a process,
we use• nodes to model the syntactical dependences between the operators of the process, and⋄ nodes to
model their activation ones.

Each edge of the type graph, except thego edge, simulates an operator of mobile ambients. Note
that theact edge actually represents three edges, namelyin, out andopen. These three edges simulate
the capabilities of the calculus, theamb edge represents the ambient operator, and theν edge models the
restriction operator1. Notice that there is no edge representing parallel composition. Finally, thego edge
is a syntactical device for detecting the “entry” point for the computation. We need it later to simulate the
reduction semantics of mobile ambients. It allows us to forbid the occurrence of a reduction underneath a
capability operator.

All edges, except thego andν edges, have the same type of source, that is the node list〈⋄, •〉, while they
have different types of target. In particular, theamb edge has the node list〈•, ◦〉 as target, while thein, out
andopen edges have the same type of target, i.e. the node list〈⋄, •, ◦〉. Note that these three latter edges
have a node⋄ in the target. This node represents the activating point forthe reductions of the continuation
of the capability. It is different from the activating pointof the outermost capability operator, because the
reductions of the continuation can occur only after the action regulated by the capability is executed. The
amb edge instead has no node of type⋄ in its target. In fact, the activating point for the reductions of the
process inside an ambient is the same one of the outermost ambient. This occurs because process reductions
permeate ambients. Unlike the other graphical operators, theν operator has as root only one⋄ node and
does not have a• node. This modelling of the restriction operator comes fromthe fact that we consider
this operator just as a scope operator. This solution, unlike that one proposed in [34], allows us to define an
encoding of mobile ambients that captures the standard structural congruence of the calculus, dropping the
Cong-Zero-Resaxiom only.

Now we define a class of graphs such that all processes can be encoded into an expression containing

1 Note that in the next chapter we are going to introduce a slightly different encoding. It will not use a graphical counterpart for
the restriction operator, and thus it will be easier to use for our purpose of distilling a labelled transitions systems.

amb

 ��

go

•

==

!!

◦ νoo ⋄oo

bb

}}

OO

act

QQ MMOO

Figure 3.10: The type graph (foract∈ {in, out, open}).
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only those graphs as constants, and parallel and sequentialcomposition as binary operators. Figures 3.11
and 3.12 depict these constant graphs. In particular, Figure 3.11 presents the graphs that correspond to the
edges of the type graph. Figure 3.12 presents additional constant graphs needed for the formal presentation
of our encoding. Note that in the graphs of the two figures we denote the input interface on the left and
the output interface on the right. For example, the graphambn in the middle of Figure 3.11 has as input
interface{a, p} and as output interface{a, p, n}. Sincea andp are constants used by our encoding, we
assume thatp, a /∈ N, whilen ∈ N (whereN is the set of names of mobile ambients).

In the following, we use0a,p as shorthand for0a ⊗ 0p. Moreover, for a set of namesΓ, we useidΓ

andfreeΓ as shorthands for
⊗

n∈Γ idn and
⊗

n∈Γ freen, respectively. Note that both expressions are well
defined, because the⊗ operator is associative. The definition below introduces the encoding of processes
into graphs with interfaces. It maps each finite process intoa graph expression.

Definition 3.16 (Encoding for processes). LetP be a finite process and letΓ be a set of names such that
fn(P ) ⊆ Γ. The encoding ofP , denoted byJP KΓ, is defined by structural induction according to the rules
in Figure 3.13.

Note that the encodingJM.P KΓ represents the encoding ofin n.P , out n.P andopen n.P , whileactn
represents theinn, outn andopenn graphs, respectively.

Our encoding addresses theα-conversion of restricted names by denoting them with◦ nodes that are not
in the image of the output morphism. The mapping is well-defined in the sense that the result is independent
of the choice of the namem in the rule for restriction.

Moreover notice that in order to capture the axiomsCong-Res-ParandCong-Res-Amb, our encoding
extends the scope of each restriction operator to all the processes in parallel and to its parent ambient,
respectively. Also, notice that the⋄ root is the only root node that a graph representing a sub-process shares
both with the graphs representing the other processes in parallel and with the graph representing its parent
ambient. Therefore, the graphical operator modelling the restriction is linked only to the⋄ root of the graph
representing the process where it occurs. Note that linkingthe graphical operatorν also to the• root node
would still allow to capture the structural axiomCong-Res-Par, yet it would fail to recover the axiomCong-
Res-Amb. This means that the two congruent processes(νn)m[P ] andm[(νn)P ], for n 6= m, would be
represented by different graphical encodings. This comes from the fact that in our encoding we do not use
an edge to explicitly simulate the parallel operator|. Different processes in parallel are simply represented
by the fact that they share the same root nodes〈⋄, •〉. Instead, we use an explicit graphical operator to
simulate the ambient operator, which shares with the process inside it only the⋄ root node.

The encodingJP KΓ, whereΓ is a set of names such thatfn(P ) ⊆ Γ, is a graph with interfaces
({a, p},Γ). We note that the mapping is not surjective. In fact, there are graphs with interfaces({a, p},Γ)
that are not in the image of the encoding. The encoding of a processP is the graphJP Kfn(P ).

Example 3.1. Let us consider the example below, originally proposed in [16], which illustrates a form of
planned dissolution of an ambientn

R = n[acid[out n.open n.P ] | Q] | open acid.0 .

Figures 3.14 depicts the graph encodingJRKfn(R). We represent the graph encodings for the processes
P andQ by GP andGQ, respectively. Moreover, for the sake of simplicity, we assume that the ambient
namesn andacid do not belong to the set of free names ofP andQ.

The leftmost edges, labelledambandopen, have the same roots, into which the namesa andp are
mapped. Those two edges represent the topmost operators of the two parallel components of the process.

a // ⋄

!!

⋄ aoo

p // • // act

>>

//

  

• poo

◦ noo

a // ⋄

!!

aoo

p // • // amb //

  

• poo

◦ noo

a // ⋄ // ν // ◦ noo

a // ⋄ // go

Figure 3.11: Graphsactn (with act ∈ {in, out, open}); ambn; νn andgo (left to right).
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a // ⋄

p // •

n // ◦

◦ noo n // ◦ noo

Figure 3.12: Graphs0a and0p; 0n andfreen; andidn (top to bottom and left to right).

The edges in the middle, representing from left to right the operatorsacid[ ] andout n. , respectively, are
linked to the same⋄ root. Intuitively, this means that they have the same activating point of the outermost
ambient, and hence the reductions can permeate the two ambientsn andacid. Instead, the rightmost edge,
labelledopen, has a different⋄ source that is the target of the edgeout. Intuitively, this means that this
capabilityopencan be executed only after the actionout.

The graphical encoding shown in the example above models a process where all the ambient names
are free. The next example shows instead how our encoding models a process with restricted names. It
also shows how our encoding is able to capture the structuralaxiomsCong-Res-Res, Cong-Res-Parand
Cong-Res-Amb.

Example 3.2. Let S be the process(νm)(νn)(m[n[P ] | open n.Q] | open m.R), wherem 6= n. The
encodingJSKfn(S) is depicted in Figure 3.15. We represent the graph encodingsfor the processesP ,Q and
R by GP , GQ andGR, respectively. Moreover, for the sake of simplicity, we assume that the namesm and
n do not belong to the free names ofP ,Q andR.

The graph in Figure 3.15 encodes(νn)(νm)(m[n[P ] | open n.Q] | open m.R), as well as the process
(νm)((νn)(m[n[P ] | open n.Q]) | open m.R) and furthermore also(νm)(m[(νn)n[P ] | open n.Q] |
open m.R). The first two processes are congruent toS by the axiomsCong-Res-ResandCong-Res-Par,
respectively. The latter is congruent to the middle one thanks to the structural axiomCong-Res-Amb.

The following theorem states that our encoding is sound and complete with respect to the structural
congruence≡.

Theorem 3.1. LetP,Q be processes and letΓ be a set of names, such thatfn(P ) ∪ fn(Q) ⊆ Γ. Then,
P ≡ Q if and only ifJP KΓ = JQKΓ.

The proof of Theorem 3.1 is shown in Section A.1 (Appendix A).

3.5 A Graph Transformation System for Mobile Ambients
This section presents a graph transformation system that models the reduction semantics of the mobile
ambients calculus.

First of all, we enrich the encoding introduced in Definition3.16 in order to avoid performing reductions
underneath capability operators. To do this we attach ago edge to the⋄ root node of each graph representing
a process. Thego edge is a syntactical device needed for detecting the “entry” point for the computation
of the process. Given a processP and a set of namesΓ such thatfn(P ) ⊆ Γ, its enriched encoding is the
graphJP KΓ ⊗ go. We denote it byJP K

go
Γ .

Figure 3.16 presents the rules of theGTSRamb, which simulates the reduction semantics→ introduced
in Section 3.1. TheGTS Ramb contains just three rules, namelypin, pout andpopen. They simulate the
Red-In, Red-OutandRed-Openreductions, respectively. The action of the three rules is described by the

J0KΓ = 0a,p ⊗ freeΓ
Jn[P ]KΓ = ambn ◦ (idn ⊗ JP KΓ)
JM.P KΓ = actn ◦ (idn ⊗ JP KΓ)
J(νn)P KΓ = (νm ⊗ JP{m/n}KΓ∪{m}) ◦ (0m ⊗ idΓ) for m /∈ Γ

JP | QKΓ = JP KΓ ⊗ JQKΓ

Figure 3.13: Encoding for processes.
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Figure 3.14: Graph encoding for the processn[acid[out n.open n.P ] | Q] | open acid.0.

node identifiers. These identifiers are of course arbitrary.They correspond to the actual elements of the set
of nodes and are used to characterise the track function.

Now we discuss the rules of theGTS Ramb. In order to give a clear explanation of the rule actions,
we denote byambn an amb edge having in its target a◦ node identified byn. Let us consider thepin

production. Thepin rule preserves theambm edge, removes theambn edge and re-creates this last one
underambm. Note that, after the reduction, thein edge disappears and the nodes identified by2p and3p

and by1a and3a are pair-wise coalesced. The former coalescing guaranteesthe “structural” integrity of
the resulting graph, i.e., that all continuation processesare put in parallel; the latter ensures, as a side effect,
that the⋄ node3a under thein prefix is activated.

Thepout rule preserves theambm edge and removes theambn edge, too. It also re-creates this last one
with the same source nodes ofambm. Analogously topin, after the reduction theout edge disappears and
the nodes identified by3p and4p and by1a and4a are pair-wise coalesced.

Finally, thepopen production removes bothamb andopen edges. After the reduction, all the⋄ nodes
and all the• nodes are coalesced.

It seems noteworthy that three rules suffice for recasting the reduction semantics of mobile ambients.
That is possible for two reasons. First, the closure of reduction with respect to contexts is obtained by
the fact that graph morphisms allow the embedding of a graph within a larger one. Second, no distinct
instance of the rules is needed, since graph isomorphism takes care of the closure with respect to structural
congruence, and interfaces of the renaming of free names.

We now introduce the main theorems of the chapter. They statethat our encoding is sound and complete
with respect to the reduction relation→.

Theorem 3.2(Soundness). LetP,Q be processes andΓ a set of names, withfn(P ) ⊆ Γ. If P → Q, then
Ramb entails a direct derivationJP K

go
Γ =⇒ JQK

go
Γ .

Intuitively, a process reduction is simulated by applying arule on an enabled event, that is, by a match
covering a subgraph with thego operator on top.

Theorem 3.3(Completeness). LetP be a process andΓ a set of names, withfn(P ) ⊆ Γ. If Ramb entails
a direct derivationJP K

go
Γ =⇒ G, then there exists a processQ, such thatP → Q andG = JQK

go
Γ .
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Figure 3.15: Graph encoding for the process(νm)(νn)(m[n[P ] | open n.Q] | open m.R).
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The proofs of Theorems 3.2 and 3.3 are shown in Section A.2 (Appendix A).

The correspondence holds since a rule is applied only if there is a match that covers a subgraph with
the go operator on the top. This allows the occurrence of reductions inside activated ambients, but not
inside capabilities. In fact, if anamb operator is activated, that is, its⋄ source node has an outgoinggo
edge, then all operators inside it are activated too, because they have the same source node⋄ as theamb
operator. Differently, a reduction can not occur inside theoutermost capability, because the activating point
for the reductions of the continuation of a capability is different from the activating point of the outermost
capability.

The following example shows the application of some rules ofthe GTSRamb to the graph encoding for
the process considered in Example 3.1.

Example 3.3. Let us consider again the process shown in Example 3.1

R = n[acid[out n.open n.P ] | Q] | open acid.0 .

The graphical encoding for the process above is depicted in Figure 3.14. Its enriched encoding is instead
presented in Figure 3.17, where the nodes are labelled in order to denote the track function of the derivation.
The edge labelledgodenote the entry point for the computation of the process.

Note that the two edgesamb, the edgeout and the outermost edgeopencan be involved in a reduction
step because they have the same activation node with an outgoing go edge. Instead, the rightmost edge,
labelledopen, is not activated, since its⋄ source is the target of another edge.

The application of thepout rule to the graph in Figure 3.17 results in the graph in Figure3.18, which is
the actual encoding for the processS = acid[open n.P ] | n[Q] | open acid.0. In fact, this rewriting step
simulates the transitionR→ S.

Now, we can apply thepopen rule to the graph in Figure 3.18, and we obtain the graph in Figure 3.19.
Note that this rewriting step simulates the transitionacid[open n.P ] | n[Q] | open acid.0 → open n.P |
n[Q].

Finally, by applying thepopen rule to the graph in Figure 3.19, we get the graph in Figure 3.20. The
derivation mimics the reductionopen n.P | n[Q]→ P | Q.

The rewriting steps shown in the example above simulate a sequence of process reductions all occurring
on the top. The next example shows how our encoding is able to simulate process reductions that are nested
inside ambients.

Example 3.4.Let us consider the process previously shown in Example 3.2,namely,S = (νm)(νn)(m[n[P ] |
open n.Q] | open m.R), wherem 6= n andm andn do not belong to the free names ofP , Q andR. The
encodingJSKfn(S) is depicted in Figure 3.15, while the enriched encodingJSK

go
fn(S) is presented in Fig-

ure 3.21.
Two different applications of thepopen rule to the graphJSK

go
fn(S) are possible. The first application

results in the graph on the left of Figure 3.22 and it simulates the process reduction nested inside the
ambientm, namely,S → (νm)(νn)(m[P | Q] | open m.R). The other possible application of thepopen

rule instead results in the graph on the right of Figure 3.22.This last rewriting step mimics the transition
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S → (νm)(νn)(n[P ] | open n.Q] | R). Now, it is possible to apply again thepopen rule to both graphs
in Figure 3.22. The rewriting step obtained by applying thepopen rule to the graph on the left mimics the
transition(νm)(νn)(m[P | Q] | open m.R) → (νm)(νn)(P | Q | R), while the rewriting step obtained
by applying thepopen rule to the graph on the right simulates the transition(νm)(νn)(n[P ] | open n.Q] |
R)→ (νm)(νn)(P | Q | R). Both the rewriting steps result in the graph in Figure 3.23.

3.6 Collecting useless restrictions
In Section 3.4 we introduced a graphical encoding for mobileambients processes, proving its soundness
and completeness. The price to pay was the dropping the axiomequating processes(νx)0 and0, since the
encoding of the former has the occurrence of an edge which is missing in the one of the latter. This section
shows how to recast the structural congruence≡′ of mobile ambients in terms of graph isomorphism. To
this end, we introduce theGTS Rν : it contains just the rewriting rulepν shown in Figure 3.24. Here the
span of the graph morphisms is not presented explicitly, since it is obvious. The rule removes the useless
occurrences of the restriction operator, i.e., such that the name it binds does not occur in the process. Indeed,
in the graphical encoding this means that the node◦ representing the restricted name is not shared with other
operators. The rewriting rule removes only these◦ nodes: it cannot be applied unless the node representing
the name is isolated.

We start with a very simple technical lemma.

Lemma 3.1. Let pν/m1 : G =⇒ H1 andpν/m2 : G =⇒ H2 be two distinct direct derivations. Then,
these derivations are parallel independent.

This result guarantees that the definition below is well-given.

Definition 3.17 (Normal form). Let G be a graph with interfaces. We callnormal formof G, in symbols
nf(G), the graph with interfaces obtained by applying as many times as possible the rewriting rule of the
GTSRν

amb to G.

In other words, the graph with interfacesnf(G) is the normal form ofG if and only if it is impossible
to apply the rule of theGTSRν

amb to G.
The proposition below states that the normal form of our graphical encoding is sound and complete with

respect to the process equivalence≡′.

Proposition 3.3. Let P,Q be processes and letΓ be a set of names, such thatfn(P ) ∪ fn(Q) ⊆ Γ. Then,
P ≡′ Q if and only if nf(JP KΓ) = nf(JQKΓ).

The proof of Proposition 3.3 is shown in Section A.3 (Appendix A).

Example 3.5. Let us consider the processT = (νm)(νn)(m[P | Q] | open m.R), where the namesm
andn do not belong to the free name ofP , Q andR. The graphical encodingJT K

go
fn(T ) is shown on the

left of Figure 3.22. It is indeed equal to the encodingJT K
go
fn(S), sincefn(T ) = fn(S). The normal form
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Figure 3.24: The rewriting rulepν for removing the useless restriction operators.

nf(JT K
go
fn(T )) is represented in Figure 3.25. It is obtained by applying only once the rewriting rule in Figure

3.24. Such a rule allows us to remove from the graphJT Kfn(T ) the isolated node representing the useless
restricted namen.

We now present the theorem stating that the normal form of ourencoding is sound and complete with
respect to the reduction relation→′.

Theorem 3.4(Soundness and Completeness). LetP,Q be processes andΓ a set of names, withfn(P ) ⊆ Γ.
If P →′ Q, thenRamb entails a direct derivationnf(JP K

go
Γ ) =⇒ G such thatnf(G) = nf(JQK

go
Γ ).

Let P be a process andΓ a set of names, withfn(P ) ⊆ Γ. If Ramb entails a direct derivation
nf(JP K

go
Γ ) =⇒ G, then there exists a processQ, such thatP →′ Q andnf(G) = nf(JQK

go
Γ ).

The proof of Theorem 3.4 is shown in Section A.3 (Appendix A).
We close the section by presenting another simple technicallemma.

Lemma 3.2. Let pν/m1 : G =⇒ H1 andp/m2 : G =⇒ H2 be two (distinct) direct derivations, for any
p ∈ Ramb. Then, these derivations are parallel independent.

Thus, theGTS Rν
amb given by the union ofRν and Ramb can be considered as a graphical imple-

mentation of the reduction semantics→′, simultaneously allowing the normalisation of a process and the
execution of a reduction step.
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3.7 Concurrency and Interference
Our encoding may be exploited for defining a concurrent reduction semantics of the mobile ambients calcu-
lus. The role of the intermediate graphI in a rewriting rule is to characterise the elements of the graph to be
rewritten that are read but not consumed by a direct derivation. Such a distinction is important when con-
sideringconcurrentderivations, defined as equivalence classes of concrete derivations up to so-calledshift
equivalence[21], identifying (as for the analogous, better-knownpermutationequivalence ofλ-calculus)
those derivations that differ only for the scheduling of independent steps. Roughly, the equivalence states
the interchangeability of two direct derivationsp1/m1 : G =⇒ H andp2/m2 : H =⇒M if they act either
on disjoint parts ofG, or on parts that are in the image of the intermediate graphs (in jargon, if they are
sequential independentderivations).

As far as our encoding is concerned, the presence of the operator go linked to the⋄ root node on the
interface graph allows the simultaneous execution of several reductions. Indeed, the sharing of this operator
allows the execution of several rewriting steps which act either on disjoint parts of the graph, or on parts
that are in the image of the interface graphs. Note that the fact that thego operator is linked to the⋄ root
node also allows the simultaneous execution of different reductions which can occur both at top-level and
inside ambients.

Let us consider the processS = (νm)(νn)(m[n[P ] | open n.Q] | open m.R), previously proposed
in Examples 3.2 and 3.4. Its graphical encoding is presentedin Figure 3.21. As shown in Example 3.4,
two different rewriting steps starting fromJSKfn(S) are possible: the rewriting step simulating the opening
of the restricted ambientm, and that one simulating the opening of the restricted ambient n. It is easy
to notice that the two reductions are parallel independent.They indeed act only on disjoint items of the
graphJSKfn(S), or on items that are simply read, and thus not deleted, by anyof the two rule applications,
i.e., on items that are in the image of the graphI of the rule applied in both cases. Therefore, these two
reductions can be executed simultaneously or, put differently, local confluence ensures that they give rise to
two derivations (shown in Example 3.4) that differ only in the scheduling of the two steps. With respect to
the solution proposed in [36], there is no need to apply any broadcasting rule to the graph graphJSKfn(S).
Those rules were needed there to communicate to the subprocesses the information about “being activated”,
and thus allowing the two reductions to be executed.

The definition of independence can be used to give a definitionof interference. As explained in [46],
an interferenceoccurs when a derivation is corrupted by the execution of another derivation. Here authors
identify two types of interferences which they callplain interferenceandgrave interference. The former
occurs when a process may execute the same interaction with two different partners, while the latter occurs
when the two interactions are logically different. While thefirst type of interferences is sometimes desired,
for example to model non-determinism, grave interferencescan be considered “programming errors”, as
argued in [46].

In [46], both types of interference are defined informally. Authors use the notion ofredexto denote the
pair of ambients or processes involved in a reduction, therefore, an interference occurs when two or more
redexes share one of the interactive partners. The problem is that different occurrences of the same sub-
terms in a process are not identified and so, the mere notion ofredex is not able to say which occurrence
of the sub-term is used in presence of equal sub-terms in the process. For instance, let us consider the
mobile ambient processn[in m.P ] | n[in m.P ] | m[Q]. In it we can identify two redexes, both formed by
n[in m.P ] | m[Q], but it is obvious that we can not identify which occurrencesof the subprocessn[in m.P ]
they are actually using.

Giving a formal definition of interference is instead possible by using our graphical encoding. As shown
previously, the reduction semantics of mobile ambients is modelled by a graph transformation system, and
a process reduction is simulated by applying a rewriting rule, that is, by finding a match of the production
in the graph representing the process. The notion of match exactly identifies the sub-terms involved in a
reduction, therefore a formal definition of plain and grave interference can be introduced.

Definition 3.18 (Plain and grave interference). Let p1/m1 : G =⇒ H1 andp2/m2 : G =⇒ H2 be two
direct derivations. We say that theyinterfereif they are not parallel independent. The interference is said
plain if p1 = p2, andgraveotherwise.

Below we introduce some example of grave interference and weshow how we can identify them by
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using the graphical encoding.

Example 3.6. Let us consider the processR = open n.0 | n[in m.P ] | m[Q], originally proposed in
[46], where the namesm andn do not belong to the free names ofP andQ. Here the execution of the
openreduction on the ambientn destroys the possibility to perform thein reduction on the ambientm,
and vice versa. Indeed, both reductions act on the same ambient n by making changes on the structure
of the process that destroy the possibility of performing the other reduction. Since the two interactions
are logically different (in the first case we apply theRed-Openrule while in the second one we apply the
Red-Inrule), then a grave interference occurs. This is confirmed bythe analysis of the graph in Figure 3.26
(representing the graphical encoding of the processR) and of the interface graphs of the applied rewriting
rules. The graph in Figure 3.26 confirms the possibility of performing thepopen andpin rules originating
two derivations which simulate the two reductions above. Itis also easy to note that matches of both
rewriting rules share the ambientn. This ambient is not in the interface graphs of both rules, therefore it is
consumed by them. This means that the two derivations are notparallel independent and hence a symmetric
grave interference between them occurs.

Now let us consider the processS = o[P ] | n[in o.0 | m[out n.Q]], also proposed in [46], where the
nameso, n andm do not belong to the free names ofP andQ. Here it is possible to execute thein reduction,
allowing n to enter the sibling ambiento, or to execute theout reduction, allowing the ambientm to exit
from n. Differently from the case above, the execution of a reduction does not destroy the possibility to
perform the other one although it turns out to be corrupt, that is, its execution gives a different outcome from
the one obtained by applying the same rule before the execution of the other reduction. This is confirmed
by the analysis of the graph in Figure 3.27 (representing thegraphical encoding of the processS) and of
the interface graphs of the applied rewriting rules. It is easy to note that we can apply both the rulespin

andpout originating two derivations which simulate the two reductions above. In this case the two matches
share the ambientn, which is only read by thepout rule but read and manipulated by thepin rule. The two
derivations are indeed not parallel independent and hence agrave interference occurs.

3.8 Related Work
The encoding presented before is not the only attempt proposed so far to give a graphical implementation
of the mobile ambients calculus. The earliest proposals we are aware of are [30] and [36]. Our solution
is reminiscent of the latter, lifting the use of unstructured graphs in the encoding of processes proposed
there. Besides introducing a slender graph syntax (in accordance to [32]), the difference with the previous
proposal lies in the chosen representation of the states: the lack of records for the activation points in [36]
forced the introduction of suitable rules for forwarding the information about “being enabled” to subpro-
cesses. The presence of such spurious rules, possibly inhibiting the execution of some reductions, made the
correspondence between graph transformations and processreductions only weakly sound and complete
(see e.g. [36, Theorems 5.3 and 5.4]). Thus, it made less meaningful the application of standard tools from
graph transformation (such as the different parallelism theorems) for discussing about properties of process
evolution. Therefore, also the use of the concurrent semantics of mobile ambients in the study of the be-
haviour of a process with respect to dynamic properties suchas non-interference [46] was less appealing
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and intuitive. Our chosen state representation allows instead for the reuse of such techniques, as surveyed
in [32] for theπ-calculus.

As far as other proposals for graphical implementation are concerned, we are aware of [18, 30], using
the so-called Synchronised Hyper-edge Replacement (SHR) framework, as well as of [55], in the mold of
the standard DPO approach. Moreover, in [41] authors outline an encoding of mobile ambients by bigraphs.
They however leave to future work the detailed study of theirsolution, which they intend to exploit for the
derivation of a labelled transition system for the calculus.

In general, those SHR solutions are eminently hierarchical, meaning that each edge/label is itself a
structured entity, and possibly a graph. More precisely, “sequential processes become edge labels: when an
action is performed, an edge labelled byM.P is rewritten as the graph corresponding toP ” [30, p. 11]. We
believe that this is less adequate for calculi such as mobileambients, where the topology of the systems plays
a major role in discussing e.g. about distributed implementation and parallel execution of reductions [46],
as witnessed by the results shown in Sections 3.7 of this chapter. Moreover, the expressive power of the
SHR framework is achieved via a rather complex mechanism forrule application, less intuitive and simple
than the basic DPO matching of our solution.

As far as [55] is concerned, the main difference with respectto our proposal is in the use of a process
representation where the nesting of ambients is made explicit by the presence of suitable edges, instead of
being implicit in the representation of each process, as in our proposal. The resulting encoding of processes
is thus centralised, and this condition results in a complexset of graph transformation rules. Moreover, the
encoding of process reduction is sound, yet not complete, thus not allowing the reuse of tools for system
analysis that we mentioned earlier.

3.9 Graphical Encoding for AsynchronousCCS

In this section we present an encoding for the finite fragmentof the asynchronousCCS(ACCS). Differently
from [42, 51], where processes are encoded into bigraphs, here as for mobile ambients we use unstructured
graphs. In particular, we adapt the encoding for the synchronousCCSpresented in [7]), also modelling the
reduction semantics of the calculus via a set of DPO rules. Weintroduce such an encoding because it allows
us to derive the IPO LTS for theACCS (as shown in Chapter 4), which we will use to establish the adequacy
of the results we will present in next chapters.

Asynchronous CCS. Here we shortly introduceACCS as a fragment of asynchronousπ (with no name
passing). We adopt the presentation in [1] that allows the non deterministic choice for input prefixes (a
feature missing in [17, 14]). Moreover, to simplify the presentation, we avoid to consider infinite processes.

The syntax ofACCS is shown in Figure 3.28:N is a set ofnames, ranged over bya, b, . . . , with τ 6∈ N.
We letP,Q, . . . range over the setP of processes andM,N, . . . over the setS of summations. With respect
to synchronousCCS, the calculus lacks output prefixes: processa is thought of as a message, available on a
communication media nameda, that disappears after its reception. Thefree namesfn(P ) of a processP
are defined as usual.

Processes are taken up to astructural congruence(Figure 3.28), denoted by≡. Thereduction relation
is the least relation→⊆ P × P, closed under≡, inductively generated by the rules in Figure 3.28. The
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P ::= a, P1 | P2, (νa)P, M M ::= 0, α.P, M1 +M2 α ::= a, τ

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P
M +N ≡ N +M (M +N) +O ≡M + (N +O) M + 0 ≡M
(νa)(νb)P ≡ (νb)(νa)P (νa)(P | Q) ≡ P | (νa)Q if a /∈ fn(P ) (νa)0 ≡ 0

(νa)P ≡ (νb)(P{b/a}) if b /∈ fn(P )

a | (a.P +M)→ P τ.P +M → P
P → Q

(νa)P → (νa)Q
P → Q

P | R→ Q | R

Figure 3.28: Syntax, structural congruence and reduction relation ofACCS.

a.P +M
a
−→ P τ.P +M

τ
−→ P ā

ā
−→ 0

P
µ
−→ Q a /∈ n(µ)

(νa)P
µ
−→ (νa)Q

P
µ
−→ Q

P | R
µ
−→ Q | R

P
a
−→ P1 Q

ā
−→ Q1

P | Q
τ
−→ P1 | Q1

Figure 3.29: Labelled semantics ofACCS

interactive semantics forACCS is instead given by the relation over processes up to≡, obtained by the rules
in Figure 3.29. We letµ range over the set of labels{τ, a, ā | a ∈ N}: the names ofµ, denoted byn(µ),
are defined as usual. Differently from synchronous calculi,sending messages is non-blocking. Hence,
an observer might send messages without knowing about theirreception, and inputs are thus deemed as
unobservable. This is mirrored in the notion of asynchronous bisimilarity [1].

Definition 3.19 (Asynchronous bisimulation). A symmetric relationR is anasynchronous bisimulationif
wheneverP RQ then

• if P
τ
−→ P ′ thenQ

τ
−→ Q′ andP ′RQ′,

• if P
ā
−→ P ′ thenQ

ā
−→ Q′ andP ′RQ′,

• if P
a
−→ P ′ then eitherQ

a
−→ Q′ andP ′RQ′ or Q

τ
−→ Q′ andP ′RQ′ | ā.

Asynchronous bisimilarity∼A is the largest asynchronous bisimulation.

Graphical Encoding for ACCS. We do not present the formal definition of the graphical encoding of
ACCS, since it is analogous to the one for the synchronous versionof the calculus presented in [7, Defi-
nition 9]: it differs only for the choice of the typed graphTA, depicted in Figure 3.30. We remark that
choosing a graph typed overTA means to consider graphs where each node (edge) is labelled by a node
(edge) ofTA, and the incoming and outcoming tentacles are preserved.

Intuitively, a graph having as root a node of type• (⋄) corresponds to a process (respectively a sum-
mation), while each node of type◦ basically represents a name. Indeed, even if the encoding could be
defined by means of the two operators on typed graphs with interfaces defined in Section 3.2.1, forACCS

the situation is summed up by saying that a typed graph with interfaces is the encoding of a processP if its
underlying graph is almost the syntactic tree ofP : each internal node of type• has exactly one incoming
edge, except for the root, to which an edge labelledgo is attached.

Going back to the type graph, the edgercv (snd) simulates the input prefix (output operator, respec-
tively), while there is no edge for the parallel composition, non-deterministic choice and restriction opera-
tors. Edgec is a syntactical device for “coercing” the occurrence of a summation inside a process context,
while similarly to the mobile ambients encoding, the edgego detects the “entry” point of the computation.
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go τ

}}
• //

OO

��

c // ⋄

``

~~
snd HHrcv

aa

// ◦

Figure 3.30: Type graphTA.

In this case it avoids to perform any reduction below the outermost prefix operators: it is needed to properly
simulate the reduction semantics of the calculus.

The encoding of a processP , with respect to a set of namesΓ including the free names ofP , is a graph
with interfaces({p},Γ). It is sound and complete with respect to the structural congruence of the calculus,
that is, two processes are equivalent if and only if they are mapped into isomorphic graphs.

Figure 3.31 depicts the graph encoding for the processP = (νb)(b | b.a + a). The two leftmost edges
labelledc andsnd have the same root, into which the nodep of the interface is mapped. They are the top
edges of the two subgraphs representing the parallel components of the process. In particular, the edge
labelledsnd represents the output over the restricted channelb, namelyb, while thec edge is the syntactical
operator denoting that its subgraph represents a summation, that is,b.a + a. The two leftmost edges of
this last subgraph, both labelledrcv, model the two input prefixesb anda, while the rightmostsnd edge
represents the operatora. Note that the channel namea is in the output interface since it is free inP , while
the bound nameb does not belong to the interface.

A Graph Transformation System for ACCS. Figure 3.32 shows the two rules of theGTSRACCS , which
simulates the reduction semantics of the calculus introduced above. It contains just two rules, namelypcom

andpτ , which mirror the two axioms of the reductions relation in Figure 3.28. Also in this case, as for
mobile ambients, the action of the rules is described by the node identifiers. Note that a soundness and
completeness result of our encoding with respect to reductions is easily obtained (see [7, Proposition 2]).
Note that the correspondence must account for the discarding of sub-processes, due to the resolution of non-
deterministic choices: after a DPO derivation there can be parts of the graph (representing the discarded
components) that are not reachable from the root. Therefore, if a processP reduces toQ, we will not have
that its graphical encoding will reduce to the encoding ofQ with a DPO step, but it will reduce to a graph
whose subgraph reachable from the root coincides with the encoding ofQ. Vice versa, if the graphical
encoding of a processP executes a DPO derivation and reaches the graphG, then there existQ such that
P reduces toQ and the subgraph ofG reachable from the root coincides with the graphical encoding ofQ.

3.10 Summary
We presented two graphical encodings for finite processes respectively of mobile ambients and asyn-
chronousCCS. Each of them is sound and complete with respect to the operational semantics of the calculus
it encodes: both are based on unstructured graphs and standard DPO approach tools, thus allowing for the
reuse of analysis techniques from the graph transformationmold, along the lines of the graphical encodings
presented in [32, 36].

The graphical encoding of the asynchronousCCS is basically an adaptation of the one for the syn-
chronous version of the calculus [7]. As said in the introduction of this chapter, we presented the encoding,

go snd // ◦

•p // • //

OO >>

c // ⋄ //

  

rcv //

>>

• // snd

  
rcv //

%%
• ◦ ◦aoo

Figure 3.31: Encoding for the process(νb)(b | b.a + a).
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go

•p1 //

00

>>

c // ⋄s1 // rcv

##

// •p2

snd // ◦

go

•p1

==

⋄s1 •p2

◦

go

•p1p2

==

⋄s1

◦

Lcom Icom Rcom

go

•p1 //

>>

c // ⋄s1 // τ // •p2

go

•p1

==

⋄s1 •p2

go

•p1p2

==

⋄s1

Lτ Iτ Rtau

Figure 3.32: The productionspcom : Lcom  Icom → Rcom andpτ : Lτ  Iτ → Rτ .

since it allows us to derive the IPO LTS for theACCS (as shown in Chapter 4), which is used to establish
the adequacy of some results we will present in the next chapters.

As far as the encoding for mobile ambients, it has the abilityto model the syntactic structure of a process
and to keep track of its activation points, that is, of those ambients where reductions may actually take place.
Therefore, it allows a simple and faithful modelling of the reduction semantics of mobile ambients. We
considered the original presentation of the calculus, by discarding the communication primitives, as well as
recursive expressions: both could be tackled along the lines of the solution in [32].

The article also offers a list of applications for the graphical encoding ofπ-calculus [32, Section 8],
which could be immediately lifted to our encodings. They range from the use of graphs for verifying
system properties expressed by spatial logic to the use of the borrowed contextsapproach for deriving a
labelled transition system for the encoded calculi.

Among them, we focused on the use of the borrowed contexts mechanism: a thorough study of the
labelled transition system for mobile ambients obtained byexploiting the borrowed context technique is
indeed presented in the next chapter. It should be remarked that this array of applications is possible also for
mobile ambients thanks to our graphical implementation, where the tree structure of a process is decoupled
from its activation points.



Chapter 4

RPO semantics for mobile ambients and
asynchronousCCS

This chapter presents two case studies on the synthesis of LTSs for process calculi, choosing as testbed
mobile ambients and asynchronousCCS, respectively introduced in Sections 3.1 and 3.9.

Both proposals are based on (a slight variant of) the graphical encodings of both calculi presented in the
previous chapter, where each process is mapped into a graph equipped with suitable interfaces, such that
the denotation is fully abstract with respect to the usual structural congruence. Graphs with interfaces are
amenable to the borrowed contexts synthesis mechanism, which is an instance of G-relative pushouts. The
mechanism allows the effective construction of a labelled transition systems that has graphs with interfaces
as both states and labels, and such that the associated bisimilarity is automatically a congruence.

Here we concentrate on mobile ambients, by focusing on the analysis of the derived labelled transition
system over (processes as) graphs with interfaces. In particular, we first use the labelled transition system
on graphs to recover a suitable one directly defined over the structure of mobile ambients processes, and we
then exploit it to define a set of inference rules (in the SOS style) capturing the same operational semantics
for the calculus. The chapter is rounded up by a comparison with an alternative proposal by Rathke and
Sobocínski described in [60] (also inspired by the RPO technique).

Also as far as the asynchronousCCS is concerned, we introduce an IPO LTS for the calculus. We do not
show all steps needed to obtain it, because the procedure we used is very similar to the one exploited in [7]
for the synchronous version of the calculus. We present it just because it will be useful in some examples
presented in the next chapters.

The chapter is organized as follows. Section 4.1 shortly introduces an extended syntax for the mobile
ambients calculus, needed for the presentation of the operational semantics in Section 4.6. Section 4.2
recalls the DPO approach to rewriting on graphs with interfaces, as well as the associated BC technique for
distilling an LTS. Then, in Section 4.3 we discuss a graphical encoding for the extended mobile ambients
processes, which is the basis for a graph transformation system for mobile ambients that simulates process
reduction, defined in Section 4.4. In turn, these are needed for the presentation in Section 4.5 of an LTS
for graphs with interfaces representing mobile ambients processes, obtained by means of the BC synthesis
mechanism. Furthermore, the LTS over graphs is exploited inSection 4.6 to introduce an LTS defined
directly over processes of the mobile ambients calculus. InSection 4.7 we then present a novel description
of the distilled LTS by means of a set of inference rules, given according to the SOS style. And finally, this
SOS characterization is used in Section 4.8 to formally prove the correspondence between our proposal and
Rathke and Sobociński’s. Finally, before summarizing the chapter (Section 4.10), in Section 4.9 we briefly
present a labelled transition system for the asynchronousCCS, synthesized by applying the BC technique to
the graphical encoding introduced in Section 3.9.

4.1 Extended Mobile Ambients
This section shortly introduce an extended version of the mobile ambients calculus (previously introduced
in Section 3.9): we need it for the presentation of the operational semantics in Section 4.6. There, indeed,
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we will present an LTS having as target states processes withunderspecified subprocesses and/or ambient
names which can be further instantiated. Therefore, we introduce an extended syntax that allows us to build
processes containingprocess variablesandname variables.

Definition 4.1 (Extended processes). Let N be a set ofnamesranged over bym,n, u, . . . and letX =
{X,Y, . . .} andV = {x, y, . . . } be respectively a set ofprocess variablesand a set ofname variables. An
extended processis a term generated by the syntax in Figure 4.1.

P ::= 0, n[P ],M.P, (νn)P, P1|P2,X, x[P ] M ::= in n, out n, open n

Figure 4.1: Extended syntax of mobile ambients.

Intuitively, an extended process such asx[P ]|X represents an underspecified process, where either the
processX or the name of the ambientx[−] can be further instantiated.

Definition 4.2 (Pure and well-formed extended processes). A pureprocess is an extended process such that
no process or name variable occurs in it. Awell-formedprocess is an extended process such that no process
or name variable occurs more than once. We letP,Q,R, . . . range over the setP of pure processes; and
Pǫ, Qǫ, Rǫ, . . . over the setPǫ of well-formed processes.

We use the standard definitions for the set of free names of a pure processP , denoted byfn(P ), and
for α-convertibility, with respect to the restriction operators (νn). As for the general definition, variables
carry no name, hencefn(x[Pǫ]) = fn(Pǫ) andfn(X) = ∅. Later on we are also going to need the set of
name and process variables occurring in a process, defined asexpected and denoted asnv(Pǫ) andpv(Pǫ).

Moreover, we consider a family ofsubstitutions, which may replace a process/name variable with a
pure process/name, respectively. Substitutions avoid name capture: for a pure processP , the expression
(νn)(νm)(m[X]|x[0]){m/x,

n[P ] /X} corresponds to the pure process(νp)(νq)(q[n[P ]]|m[0]), for names
p, q 6∈ {m} ∪ fn(n[P ]).

The semantics of the calculus is given by the reduction relation and the structural congruence≡ defined
on pure processes and respectively presented in Figures 3.3and 3.2.

4.2 DPO Rewriting for Graphs with Interfaces
This section recalls thedouble-pushout(DPO) approach to the rewriting of graphs with interfaces. Note
that the definition of DPO derivation for systems with interface has already been introduced in Section 2.3,
by considering the more general setting of adhesive categories. Here we instantiate them for the case of
graphs with interfaces in order to give the operational intuition of the production application, which will be
useful later on.

In the following we use the notion of graph production introduced in Definition 3.11.

Definition 4.3 (Derivation of graphs with interfaces). Let J → G andJ → H be two graphs with inter-
faces. Given a productionp : L  I −→ R, a matchof p in G is a monom : L  G. A direct derivation
from J → G to J → H via p andm is a diagram as depicted below, where (1) and (2) are pushoutsand
the bottom triangles commute. In this case we writeJ → G =⇒ J → H.

L��

m

��

(1)

I
r //ooloo

��

��

(2)

R

��

G C //oooo H

J

__@@@@@@@
k

OO >>~~~~~~~~
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Operationally, applying a productionp to a graph with interfacesJ → G consists of three steps. First,
the (injective) matchm : L → G is chosen, providing an occurrence ofL in G. Then, all the items ofG
matched byL − l(I) are removed, leading to thecontext graphC. If C is well-defined, and the resulting
square is indeed a pushout, the items ofR− r(I) are finally added toC, further coalescing those nodes and
edges identified byr, obtaining the derived graphH.

The morphismk : J → C which makes the left triangle commute is unique, whenever itexists. If such
a morphism does not exist, then the rewriting step is not feasible. Moreover, note that the standard DPO
derivations (Definition 3.12) can be seen as a special instance of these, obtained considering as interfaceJ
the empty graph.

Note that here we require that the matchm has to be mono. This condition is going to be necessary
since it is needed for the application of BC rewriting. Note also that we do not report explicitly this notion,
since it is the same of the one introduced in Section 2.3 for the more general setting of adhesive categories.

4.3 Graphical Encoding for Extended Mobile Ambients Processes
This section introduces the graphical encoding for the extended mobile ambients processes. It is very
similar to the one presented in Section 3.4, where only processes over the standard syntax are considered.
The only difference is that here we consider extended processes and, in order to apply the borrowed context
technique, we need to have graphs with only one interface. Moreover, in order to simplify the encoding, we
drop the graphical restriction operator. The lack of restriction operators is dealt with simply by manipulating
the interfaces of graphs, that is, by denoting restricted names by name nodes that are not in the interface.
As discussed later in this section, this new encoding forcesus to consider a slightly different structural
congruence containing the axioms in Figure 4.8, but on the other side it allows us to obtain a slender
graphical encoding which is simpler to manipulate.

Figure 4.2 shows the type graphTM that we consider: it differs from that one of Section 3.4 onlyfor
the absence of the restriction operator.

The intuitive meaning of nodes and edges is exactly the same:a node of type◦ represents an ambient
name, while a graph that has as roots a pair of nodes〈⋄, •〉 represents a process, where⋄ precisely denotes
the activating point for reductions of the process. As far asedges are concerned, each of them, except the
go edge, simulates an operator of mobile ambients, while thego edge is a syntactical device for detecting
the “entry” point for the computation. We need it to simulatethe reduction semantics of the calculus.

The well-formed processes are encoded into expressions, which as constants besides containing the
graphs in Figures 3.11 and 3.12 (also used in the encoding in Section 3.4) also contain the graphs in Fig-
ure 4.3. Parallel and sequential composition (respectively Definitions 3.7 and 3.9) are instead the only
binary operators which are used. We assume a family{a, p}⊎{Xa,Xp | X ∈ X} with no intersection with
N.

In the following, besides using0a,p andida,p as shorthands for0a⊗ 0p andida⊗ idp, respectively, we
similarly exploit0X andidX which stand for0Xa

⊗ 0Xp
andidXa

⊗ idXp
. Moreover, for a set of names

Γ, we use0Γ andidΓ as shorthands for
⊗

n∈Γ 0n and
⊗

n∈Γ idn, respectively; and for a processPǫ we let
idpv(Pǫ) stand for

⊗

X∈pv(Pǫ)
idX .

The definition below introduces the encoding of extended processes (with no occurrence of name vari-
ables) into graphs with interfaces, mapping a process into agraph expression. Note that the encoding
JM.PǫKΓ represents the encoding ofin n.Pǫ, out n.Pǫ andopen n.Pǫ, whileactn represents theinn, outn

amb

 ��
•

==

!!

◦ ⋄

aa

}}

// go

act

QQ MMOO

Figure 4.2: The type graphTM (for act∈ {in, out, open}).
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andopenn graphs, respectively.

Definition 4.4 (Encoding for processes). Let Pǫ be a well-formed process with no occurrence of name
variables and letΓ be a set of names such thatfn(Pǫ) ⊆ Γ. Theencodingof Pǫ, denoted byJPǫKΓ, is
defined by structural induction according to the rules in Figure 4.4.

Given a well-formed processP and a set of namesΓ, such thatfn(Pǫ) ⊆ Γ, its encodingJPǫKΓ is a
graph with interfaces({a, p} ⊎ {Xa,Xp | X ∈ pv(Pǫ)} ⊎ Γ, ∅). Moreover, as in the encoding of Section
3.4, itsenriched encodingis the graphJPǫKΓ ⊗ go, which we denote byJPǫK

go
Γ . Intuitively, it is obtained

by attaching ago edge to the⋄ root node of each graph representing a process.

Example 4.1. Consider the pure processR = n[in m.0]|m[out m.0], previously introduced in Sec-
tion 3.2.2. Figure 4.5 shows the graphical encodingJRK{n,m} according to Definition 4.4. It is very similar
to the one shown in Figure 3.7 and obtained by considering Definition 3.16: the only difference is that here
names nodes representing free names are in the input interface together with root nodes• and⋄.

Now, consider the pure processS = (νn)R. Its enriched encodingJSK
go
{m} is shown in Figure 4.6.

This is obtained fromJRK{n,m} in two steps: at first, the noden is removed from the interface (obtaining
JSK{m}); and then, thego edge is attached to the activation node⋄ (finally obtainingJSK

go
{m}).

Let us focus on the first step: by definition,JSK{m} = (newn ⊗ idm ⊗ ida,p) ◦ JRK{n,m}. The graph
with interface(newn ⊗ idm ⊗ ida,p) has the same underlying body ofidn,m,a,p, but the namen is missing
from the input interface: the sequential composition of it with a graph having interface{n,m, a, p} results
into the same graph but withoutn among its inputs. In this way our encoding allows to bind names: indeed,
all the nodes◦ appearing in the interface represent free names while all the others represents bound names.

The graphical encoding presented above is not sound and complete with respect to the structural con-
gruence≡ presented in Figure 3.2. It is easy to see for example that theprocesses(νk)(out m.open k)
andout m.(νk)open k, for m 6= k, are mapped to the same graph, represented in Figure 4.7. Therefore,
this graphical encoding forces to consider new structural axioms, that is, ”floating” axioms for capabilities,
concisely represented by the axiom in Figure 4.8.

Moreover, as for the solution proposed in Section 3.4, the soundness of the encoding requires the struc-
tural axiomCong-Res-Nilto be dropped. Note that considering the standard structural congruence of mobile
ambients with the axiomsCong-Res-Actand without the axiomCong-Res-Nildoes not change substantially
the reduction semantics. The equality introduced by the axiomsCong-Res-Actholds for example in the ob-
servational equivalence for mobile ambients proposed in [47].

The encoding is sound and complete with respect to the structural congruence≡, now induced by the
axioms in Figure 3.2 and the ones in Figure 4.8, as stated by the proposition below.

Proposition 4.1. Let P,Q be pure processes and letΓ be a set of names, such thatfn(P ) ∪ fn(Q) ⊆ Γ.
Then,P ≡ Q if and only if JP K

go
Γ = JQK

go
Γ .

The proof is very similar to the one for Proposition 3.1. The result could be suitably extended, in order
to encompass also well-formed processes, but this is not necessary for our purposes.

4.4 Graph Transformation for the Extended Mobile Ambients
To model the reduction semantics of the extended mobile ambients, we adopt a slight variant of the graph
transformation systemRamb presented in Section 3.5 (Figure 3.16).

Xa

��
a // ⋄

Xp SS
p // •

Xa
// ⋄ Xa

oo

Xp
// • Xp

oo

a // ⋄ aoo

p // • poo

Figure 4.3: Graphs0Xa and0Xp ; idXa andidXp ; ida andidp (top to bottom and left to right).
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JXKΓ = 0X ⊗ 0Γ

J0KΓ = 0a,p ⊗ 0Γ

Jn[Pǫ]KΓ = (idpv(Pǫ) ⊗ ambn ⊗ idΓ) ◦ JPǫKΓ
JM.PǫKΓ = (idpv(Pǫ) ⊗ actn ⊗ idΓ) ◦ JPǫKΓ
JPǫ | QǫKΓ = JPǫKΓ ⊗ JQǫKΓ
J(νn)PǫKΓ = (idpv(Pǫ) ⊗ ida,p ⊗ newm ⊗ idΓ) ◦ JPǫ{

m/n}KΓ∪{m} for m /∈ Γ

Figure 4.4: Encoding for well-formed processes.

⋄

⋄a // ⋄
""

//

## %%

amb //

  

• // in

>>

//

  

•

◦n // ◦ ◦

•p // •

@@

// amb

33fffffffffffffff // • // out

>>

//

  

•

◦m

PP

⋄

Figure 4.5: Graph encoding for the processn[in m.0]|m[out m.0].

go

⋄

⋄a // ⋄

;;

""
//

## &&

amb //

  

• // in

>>

//

  

•

◦ ◦

•p // •

@@

// amb

22fffffffffffffff // • // out

>>

//

  

•

◦m

PP

⋄

Figure 4.6: Graph encoding for the process(νn)(n[in m.0]|m[out m.0]).

p // •

$$I
III ⋄

!!

⋄

a // ⋄ // out //

>>

  

• // open //

>>

  

•

◦ moo ◦

Figure 4.7: Encoding for(νk)(out m.open k) andout m.(νk)open k.

(νn)M.P = M.(νn)P if n /∈ fn(M) (Cong-Res-Act)

Figure 4.8: The capability floating axiom.
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The new rewriting rules are shown in Figure 4.9. The main difference is that here we have to consider
only injective matches, therefore we need to assume an instance for the rulespin andpout, where the nodes
labelledn andm may actually be coalesced. Moreover, we consider the rules with the intermediate graph
I without edges except thego edge. This allows us to make easier the synthesis of borrowedcontexts
derivations, by preserving the soundness and completenessof the encoding with respect to the reduction
relation→.

Theorem 4.1(Reductions vs. rewrites). Let P be a pure process, and letΓ be a set of names, such that
fn(P ) ⊆ Γ. If P → Q, thenRamb entails a direct derivationJP K

go
Γ =⇒ JQK

go
Γ . Vive versa, ifRamb entails

a direct derivationJP K
go
Γ =⇒ G, then there exists a pure processQ, such thatP → Q andG = JQK

go
Γ .

The proof is very similar to the ones of Theorems 3.2 and 3.3.
In the following we will introduce an example of applicationof the pinc rule. Before presenting it,

we would point out that, thanks to the special form of the DPO rules in Figure 4.9, given a matchm, the
pushout (1) of Definition 4.3 always exists.

Example 4.2. Let T be the pure processS previously introduced in Section 3.2.2 but with the ambient
namen coinciding withm, namely,T = (νm)(m[in m.0]|m[out m.0]).

The enriched graphical encoding for the process above is depicted in Figure 4.10. The edge labelled
go denotes the entry point for the computation of the process. Note that all the edges of the graph can be
involved in a reduction step because they have the same activation node with an outgoinggo edge.

The application of thepin−c rule to the graph in Figure 4.10 results in the graph in Figure4.11, which
is the encoding for the process(νm)(m[m[0]|out m.0]). This rewriting step simulates the transitionT →
(νm)(m[m[0]|out m.0]). With respect tom[in m.0]|m[out m.0] → m[m[0]|out m.0], the application
of the (ResRed) rule is immaterial: the occurrence of the restriction operator is simply mimicked by the
embedding ofLin−c into a graph with an interface that is lackingm.

4.5 The Synthesized Transition System
In this section we start applying the BC synthesis mechanismto Ramb in order to derive an LTS for graphs
representing mobile ambients processes. We open with an introductory section explaining the graphical
counterpart of process variables (Section 4.5.1): these are employed in the presentation (Section 4.5.2) of
some examples of rewriting steps with BCs. Building on these, we then introduce (Section 4.5.4) a compact
representation of the derived LTS by means ofminimal derivations: these are extrapolated via the use of
some pruning techniques (Section 4.5.3). The resulting LTSis going to be exploited in Section 4.6, in order
to define a novel LTS directly for mobile ambients processes.

4.5.1 Process variables, graphically
We first illustrate how a single BC transition may induce a reduction involving extended processes. To this
end, consider the graphJ  G depicted in Figure 4.12 and the diagram in Definition 2.20. The former
represents the encoding of the processS = (νn)(m[0] | n[0]).

The occurrence of the nodes•1p and⋄1a ensures us that the process represented byJ  F , namely
T = openm.0, can be put in parallel withS, so thatJ  G+ intuitively corresponds toS | T . Note
however the occurrence of the nodes•2p and⋄2a inK: they witness the possibility of a parametric instance
of processT . Indeed, the graph with interfacesK  G+ actually representsS | TX , for any process
variableX and well-formed processTX = openm.X.

Put differently, the contextJ  F  K is the minimal context allowing the reduction, which can be
obtained by applying the BC technique. The presence of the nodes•2p and⋄2a in K is important because
they denote the fact that it could be further instantiated with any substitution of the process variableX.

Additionally, note why our composition does not capture bound names. Consider e.g. the bound name
n of G  J . It does not appear in the interfaceJ and thus, for all graph with interfacesJ  F ′  K ′

(representing possible substitutions), it can not be identified with any name ofF ′.

4.5.2 Examples of borrowed transitions
This section shows the application of the BC synthesis mechanism to the graphical encoding of a process.
Let us consider the graphJ  G = JP K

go
{m}, whereP = (νn)(n[in m.0]|m[out m.0]). In the following
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go
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Figure 4.9: The rewriting rulespin, pout, popen, pin−c andpout−c (top to bottom).
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Figure 4.10: Graph encoding for the process(νm)(m[in m.0]|m[out m.0]).
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Figure 4.11: Graph encoding for the process(νm)(m[m[0]|out m.0]).

we discuss the possible transitions with sourceJ  G that are induced by the rulepin : Lin  Iin → Rin

of Ramb in Figure 4.9. Since for each pair of monosG  D  Lin a labelled transition might exist, in
order to perform a complete analysis, we should consider allthe pairs of monosG  D  Lin. We
proceed by showing some of the possible transitions generated by such pairs. Actually, we are going to see
that it is not necessary to check all those pairs that we are not considering here, by exploiting the pruning
techniques presented in the next subsection.

BC transition for D equals toLin Let us take asD the left-hand sideLin and note that there is only one
map into the graphG. The transition generated by this choice is depicted in Figure 4.22. The graphG+ is
the same asG. NowC andH are constructed as in a standard DPO rewriting step. When takingD as the
whole left-hand side,J  G needs no context for the reduction and thus the label of this transition is the
identity context, i.e., two isomorphisms into the discretegraphs with three nodes{p, a,m}.1 Intuitively,
this corresponds to an internal transition over processes,labelled withτ .

BC transition for D equals to the subgraph in the upper part ofLin Now we take asD the subgraph
of Lin representing an ambient with a capabilityin inside it. Note that also in this case there is only one
possible map into the graphG. The resulting transition is shown in Figure 4.23. The graphG+ is the
graphG in parallel with the graph representing an ambientm, thus intuitively it represents the process
(νn)(n[in m.0]|m[out m.0]|m[X]) for some process variableX. The graphJ  G, in order to reach
the graphG+, has to borrow from the environment the contextJ  F  K that represents the syntactic
context−|m[X]. Note that in the resulting interfaceK there is a process node•4p pointing to the process
node ofF occurring inside the ambientm, and this process node represents a process variableX, as detailed
in Section 4.5.1. The graphsC andH are then constructed as in the standard DPO approach. Intuitively,
K → H represents the processm[out m.0]|m[n[0]|X], whereX is the same process variable occurring in
the labelJ  F  K. This can be understood by observing that the process node•4p of K points both to
a node ofH and to a node ofF . Summarizing, this transition moves the ambientn into an ambientm that
is provided by the environment.

1Or, equivalently, to the value of the expressionidp ⊗ ida ⊗ idm, as defined in Section 3.4.
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Figure 4.12: The graphs with interfacesJ  G and the contextJ  F  K.
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BC transition for D equals to the subgraph in the lower part ofLin Another possibleD is the sub-
graph ofLin consisting of the ambient depicted in the lower part ofLin. In this case, there are two possible
maps into the graphG: the map into the subgraph ofG representing the ambientm, and the map into the
subgraph ofG representing the restricted ambientn.

In the first case, we obtain the transition shown in Figure 4.24. The graphG+ is the graphG in parallel
with the graph representing a fresh ambient namew having inside a capabilityin m. Intuitively, it rep-
resents the process(νn)(n[in m.0]|m[out m.0]|w[in m.X2|X1]) for some process variablesX1,X2. In
order to reachG+, the graphJ  G has to borrow from the environment the contextJ  F  K rep-
resenting the syntactic context−|w[in m.X2|X1]. As in the above caseX1 andX2 are process variables,
since in the interfaceK there are the process nodes•2p and•3p . The graphsC andH are obtained by a stan-
dard DPO derivation. The graphK → H represents the process(νn)(n[in m.0]|m[out m.0|w[X2|X1]]).
Summarizing, this transition represents an ambientw from the environment entering inside the ambientm
of the processP .

In the second case no transition is possible. Indeed the graphG+ is the whole graphG in parallel with
a fresh ambientw having inside a capabilityin n, but the pushout complement ofJ  G  G+ does not
exist, becausen is restricted and thus it does not belong to the interfaceJ . Intuitively, this means that no
ambient from the environment can enter inside a restricted sibling ambientn.

4.5.3 Reducing the Borrowing

In order to know all the possible transitions originating from a graph with interfacesJ  G, all the
subgraphsD’s of Lin, Lout andLopen should be analyzed. To shorten this long and tedious procedure, we
use the two pruning techniques presented in [7].

The first one is based on the observation that those items of a left-hand sideL that are not inD have to
be glued toG throughJ . Let us consider a noden of D corresponding to a noden′ in L, such thatn′ is the
source or the target of some edgee that does not occur inD. Since the edgee is in L but not inD, it must
be added toG throughJ , and thusn, must be also inJ . Such nodes are calledboundary node.

Let us consider for example the graph in Figure 4.13 as a subgraph ofLopen. Its root nodes are boundary
nodes since they have an outgoing edge that occurs inLopen but not in it. Also the name node◦ is a boundary
node, since inLopen there is an ingoing edge that does not occur in the graph in Figure 4.13. Therefore
these nodes must be mapped to nodes occurring in the interface J of G. This is exactly the reason why,
if we consider the graphJ  G in Figure 4.12 there is a transition when we choose asD the graph in
Figure 4.13 mapped to the subgraph representing the ambientm, while no transition is possible if we map
the sameD to the subgraph modelling the ambientn.

Boundary nodes are formally captured by the categorical notion of initial pushout.

Definition 4.5 (Initial pushout). Let the square (1) below be a pushout. It is aninitial pushoutof C → D
if for every other pushout as in diagram (2) there exist two unique morphismsA → A′ andB → B′ such
that diagram (2) commutes.

go

⋄1a

##

// amb //

!!

•
2p

◦n

•
1p

__

Figure 4.13: The subgraph ofLopen.
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A //

��

PO

B

��

C // D

A //

��

""

B

��

||

A′

||yy
y

//

PO

B′

""E
EE

C // D
(1) (2)

Since the category of (typed hyper-)graphs we work in has initial pushouts for all arrows [25], the
previous discussion is formalized by the lemma below [7, Corollary 1].

Lemma 4.1. A graph with interfacesJ → G can perform a BC rewriting step inRamb if and only if there
exist

• a monoD  L (whereL is the left hand side of some production inRamb),

• a monoD  G,

• a morphismJD → J (whereJD is the initial pushout ofD  L) such that square (2) in Figure 4.14
commutes.

The three conditions of the lemma above are sufficient to guarantee that a graphJ → G can perform a
BC rewriting step. This is indeed possible if and only if there exist a monoD  G and a monoD  L
such that the diagram of Definition 2.20 can be constructed. Since pushouts and pullbacks always exist, we
have just to ensure that pushout complements exist. Now, as said in Section 4.4, for all the rules in Figure
4.9, the pushout complementI  L  G+ always exists because all the nodes ofL are inI. Thus, we
have a transition if and only if there exists the pushout complementJ → G  G+ which, as shown in [7],
is guaranteed by the third condition of the lemma.

This lemma allows to heavily prune the space of possibleD’s. As for graphs corresponding to the
encoding of processes, we can exclude all thoseD’s having a continuation process node (any node depicted
by • that is not the root) as boundary node, observing that the only process node in the interfaceJ is the
root node.

A further pruning —partially based on proof techniques presented in [28]— is performed by excluding
all thoseD’s which generate a BC transition that is not relevant for thebisimilarity. In general terms, we
may exclude all theD’s that contain only nodes, since thoseD’s can be embedded in every graph (with the
same interface) generating the same transitions.

Concerning our case study, those transitions generated by aD having the root node without the edge
labelledgo are also not relevant. In fact, a graph can perform a BC transition using such aD if and only if
it can perform a transition using the sameD with a go edge outgoing from the root. Note indeed that the
resulting states of these two transitions only differ for the number ofgo edges attached to the root: the state
resulting after the first transition has twogo’s, the state resulting after the second transition only one. These
states are bisimilar, since the number ofgo’s does not change the behavior [7, Lemma 12].
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Figure 4.14: The BC construction together with commuting squares (1) (the initial pushout ofD  L) and (2).
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The two pruning techniques presented above allow us to only consider the partial matchesD shown in
Figures 4.15, 4.25 and 4.26, together withD’s obtained from the ones of the last two figures by coalescing
the name nodesn andm.

4.5.4 Minimal transitions
In Section 4.5.3 we restricted quite a lot the space of possibleD’s. However, reasoning on the synthesized
LTS is still hard (this is usually the case when working with derived LTSs, as pointed out in [3] and [6],
where the authors state that an SOS presentation of the synthesized LTS would be desirable). In order to
simplify this reasoning, we introduce a set ofminimal transitionsthat allow us to derive all and only the
transitions of the (pruned) synthesized LTS.

Inspired by Lemma 4.1, providing necessary and sufficient conditions for performing a transition, we
consider the graphsJD → D for all thoseD’s that have not been pruned in Section 4.5.3 andJD containing
only the boundary nodes ofD.

The minimal transitions have the following shape where the leftmost square in the lower row is the
initial pushout ofD  L.

D
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��

// // L
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��
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oooo //
��

��

R��

��

D

IPO

// // L

PB

Ioooo // R

JD

OO

// // FD

OO

KD

OO

oooo

==

Figures 4.15, 4.25 and 4.26 concisely represent these transitions, showing for each of these the starting
graphD, the labelJD  FD  KD, and the resulting graphR. The three figures represent the minimal
transitions respectively generated by the rulespopen, pin andpout. Additionally, the minimal transitions
generated by the rulespin−c andpout−c should be considered, but they are easily described starting from
those ofpin and pout, respectively. In particular, for each minimal transitionwith Dinx there exists a
minimal transition generated bypin−c, where all the relevant graphs are obtained by coalescing the nodes
n andm.2 Analogously for the minimal transitions generated by the rule p′out.

All the transitions originated from a graphJ  G (representing a process) can be characterized by
exploiting these minimal transitions. By Lemma 4.1, we can state thatJ  G can perform a BC rewriting
step inRamb if and only if there exist a monoD  G, for someD of the minimal transitions, and a
morphismJD → J such that square (2) in Figure 4.14 commutes.

The label of the rewriting step can be obtained from the labelof the minimal transition. First of all note
that the interfaceJ contains all the nodes ofJD (as suggested by the morphismJD → J), all the name
nodes◦ representing the free names of the modeled process (as expected by our encoding), and the root
nodes of the graphD when they are not inJD. Then the graphF only contains the whole graphFD and all
the nodes ofJ . Indeed, as shown in the proposition below, which is an adaptation of Proposition 4 of [7],
F can be obtained as the pushout ofJD → FD andJD → J .

Proposition 4.2. Letp : L  I → R be a production ofRamb; d : D  L a mono such that in Figure 4.16
diagram (i) is the initial pushout ofd and diagram (ii) is a pullback; andJ  G a graph with interfaces.

Then there exists aK such thatJ  G
JF←K
−−−−−→ K → H via p andd if and only if there exists a mono

D  G, a graphV and a morphismJD → J such that the central square of diagram (iii) in Figure 4.16
commutes andF andH are constructed as illustrated there.

It is easy to prove thatK is a discrete graph containing all and only the nodes ofF , or more concretely,
K consists of the nodes ofJ andKD.

Finally, the resulting graphH is obtained by replacing in the graphG the subgraphD withR. As shown
in Proposition 4.2, it can be computed in a DPO step ofD  D ∩ I → R, whereD ∩ I is the pullback of
D  L andI  L.

2Note also that it is irrelevant to consider the coalesced version for the rule withD′
ini

, since it would coincide with the minimal
transition forDin−ci , for all i.
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Figure 4.15: The minimal transitions generated by the rulepopen.
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As an example, consider the BC rewriting step shown in Figure4.22. We are going to show that it
is derivable by the minimal transition forDin4

, shown in Figure 4.25. First of all note that there exist
Din4

→ G and∅ → J such that the square (2) in Figure 4.14 commutes. Now,F is equal toJ , since it
consists of the composition ofFDin4

(i.e., ∅) andJ . The new interfaceK is equal toF , since it contains
all and only the nodes ofJ andKDin4

(i.e.,∅). The arriving stateH is obtained simply by replacingDin4

with Rin. Therefore, starting from the minimal transitionDin4
, we exactly obtained the BC transition of

Figure 4.22.

4.6 A New LTS for Mobile Ambients
This section presents the LTSD directly defined over mobile ambients processes. The inference rules
describing this LTS are obtained from the transitions of theLTS on graphs presented in Section 4.5.4. In
particular, we derive an inference rule for each minimal transition. As we will explain later in Section 4.6.2,
the conditions in the premise of each inference rule correspond to the necessary and sufficient conditions
allowing a transition from a graphG encoding a process, while the label and the resulting process are
obtained from the label and the resulting state of the borrowed transition, respectively. Section 4.6.1 presents
the LTS, while Section 4.6.2 shows how this LTS is distilled starting from the LTS over graphs.

The labels of the transitions are unary contexts, i.e., terms of the extended syntax with a hole−. The
formal definition of our LTS is shown in Figures 4.17 and 4.18.

4.6.1 The labelled rules on processes...
The rules in Figure 4.17 represent theτ -actions modeling internal computations. Note that the labels of the
transitions are contexts composed of just a hole−, while the resulting states are pure processes. The rule
INTAU enables an ambientn to enter a sibling ambientm. The rule OUTTAU enables an ambientn to get
out of its parent ambientm. Finally, the rule OPENTAU models the opening of an ambientn. These three
rules exactly derive the same transition relation of the reduction relation over mobile ambients, thus they
could be replaced with the rules in Figure 3.32.

The rules in Figure 4.18 model the interactions of a process with its environment. Note that both labels
and resulting states contain process and name variables. Wedefine the LTSDI for pure processes of mobile
ambients by instantiating all the variables of the labels and of the resulting states. We implicitly assume
that it is closed with respect to the structural congruence.

Definition 4.6. LetP,Q be pure processes and letC[−] be a pure context. Then, we have thatP
C[−]
−−→DI

Q

if there exists a transitionP
Cǫ[−]
−−→D Qǫ and a substitutionσ such thatQǫσ = Q andCǫ[−]σ = C[−].

Recall that substitutions map process variables into pure processes, and that they do not capture bound
names.

The rule OPENmodels the opening of an ambient provided by the environment. In particular, it enables
a processP with a capabilityopen n.P1 at top level, forn ∈ fn(P ), to interact with a context providing
an ambientn that contains inside it some processX1. The resulting state is the process over the extended
syntax(νA)(P1|X1|P2), whereX1 represents a process provided by the environment. Note thatthe instan-
tiation of the process variableX1 with a process containing a free name that belongs to the bound names in
A is possible onlyα-converting the resulting process(νA)(P1|X1|P2) into a process that does not contain
that name among its bound names at top level.
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Figure 4.16: Diagrams used in Proposition 4.2.
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(INTAU)
P≡(νA) C[n[in m.P1|P2]|m[P3]]

P
−
−→(νA) C[m[n[P1|P2]|P3]]

(OUTTAU)
P≡(νA) C[m[n[out m.P1|P2]|P3]]

P
−
−→(νA) C[m[P3]|n[P1|P2]]

(OPENTAU)
P≡(νA) C[n[P1]|open n.P2]

P
−
−→(νA) C[P1|P2]

Figure 4.17: The internal transitions of the LTSD (for C[−] context containing only ambients and parallel operators).

(IN)
P≡(νA)(in m.P1|P2) m 6∈A

P
x[−|X1]|m[X2]
−−−−−−−−−→(νA)m[x[P1|P2|X1]|X2]

(OUTAMB)
P≡(νA)(n[out m.P1|P2]|P3) m 6∈A

P
m[−|X2]
−−−−−→(νA)(m[P3|X2]|n[P1|P2])

(INAMB)
P≡(νA)(n[in m.P1|P2]|P3) m 6∈A

P
−|m[X2]
−−−−−→(νA)(m[n[P1|P2]|X2]|P3)

(OPEN)
P≡(νA)(open n.P1|P2) n6∈A

P
−|n[X1]
−−−−−→(νA)(P1|X1|P2)

(COIN)
P≡(νA)(m[P1]|P2) m 6∈A

P
−|x[in m.X1|X2]
−−−−−−−−−−−→(νA)(m[x[X1|X2]|P1]|P2)

(COOPEN)
P≡(νA)(n[P1]|P2) n6∈A

P
−|open n.X1−−−−−−−−→(νA)(P1|X1|P2)

(OUT)
P≡(νA)(out m.P1|P2) m 6∈A

P
m[x[−|X1]|X2]
−−−−−−−−−→(νA)(m[X2]|x[P1|P2|X1])

Figure 4.18: The environmental transitions of the LTSD.

The rule COOPEN instead models an environment that opens an ambient of the process. The rule
INAMB enables an ambient of the process to migrate into a sibling ambient provided by the environment,
while in the rule IN both the ambients are provided by the environment. In the rule COIN an ambient
provided by the environment enters an ambient of the process. The rule OUTAMB models an ambient of
the process exiting from an ambient provided by the environment, while in the rule OUT both ambients are
provided by the environment.

The LTSD does not properly conform to the so-called SOS style: indeed, the premises of the inference
rules are just constraints over the structure of the process. This is a consequence of the fact that the rules
of our LTS are obtained from the borrowed minimal transitions. Each rule corresponds to one minimal
transition presented in Section 4.5.4 and it is obtained as described below.

4.6.2 ...from the borrowed rules on graphs
Observe that a graphJ  G representing a processP can perform a BC rewriting step inRamb if and
only if there exists a monoD  G, for someD of a minimal transition, and a morphismJD → J ,
such that square (2) in Figure 4.14 commutes. Moreover, the label and the resulting graph of the borrowed
transition forG are obtained from the label and the resulting state of the minimal transition ofD, respec-
tively. Therefore, for each minimal transition we obtain aninference rule: the conditions in the premise
correspond to the necessary and sufficient conditions for performing a transition from a graphG, while the
label and the resulting process are obtained from the label and the resulting state of the borrowed transition,
respectively. Since the labels of the LTS over graphs obtained by the BC mechanism represent minimal
graph contexts enabling a graph production, the labels of our LTS over processes represent minimal process
contexts enabling a reduction.

As the main example, in this section we closely look at the correspondence between the rule OPEN and
the first minimal transition in Figure 4.15.

Consider a graphJ  G representing the encoding for a processP . If there exists a monoDopen1
 G

and a morphismJDopen1
→ J , such that the square (2) in Figure 4.14 commutes, the graphJ  G can

perform a BC rewriting step inRamb with labelJ  F  K, whereJ , F andK respectively consist of
JDopen1

, FDopen1
andKDopen1

together with the free names ofP . Now, note thatDopen1
can be embedded

in G and a morphismJDopen1
→ J (such that the square (2) in Figure 4.14 commutes) may exist if and

only if P ≡ (νA)(open n.P1|P2), for n 6∈ A. Indeed, the graph must contain an occurrence of the operator
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open n.− on top, possibly further instantiated, since it includesDopen1
; and since the interfaceJ contains

all the nodes ofJDopen1
, we conclude thatn must belong toJ , that is,n must be a free name ofP . This is

the premise of the rule OPEN.
Starting from the labelJ  F  K of the BC transition we now obtain the label of the process

transition. By observing the shape ofF , which contains all the items ofFDopen1
, we can say that the

process context is composed of the ambientn. Moreover, the contextF is glued toG throughJ , which
contains the free names ofP and the nodes ofJDopen1

, i.e., the namen and the nodes representing the roots
of the graphG (which modelsP ). Since these two nodes represent the roots of the graphF (which models
ambientn), we conclude that the label of the process transition is a context with the ambientn in parallel
with a hole representing processP .

The graphK represents the interface of both graphsF andH. It contains all the nodes ofKDopen1
, i.e.,

the roots ofF and the roots of the process inside the ambientn. The nodes of the interfaceK represent
the “handles” ofF andH for interacting with an environment. Therefore, the process node ofK that is
not the root ofF can be thought of as a process variable inside the ambientn in the label of the transition.
Therefore, we conclude that the label of the transition withsource the processP can be represented as
the minimal context−|n[X1], where− is a hole andX1 is a process variable. The resulting process
(νA)(P1|X1|P2) exactly corresponds to the stateH from the BC transition. Indeed, in the interfaceK
of the graphK → H also the node modeling the process variableX1 occurs, which represents a process
provided by the environment.

The reader should notice that while there are 13 minimal transitions, only 10 rules occur in Figures 4.17
and 4.18. This is due to the fact that each of the rules IN, COIN and OUT is actually derived by two minimal
transitions. The rule IN is generated by the minimal transitionsDin1

andD′in1
of Figure 4.25, COIN by

Din3
andD′in3

of the same figure, and OUT byDout1 andD′out1 of Figure 4.26. We show the latter, since
the others are analogous.

In the minimal transition withDout1 two ambients are borrowed from the environment. The first one
has namem (i.e., the ambient from which the process wants to exit), while the second has a fresh namen
(it is not restricted, since it occurs inKDout1

). This transition thus corresponds to the rule

P ≡ (νA)(out m.P1|P2) m 6∈ A n 6∈ (A ∪ fn(P ))

P
m[n[−|X1]|X2]
−−−−−−−−→ (νA)(m[X2]|n[P1|P2|X1])

In the minimal transition withD′out1 the namen belongs to the process (it occurs inside the graph
Dout′1

) but, since the noden occur inJD′
out1

, it should appear in the interfaceJ , i.e., it must be free. Thus,
this transition corresponds to the rule

P ≡ (νA)(out m.P1|P2) m 6∈ A n ∈ fn(P )

P
m[n[−|X1]|X2]
−−−−−−−−→ (νA)(m[X2]|n[P1|P2|X1])

The conclusion of the two rules above is identical, thus we can put together their premises, and com-
pactly represent them via the rule OUT of Figure 4.18. Substituting the namen with a name variablex
basically guarantees that any actual name can be substituted ton, evenm (thanks toDout−c1

), as long as it
does not occur inA.

4.7 An SOS Presentation for the Derived LTSD
In the previous two sections we described a semi-automatic methodology for distilling an LTSD. This
section introduces a set of SOS rules, tailored overD, such that the associated LTSS coincides with the
former one. The rules forS are shown in Figure 4.19. We assume the implicit presence of the rule

P ≡ P ′ P ′
Cǫ[−]
−−→ Qǫ

P
Cǫ[−]
−−→ Qǫ

(Cong).

The rules in the first two rows of Figure 4.19 model internal computations. They are indeed obtained
from the rules in Figure 4.17. In particular, since these rules exactly derive the same transition relation of
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the reduction relation over mobile ambients, we replace it with the reduction rules labelled with the identity
context−. So, we obtain the axioms modelling the execution of the capabilities of the calculus, and a
structural rule for each ambient, parallel and restrictionoperators.

The remaining rules in Figure 4.19, modelling the interactions of a process with its environment, are
obtained from the rules in Figure 4.18. In particular, for each of these rules we derive three rules. First,
we determine the axiom by considering the minimal process needed by the reduction to occur. For e.g. the
rule IN of the LTSD, the minimal process allowing the reduction isin m.P1. Therefore, we determine the

axiom in m.P1
x[−|X1]|m[X2]
−−−−−−−−→ m[x[P1|X1]|X2]. The next step is to determine the structural rules in SOS

style. So, as far as the rule IN of the LTSD is concerned, we have that ifP
x[−|X1]|m[X2]
−−−−−−−−→ Pǫ, then for

the processP |Q there is a transition labelledx[−|X1]|m[X2] leading to the processPǫ with the processQ

inside the ambientx, that is,P |Q
x[−|X1]|m[X2]
−−−−−−−−→ Pǫ{

Q|X1/X1
}. Instead, ifP

x[−|X1]|m[X2]
−−−−−−−−→ Pǫ andm 6= a,

then(νa)P
x[−|X1]|m[X2]
−−−−−−−−→ (νa)Pǫ.

This result is also confirmed by the analysis of the minimal transitions.

Deriving axioms As explained in Section 4.5.4, a minimal transition represents a BC transition, where
the starting graph is the smallest graph allowing a BC rewriting by considering a given graph transformation
rule and a given partial match. The graphD of a minimal transition therefore represents the minimal process
needed to the reduction modeled by the BC transition to occur. This means that each minimal transition
represents an axiom of the SOS LTS.

Let us consider for example the minimal transition forDin1
. The graphsDin1

represents the process
in m.0, but all the remarks made below also hold for the extended processin m.P1, whereP1 represents
any process.

As explained in Section 4.5.4, starting from the label of theBC transition we obtain the label of the
process transition that in this case isx[−|X1]|m[X2], with x name variable. The resulting process is instead
represented by the graphRin that models the processx[P1|X1]|m[X2]. Therefore, this minimal transition

represents the axiomin m.P1
x[−|X1]|m[X2]
−−−−−−−−→ m[x[P1|X1]|X2].

Now, let us consider the minimal transition forDin2
. It represents the axiom

n[(νA)(in m.P1|P2)]
−|m[X2]
−−−−→ m[n[(νA)(P1|P2)]|X2]. Nevertheless, it is obvious that this rule can be

rewritten as the rule INAMB of Figure 4.19, by using the transition derived according tothe rules IN, IN-
PAR and INRES. Graphically, this is suggested by the fact that the graphDin2

contains the partial match
Din1

, which gives rise to the minimal transition allowing us to derive the rule of the third row of Figure
4.19.

Deriving structural rules for the parallel operator The structural rules can instead be obtained by ana-
lyzing the interfaceJD of the minimal transition, whose nodes represent the “handles” ofD for interacting
with the environment. Since for each minimal transitionyJD always contains the root nodes ofD, then we
can add a graphI representing a processQ in parallel withD, by obtaining a graphJ  G, where the in-
terfaceJ consists ofJD together with the free names ofQ. Now, since there exist a monoD  G (because
G consists of the graphD in parallel withI) and a morphismJD → J , such that the square (2) in Fig-
ure 4.14 commutes, the graphJ  G can perform a BC rewriting step inRamb with labelJ  F  K,
whereF andK consist ofFD andKD together with the free names ofQ. Process-wise, this means that if

P
C[−]
−−→ Pǫ, then for the processP |Q there is also a transition labelledC[−].
Let us consider again the minimal transition forDin1

. By analyzing the interfaceJDin1
we may obtain

the structural rule for the parallel operator. SinceJDin1
contains the root nodes of the graphD, then we

can add a graphI representing a processQ in parallel withD. In this way, we obtain a graphJ  G,
where the interfaceJ consists ofJDin1

together with the free names ofQ. The graphJ  G can perform
a BC rewriting step inRamb with labelJ  F  K, whereF andK respectively consist ofFDin1

and
KDin1

together with the free names ofQ. This means that the graph contextJ  F  K also represents

the process contextx[−|X1]|m[X2]. In terms of processes, this means that ifP
x[−|X1]|m[X2]
−−−−−−−−→ Pǫ, then

P |Q also has a transition labeled withx[−|X1]|m[X2]. The resulting process is represented by the graph
H which is obtained simply by replacingDin1

with Rin in G. T,he node•2p after the reduction execution
is under the ambientx and moreover it represents a process variable inPǫ. This means that the graph
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(INTAU) (OUTTAU) (OPENTAU)

n[in m.P |Q]|m[R]
−
−→m[n[P |Q]|R] m[n[out m.P |Q]|R]

−
−→n[P |Q]|m[R] open n.P |n[Q]

−
−→P |Q

(TAUAMB) (TAUPAR) (TAURES)

P
−
−→P ′

n[P ]
−
−→n[P ′]

P
−
−→P ′

P |Q
−
−→P ′|Q

P
−
−→P ′

(νa)P
−
−→(νa)P ′

(IN) (INPAR) (INRES)

in m.P1

x[−|X1]|m[X2]
−−−−−−−−−→m[x[P1|X1]|X2]

P
x[−|X1]|m[X2]
−−−−−−−−−→Pǫ

P |Q
x[−|X1]|m[X2]
−−−−−−−−−→Pǫ{Q|X1/X1

}

P
x[−|X1]|m[X2]
−−−−−−−−−→Pǫ a6=m

(νa)P
x[−|X1]|m[X2]
−−−−−−−−−→(νa)Pǫ

(INAMB) (INAMBPAR) (INAMBRES)

P
x[−|X1]|m[X2]
−−−−−−−−−→Pǫ

n[P ]
−|m[X2]
−−−−−→Pǫ{n/x,0/X1

}

P
−|m[X2]
−−−−−→Pǫ

P |Q
−|m[X2]
−−−−−→Pǫ|Q

P
−|m[X2]
−−−−−→Pǫ a6=m

(νa)P
−|m[X2]
−−−−−→(νa)Pǫ

(COIN) (COINPAR) (COINRES)

m[P1]
−|x[in m.X1|X2]
−−−−−−−−−−−→m[x[X1|X2]|P1]

P
−|x[in m.X1|X2]
−−−−−−−−−−−→Pǫ

P |Q
−|x[in m.X1|X2]
−−−−−−−−−−−→Pǫ|Q

P
−|x[in m.X1|X2]
−−−−−−−−−−−→Pǫ a6=m

(νa)P
−|x[in m.X1|X2]
−−−−−−−−−−−→(νa)Pǫ

(OUT) (OUTPAR) (OUTRES)

out m.P1

m[x[−|X1]|X2]
−−−−−−−−−→m[X2]|x[P1|X1]

P
m[x[−|X1]|X2]
−−−−−−−−−→Pǫ

P |Q
m[x[−|X1]|X2]
−−−−−−−−−→Pǫ{Q|X1/X1

}

P
m[x[−|X1]|X2]
−−−−−−−−−→Pǫ a6=m

(νa)P
m[x[−|X1]|X2]
−−−−−−−−−→(νa)Pǫ

(OUTAMB) (OUTAMBPAR) (OUTAMBRES)

P
m[x[−|X1]|X2]
−−−−−−−−−→Pǫ

n[P ]
m[−|X2]
−−−−−→Pǫ{n/x,0/X1

}

P
m[−|X2]
−−−−−→Pǫ

P |Q
m[−|X2]
−−−−−→Pǫ{Q|X2/X2

}

P
m[−|X2]
−−−−−→Pǫ a6=m

(νa)P
m[−|X2]
−−−−−→(νa)Pǫ

(OPEN) (OPENPAR) (OPENRES)

open n.P1

−|n[X1]
−−−−−→P1|X1

P
−|n[X1]
−−−−−→Pǫ

P |Q
−|n[X1]
−−−−−→Pǫ|Q

P
−|n[X1]
−−−−−→Pǫ a6=n

(νa)P
−|n[X1]
−−−−−→(νa)Pǫ

(COOPEN) (COOPENPAR) (COOPENRES)

n[P1]
−|open n.X1−−−−−−−−→P1|X1

P
−|open n.X1−−−−−−−−→Pǫ

P |Q
−|open n.X1−−−−−−−−→Pǫ|Q

P
−|open n.X1−−−−−−−−→Pǫ a6=n

(νa)P
−|open n.X1−−−−−−−−→(νa)Pǫ

Figure 4.19: The LTSS.
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modelingQ (that has as root the node•2p ) after the reduction execution is under the ambientx and it is in
parallel with the process variableX1. Therefore the resulting process isPǫ{

Q|X1/X1
}.

Deriving structural rules for the restriction operator Also the structural rules for the restriction oper-
ator can be obtained by analyzing the interfaceJD. Indeed, we know that a graphJ  G representing
a processP can perform a BC rewriting step if and only if there exist a mono D  G and a morphism
JD → J , such that the square (2) in Figure 4.14 commutes. If we modify the interfaceJ by removing one
or more name nodes, then the graphG with the new interfaceJ ′ can also perform the same BC rewriting
step if and only if there exists a morphismJD → J ′, such the square (2) in Figure 4.14 commutes. This
means that all the name nodes ofJD must also belong toJ ′, therefore as suggested by the encoding, the

ambient names ofP that are inJD cannot be restricted. In terms of processes, this means thatif P
C[−]
−−→ Pǫ,

then for the process(νa)P there is also a transition labelledC[−] if the names belonging toJD do not
belong toa.

On the basis of the remarks above, starting from the minimal transition forDin1
, we can derive a

structural rule for the restriction operator. In particular, if P
x[−|X1]|m[X2]
−−−−−−−−→ Pǫ, then for the process(νa)P

there is a transition with the same label leading to the process(νa)Pǫ if the namem (that belongs to the
interfaceJDin1

) is not restricted.
Note that the interfaceJD also allows us to obtain a graphJ  G that is composed of the graphD

with another graph on the top. It is easy to note that in this case the graphJ  G does not perform any BC
transition because it is impossible to find a morphismJD → J such the square (2) in Figure 4.14 commutes.

Equivalence between LTSs As for D, also forS we define the LTSSI for pure processes by instantiating
all the variables of the labels and of the resulting states. Moreover, also in this case, we implicitly assume
that it is closed with respect to the structural congruence.

Definition 4.7. LetP,Q be pure processes and letC[−] be a pure context. Then, we have thatP
C[−]
−−→SI

Q

if there exists a transitionP
Cǫ[−]
−−→S Qǫ and a substitutionσ such thatQǫσ = Q andCǫ[−]σ = C[−].

As stated by the following theorem, the LTSsSI andDI coincide.

Theorem 4.2. LetP be a pure process and letC[−] be a pure context. Then,P
C[−]
−−→DI

Q if and only if

P
C[−]
−−→SI

Q.

The proof of Theorem 4.2 is shown in Section B.1 (Appendix B).

4.8 Equivalence between LTSs
This section shows the equivalence between our LTSSI defined on pure processes and the LTS proposed
by Rathke and Sobociński in [60, Figures 6, 7 and 8].

Their LTS is organized into three components: the process-view LTS C, the context-view LTSA, and
the combined LTSCA. The labels of the LTSCA have the shapeα ↓ ~M , whereα is derived by the LTS

C, and ~M by the LTSA. In a transitionP
α↓ ~M
−−→CA Q, the labelα identifies the minimal context needed

by the pure processP to react, while ~M is a list of pure processes and ambient names, representing an
instantiation of the context components. The first column ofTable 4.1 shows all the labelsα of the LTS
C, while the second column for each of these labels presents the contextχα that it identifies. We refer the
interested reader to [60, Lemma 6] for a more detailed explanation of this correspondence. Note that each
contextχα contains a set of typed numbered holes. In particular, holesof typeN can be instantiated with
ambient names, while holes of typePr can be instantiated with pure processes. Therefore, in a transition

P
α↓ ~M
−−→CA P ′, the tuple ~M has to provide an instantiation for all context components,that is, for each hole

of χα of process typePr (different from1Pr) and for each hole of name typeN . The hole1Pr instead
represents the hole that has to be instantiated with the processP . As we are going to see later on, it is the

hole that is represented with− in our contexts. For example, consider the transitionP
in m↓ ~M
−−−−→CA P ′. Here

the tuple ~M must provide an instantiation for the holes2Pr, 3N and4Pr of the contextχin m. This means
that it has to have the following shape~M : Q,n,R, forQ,R pure processes andn ambient name.
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It is immediate to note that there exists a one-to-one correspondence between the labelsCǫ[−] of our
LTS S and the contextsχα listed in the second column of Table 4.1. This correspondence is shown in the
same table, whereCα

ǫ [−] (the third column) denotes the label of our LTSS corresponding to the context
χα of the second column.

Note that for each labelα, the contextsCα
ǫ [−] andχα have the same shape. The hole− in Cα

ǫ [−]
corresponds to the hole1Pr in χα, and there is a correspondence between name and process variables of
Cα

ǫ [−] and holes ofχα of typeN anPr, respectively. Consider e.g. the labelCin m
ǫ [−] = x[−|X1]|m[X2]

and the corresponding contextχin m = 3N [1Pr|2Pr]|m[4Pr]. The two contexts have the same shape. In
particular, the name variablex corresponds to the hole3N , the hole− corresponds to the hole1Pr , and the
process variablesX1 andX2 correspond to the holes2Pr and4Pr, respectively.

As explained in Section 4.7, a substitutionσ for a contextCǫ[−] provides an instantiation for the
process and name variables of the context. For instance, a substitutionσ for the contextCin m

ǫ [−] =
x[−|X1]|m[X2] must have the shape{Q/X1

,n /x,
R /X2

} for Q,R pure processes andn ambient name.
Now, since there is a correspondence between holes of a context χα of typeN andPr, and name and
process variables of the relative contextCα

ǫ [−], respectively, it is obvious that given a tuple~M for χα it is
possible to determine a unique corresponding substitutionσM for Cα

ǫ [−]. Such a substitutionσM instan-
tiates each variable with the same value used by~M to instantiate the hole corresponding to that variable.
Analogously, given a substitutionσ for Cα

ǫ [−], it is possible to determine a unique corresponding substitu-
tion ~Mσ for χα. Consider again the contextχin m and the tuple~M = Q,n,R providing an instantiation
respectively for the holes2Pr, 3N and4Pr. The substitutionσM (induced by ~M ) for the corresponding
contextCin m

ǫ [−] = x[−|X1]|m[X2] is {Q/X1
,n /x,

R /X2
}. Analogously, it is possible to determine the

tuple ~M from the substitutionσM . The last two columns of Table 4.1 show for eachα respectively the
shape of the tuples~Mα

σ andσα
M .

The following propositions allow us to formally prove the correspondence between the LTSSI and the
LTS CA. Their proofs are in Section B.2 (Appendix B).

Proposition 4.3. Let P be a pure process. IfP
α↓ ~Mα

−−−→CA Q, then there existsQǫ such thatP
Cαǫ [−]
−−→S Qǫ

andQ ≡ Qǫσ
α
M .

Proposition 4.4. Let P be a pure process and letσ be a substitution. IfP
Cǫ[−]
−−→S Qǫ andQǫσ ≡ Q, then

there existsα such thatCǫ[−] = Cα
ǫ [−] andP

α↓ ~Mα
σ−−−→CA Q.

From the two propositions above and from the definition of theLTS SI (Definition 4.7) follows the main
result of this section.

Theorem 4.3. Let P be a pure process. IfP
α↓ ~M
−−→CA Q, then there is a unique (up-to≡) substitutionσ

such thatP
Cαǫ [−]σ
−−−→SI

Q. Vice versa, ifP
C[−]
−−→SI

Q, then there areα and a unique (up-to≡) tuple ~M such

thatC[−] = Cα[−] andP
α↓ ~M
−−→CA Q.

α χα Cα
ǫ [−] ~Mα

σ σα
M

in m 3N [1Pr|2Pr]|m[4Pr] x[−|X1]|m[X2] PnQ {P /X1
,n /x,

Q /X2
}

[in m] 1Pr|m[2Pr] −|m[X2] P {P /X2
}

[in m] 4N [inm.2Pr|3Pr]|1Pr −|x[in m.X1|X2] PQn {P /X1
,Q /X2

,n /x}
out m m[3N [1Pr|2Pr]|4Pr] m[x[−|X1]|X2] PnQ {P /X1

,n /x,
Q /X2

}
[out m] m[1Pr|2Pr] m[−|X2] P {P /X2

}
open n 1Pr|n[2Pr] −|n[X1] P {P /X1

}
open n openn.2Pr|1Pr −|open n.X1 P {P /X1

}
τ 1Pr − ∅ {}

Table 4.1: The correspondence betweenα, χα, Cα
ǫ [−], ~Mα

σ andσα
M .
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4.9 A Labelled Transition System for the AsynchronousCCS

In this section we present an IPO-LTS on processes of the asynchronousCCS. To this end, as for the mobile
ambients calculus, we shortly introduce an extended version of the asynchronousCCS, where processes
containing process and summation variables are allowed.

Extended AsynchronousCCS. Figure 4.20 shows the extended syntax of the calculus. We assume a
setN of namesranged over bya, b, c, . . .. As for mobile ambients, we include a set ofprocess variables
X = {X,Y, . . .}, which are needed for the presentation of the LTS in Figure 4.21, and a set ofsummation
variablesM = {XM , YM , . . .}, useful to discuss the application of the BC mechanism to graphs encoding
ACCS processes.

By following Definition 4.1 for mobile ambients, we define apure processand a pure summation as
an extended process, respectively summation, such that no process or summation variable occurs. We let
P,Q,R, . . . range over the setP of pure processes, andM,N, . . . over the setS of pure summation. We
use the standard definitions for the set of free names of a pureprocessP , denoted byfn(P ), and forα-
convertibility, with respect to the restriction operators(νn). As for the general definition, variables carry
no name, hencefn(X) = ∅ andfn(XM ) = ∅.

As for the mobile ambients calculus, we consider a family ofsubstitutions, which may replace a
process/summation variable with a pure process/summation. Substitutions avoid name capture: for a
pure processP , the expression(νa)(νb)(a.b.X + XM ){a/X ,

b.P /XM
} corresponds to the pure process

(νc)(νd)(c.d.a+ b.P ), for c, d 6∈ {b} ∪ fn(b.P ).
The semantics of the calculus is given by the reduction relation and the structural congruence on pure

processes both defined in Figure 3.28.

Borrowed Contexts LTSs for asynchronousCCS. The graphical encoding for the asynchronousCCS

presented in Section 3.9 is amenable to the BC mechanism. To this end, as for mobile ambients, we need
to consider extended processes and, in order to apply the borrowed context technique, we need to have
graphs with only one interface. We do not formally introducethe encoding for extended processes of the
asynchronousCCS. It can indeed be obtained by following what we did for the mobile ambients calculus
in Section 4.3. Intuitively, the encoding is defined as discussed in Section 3.9, with the only difference that
here nodes representing free names of the process are in the input interface together with the• root node,
the• nodes representing the process variables and the⋄ nodes representing the summation variables.

The graph transformation system modeling the reduction semantics of the extended asynchronousCCS

is exactly the same as the one presented in Section 3.9.
So, the BC synthesis mechanism may be applied to it in order toderive an LTS for graphs representing

asynchronousCCS processes. Figure 4.27, 4.28 and 4.29 show three examples ofBC transitions. In par-
ticular, the first one shows an application of the BC synthesis mechanism to the graphical encoding of the
processτ.0, induced by the rulepτ : Lτ  Iτ → Rτ . We take asD the left-hand sideLτ , therefore the
starting graph needs no context for the reduction and so the label of this transition is the identity context.
Intuitively, this corresponds to an internal transition over processes, labelled withτ .

Figure 4.28 shows an application of the BC synthesis mechanism to the graphical encoding of the
processa.a+ τ.0, induced by the rulepcom : Lcom  Icom → Rcom. We take asD the subgraph ofLcom

representing an input prefix. The graphG+ is the graphG in parallel with the graph representing an output
overa, thus intuitively it represents the processa.a + τ.0 | a. The graphJ  G, in order to reach the
graphG+, has to borrow from the environment the context that represents the process context− | a. The
graphsC andH are then constructed as in the standard DPO approach. Intuitively,K → H represents the
processa | 0. Summarizing, this transition models a communication overthe channela, where the output
action is provided by the environment.

Finally, Figure 4.29 represents a BC derivation again induced by the rulepcom, but with starting graph
the encoding of the processa. Here we take asD the subgraph ofLcom representing an output prefix. The

P ::= a, P1 | P2, (νa)P, M, X M ::= 0, α.P, M1 +M2, XM α ::= a, τ

Figure 4.20: Extended syntax ofACCS.
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graphG+ is the graphG in parallel with the graph representing an input overa, thus intuitively it represents
the processa | a.X1+XM , for some process variableX1 and summation variableXM . The graphJ  G,
in order to reach the graphG+, has to borrow from the environment the contextJ  F  K representing
the syntactic context− | a.X1 +XM . Note indeed that in the resulting interfaceK there are a process node
•p1 and a summation node⋄s1 pointing, respectively, to the process node (modelling a process variable)
of F following the input operator, and to the summation node (representing a summation variable) inF
representing the root of the input operator. The graphsK → H, intuitively, represents the0 process, so
summarizing, this transition models a communication over the channela, where the input action is provided
by the environment.

An LTS for asynchronous CCS processes. Here we do not present all the steps necessary to obtain the
LTS directly defined overACCS processes. It suffices to know that we mimicked [7], where theauthors
derived an LTS for the ordinaryCCSby employing the borrowed context mechanism.

Figure 4.21 shows the LTSA.
Obviously the labels are minimal contexts, i.e., they represent the exact amount of context needed by a

process to react. Moreover, note that the label of the (SND) rule contains the process variableX1. Actually,
it should also contain the summation variable, but, as it is possible to note in the BC transition shown
in Figure 4.29, this variable does not occur in the arriving state, and it also plays no role in the derived
bisimilarity. We therefore avoided considering it in the label.

Following Definition 4.6 for mobile ambients, we define the LTSAI for processes over the not-extended
syntax by instantiating the process variable of the labels and of the resulting states.

Rule RCV represents the main difference between the LTSA and the one derived in [7] for the syn-
chronous version. Since in the asynchronousCCS outputs have no continuations, then the label and the
target state have no process variable which is instead needed in the synchronous version of the calculus.

It is easy to see that there is a close correspondence betweenthe ordinary LTS semantics (in Figure 3.29)

and the LTSA: P
τ
−→ Q iff P

−
−→ Q, P

a
−→ Q iff P

−|ā
−→ Q andP

ā
−→ Q iff P

−|a.X1
−−−→ Q|X1.

However, as we will see later, for the asynchronousCCS IPO-bisimilarity is too fine grained. Consider
for example the two processesa.ā+τ.0 andτ.0. They are asynchronously bisimilar (according to Definition
3.19), but they are not IPO-bisimilar. In the next chapter wewill introduce a new semantics for reactive
systems that generalizes∼A.

4.10 Summary
In this chapter we exploit the graphical encodings respectively for mobile ambients and ACCS, both pro-
posed in the previous chapter, to distill two LTSs on (processes encoded as) graphs. Each LTS is obtained
semi-automatically by first applying the BC technique to thegraph transformation system associated to
the calculus, and further using some pruning techniques forremoving possible reductions, yet preserving
bisimilarity. The LTS defined on graphs is then exploited in order infer an LTS directly defined on pro-
cesses. In particular, as far as ACCS, we do not present in detail the procedure needed to obtain the LTS
on process. This because it is very similar to the one used in [7] for its synchronous version. For mobile
ambients, also a suitable set of SOS rules for the calculus ispresented, showing that the LTSS they induce
coincides with the derived one. Finally, exploiting the SOSpresentation, we prove that ourS is actually
equivalent with an alternative proposal presented in [60].

In spite of the great interest received by mobile ambients, there are relatively few works concerning
a labelled characterization of the calculus. After early attempts by Cardelli and Gordon [37] and (via

(TAU)
P−→Q

P
−
−→Q

(RCV)
P≡(νA)(a.Q+M |R) a6∈A

P
−|ā
−→(νA)(Q|R)

(SND)
P≡(νA)(ā|Q) a6∈A

P
−|a.X1−−−→(νA)(Q|X1)

Figure 4.21: The LTSA
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a graphical encoding) by Ferrari, Montanari and Tuosto [30], the only papers that we are aware of are
by Merro and Zappa-Nardelli [47] and by Rathke and Sobociński [60]. We already addressed the LTS
introduced in the latter: we only remark that, analogously to our work, Rathke and Sobociński employ a
general systematic procedure for deriving LTSs that they previously introduced in [59]. As for the former,
the LTS proposed by Merro and Zappa-Nardelli is restricted to systems, i.e., those processes obtained by the
parallel composition of ambients. For this reason, our rules IN, OPENand OUT have no counterpart in [47].
Instead, the rules INAMB, COIN and OUTAMB exactly correspond to the rules (Enter), (Co-Enter), (Exit) in
Table 6 of [47]. Moreover, our rule COOPENroughly corresponds to their (Open). Indeed the former inserts
a process into the context−|open n.X1, while the latter intok[−|open n.X1|X2] (again, this difference is
due to the fact that the LTS of [47] is restricted to systems).It is important to note that, differently from our
LTS, the labels of the rules (Enter) and (Exit) contain the name of the migrating ambientn. This requires
defining two extra rules (Enter Shh) and (Exit Shh) for the case whenn is restricted.

For a practitioner, the main interest of the results presented in this chapter lies on the presentation of a
succinct LTS for mobile ambients, and the associated set of SOS rules. However, we do believe that our
work represents a relevant case study for the theory of reactive systems [45]. As already pointed out in
the introduction, BC rewriting and bigraphical reactive systems [51] are both instances of this theory. Our
work, together with [7], shows that the borrowed contexts approach is quite effective in deriving LTS for
process calculi. In particular, it seems to confirm the advantage of borrowed contexts over graphs with
interfaces with respect to bigraphs. In bigraphs, all the reduction rules must be ground (i.e., they can not
contain process variables). As a result, also the labels andthe arriving states of the derived transitions
must be ground. Instead, rewriting with BCs allows to employfew non ground rules and thus the resulting
transitions have labels and arriving states containing (process and name) variables. This feature was not
relevant for calculi such as asynchronousCCS, its synchronous version andπ, because the variables in the
labels always occur “outside” of the arriving state and thuscan be forgotten. As an example, consider

the asynchronousCCS transitionb.0 | ā
−|a.X
−−−→ b.0 | X derived from the (non ground) reduction rule

ā | a.X −→ X. The behaviour of the processb.0 | X is trivially equivalent tob: their interaction is
basically restricted to processes offering ab̄ action, and we can thus avoid to considerX. Instead, in
the case of mobile ambients, the ability of considering non ground states is fundamental, because process
variables may occur nested inside ambients in arriving states.
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Figure 4.22: Ambientn enters ambientm. This corresponds to the transition(νn)(n[in m.0]|m[out m.0])
−
−→ (νn)(m[n[0]|out m.0]).



70
C

H
A

P
T

E
R

4.
R

P
O

S
E

M
A

N
T

IC
S

F
O

R
M

O
B

ILE
A

M
B

IE
N

T
S

A
N

D
A

S
Y

N
C

H
R

O
N

OUS
C

C
S

go

⋄3a

⋄1a

;;

!!
// amb //

  

•2p // in

>>

//

��

•3p

•1p

>>

◦n ◦m

go

⋄3a

⋄1a

;;

!!
//

##

amb //

  

•2p // in

>>

//

  

•3p

◦n ◦m

•1p

@@

// amb

LL

// •4p

go

⋄3a

⋄1a

<<

•2p •3p

◦n ◦m

•1p •4p

go

⋄1a3a

;;

##

// amb //

  

•
2p
3p

◦n ◦m

•1p // amb

MM

// •4p

AA

D Lin Iin Rin

go

⋄3a

⋄1a

;;

!!
//

## %%

amb //

  

•2p // in

>>

//

  

•3p

◦n ◦m

•1p

@@

// amb

33gggggggggggg // •5p // out

>>

//

  

•6p

⋄6a

go

⋄3a

⋄1a

;;

!!

))

//

## %%

amb //

  

•2p // in

>>

//

  

•3p

◦n ◦m

•1p

@@

��

// amb

33gggggggggggg // •5p // out

>>

//

  

•6p

⋄6a

amb

MM

// •4p

go

⋄3a

⋄1a

;;

## %%

•2p •3p

◦n ◦m

•1p // amb

33gggggggggggg // •5p // out

>>

//

  

•6p

⋄6a

•4p

go

⋄1a3a

;;

))

//

## %%

amb //

  

•
2p
3p

◦n ◦m

•1p

��

// amb

33gggggggggggg // •5p // out

>>

//

  

•6p

⋄6a

amb

MM

// •4p

QQ

G G+ C H

⋄1a

◦m

•1p

⋄1a

##

◦m

•1p // amb

::

// •4p

⋄1a

◦m

•1p •4p

J F K

Figure 4.23: Ambientn enters ambientm (from environment). This corresponds to the transition(νn)(n[in m.0]|m[out m.0])
−|m[X]
−−−→ (νn)(m[out m.0]|m[n[0]|X]).
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Figure 4.24: Ambient w (from environment) enters ambientm. This corresponds to the transition(νn)(n[in m.0]|m[out m.0])
−|w[in m.X2|X1]
−−−−−−−−−−→

(νn)(n[in m.0]|m[out m.0|w[X2|X1]]).
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Figure 4.25: The minimal transitions generated by the rulepin.
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Figure 4.26: The minimal transitions generated by the rulepout.
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Figure 4.27: The BC transition corresponding toτ.0
−
−→ 0.
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Figure 4.28: The BC transition corresponding to the transitiona.a + τ.0
−|a
−→ a|0.
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Chapter 5

Barbed semantics for reactive systems

As said in Section 2.1, reactive systems represent a meta-framework aimed at deriving behavioral con-
gruences for those specification formalisms whose operational semantics is provided by rewriting rules.
Despite its applicability, they suffered so far from some drawbacks. Among them, one of the most impor-
tant is that the efforts focused on strong bisimilarity, disregarding weak and barbed semantics. As far as the
weak semantics is concerned, the only proposal we are aware of is in [43], where the author introduces a
notion of weak bisimilarity for bigraphs.

In this chapter we address this issue, by providing suitablenotions of barbed and weak barbed satu-
rated semantics for reactive systems, and their characterization via transition systems labelled with minimal
contexts, by exploiting the semi-saturated game, where a minimal context may be matched by any context.

The results above may have potentially far reaching consequences on the usability of the reactive sys-
tems formalism. However, their adequacy has to be properly established, by checking it against suitable
case studies. To this end, we instantiate our proposal over the calculus of mobile ambients, whose obser-
vational semantics is still in a flux, and over the asynchronous CCS. In particular, for mobile ambients,
we prove that our proposal captures the behavioural semantics for the calculus proposed by Rathke and
Sobocinski and by Merro and Zappa Nardelli, while for the asynchronous CCS we show that it is able to
capture the standard asynchronous bisimilarity (Definition 3.19).

The chapter is organized as follows. Section 5.1 discusses the motivations leading us to introduce a new
semantics for reactive systems. Section 5.2 recalls the strong and weak behavioural equivalences for the
mobile ambients calculus. Section 5.3 presents the technical core of the chapter, the introduction of barbed
and weak barbed semantics for reactive systems, and offers alabelled characterization by means of their
semi-saturated counterparts. Finally, Section 5.4 provesthat the two barbed semi-saturated bisimilarities we
introduced capture the barbed congruences proposed so far for mobile ambients, while Section 5.5 applies
the framework to the asynchronous CCS.

5.1 Adequacy of IPO Semantics
Several attempts have been made to encode various specification formalisms (Petri nets [50, 62], logic pro-
gramming [13],CCS [51, 7],λ-calculus [52, 23], asynchronousπ-calculus [42], fusion calculus [22], etc.)
as reactive systems, either hoping to recover the standard observational equivalences, whenever such a be-
havioural semantics exists (CCS[48], pi-calculus [49], etc.), or trying to distill a meaningful new semantics,
as in the previous chapter for the mobile ambients calculus.The results are however not yet fully satisfac-
tory. On the one-side, IPO-bisimilarity is usually too fine-grained, and mobile ambients are no exception.
On the other side, saturated semantics are often too coarse,such as in the case ofCCS, where the standard
strong bisimilarity is strictly included in the saturated one. The saturated semantics is not indeed able to
distinguish certain processes with infinite internal behaviour, hence for example the (recursive) processes
Ω = reczτ.z andΘ = τ.Ω + a.Ω are saturated bisimilar [54], yet not strong bisimilar1. This kind of prob-
lem becomes potentially serious when consideringweak semantics. Intuitively, two systems are saturated
bisimilar if they cannot be distinguished by an external observer that, in any moment of their execution,

1In [7], the authors show that the IPO-semantics ofCCScoincides with the standard bisimilarity.
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can insert them into some context and observe a reduction. However, since in weak semantics reductions
cannot be observed, all systems are equivalent.

In the various formalisms this kind of problem has been tackled by using different techniques. Among
these, the most famous in the context of process calculi is based on the notion ofbarbed bisimulation,
proposed by Milner and Sangiorgi in [54].

5.1.1 Barbed Semantics
Barbed bisimulation represents a general technique for generating bisimulation-based equivalence for any
process calculus with a reduction relation and a notion ofbarb. Intuitively, a barb is just a predicate on the
states of a system, which simply detects the possibility of performing some observable action. For instance,
in Milner’s CCS barbs express the ability of a process to perform an input or an output over a channel.
Barbed equivalences add the check of such predicates in the bisimulation game: every time that a system
shows a barb, the equivalent systems has to show the same barb, and vice-versa.

The advantage of this kind of semantics is that it does not exploit labelled transition systems, and
therefore allows us to avoid several labelled transition systems for the same calculus that lead to different
behavioral equivalences, such as in the case of theπ-calculus [53]. Moreover, the flexibility of the definition
allows for recasting a wide variety of observational, bisimulation-based equivalences. For example Milner
and Sangiorgi apply their proposal to theCCS, by proving that strong bisimulation ofCCS coincides with
the congruence induced by barbed bisimulation.

In the following, we fix a familyO of barbs, and we writeP ↓o if P satisfieso ∈ O.

Definition 5.1 (Barbed Bisimilarity, Barbed Congruence). A symmetric relationR is abarbed bisimulation
if wheneverP RQ then

• if P ↓o thenQ ↓o;

• if P → P ′ thenQ→ Q′ andP ′RQ′.

Barbed bisimilarity∼B is the largest barbed bisimulation;barbed congruence≃B is the largest congruence
contained in∼B .

Nevertheless, in the setting of reactive systems all efforts have been focussed so far on strong bisimilar-
ity, tackling neither weak nor barbed semantics. So, in the following sections we will introduce a suitable
notion of barbed and weak barbed saturated semantics for reactive systems, and their characterization via
transition systems labelled with minimal contexts, by exploiting the semi-saturated game.

5.2 Mobile Ambients
This section shortly introduces the strong and weak behavioural equivalences of mobile ambients. We recall
to the reader that the calculus has been introduced in Sections 3.1, while in Section 4.1 we introduced its
extended version.

We begin by defining barbs for mobile ambients processes. As said in the previous section, a barbo is
a predicate over the states of a system, withP ↓o denoting thatP satisfieso. In mobile ambients,P ↓n
denotes the presence at top-level of a unrestricted ambientn.

Definition 5.2 (Mobile ambients barbs). LetP be a pure process. It satisfies thestrong barbn, in symbols
P ↓n, if P ≡ (νA)(n[Q]|R) andn 6∈ A, for some processesQ andR and a set of restricted ambient names
A.

Definition 5.3 (Mobile ambients weak barbs). Let P be a pure process. It satisfies theweak barbn, in
symbolsP ⇓n, if there exists a processP ′ such thatP →∗ P ′ andP ′ ↓n, where→∗ is the transitive and
reflexive closure of→.

The two notions above are exploited to give the definitions ofstrong [60] and weak [47] reduction barbed
congruence, respectively. Before presenting them, we introduce MAscontexts: they are MAs processes
with a hole−, formally generated by the following grammar (forR mobile ambient process)

C[−] ::= −, n[C[−]], M.C[−], (νn)C[−], C[−] | R.
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Definition 5.4 (Strong reduction barbed congruence). Strong reduction barbed congruence∼MA is the
largest symmetric relationR such that wheneverP RQ then

• if P ↓n thenQ ↓n;

• if P → P ′ thenQ→ Q′ andP ′RQ′;

• ∀C[−], C[P ]RC[Q].

Definition 5.5 (Weak reduction barbed congruence). Weak reduction barbed congruence∼WMA is the
largest symmetric relationR such that wheneverP RQ then

• if P ↓n thenQ ⇓n;

• if P → P ′ thenQ→ Q′ andP ′RQ′;

• ∀C[−], C[P ]RC[Q].

Labelled characterization of reduction barbed congruences over mobile ambients processes are pre-
sented by Rathke and Sobociński for the strong case [60], and by Merro and Zappa Nardellifor the weak
one [47].

The main result we will present in this chapter is the proposal of a novel notion of barbed saturated
bisimilarity over reactive systems, both for the strong andweak case, that is able to capture the two be-
havioural semantics for mobile ambients defined above.

5.3 Barbed Semantics for Reactive Systems
This section proposes a notion ofbarbed saturated bisimilarityfor reactive systems, showing that it is
efficiently characterized through the IPO-transition systems by exploiting the semi-saturated game [6]:
Section 5.3.1 studies the strong case; Section 5.3.2, the weak one.

5.3.1 Barbed Saturated Bisimilarity
Barbed congruence introduced in Definition 5.1 is clearly a congruence, but there is no guarantee that
it is also a bisimulation. Here we consider a different notion of behavioural equivalence that is both a
bisimulation and a congruence.

Definition 5.6 (Barbed saturated bisimulation). A symmetric relationR is a barbed saturated bisimulation
if wheneverP RQ then∀C[−]

• if C[P ] ↓o thenC[Q] ↓o;

• if C[P ]→ P ′ thenC[Q]→ Q′ andP ′RQ′.

Barbed saturated bisimilarity∼BS is the largest barbed saturated bisimulation.

It is easy to see that∼BS is the largest barbed bisimulation that is also a congruence, and that it is
finer than≃B (the largest congruence contained into barbed bisimilarity). Intuitively, in the former case
the external observer can plug systems into contexts at any step of their execution, while in the latter the
observer can contextualize systems only at the beginning. The former observer is more powerful than the
latter, thus proving that∼BS is indeed finer than≃B .

It is our opinion that∼BS is more appropriate, in order to model concurrent interactive systems em-
bedded in an environment that continuously changes. And while in several formalisms the two notions
coincide [31], for mobile ambients calculus the standard behavioural equivalence∼MA (Definition 5.4) is
clearly an instance of∼BS .

Most importantly, though, barbed saturated bisimilarity can be efficiently characterized through the
IPO-transition system via the semi-saturated game.

Definition 5.7 (Barbed semi-saturated bisimulation). A symmetric relationR is a barbed semi-saturated
bisimulationif wheneverP RQ then
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• ∀C[−], if C[P ] ↓o thenC[Q] ↓o;

• if P
C[−]
→IPO P ′ thenC[Q]→ Q′ andP ′RQ′.

Barbed semi-saturated bisimilarity∼BSS is the largest barbed semi-saturated bisimulation.

Proposition 5.1. In a reactive system having redex-IPOs,∼BSS=∼BS .

The proof of Proposition 5.1 is shown in Section C.1 (Appendix C).
Reasoning on∼BSS is easier than on∼BS , because instead of looking at the reductions in all contexts,

we consider only IPO-transitions. Even if barbs are still quantified over all contexts, for many formalisms
(as for mobile ambients) it is actually enough to check ifP ↓o impliesQ ↓o, since this condition implies
that∀C[−], if C[P ] ↓o thenC[Q] ↓o. Barbs satisfying this property are calledcontextualbarbs.

Definition 5.8 (Contextual barbs). A barbo is acontextual barbif wheneverP ↓o impliesQ ↓o then∀C[−],
C[P ] ↓o impliesC[Q] ↓o.

5.3.2 Weak Barbed Saturated Bisimilarity

This section introduces weak barbed (semi-)saturated bisimilarity. We begin by recalling weak barbs. A
stateP satisfies the weak barbo (writtenP ⇓o) if there exists a stateP ′ such thatP →∗ P ′ andP ′ ↓o.

Definition 5.9 (Weak barbed saturated bisimulation). A symmetric relationR is a weak barbed saturated
bisimulationif wheneverP RQ then∀C[−]

• if C[P ] ⇓o thenC[Q] ⇓o;

• if C[P ]→∗ P ′ thenC[Q]→∗ Q′ andP ′RQ′.

Weak barbed saturated bisimilarity∼WBS is the largest weak barbed saturated bisimulation.

By following the strong case, also weak barbed saturated bisimilarity can be efficiently characterized
through the IPO-transition system via the semi-saturated game.

Definition 5.10(Weak barbed semi-saturated bisimulation). A symmetric relationR is aweak barbed semi-
saturated bisimulationif wheneverP RQ then

• ∀C[−], if C[P ] ↓o thenC[Q] ⇓o;

• if P
C[−]
→IPO P ′ thenC[Q]→∗ Q′ andP ′RQ′.

Weak barbed semi-saturated bisimilarity∼WBSS is the largest weak barbed semi-saturated bisimulation.

The correspondence result is stated below.

Proposition 5.2. In a reactive system having redex-IPOs,∼WBSS=∼WBS .

The proof of Proposition 5.2 is shown in Section C.1 (Appendix C).
Now we introduce weak contextual barbs. Analogously to the strong case, for those formalisms whose

barbs are weakly contextual the first condition of Definition5.10 becomes simpler: indeed, it suffices to
check ifP ↓o impliesQ ⇓o.

Definition 5.11 (Weak contextual barbs). A barb o is a weak contextual barbif wheneverP ↓o implies
Q ⇓o then∀C[−], C[P ] ↓o impliesC[Q] ⇓o.
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5.4 Labelled Characterizations of Barbed Congruences for Mobile
Ambients

This section proposes a labelled characterization of both strong and weak reduction barbed congruences
for mobile ambients, presented in Section 5.2. Indeed, mobile ambients can be seen as a reactive system,
with pure processes (up-to structural congruence) as ground terms and with the contexts generated by
the following grammar (forR mobile ambient process)C[−] ::= −, n[C[−]], (νn)C[−], C[−] | R as
contexts. As shown in Chapter 3, pure processes must first be encoded into graphs, and the reduction
semantics simulated by graph rewriting. We can then apply the borrowed contextstechnique for distilling
IPOs, which is proved to be an instance of the reactive systemconstruction. The resulting ITS is the one
that we presented in Section 4.6. Therefore, we can apply thenotions of (weak) barbed saturated and semi-
saturated bisimilarities, shown in the previous section, in order to capture the two behavioural semantics of
mobile ambients.

The first step is stated by the proposition below.

Proposition 5.3. Strong reduction barbed congruence over mobile ambients∼MA coincides with barbed
saturated bisimilarity∼BS

MA
for the calculus. Similarly, weak reduction barbed congruence over mobile

ambients∼WMA coincides with weak barbed saturated bisimilarity∼WBS
MA

for the calculus.

Note that, in spite of∼MA and∼WMA consider more contexts (they consider also contexts of the shape
M.−) than∼BS

MA
and∼WBS

MA
, respectively, in both cases the correspondence triviallyholds. This is due to

the fact that processes of the shapeM.P have no reduction.
As shown in Section 5.3, we can efficiently characterize (weak) barbed saturated bisimilarity through the

IPO-transition system, and the semi-saturated game. We canthen characterize strong and weak reduction
barbed congruence over mobile ambients by instantiating Definitions 5.7 and 5.10, respectively, with the
ITS DI introduced in Section 4.6.

Moreover, the quantification over all contexts can be removed from the first condition of both definitions
of strong and weak semi-saturated bisimulation.

Proposition 5.4. Mobile ambients barbs are both strong and weak contextual barbs.

The proof of Proposition 5.4 is shown in Section C.2 (Appendix C).
We then obtain a simpler definition of (weak) semi-saturatedbisimilarity.

Definition 5.12 (Barbed semi-saturated bisimulations for mobile ambients). A symmetric relationR is a
barbed semi-saturated bisimulationfor mobile ambients if wheneverP RQ then

• if P ↓n thenQ ↓n;

• if P
C[−]
−−→DI

P ′ thenC[Q]→ Q′ andP ′RQ′.

Barbed semi-saturated bisimilarity∼BSS
MA

is the largest barbed semi-saturated bisimulation.
A symmetric relationR is a weak barbed semi-saturated bisimulationfor mobile ambients if whenever

P RQ then

• if P ↓n thenQ ⇓n;

• if P
C[−]
−−→DI

P ′ thenC[Q]→∗ Q′ andP ′RQ′.

Weak barbed semi-saturated bisimilarity∼WBSS
MA

is the largest weak barbed semi-saturated bisimulation.

We finally introduce the main characterization theorem of the chapter.

Theorem 5.1. Barbed semi-saturated bisimilarity for mobile ambients∼BSS
MA

coincides with strong reduc-
tion barbed congruence∼MA. Similarly, weak barbed semi-saturated bisimilarity∼WBSS

MA
coincides with

weak reduction barbed congruence∼WMA.

It is easy to note that the two statements of the theorem abovefollow from Proposition 5.3, and from
Proposition 5.1 and 5.2, respectively.
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5.4.1 On Observing Ambient Migration
An alternative labelled characterization of weak reduction barbed congruence is presented in [47] by Merro
and Zappa Nardelli. However, the bisimulation that they propose is not defined in the standard way. They
indeed note that in mobile ambients the ability of a (restricted) ambient to migrate is unobservable, there-
fore in order to take this phenomenon into account they propose a modification of the usual definition of
bisimulation. On the contrary, Rathke and Sobociński use instead in [60] the ordinary bisimilarity for char-
acterizing the strong reduction barbed congruence. However, they are forced to add a set of what they
call Honda-Tokoro rules, in order to account for the same phenomenon about ambient migrations. We re-
mark that in our proposal we are never able to observe migrations of private ambients, thanks to the use of
semi-saturations: this is shown by the following example for the weak semi-saturated case.

Example 5.1. Let us consider the example below, originally proposed in [47], which illustrates two weak
reduction barbed congruent processes

P = (νn)n[in k.0] and Q = 0

The two processesP andQ are distinguished by the standard weak equivalence over ourLTS DI, since
P can interact with a context−|k[R], while0 cannot. The weak barbed semi-saturated bisimulation instead

does not observe the migration of the private ambientn. The transitionP
−|k[R]
−−−→DI

(νn)k[n[0]|R] is indeed
matched by0|k[R]→∗ 0|k[R]. Moreover, since(νn)k[n[0]|R] and0|k[R] are weak barbed semi-saturated
equivalent, alsoP andQ are so.

5.5 Labelled Characterizations of Asynchronous Bisimilarity
This section proposes a labelled characterization of the asynchronous bisimilarity for the asynchronousCCS

(Section 3.9), by exploiting the IPO LTS presented in Section 4.9. As mobile ambients, asynchronousCCS

can indeed be seen as a reactive system, with pure processes (up-to structural congruence) as ground terms
and with the contexts generated by the following grammarC[−] ::= −, (νn)C[−], C[−] | R (for R ACCS

process) as contexts.
We begin by introducing the definition of barb for the asynchronousCCS. The main difference with

respect to the synchronous version of the calculus lies in the notion of observation. Since sending messages
is non-blocking, an external observer can just send messages to a system without knowing if they will be
received or not. For this reason receiving should not be observable and thus barbs take into account only
outputs.

Definition 5.13 (ACCS barbs). LetP be a pure process. It satisfies thestrong barba, in symbolsP ↓a, if
P ≡ (νA)(a | Q) anda 6∈ A, for some processQ and a set of restricted channel namesA.

Now, the first step is stated by the proposition below [1], which is confirmed by the results presented in
Section 6.3.

Proposition 5.5. Asynchronous bisimilarity∼A coincides with barbed saturated bisimilarity∼BS
A

for the
asynchronousCCS.

We can efficiently characterize barbed saturated bisimilarity through the IPO-transition system, and the
semi-saturated game. So, we can characterize asynchronousbisimilarity by instantiating Definitions 5.7,
with the ITSAI (Section 4.9).

Moreover, we can remove the quantification over all contextsfrom the first condition of the definition
of (semi-)saturated bisimulation.

Proposition 5.6. AsynchronousCCSbarbs are strong contextual barbs.

The proof of Proposition 5.6 can be obtained by following theone of Proposition 5.4.
We then obtain a simpler definition of semi-saturated bisimilarity.

Definition 5.14(Barbed semi-Saturated bisimulations forACCS). A symmetric relationR is abarbed semi-
saturated bisimulationfor ACCS if wheneverP RQ then



5.6. SUMMARY 83

• if P ↓a thenQ ↓a;

• if P
C[−]
−−→A P ′ thenC[Q]→ Q′ andP ′RQ′.

Barbed semi-saturated bisimilarity∼BSS
A

is the largest barbed semi-saturated bisimulation.

Theorem 5.2. Barbed semi-saturated bisimilarity forACCS∼BSS
A

coincides with asynchronous bisimilar-
ity ∼A (Definition 3.19).

The theorem above follows from Propositions 5.5 and 5.1.

5.6 Summary
The main issues of this chapter have been the introduction ofbarbed bisimilarities in reactive systems, and
their exploitation for recasting the semantics of mobile ambients and asynchronousCCS.

In particular, we proposed the novel notions of barbed and weak barbed saturated bisimilarity over
reactive systems, showing that they can be efficiently characterized through the IPO-transition systems by
employing the semi-saturated game. We applied the framework to mobile ambients, proving that it can
capture the strong and the weak reduction barbed congruencefor the calculus, proposed by Rathke and
Sobocínski [60], and by Merro and Zappa Nardelli [47], respectively. Moreover, also for asynchronous
CCS, we showed that our proposal is able to address the standard semantics of the calculus.

We thus obtained a labelled characterization for the barbedcongruences of mobile ambients and the
asynchronous bisimilarity, exploiting the two ITSs for these calculi previously proposed in Chapter 4.

As far as the mobile ambients calculus, as discussed in Section 5.4, we recall that an alternative, labelled
characterization of the strong reduction barbed congruence is presented in [60]. Rathke and Sobociński
use there the standard bisimilarity to capture the congruence, but they are forced to add a set of Honda-
Tokoro rules to deal with the unobservability of ambient migrations. Our solution instead accounts for this
phenomenon by the use of the barbed semi-saturated bisimulation. It is true however that the proposal
in [60] does not need any additional observation, while in our approach the choice of the right notion of
barb is left to the ingenuity of the researcher.
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Chapter 6

On barbs and labels in reactive systems

In this chapter we move one further step in dealing with the adequacy issue of the standard semantics (the
IPO and the saturated one) for reactive systems. In particular, we propose a novel behavioural equivalence
for reactive systems, namely,L-bisimulation: a flexible tool, since it is parametric with respect to a set of
minimal labelsL. Also in this case the idea is very simple, and it just asymmetrically refines the standard

bisimulation game. If the minimal LTS has a transitionP
C[−]
−−→ Q, then a bisimilarP ′ has to react via a

minimal transitionP ′
C[−]
−−→ Q′, wheneverC[−] ∈ L; or it must ensure thatC[P ′] may evolve intoQ′ (thus

requiring no minimality forC[−] w.r.t. P ′), otherwise. The associated bisimilarity is intermediatebetween
the standard semantics (i.e., minimal and saturated) for reactive systems: indeed, it is able to recover both
of them, by simply varying the setL and exploiting the so-called semi-saturated semantics. Itcan be
proved that, under mild closure conditions on the setL, L-bisimilarity is a congruence; and moreover, it
can be shown that barbed saturated semantics can be recast, as long asL satisfies suitable barb-capturing
properties.

With respect to barbed saturated semantics,L-bisimilarity admits a streamlined definition, where state
predicates play no role, so resulting in simpler verification. We test its adequacy and ease of use against
suitable case studies. We thus consider the minimal contextsemantics for mobile ambients andACCS

introduced in Section 4 and we show that in those cases, a setL of minimal labels can be identified, such
thatL-bisimilarity precisely captures the standard semantics of the calculus at hand.

The paper is organized as follows. Section 6.1 presents the technical core of the chapter: the introduction
of L-bisimilarity for reactive systems, the proof that (under mild conditions onL) it is a congruence, and
moreover its correspondence with barbed semantics. Finally, Section 6.2 and Section 6.3 prove that, suitably
varying the setL, the newly definedL-bisimilarity captures the standard equivalences for mobile ambients
and for asynchronousCCS, respectively.

6.1 A New Semantics for Reactive Systems:L-Bisimilarity
As shown [7], in the case ofCCS, IPO-bisimilarity coincides with the ordinary bisimilarity. However, for
many interesting cases, such as mobile ambients andACCS (as discussed in Chapter 5), it is often too
fine-grained. On the other side, as forCCS, saturated bisimilarity is often too coarse.

In this section we introduceL-indexed bisimilarity (shortly,L-bisimilarity), a novel kind of bisimilarity
parametric with respect to a class of contexts (also referred to aslabels) L. For each classL satisfying some
closure properties, the new equivalence∼L is a congruence and∼I⊆∼L⊆∼S .

Intuitively,L-bisimulations can be thought as something in between IPO-bisimulations and semi-saturated

bisimulations: whenP
C[−]
→IPO, if C[−] belongs toL, thenQ must performQ

C[−]
→IPO (as in the IPO-

bisimulation), otherwiseC[Q]→ (as in the semi-saturated bisimulation).

Definition 6.1 (L-Bisimulation). LetL be a class of contexts. A symmetric relationR is anL-bisimulation
if wheneverP RQ then
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if P
C[−]
→IPO P ′ then

{

Q
C[−]
→IPO Q′ andP ′RQ′, if C[−] ∈ L;

C[Q]→ Q′ andP ′RQ′, otherwise.

L-bisimilarity∼L is the largestL-bisimulation.

It is easy to note that∼L generalizes both∼I and∼SS (and thus∼S). Indeed, in order to characterize
the former, it is enough to take asL the whole class of contexts, while to characterize the latter, we take as
L the empty class. In Subsection 6.1.1, we will show that for someL, L-bisimilarity also coincides with
barbed saturated bisimilarity. In the remainder of this section, we show that∼L is a congruence. In order
to prove this, we have to require the following condition onL.

Definition 6.2. Let L be a class of arrows of a category. We say thatL is IPO-closed, if whenever the
following diagram is an IPO andb ∈ L, then alsoc ∈ L.

b
??�����

d
__?????

a

__????? c

??�����

It is often hard to prove that a class of contexts is IPO-closed. It becomes easier with concrete instances
of reactive systems that supply a constructive definition for IPOs, such as borrowed contexts.

Proposition 6.1. Let us consider a reactive system with redex RPOs and an IPO-closed classL of contexts.
Then,∼L is a congruence.
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k3
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0
P

``AAAAA L
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k6

k4

J[−] >>~~~~~
k5

D2[−]``@@@@@

k2

C[−]

``@@@@@
J ′[−] >>~~~~~

k3

E[−]``@@@@@

0
Q

``AAAAA L′

>>}}}}}

(i) (ii) (iii)

Proof. In order to prove this theorem we will use the composition anddecomposition property of IPOs
(Proposition 2.2). We have to prove that ifP ∼L Q thenC[P ] ∼L C[Q]. We show thatR = {(C[P ], C[Q])
s.t.P ∼L Q} is anL-bisimulation.

Suppose thatC[P ]
J[−]
→IPO P ′. Then there exists an IPO square like diagram (i) above, where 〈L,R〉 ∈

R, D[−] ∈ D andP ′ = D[R]. Since, by hypothesis, the reactive system has redex RPOs, then we can
construct an RPO as the one in diagram (ii) above. In this diagram, the lower square is an IPO, since RPOs
are also IPOs (Proposition 1 of [45]). Since the outer squareis an IPO and the lower square is an IPO, by
IPO decomposition property, it follows that also the upper square is an IPO.

SinceD is composition-reflecting, then bothD1[−] andD2[−] belong toD and thenP
J ′[−]
→IPO D1[R].

Now there are two cases: eitherJ [−] ∈ L or J [−] /∈ L.
If J [−] ∈ L, then alsoJ ′[−] ∈ L, becauseL is IPO-closed, by hypothesis. SinceP ∼L Q, then

Q
J ′[−]
→IPO Q′′ andD1[R] ∼L Q′′. This means that there exists an IPO square like the lower square

of diagram (iii) above, where〈L′, R′〉 ∈ R, E[−] ∈ D andE[R] = Q′′. Now recall by the previous
observation that the upper square of diagram (iii) is also anIPO and then, by IPO composition, also the

outer square is an IPO. This means thatC[Q]
J[−]
→IPO D2[Q

′′]. SinceD1[R] ∼L Q′′, thenP ′ = D[R] =
D2[D1[R]] R D2[Q

′′].

If J [−] /∈ L, then eitherJ ′[−] ∈ L or J ′[−] /∈ L. In both cases, fromP
J ′[−]
→IPO D1[R] we derive that

J ′[Q]→ Q′′ andD1[R] ∼L Q′′. This means that the lower square of diagram (iii) above commutes. Since
also the upper square commutes, then also the outer square commutes. This means thatC[Q] → D2[Q

′′].
SinceD1[R] ∼L Q′′, thenP ′ = D[R] = D2[D1[R]] R D2[Q

′′].
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6.1.1 Barbed Saturated Bisimilarity viaL-bisimilarity
Here we show thatL-bisimilarity can also characterize barbed saturated bisimilarity, whenever barbs and
the set of labelsL satisfies suitable conditions. This result will be used in later sections in order to show
thatL-bisimilarity captures the correct equivalences for mobile ambients andACCS.

In order to guarantee that∼L⊆∼BS , we need some conditions ensuring that the checking of barbsof
∼BS is already done in∼L by the labels inL.

Definition 6.3. LetL be a set of labels and letO be a set of barbs. We say thatL isO-capturingif for each

barbo there exists a labelC[−] ∈ L such that for each processP , P ↓o if and only ifP
C[−]
→IPO P ′.

The next two definitions are needed to ensure that∼BS⊆∼L.

Definition 6.4. Let R be a relation and letP(X,Y ) be a binary predicate on processes. We say that
P(X,Y ) is stable underR if wheneverPRQ andP(P, P ′) there existsQ′ such thatP(Q,Q′) andP ′RQ′.

For example, the predicates in Figure 6.1 and Figure 6.2 are stable under∼BS .

Definition 6.5. Let R be a relation and letC[−] be a label. We say thatC[−] is stable underR if the

predicateP(X,Y ) = X
C[−]
→IPO Y is stable underR.

Note that the definition above says that the relationR is a bisimulation for the labelC[−]. We will use
it to ensure that∼BS is a bisimulation for all the labels inL.

We can finally state a first correspondence result.

Proposition 6.2. Let us consider a reactive system with redex RPOs, a setO of contextual barbs and a set
L of labels. IfL isO-capturing and all its labels are stable under∼BS , then∼BS coincides with∼L.

Proof. In order to prove that∼BS⊆∼L, we show thatR = {(P,Q) s.t.P ∼BS Q} is anL-bisimulation.

Suppose thatP
C[−]
→IPO P ′. We have two cases: eitherC[−] ∈ L orC[−] /∈ L. If C[−] ∈ L, thenC[−]

is stable under∼BS and thus, sinceP ∼BS Q,Q
C[−]
→IPO Q′ andP ′ ∼BS Q′. For the case thatC[−] /∈ L,

it is enough to note that, sinceP
C[−]
→IPO P ′, thenC[P ] → P ′. SinceP ∼BS Q, thenC[Q] → Q′ and

P ′ ∼BS Q′.
Now we show thatR = {(P,Q) s.t.P ∼L Q} is a barbed semi-saturated bisimulation (i.e.,∼L⊆∼BSS)

and thus, since the reactive system has redex IPOs, by Proposition 5.1 it follows that∼L⊆∼BS .
At first, we note that, sinceO is a set of contextual barbs, in order to show thatR satisfies the first

condition of Definition 5.7 it suffices to show thatP ↓o impliesQ ↓o. SinceL isO-capturing, ifP ↓o then

there is a labelC[−] ∈ L such thatP ↓o if and only if P
C[−]
→IPO. SinceP ∼L Q, then alsoQ

C[−]
→IPO and

Q ↓o.

In order to prove the second condition of Definition 5.7, it isenough to note that ifP
C[−]
→IPO P ′ then,

in both the case thatC[−] ∈ L andC[−] /∈ L, C[Q]→ Q′ with P ′ ∼L Q′.

As a corollary of the previous definition, we obtain the following property that allows to check whenever
IPO-bisimilarity coincides with barbed saturated one.

Lemma 6.1. Let us consider a reactive system with redex IPOs. If the barbs are contextual, the set of all
labels isO-capturing, and each label is stable under∼BS , then∼I coincides with∼BS .

6.2 L-Bisimilarity for Mobile Ambients
This section proposes a new labelled characterization of the reduction barbed congruence for mobile am-
bients, presented in Section 5.2 (Definition 5.4). In particular, by using the IPO LTSDI ( in Section 4.6)
we define anL-bisimilarity that captures barbed saturated bisimilarity for mobile ambients, coinciding with
reduction barbed congruence as shown in Section 5.4 (Proposition 5.3).

As discussed in Section 6.1.1, we can characterize barbed saturated bisimilarity on a set of contextual
barbsO through the IPO transition system and a set of labelsL. In particular, as required by Proposition 6.2,
the setL must beO-capturing and eachC[−] ∈ L must be stable under the barbed saturated bisimilarity.
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We denote byOMA the set of barbs of mobile ambients, recalling that mobile ambients barbs are con-
textual barbs (Proposition 5.4).

Proposition 6.3. OMA is a set of contextual barbs.

Therefore, we can characterize reduction barbed congruence over mobile ambients by instantiating
Definitions 6.1 with the IPO LTSDI and a setL of labels having the two properties said above.

First of all, we find some labels ofDI that capture the barbs of mobile ambients. This ensures thatthe
checking of barbs of the barbed saturated bisimilarity is done in theL-bisimilarity by the first condition
of its definition. It is easy to note that a mobile ambients processP observes a unrestricted ambientn at
top-level, in symbolsP ↓n, if and only if it can execute a transition labelled with− | open n.T1 or with
− | m[in n.T1 | T2]. Therefore,L is OMA-capturing if it contains at least one kind of these labels. We
choose to consider labels of the first type, that is, having the shape− | open n.T1, for n ambient name and
T1 pure process.

It is possible to prove that these labels are stable under∼BS
MA

. Therefore, if we consider the setL defined
below, we obtain anL-bisimilarity for mobile ambients that is able to characterize∼BS

MA
.

Proposition 6.4. Let LMA be the set of all labels of the ITSDI having the shape− | open n.T1, for n
ambient name andT1 pure process. Then,LMA isOMA-capturing.

Proof. We have to show that for each barbn ∈ OMA there exists a labelC[−] ∈ LMA such that for each

processP , P ↓n if and only ifP
C[−]
−−→DI

P ′.
It is easy to note that, given a barbn ∈ OMA, we have that for each processP , P ↓n if and only if

P
−|open n.T1
−−−−−−→DI

P ′, with T1 pure process. Since we know thatLMA contains all labels having the shape
− | open n.T1, for n ambient name andT1 pure process, we can conclude thatLMA isOMA-capturing.

Now, in order to prove that eachC[−] ∈ LMA is stable under∼BS
MA

, we exploit a predicate such
that it is stable under∼BS

MA
and equivalent to the one of Definition 6.5. More explicitly,we will prove

that the predicate in Figure 6.1 coincides withP(X,Y ) = X
−|open n.T1
−−−−−−→DI

Y . Indeed, the fact that
P−|open n.T1(P, P ′) holds, means thatP inside the contextC ′[−] can evolve intoP ′′ that observem, and
sincem is fresh, it means that the capabilityopenn has been performed. Moreover, the condition onP ′

ensures that the resulting states of the two predicates coincide.

Lemma 6.2. LetP−|open n.T1(X,Y ) be the binary predicate on mobile ambients processes shown in Figure
6.1, forn ambient name andT1 pure process. Then,P−|open n.T1(X,Y ) is stable under∼BS

MA
and for each

P andP ′, P−|open n.T1(P, P ′) if and only ifP
−|open n.T1
−−−−−−→DI

P ′.

Proof. We begin by proving that the predicateP−|open n.T1(X,Y ) is stable under∼BS
MA

.
Assume thatP ∼BS

MA
Q andP−|open n.T1(P, P ′) holds. SinceP−|open n.T1(P, P ′) holds, then there

exists a processP ′′ and an ambientm fresh forP andQ, such thatC ′[P ] → P ′′, P ′′ ↓m, P ′′ → P ′ and
P ′ 6↓m, with C ′[−] = − | open n.(m[0] | open m.T1).

SinceC ′[P ] → P ′′ andP ∼BS
MA

Q, thenC ′[Q] → Q′′ andP ′′ ∼BS
MA

Q′′. Therefore, it is obvious that
alsoQ′′ ↓m. Now, we know thatP ′′ → P ′, hence we can say thatQ′′ → Q′ andP ′ ∼BS

MA
Q′. From this

follows that, sinceP ′ 6↓m, then alsoQ′ 6↓m. So, we can conclude thatP−|open n.T1(Q,Q′) holds, hence
P−|open n.T1(X,Y ) is stable underR.

Now we show that for eachP andP ′, P−|open n.T1(P, P ′) iff P
−|open n.T1
−−−−−−→DI

P ′.
Assume thatP−|open n.T1(P, P ′) holds. This means that there exists a processP ′′ and an ambientm

fresh forP , such thatC ′[P ] → P ′′, P ′′ ↓m, P ′′ → P ′ andP ′ 6↓m, with C ′[−] = − | open n.(m[0] |
open m.T1). The fact thatC ′[P ] → P ′′ andP ′′ ↓m means that the capabilityopen n has been executed,
hence there must be a unrestricted ambientn at top-level ofP , i.e.,P ≡ (νA)(n[P1] | P2) andn 6∈ A. From
this follows thatP ′′ = (νA)(P1 | P2) | m[0] | open m.T1, and sinceP ′ 6↓m, thenP ′ ≡ (νA)(P1 | P2) |

T1. Moreover, by knowing thatP = (νA)(n[P1] | P2) andn 6∈ A, we can conclude thatP
−|open n.T1
−−−−−−→DI

P ′.
Assume thatP

−|open n.T1
−−−−−−→ P ′. This means thatP ≡ Q, whereQ = (νA)(n[P1] | P2), n 6∈ A and

P ′ = (νA)(P1 | P2) | T1. We consider the contextC ′[−] = − | open n.(m[0] | open m.T1) with
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m 6∈ fn(P ). It is easy to note thatC ′[Q]→ P ′′ s.t.P ′′ = (νA)(P1 | P2) | m[0] | open m.T1 andP ′′ ↓m.
Therefore, sinceC ′[P ] ≡ C ′[Q], we also have thatC ′[P ] → P ′′. Now, we can note thatP ′′ → P ′ and,
sincem is fresh forP , P ′ 6↓m.

Proposition 6.5. All labels inLMA are stable under∼BS
MA

.

The proof of the proposition above trivially follows from Lemma 6.2.
We finally introduce the main characterization proposition.

Proposition 6.6. ∼BS
MA

=∼LMA .

Proof. First of all, by Proposition 6.3, we know that mobile ambients barbs are contextual. Moreover, by
Propositions 6.4 and 6.5, we know thatL isOMA-capturing and it contains only labels stable under∼BS

MA
.

Therefore, thanks to Proposition 6.2, we can conclude that∼BS
MA

=∼LMA .

The L-bisimilarity ∼LMA presented above is not the only one which is able to characterize barbed
saturated bisimilarity∼BS

MA
. For example, as said before, we can choose to consider all labels of the shape

− | m[in n.T1 | T2], which besides being able to capture mobile ambients barbs,they are also stable
under∼BS

MA
. However, generally, we can consider the setsL containing at least all the labels of the shape

− | open n.T1 or − | m[in n.T1 | T2] to capture barbs, and other labels ofDI that are stable under
∼BS
MA

, i.e., labels such that it is possible to define a predicate analogous to the one we defined for the labels
− | open n.T1.

6.3 L-Bisimilarity for Asynchronous CCS

In this section we first show thatL-bisimilarity is able to capture the standard semantics of asynchronous
CCSand then we prove that it also coincides with its barbed saturated bisimilarity.

L-Bisimilarity for Asynchronous CCS. In asynchronous bisimulation (Definition 3.19), transitions la-
belled withτ andā (corresponding to− and− | a.T1 in AI , respectively) must be matched by transitions

with the same labels. Moreover, whenP
a
−→ P ′ (corresponding toP

−|ā
−→ P ′ in AI ) then eitherQ

a
−→ Q′

andP ′RQ′ orQ
τ
−→ Q′ andP ′RQ′ | ā. This is equivalent to require thatQ | ā→ Q′ andP ′RQ′. Thus,

in order to characterize∼A asL-bisimilarity, it suffices to choose asL the set of labels corresponding toτ
andā.

Proposition 6.7. Let LA be the set containing the labels of the ITSAI of the shape− and− | a.T1, for
a ∈ N andT1 ∈ P. Then,∼LA=∼A.

From L-Bisimilarity to Barbed Saturated Bisimilarity. It is important to note that the choice ofLA is
not arbitrary. Indeed,∼LA coincides with the barbed saturated bisimilarity for the asynchronousCCS. This
is not a new result, but it is interesting to see that it can be easily proved by following the same approach
that we have used for mobile ambients in Section 6.2.

Recall thatLA only contains labels of the form− and− | a.T1 (corresponding to labelsτ andā in the
ordinary LTS). Since only output barbs↓ā are defined, thenLA is barb capturing.

We also know that these barbs are contextual, hence, in orderto use Proposition 6.2, we only have to
prove that all the labels inLA are stable under barbed congruence. Analogously to mobile ambients, we
define some additional predicates. These are shown in Figure6.2. It is easy to see that for each labelC[−]

in LA,X
C[−]
−−→ Y in AI if and only if PC[−](X,Y ). It is also easy to show that all of them are stable under

∼BS .

P−|open n.T1(X,Y ) ∃P ′′ andm 6∈ fn(X) s.t.P ′′ ↓m, C ′[X]→ P ′′ → Y andY 6↓m
with C ′[−] = − | open n.(m[0] | open m.T1)

Figure 6.1: Predicate for the label− | open n.T1.



90 CHAPTER 6. ON BARBS AND LABELS IN REACTIVE SYSTEMS

P−|a.T1(X,Y ) ∃P ′ andi /∈ fn(X) s.t.P ′ ↓ ī andX|a.(̄i|T1)|i→ P ′ → Y 6↓ i
P−(X,Y ) X → Y

Figure 6.2: Predicates forACCS

Note that the labels of the form− | ā are not stable under∼BS . It is indeed impossible to define a
predicate analogous to the ones in Figure 6.2 for− | a.T1, since outputs have no continuation.

6.4 Summary
The chapter introduces a novel behavioural equivalence forreactive systems, namely,L-bisimulation: a
flexible tool, since it is parametric with respect to a set of labelsL. The associated bisimilarity is proved
to be a congruence, and it is shown to be intermediate betweenthe standard IPO and saturated semantics
for reactive systems: indeed, it is able to recover both of them, by simply varying the set of labelsL. More
importantly, also the more expressive barbed semantics canbe recast, as long as the setL satisfies suitable
conditions.

As for any newly proposed semantics, we tested its expressiveness and ease of use against suitable case
studies, by using again the mobile ambients andACCS. We thus considered the IPO transition systems
for these calculi proposed in Chapter 4. We showed that in both those cases, for a right choice ofL,
L-bisimilarity precisely captures the standard semantics for the calculus at hand.



Chapter 7

Conclusions and Future Work

This thesis tackles some issues concerning the adequacy of the standard semantics (IPO and saturated
ones) of reactive systems [45], in modelling the concrete semantics of actual formalisms. As discussed in
the introduction, the problem is that IPO-bisimilarity is often too fine-grained, as we showed for mobile
ambients and asynchronousCCS, while the saturated one may be too coarse, as in the case of synchronous
CCS.

Theoretically, one of the main contributions of our work is the introduction of a more expressive seman-
tics for reactive systems which, thanks to its flexibility, allows for recasting a wide variety of observational,
bisimulation-based equivalences. In particular, we propose suitable notions of barbed and weak barbed
semantics for reactive systems, and their efficient characterization through the IPO-transition systems by
exploiting the semi-saturated game.

Another contribution of this thesis is the introduction of anovel, more general behavioural equivalence
for reactive systems, namely,L-bisimulation, which is parametric with respect to a set of minimal labels
L. We proved that under mild conditions onL the equivalence is a congruence, and most importantly, it is
shown to be intermediate between the standard IPO and saturated semantics for reactive system, recasting
both of them by varying the set of labelsL. Moreover, also the barbed semantics can be recast, as long
as the setL satisfies suitable conditions. With respect to barbed semantics, L-bisimilarity is of simpler
verification: It indeed admits a streamlined definition, where states predicates play no role.

In order to test the adequacy of our proposals, we instantiated them over the asynchronousCCS and,
most importantly, over the calculus of mobile ambients, whose observational semantics is still in a flux. To
this end, for each of these two calculi, we described a minimal context semantics, distilled by means of a
graphical encoding of the calculus.

The approach we pursued to derive the two LTSs is quite straightforward: for each calculus we proposed
a graphical encoding (over standard graphs) such that process congruence is preserved, and we captured the
reduction semantics by a set of graph transformation rules,specified using the DPO approach. An IPO-
LTS on (processes encoded as) graphs is thus immediately distilled, by applying the borrowed contexts
technique, which is an instance of the theory of reactive systems. The derived LTS is then used to define
one over processes. So, as far as the LTS for mobile ambients is concerned, it resulted pivotal in proving
one of our main practical results, namely, that barbed and weak barbed semantics for mobile ambients
do capture the strong [60] and weak [47] barbed congruences for the calculus. Similarly, the LTS for the
asynchronousCCSwas used to show that strong barbed semantics coincides withthe standard semantics of
the calculus. We also showed that in both cases, a setL of minimal labels can be identified, such that the
resultingL-bisimilarity precisely captures the standard semantics of the calculus at hand.

We do believe that the work presented in this thesis can be considered relevant for the theory of reactive
systems for different reasons. First of all, it addresses the adequacy issue for reactive systems, showing the
shortcomings of the standard definitions, providing a framework for recasting (weak) barbed equivalence
in the framework, and finally proposing a more general semantics, namelyL-bisimulation. Moreover, it
offers a relevant application for the reactive systems formalism, by applying it to a full-fledged calculus, at
the same time showing how borrowed contexts rewriting (an instance of the theory) can be quite effective
in deriving LTSs.
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We can foresee at least two further extensions of our work.
As far as (weak) barbed equivalence is concerned, we showed that the framework is general enough to

capture the abstract semantics of important formalisms such as mobile ambients and asynchronousCCS.
However, it is parametric with respect to the choice of the set of barbs and defining the “right” barbs is not
a trivial task, as witnessed by several papers about this topic e.g. [58, 40]. So, it would be interesting to
extend our framework by considering an automatically derived notion of barb for reactive systems. In [12],
authors introduce barbs for adhesive rewriting systems, trying to keep in line with the constructive nature
of the borrowed contexts mechanism. To this end, their intuition is driven by the graphical encodings of
calculi, and by the nature of barbs in most examples from thatsetting, there basically (a) barbs check the
presence of a suitable subsystem, (b) such that it is needed to perform an interaction with the environment.
For instance, in asynchronousCCS, barbs are parallel outputs [1], formally (a)P ↓a if P ≡ P1 | a and (b)
these outputs can interact with the environment through therule a | a.Q +M → Q. In mobile ambients,
barbs are ambients at the topmost level [47], formally (a)P ↓m if P ≡ m[P1] | P2 and (b) these ambients
can be interact with the environment via the ruleopenm.Q1 | m[Q2] → Q1 | Q2. So, a simple notion of
barb for adhesive rewriting systems is given: a barb for a systemG is defined as a subsystem occurring in
it, also occurring in the left-hand-side of some rewriting rule. We do believe that this general mechanism
to define barbs for adhesive rewriting systems may help us to solve the problem of automatically identify
suitable barbs for reactive systems, along the line of the solution proposed in [38] for bigraphical reactive
systems.

As far asL-bisimulation is concerned, first of all, we would like to precisely understand the notion of
IPO-closedness, which is required for the set of labelsL, in order forL-bisimilarity to be a congruence.
We would like to establish suitable and more manageable conditions under which a set of arrows of a
given category satisfies that property, especially for those reactive systems where IPOs have an inductive
presentation (such as for those induced by the borrowed context mechanism). In more general terms, it
would be interesting to further elaborate on the connectionbetweenL-bisimilarity and barbed semantics,
moving after the preliminary results presented in Section 6.1.1. As a start, in order to establish conditions
ensuring that barbs satisfy the pivotal property of being contextual; and, more to the point, for checking
whenever a set of labels is barb capturing and contains only labels stable under barbed bisimilarity. As far
as the specific case study of mobile ambients is concerned, most of the IPO labels occurring in our transition
system are indeed stable, i.e., the relative labelled transitions can be characterized by a predicate which is
stable under the barbed saturated bisimilarity. The only labels that are not stable are those ones of the shape
−|m[P ] andm[−|P ] of the rule INAMB and OUTAMB (Figure 4.18), respectively. It seems intriguing that
those same labels required the introduction of so-called Honda-Tokoro inference rules in [60] for capturing
the reduction barbed congruence by means of standard bisimilarity.
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Proofs of Chapter 3

A.1 Mobile Ambients Congruence≡ versus Graph Isomorphism
In this section we show the proof of Theorem 3.1, which formalises the relation between the structural
congruence≡ and the encoding introduced in Definition 3.16. In order to show the correspondence, we
first prove the soundness of the encoding with respect to the structural congruence (Proposition A.2), and
then we prove the completeness (Proposition A.4).

We begin by recalling that two processes that are structuralcongruent have the same free names, as
stated by the proposition below.

Proposition A.1. Let P,Q be processes. IfP ≡ Q, thenfn(P ) = fn(Q).

The proposition below states the soundness result.

Proposition A.2. LetP,Q be processes and letΓ be a set of names, such thatfn(P ) ⊆ Γ. If P ≡ Q, then
JP KΓ = JQKΓ.

Proof. We proceed by induction on the depth of the inference ofP ≡ Q. Since the proof is straightforward
for the laws stating that the parallel operator is associative, commutative and with identity, we do no tackle
these cases.

• Suppose thatP ≡ Q by the Cong-Res-Resrule. It means thatP = (νn)(νm)P1 andQ =
(νm)(νn)P1. If n = m, thenP = Q and their encodings are obviously the same. Vice versa, ifn 6=
m, then by definitionJP KΓ = {νr⊗{(νs⊗JP1{r/n}{s/m}KΓ∪{r,s})◦(0s⊗idΓ∪{r})}}◦(0r⊗idΓ),
for r, s /∈ Γ andr 6= s. We notice that the value of the last expression is isomorphic to the value of
(νr ⊗ νs ⊗ JP1{r/n}{s/m}KΓ∪{r,s}) ◦ (0s ⊗ 0r ⊗ idΓ). Sincer, s /∈ Γ andr 6= s, we can write the
encodingJQKΓ ofQ as{νs⊗{(νr⊗JP1{s/m}{r/n}KΓ∪{s,r})◦(0r⊗idΓ∪{s})}}◦(0s⊗idΓ). Now,
the value of the latter expression is isomorphic to the valueof (νs⊗νr⊗ JP1{s/m}{r/n}KΓ∪{s,r})◦

(0r⊗0s⊗ idΓ). Moreover, we notice thatP1{r/n}{s/m} = P1{s/m}{r/n}, hence,JP KΓ = JQKΓ
holds.

• Suppose thatP ≡ Q by theCong-Res-Parrule. It means thatP = (νn)(P1 | P2),Q = P1 | (νn)P2

andn /∈ fn(P1). By definition,JP KΓ = {νm ⊗ (JP1{m/n}KΓ∪{m} ⊗ JP2{m/n}KΓ∪{m})} ◦ (0m ⊗

idΓ), for m /∈ Γ. Sincen /∈ fn(P1), we haveP1{m/n} = P1, and soJP1{m/n}KΓ∪{m} =

JP1KΓ∪{m}. Now, we notice that the value ofνm ⊗ (JP1KΓ∪{m} ⊗ JP2{m/n}KΓ∪{m}) is isomorphic
to the value ofJP1KΓ ⊗ (νm ⊗ JP2{m/n}KΓ∪{m}). We also note that the graph represented by this
last expression has the same output interface of the graph represented byνm ⊗ JP2{m/n}KΓ∪{m},
hence the sequential composition(νm ⊗ JP2{m/n}KΓ∪{m}) ◦ (0m ⊗ idΓ) is defined. Moreover,
sincem is not in the output interface ofJP1KΓ, we can easily see that the value of{JP1KΓ ⊗ (νm ⊗
JP2{m/n}KΓ∪{m})}◦(0m⊗idΓ) is isomorphic to the value ofJP1KΓ⊗{(νm⊗JP2{m/n}KΓ∪{m})◦

(0m ⊗ idΓ)}. Since the value of the latter expression is also isomorphicto the value of graphical
encodingJQKΓ, then we can conclude thatJP KΓ = JQKΓ.
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• Suppose thatP ≡ Q by theCong-Res-Ambrule. This means thatP = (νn)m[P1], Q = m[(νn)P1]
andn 6= m. By definition,JP KΓ = {νr ⊗ [ambm ◦ (idm ⊗ JP1{r/n}KΓ∪{r})]} ◦ (0r ⊗ idΓ) and
JQKΓ = ambm◦{idm⊗[(νr⊗JP1{r/n}KΓ∪{r})◦(0r⊗idΓ)]}, for r /∈ Γ. Now, the value of the latter
expression is isomorphic to the value ofambm ◦{(idm⊗νr⊗JP1{r/n}KΓ∪{r})◦(0r⊗ idΓ)}, which
thanks to the associativity of◦ is isomorphic to[ambm ◦ (idm⊗νr⊗ JP1{r/n}KΓ∪{r})]◦ (0r⊗ idΓ).
Since the operatorνr is linked to a⋄ node that is both in the output and in the input interface of the
graphambm, we can conclude thatJQKΓ = {νr⊗ [ambm◦(idm⊗JP1{r/n}KΓ∪{r})]}◦(0r⊗idΓ) =

JP KΓ.

• Suppose thatP andQ areα-equivalent. It means thatP = (νn)P1, Q = (νm)P1{m/n} and
m /∈ fn(P1). By construction,JP KΓ = (νr ⊗ JP1{r/n}KΓ∪{r}) ◦ (0r ⊗ idΓ), while JQKΓ =

(νr ⊗ JP1{m/n, r/m}KΓ∪{r}) ◦ (0r ⊗ idΓ), for r /∈ Γ. Now, we notice that, sinceP1{r/n} =

P1{m/n, r/m}, thenJP1{r/n}KΓ∪{r} = JP1{m/n, r/m}KΓ∪{r}, and thereforeJP KΓ = JQKΓ.

The completeness of our encoding with respect to the structural congruence≡ is more difficult to prove.
So, we need to introduce some additional lemmas. The following lemma allows us to restrict attention to
encodings with respect to the set of free names of a process.

Lemma A.1. Let P be a process, and letΓ be a set of names, such thatfn(P ) ⊆ Γ. Then,JP KΓ =
JP Kfn(P ) ⊗ freeΓ.

Proof. The proof proceeds by induction on the structure ofP .

• Suppose thatP = 0. By definition, we haveJ0KΓ = 0a,p⊗freeΓ. SinceJ0K∅ = 0a,p, it is immediate
to see thatJ0KΓ = J0K∅ ⊗ freeΓ.

• The casesP = n[P1] andP = M.P1 are similar. As an example, we considerP = n[P1]. By
definition, we haveJP KΓ = ambn ◦ (idn ⊗ JP1KΓ). Since, by induction hypothesis,JP1KΓ =
JP1Kfn(P1)

⊗freeΓ, then we haveJP KΓ = ambn ◦ (idn⊗ JP1Kfn(P1)
⊗freeΓ). Now we notice that

the value of the latter expression is isomorphic to the valueof [ambn ◦ (idn ⊗ JP1Kfn(P ))]⊗ freeΓ.
Since by definition, we haveJP Kfn(P ) = ambn ◦ (idn ⊗ JP1Kfn(P )), it is easy to see thatJP KΓ =

JP Kfn(P ) ⊗ freeΓ.

• Suppose thatP = (νn)P1. By definition, we haveJ(νn)P1KΓ = (νm⊗ JP1{m/n}KΓ∪{m}) ◦ (0m⊗

idΓ), for m /∈ Γ. Since by induction hypothesis,JP1{m/n}KΓ∪{m} = JP1{m/n}Kfn(P1{m/n}) ⊗

freeΓ∪{m}, then we haveJ(νn)P1KΓ = (νm ⊗ JP1{m/n}Kfn(P1{m/n}) ⊗ freeΓ∪{m}) ◦ (0m ⊗

idΓ). Now, we notice that the value of the latter expression is isomorphic to the value of{(νm ⊗
JP1{m/n}Kfn(P1{m/n})) ◦ (0m ⊗ idfn(P ))} ⊗ freeΓ. Moreover, sincem /∈ Γ, thenm /∈ fn(P ),
hence, by definition, we haveJ(νn)P1Kfn(P ) = (νm⊗JP1{m/n}Kfn(P )∪{m})◦(0m⊗idfn(P )). So,
sincefn(P1{m/n}) = fn(P )∪{m}, then we can easily conclude thatJP KΓ = JP Kfn(P )⊗ freeΓ.

• Suppose thatP = P1 | P2. By definition, we haveJP KΓ = JP1KΓ ⊗ JP2KΓ. Moreover, by induction
hypothesis,JP1KΓ = JP1Kfn(P1)

⊗ freeΓ, and analogouslyJP2KΓ = JP2Kfn(P2)
⊗ freeΓ. So,

we haveJP KΓ = (JP1Kfn(P1)
⊗ freeΓ) ⊗ (JP2Kfn(P2)

⊗ freeΓ). Thanks to the commutativity
and the associativity of⊗, we obtain the graph expressionJP KΓ = (JP1Kfn(P1)

⊗ JP2Kfn(P2)
) ⊗

(freeΓ⊗freeΓ). Now, we notice thatfreeΓ⊗freeΓ = freeΓ, and since, by definition,JP Kfn(P ) =

JP1Kfn(P ) ⊗ JP2Kfn(P ), we can easily conclude thatJP KΓ = JP Kfn(P ) ⊗ freeΓ, thanks to the
induction hypothesis and to the hypothesis thatfn(P ) ⊆ Γ.
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To prove the completeness result, we need to introduce a normal form for processes. First, for a set of
namesN = {n1, . . . , nz} such that allni’s are pairwise distinct, let us(νN) denote a shorthand for the
composition(νn1) . . . (νnk).

Proposition A.3 (Normal forms). Let P be a process. There exists a set of namesNr, Ng and a process
nf(P ), the normal form ofP , such thatP ≡ nf(P ) and the processnf(P ) has the shape((νNr)S) |
((νNg)0), for S = m1[A1] | . . . | mp[Ap] | M1.B1 | . . . | Mq.Bq and such that allAi’s andBj ’s are in
normal form (yetAi’s have no restrictions at top level) andNr ⊆ fn(S).

Lemma A.2. LetP,Q be processes. IfJP Kfn(P ) = JQKfn(Q), thenP ≡ Q.

Proof. Let P ′ andQ′ be the normal forms ofP andQ, respectively. Note that, sinceP ≡ P ′ andQ ≡
Q′, thanks to the soundness of our encoding and to the hypothesis JP Kfn(P ) = JQKfn(Q), we have that
JP ′Kfn(P ′) andJQ′Kfn(Q′) denote isomorphic graphs.

The proof proceeds by induction on the structure ofP ′.

• Suppose thatP ′ = 0. By definition, we haveJP ′Kfn(P ′) = 0a,p ⊗ freefn(P ′). Since,JP ′Kfn(P ′)

andJQ′Kfn(Q′) denote isomorphic graphs, they have the same interfaces, hencefn(P ′) = fn(Q′).
Furthermore, there must be a bijective correspondence between the set of edges attached to the image
of the inputp of the graphJP ′Kfn(P ′), and the set of edges attached to the image of the inputp of the
graphJQ′Kfn(Q′). Analogously, there must be a bijective correspondence between the sets of edges
attached to the image of the inputsa of both graphs. So, since inJP ′Kfn(P ′) both sets of edges are
empty, it is obvious thatQ′ = 0, and henceP ′ ≡ Q′.

• The casesP ′ = n[S1] andP ′ = M.S1 are similar. As an example, we considerP ′ = n[S1].
By definition, JP ′Kfn(P ′) = ambn ◦ (idn ⊗ JS1Kfn(P ′)). SinceJP ′Kfn(P ′) andJQ′Kfn(Q′) denote
isomorphic graphs, they have the same interfaces, hencefn(P ′) = fn(Q′). Furthermore, there must
be a bijective correspondence between the set of edges attached to the image of the inputp of the
graphJP ′Kfn(P ′), and the set of edges attached to the image of the inputp of the graphJQ′Kfn(Q′).
Analogously, there must be a bijective correspondence between the sets of edges attached to the
image of the inputsa of both graphs. This means thatQ′ = n[T1], for some processT1. We consider
the graphical encoding forQ′. By definition, we haveJQ′Kfn(Q′) = ambn ◦ (idn ⊗ JT1Kfn(Q′)). We
know thatJP ′Kfn(P ′) = JQ′Kfn(Q′), hence it is obvious thatJS1Kfn(P ′) = JT1Kfn(Q′). Since we also
know thatfn(P ′) = fn(Q′), then by using Lemma A.1, we deduce thatJS1Kfn(S1)

= JT1Kfn(T1)
.

Now, by applying the induction hypothesis, we haveS1 ≡ T1, and therefore, thanks to theCong-Amb
rule,S ≡ T .

• Suppose thatP ′ = S1 | S2. By definitionJP ′Kfn(P ′) = JS1Kfn(P ′) ⊗ JS2Kfn(P ′). SinceJP ′Kfn(P ′)

andJQ′Kfn(Q′) denote isomorphic graphs, they have the same interfaces, hencefn(P ′) = fn(Q′).
Furthermore, there must be a bijective correspondence between the set of edges attached to the image
of the inputp of the graphJP ′Kfn(P ′), and the set of edges attached to the image of the inputp of
the graphJQ′Kfn(Q′). Analogously, there must be a bijective correspondence between the sets of
edges attached to the image of the inputsa of both graphs. This means thatP ′ andQ′ have the same
number of processes in parallel. So, sinceJP ′Kfn(P ′) = JQ′Kfn(Q′), then there exist two processes
T1 andT2, such thatT = T1 | T2, andJS1Kfn(P ′) = JT1Kfn(Q′) andJS2Kfn(P ′) = JT2Kfn(Q′). Since
we know thatfn(P ′) = fn(Q′), then by Lemma A.1, we deduce thatJS1Kfn(S1)

= JT1Kfn(T1)

andJS2Kfn(S2)
= JT2Kfn(T2)

. Now, by applying the induction hypothesis, we haveS1 ≡ T1 and
S2 ≡ T2. So, thanks to theCong-Parrule,P ′ ≡ Q′.

• Suppose thatP ′ = (νN)S. By definition, we have

JP ′Kfn(P ′) = {νn1
⊗{{νn2

⊗{. . .⊗{(νni⊗JSKfn(P ′)∪ΓP ′
)◦(0ni⊗idfn(P ′)∪ΓP ′\{ni})}◦

. . .}} ◦ (0n2
⊗ idfn(P ′)∪{n1})}} ◦ (0n1

⊗ idfn(P ′))



96 APPENDIX A. PROOFS OF CHAPTER 3

whereΓP ′ = {n1, . . . , ni} = N . The value of the expression above is isomorphic to the valueof

(νn1
⊗ . . .⊗ νni ⊗ JSKfn(P ′))∪ΓP ′

) ◦ (0ΓP ′ ⊗ idfn(P ′)) .

SinceJP ′Kfn(P ′) andJQ′Kfn(Q′) denote isomorphic graphs, they have the same interfaces andhence
fn(P ′) = fn(Q′).

Furthermore, there must be a bijective correspondence between the set of edges attached to the image
of the inputa of the graphJP ′Kfn(P ′), and the set of edges attached to the image of the inputa of
the graphJQ′Kfn(Q′). Analogously, there must be a bijective correspondence between the sets of
nodes◦ of both graphs. This means thatP ′ andQ′ have the same number of restricted names, hence,
Q′ = (νm1) . . . (νmi)T for some processT .

By definition, we have

JQ′Kfn(Q′) = {νm1
⊗{{νm2

⊗{. . .⊗{(νmi
⊗JT Kfn(Q′)∪ΓQ′

)◦(0mi
⊗idfn(Q′)∪ΓQ′\{mo})}◦

. . .}} ◦ (0m2
⊗ idfn(Q′)∪{m1})}} ◦ (0m1

⊗ idfn(Q′))

whereΓQ′ = {m1, . . . ,mi}. The value of the expression above is isomorphic to the valueof

(νm1
⊗ . . .⊗ νmi

⊗ JT Kfn(Q′))∪ΓQ′
) ◦ (0ΓQ′ ⊗ idfn(Q′))

SinceJP ′Kfn(P ′) = JQ′Kfn(Q′) andP ′ andQ′ have the same number of restricted names, then there
exists a substitutionσ such thatP ′′ = (νm1) . . . (νmi)Sσ isα-equivalent toP ′ andJSσKfn(P ′′)∪ΓQ′

=

JT Kfn(Q′)∪ΓQ′
. We know thatfn(P ′′) = fn(Q′), hence by using Lemma A.1 we deduceJSσKfn(Sσ) =

JT Kfn(T ). Now, we can apply the induction hypothesis and say thatSσ ≡ T . So, thanks to theCong-
Resrule, we conclude thatP ′′ ≡ Q′. Moreover, sinceP ′′ ≡ P ′, and by Proposition A.3 we know
thatP ′ ≡ P andQ′ ≡ Q, then it is easy to conclude thatP ≡ Q.

Now we show the completeness result by using Lemma A.2 and Lemma A.1.

Proposition A.4. Let P,Q be processes and letΓ be a set of names, such thatfn(P ) ∪ fn(Q) ⊆ Γ. If
JP KΓ = JQKΓ, thenP ≡ Q.

Proof. By Lemma A.1, we haveJP KΓ = JP Kfn(P )⊗ freeΓ, and analogouslyJQKΓ = JQKfn(Q) ⊗ freeΓ.
Since, by hypothesis,JP KΓ = JQKΓ, then we haveJP Kfn(P ) = JQKfn(Q). So, we can apply Lemma A.2
and conclude thatP ≡ Q.

A.2 From reduction relation → to graph rewriting
In this appendix we present the proofs of the two main resultsof Chapter 3. In particular, first we prove
Theorem 3.2, which relates process reductions to graph rewrites. Then, we show the proof of the reverse
direction, Theorem 3.3.

We begin by stating a useful lemma, saying that derivations are preserved under closure with respect to
graph contexts. Intuitively, a graph context is a graph expression “with a hole”, i.e., the single occurrence
of a novel constant−.

Lemma A.3. LetG be a graph with discrete interfaces, and letC[−] be a graph context such that the graph
expressionC[G] is well-defined. IfRamb entails a direct derivationG =⇒ H, then it also entails a direct
derivationC[G] =⇒ C[H].
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A proof of a variant of the lemma above can be found in [32, Lemma B.3].

In order to prove the soundness and completeness results, wealso need to introduce an extension of
the encoding of processes into graphs, presented in Definition 3.16. So, in the following, we consider the
process encoding as parametric with respect to the input interface. We denote bya1,p1JP KΓ the graph with
interfaces({a1, p1},Γ) that representsP , whereΓ is a set of names such thatfn(P ) ⊆ Γ. Note that
JP KΓ = a,pJP KΓ.

Moreover, we usea1,p1amba2,p2
n to denote the constant graph with interfaces({a1, p1}, {a2, p2, n}),

corresponding toambn. Analogously, we usea1,p1acta2,p2
n to denote the constant graph with interfaces

({a1, p1}, {a2, p2, n}), corresponding toactn, while we write a1go for the constant graph with interfaces
({a1}, ∅), corresponding togo. Finally, we usea1,p1ida2,p2

a,p as shorthand fora1ida2
a ⊗

p1idp2
p , where

a1ida2
a and p1idp2

p respectively denote the constant graphs with interfaces({a1}, {a2}) and({p1}, {p2}),
obviously corresponding toidn.

Now, we prove that our encoding is sound with respect to→.

Proof of Theorem 3.2.By induction on the depth of the derivation ofP → Q.
In order to prove the cases ofRed-In, Red-OutandRed-Openrules, we follow the same pattern proposed

in [32, Lemma C.1] to show the soundness of encoding with respect to the reduction semantics (even if for
mobile ambients the case analysis is quite cumbersome). Foreach of these reduction rules, first, we choose
a graph expression corresponding to the left-hand side of the respective rule inRamb. Then, we compute
a graph expression corresponding to the application of the rule to the given graph expression. Finally, we
show how the left-hand side occurs in the encodingJP K

go
Γ , and we apply Lemma A.3.

• Assume thatP → Q by Red-Inrule. This means thatP = n[in m.R2 | R1] | m[R3] andQ =
m[n[R2 | R1] | R3].
First of all, we consider a graph expression corresponding to the left-hand side of the rulepin in
Ramb, and such that the source of thegoedge occurs in the input interface, namely,

Lin = ago⊗ [ a,pamba,p
n ◦ (idn ⊗

a,pida1,p1
a,p ⊗ a,pina2,p2

m )]⊗ a,pamba3,p3
m .

The application of thepin rule with the identity match results in the value of

Rin = ago⊗ [ a,pamba,p
m ◦ (idm ⊗

a,pamba,p
n ⊗ a,pida3,p3

a,p ) ◦
(idm ⊗ idn ⊗

a3,p3ida3,p3
a,p ⊗ a,pida1,p1

a,p ⊗ a,pida2,p2
a,p )] .

Now, we consider the graphical encoding forP . By definition, we have

JP K
go
Γ = {{ambn ◦ {idn ⊗ [inm ◦ (idm ⊗ JR2KΓ)]⊗ JR1KΓ}} ⊗

[ambm ◦ (idm ⊗ JR3KΓ)]} ⊗ go .

The expression above can be rewritten toLin ◦ C, where

C = idn ⊗ idm ⊗
a2,p2JR2KΓ ⊗

a1,p1JR1KΓ ⊗
a3,p3JR3KΓ .

Since, by applying thepin rule,Lin =⇒ Rin, then by Lemma A.3 we haveJP K
go
Γ =⇒ Rin ◦ C.

Now, we have to show that the value ofRin ◦ C is isomorphic to the value ofJQK
go
Γ . So, let us

consider the graphical encoding forQ. By definition

JQK
go
Γ = {ambm ◦ {idm ⊗ [ambn ◦ (idn ⊗ JR1KΓ ⊗ JR2KΓ)]⊗

JR3KΓ}} ⊗ go .

It is easy to check that the value of the last expression is isomorphic to the value ofRin ◦ C, hence
the result holds.
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• Suppose thatP → Q has been obtained by applyingRed-Outrule. It means thatP = m[n[out m.R1 |
R2] | R3] andQ = n[R1 | R2] | m[R3].
Similarly as in the preceding case, first, we consider a graphexpression corresponding to the left-hand
side of the rulepout in Ramb, and such that the source of thego edge occurs in the input interface,
namely,

Lout = ago⊗ [ a,pamba,p
m ◦ (idm ⊗

a,pamba,p
n ⊗ a,pida3,p3

a,p ) ◦
(idm ⊗ idn ⊗

a3,p3ida3,p3
a,p ⊗ a,pouta1,p1

m ⊗ a,pida2,p2
a,p )] .

The application ofpout with the identity match results in the value of

Rout = ago⊗ [ a,pamba,p
n ◦ (idn ⊗

a,pida1,p1
a,p ⊗ a,pida2,p2

a,p )]⊗
a,pamba3,p3

m .

Now, we consider the graphical encoding forP . By definition

JP K
go
Γ = {ambm ◦ {idm ⊗ {ambn ◦ {idn ⊗ [outm ◦ (idm ⊗ JR1KΓ)]⊗

JR2KΓ}} ⊗ JR3KΓ}} ⊗ go .

The expression above can be rewritten toLout ◦ C, where

C = idn ⊗ idm ⊗
a1,p1JR1KΓ ⊗

a2,p2JR2KΓ ⊗
a3,p3JR3KΓ .

Since, by applying thepout rule,Lout =⇒ Rout, then by Lemma A.3 we haveJP K
go
Γ =⇒ Rout ◦ C.

Now, we have to show that the value ofRout ◦ C is isomorphic to the value ofJQK
go
Γ . So, let us

consider the graphical encoding forQ. By definition

JQK
go
Γ = [ambn ◦ (idn ⊗ JR1KΓ ⊗ JR2KΓ)]⊗ [ambm ◦ (idm ⊗

JR3KΓ)]⊗ go .

It is easy to check that the value of the last expression is isomorphic to the value ofRout ◦ C, hence
the result holds.

• Assume thatP → Q by Red-Openrule. It means thatP = open n.R1 | n[R2] andQ = R1 | R2.
Consider a graph expression corresponding to the left-handside of the rulepopen in Ramb, and such
that the source of thegoedge occurs in the input interface, namely,

Lopen = ago⊗ a,popena1,p1
n ⊗ a,pamba2,p2

n .

The application ofpopen with the identity match results in the value of

Ropen = ago⊗ a,pida1,p1
a,p ⊗ a,pida2,p2

a,p ⊗ freen .

Now, we consider the graphical encoding forP . By definition

JP K
go
Γ = {[openn ◦ (idn ⊗ JR1KΓ)]⊗ [ambn ◦ (idn ⊗ JR2KΓ)]} ⊗

go .

The expression above can be rewritten toLopen ◦ C, where

C = idn ⊗
a1,p1JR1KΓ ⊗

a2,p2JR2KΓ .

Since, by applying thepopen rule Lopen =⇒ Ropen, then by Lemma A.3, we haveJP K
go
Γ =⇒

Ropen ◦ C.
Now, we have to show that the value ofRopen ◦ C is isomorphic to the value ofJQK

go
Γ . So, let us

consider the graphical encoding forQ. By definition
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JQK
go
Γ = (JR1KΓ ⊗ JR2KΓ)⊗ go .

It is easy to check that the value of the last expression is isomorphic to the value of( ago⊗ a,pida1,p1
a,p ⊗

a,pida2,p2
a,p ) ◦ ( a1,p1JR1KΓ ⊗

a2,p2JR2KΓ). Sincen ∈ Γ, it is immediate to conclude that the value of
JQK

go
Γ is isomorphic to the value ofRopen ◦ C, hence the result holds.

• Suppose thatP → Q has been obtained by applyingRed-Resrule. It means thatP = (νn)P1,
Q = (νn)Q1 andP1 → Q1. Consider the graph encodingsJP K

go
Γ andJQK

go
Γ . By definition

JP K
go
Γ = [(νm ⊗ JP1{m/n}KΓ∪{m}) ◦ (0m ⊗ idΓ)]⊗ go ,

JQK
go
Γ = [(νm ⊗ JQ1{m/n}KΓ∪{m}) ◦ (0m ⊗ idΓ)]⊗ go

for m /∈ Γ. It is easy to see that the value of the first expression above is isomorphic to the value of
the expression

(νm ⊗ JP1{m/n}K
go
Γ∪{m}) ◦ (0m ⊗ idΓ) .

SinceP1 → Q1, thenP1{m/n} → Q1{m/n}, and by induction hypothesisRamb entails a direct
derivationJP1{m/n}K

go
Γ∪{m} =⇒ G1, such thatG1 = JQ1{m/n}K

go
Γ∪{m}. So, we can apply Lemma

A.3 and say thatJP K
go
Γ =⇒ (νm ◦ JQ1{m/n}K

go
Γ∪{m}) ◦ (0m⊗ idΓ). We conclude by observing that

the value of(νm ⊗ JQ1{m/n}K
go
Γ∪{m}) ◦ (0m ⊗ idΓ) is isomorphic to the value ofJQK

go
Γ .

• Assume thatP → Q by Red-Ambrule. This means thatP = n[P1],Q = n[Q1] andP1 → Q1.
Now, we consider the graph encodingsJP K

go
Γ andJQK

go
Γ . By definition

JP K
go
Γ = [ambn ◦ (idn ⊗ JP1KΓ)]⊗ go ,

JQK
go
Γ = [ambn ◦ (idn ⊗ JQ1KΓ)]⊗ go .

It is easy to see that the value of the first expression above isisomorphic to the value of the following
expression

ambn ◦ (idn ⊗ JP1K
go
Γ ) .

SinceP1 → Q1, by induction hypothesisRamb entails a direct derivationJP1K
go
Γ =⇒ G1, such that

G1 = JQ1K
go
Γ . So, we can apply Lemma A.3 and say thatJP K

go
Γ =⇒ ambn ◦ (idn ⊗ JQ1K

go
Γ ). We

conclude by observing that the value ofambn ◦ (idn ⊗ JQ1K
go
Γ ) is isomorphic to the value ofJQK

go
Γ .

• Suppose thatP → Q has been obtained by applyingRed-Parrule. It means thatP = P1 | R,
Q = Q1 | R andP1 → Q1.
Now, we consider the graph encodingsJP K

go
Γ andJQK

go
Γ . By definition

JP K
go
Γ = (JP1KΓ ⊗ JRKΓ)⊗ go ,

JQK
go
Γ = (JQ1KΓ ⊗ JRKΓ)⊗ go .

It is easy to see that the value of the first expression above isisomorphic to the value of the following
expression:

JP1K
go
Γ ⊗ JRKΓ .

SinceP1 → Q1, by induction hypothesisRamb entails a direct derivationJP1K
go
Γ =⇒ G1, such that

G1 = JQ1K
go
Γ . So, we conclude by observing that, by Lemma A.3,JP K

go
Γ =⇒ JQ1K

go
Γ ⊗ JRKΓ, and

the value ofJQ1K
go
Γ ⊗ JRKΓ is isomorphic to the value ofJQK

go
Γ
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• Suppose thatP → Q has been obtained by applyingRed-Congrule. This means thatP ≡ P1,
P1 → Q1 andQ1 ≡ Q.
SinceP ≡ P1, by Theorem 3.1, we haveJP KΓ = JP1KΓ. Analogously, sinceQ1 ≡ Q, we have
JQKΓ = JQ1KΓ. Moreover, by hypothesis we haveP1 → Q1, so we can apply the induction hypoth-
esis and say thatRamb entails a direct derivationJP1K

go
Γ =⇒ G, such thatG = JQ1K

go
Γ . Now, we

can notice that, sinceJP KΓ = JP1KΓ, thenJP K
go
Γ = JP1K

go
Γ , and similarly sinceJQKΓ = JQ1KΓ, then

JQK
go
Γ = JQ1K

go
Γ . So, it is immediate to conclude thatRamb entails a direct derivationJP K

go
Γ =⇒ G,

such thatG = JQK
go
Γ .

To prove the completeness of our encoding with respect to thereduction relation→, we need to intro-
duce two technical lemmas. The first states a property that characterises those graphs with interfaces in the
image of the encoding.

Lemma A.4. LetP be a process. IfRamb entails a derivationJP K
go
Γ =⇒ G, then the graph with interfaces

G satisfies the following property: the underlying graph is acyclic and only◦ nodes may have more than
one incoming tentacle. Moreover, the inputs (the node in theimage ofp and the node in the image ofa)
have no predecessors, and the outputs (the nodes in the imageof Γ) have no successors.

Sketch.The property clearly holds for all the graph constants used in the encoding. It is also easy to see
that it is true for the graph expressions resulting from the encoding. In fact, the property is preserved by the
parallel and sequential composition operators, because the interfaces are discrete. Moreover, since all the
rules inRamb also preserve the property, then the lemma holds.

Now we introduce a simple result concerning the applicationof rules inRamb.

Lemma A.5. Let G be a graph with discrete interfaces, and letC[−] be a graph context, such that the
graph expressionC[G] is well-defined and the obvious morphismG → C[G] is mono. Moreover, letm be
a match for the rulep in Ramb, such thatp/m : C[G] =⇒ H

′. If m covers the subgraphG, then there
exists a graph with interfaceH, such thatG =⇒ H andH

′ = C[H].

We now prove the completeness of our encoding with respect tothe reduction semantics for processes
with no restrictions on top.

Lemma A.6. Let S be a process with no restriction operators on top and letΓ be a set of names, such
that fn(S) ⊆ Γ. If Ramb entails a direct derivationJSK

go
Γ =⇒ G, then there exists a processS′ such that

S → S′ andG = JS′K
go
Γ .

Proof. The proof proceeds by induction on the structure ofS which, with no loss of generality, could be
considered in normal form

• AssumeS = 0 or S = M.S1. In both cases the proof is trivial, because there is no derivation from
JSK

go
Γ .

• AssumeS = n[S1]. By definition, we haveJn[S1]K
go
Γ = [ambn ◦ (idn ⊗ JS1KΓ)] ⊗ go. We notice

that this last expression can be rewritten toambn ◦ (idn⊗ JS1K
go
Γ ). Moreover, note that the derivation

JSK
go
Γ =⇒ G via productionp and matchm′ could have been obtained in two ways:

1. the match covers only the graphJS1K
go
Γ ;

2. the match covers both the graphsJS1K
go
Γ andambn.

1. Suppose that the matchm′ covers only the graphJS1K
go
Γ . So, by Lemma A.5, there exists

a graph with interfacesG1 such thatJS1K
go
Γ =⇒ G1 andG = ambn ◦ (idn ⊗ G1). Since

JS1K
go
Γ =⇒ G1, we can apply the induction hypothesis and say that there exists a processS′1,

such thatS1 → S′1 andG1 = JS′1K
go
Γ .

Let us recall that we have to prove that there exists a processS′ such thatS → S′ andG =
JS′K

go
Γ . We takeS′ = n[S′1]. SinceS1 → S′1, then by applying theRed-Ambrule we have
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S → S′. Moreover, we know thatG1 = JS′1K
go
Γ , hence we haveG = ambn ◦ (idn ⊗ JS′1K

go
Γ ).

We conclude by observing that the value ofambn ◦ (idn ⊗ JS′1K
go
Γ ) is isomorphic to the value

of Jn[S′1]K
go
Γ .

2. Assume that the matchm′ covers both the graphsJS1K
go
Γ andambn. In this case, the rewriting

step could have been obtained only by applying thepout rule. The graphJSK
go
Γ has interfaces

({a, p},Γ) and exactly one occurrence of ago edge, which is outgoing from the image of the
input a. Moreover, sinceJSK

go
Γ satisfies the property stated in Lemma A.4, any matchm′ for

the rulepout has to be injective, at most coalescing the◦ nodes corresponding to the namesm
andn of rule pout in Figure 3.16. So, the graphical encoding forS has to have the following
shape

JSK
go
Γ = Lout ◦ C

whereC = idn ⊗ idm ⊗
a1,p1JT1KΓ ⊗

a2,p2JT2KΓ ⊗
a3,p3JT3KΓ, for T1, T2 andT3 processes

andn andm ambient names, whileLout is the expression corresponding to the left-hand side
of thepout rule, shown in the proof of Theorem 3.2. So, we have thatG = Rout ◦ C.
Now, we notice that the value ofJSK

go
Γ is isomorphic to the value ofJT K

go
Γ , forT = m[n[out m.T1 |

T2] | T3]. So, by Theorem 3.1S ≡ T .
Let us recall that we have to prove that there exists a processS′ such thatS → S′ and
Rout ◦ C = JS′K

go
Γ . We takeS′ = n[T1 | T2] | m[T3]. SinceT → S′ by applyingRed-

Out rule, andS ≡ T , we haveS → S′ by Red-Congrule.
Now, we consider the graphical encoding forS′. By definition, we have

JS′K
go
Γ = [ambn ◦ (idn ⊗ JT1KΓ ⊗ JT2KΓ)]⊗ [ambm ◦ (idm ⊗

JT3KΓ)]⊗ go .

It is easy to check that the value of the last expression is isomorphic to the value ofRout ◦ C,
hence the result holds.

• AssumeS = S1 | S2. By definition, we haveJS1 | S2K
go
Γ = [JS1KΓ ⊗ JS2KΓ] ⊗ go. We notice that

this last expression can be rewritten toJS1K
go
Γ ⊗ JS2KΓ or to JS1KΓ ⊗ JS2K

go
Γ . Moreover, we note that

the derivationJSK
go
Γ =⇒ G via productionp and matchm′ could have been obtained in three ways

1. the match covers only one of graphsJS1K
go
Γ andJS2K

go
Γ ;

2. the match covers both the graphsJS1K
go
Γ andJS2KΓ andpin rule has been applied;

3. the match covers both the graphsJS1K
go
Γ andJS2KΓ andpopen rule has been applied.

1. Suppose that the matchm′ covers only the graphJS1K
go
Γ . So, by Lemma A.5, there exists a graph

with interfacesG1, such thatJS1K
go
Γ =⇒ G1 andG = G1 ⊗ JS2KΓ. SinceJS1K

go
Γ =⇒ G1, we

can apply the induction hypothesis and say that there existsa processS′1, such thatS1 → S′1
andG1 = JS′1K

go
Γ .

Let us recall that we have to prove that there exists a processS′, such thatS → S′ andG =
JS′K

go
Γ . We takeS′ = S′1 | S2. SinceS1 → S′1, then by applyingRed-Parrule we haveS → S′.

Moreover, we know thatG1 = JS′1K
go
Γ , hence we haveG = JS′1K

go
Γ ⊗ JS2KΓ. We conclude by

observing that the value ofJS′1K
go
Γ ⊗ JS2KΓ is isomorphic to the value ofJS′1 | S2K

go
Γ .

2. Assume that the matchm′ covers both graphsJS1K
go
Γ and JS2KΓ and thepin rule has been

applied. It means that the gluing condition is satisfied, hence any matchm′ for the rulepin can
not identify the twoamb edges of the left-hand side of thepin rule in Figure 3.16. Moreover,
the graphJSK

go
Γ satisfies the property stated in Lemma A.4. Hence, any matchm′ for the rule

pin has to be injective, at most coalescing the◦ nodes corresponding to the namesm andn of
thepin rule in Figure 3.16. We note that the graphJSK

go
Γ has interfaces({a, p},Γ) and exactly

one occurrence of ago edge, which is outgoing from the image of the inputa. From this follows
that the graphical encoding forS has to have the following shape

JSK
go
Γ = (Lin ◦ C)⊗ JS3KΓ
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whereC = idn⊗idm⊗
a1,p1JT1KΓ⊗

a2,p2JT2KΓ⊗
a3,p3JT3KΓ, for T1, T2, T3 andS3 processes,

andn andm ambient names, whileLin is the expression corresponding to the left-hand side of
thepin rule, shown in the proof of Theorem 3.2. So, we have thatG = (Rin ◦ C)⊗ JS3KΓ.
Now, we note that the value ofJSK

go
Γ is isomorphic to that ofJT K

go
Γ , for T = n[in m.T2 | T1] |

m[T3] | S3. SoS ≡ T by Theorem 3.1.
Let us recall that we have to prove that there exists a processS′, such thatS → S′ and(Rin ◦
C) ⊗ JS3KΓ = JS′K

go
Γ . We takeS′ = m[n[T1 | T2] | T3] | S3. SinceT → S′ by applying

Red-InandRed-Parrules, andS ≡ T , we haveS → S′ by Red-Congrule.
Now, we consider the graphical encoding forS′. By definition, we have

JS′K
go
Γ = {ambm ◦ {idm ⊗ [ambn ◦ (idn ⊗ JT1KΓ ⊗ JT2KΓ)]⊗

JT3KΓ}} ⊗ JS3KΓ ⊗ go .

It is easy to check that the value of the last expression is isomorphic to the value of(Rin ◦C)⊗
JS3KΓ, hence the result holds.

3. Suppose that the matchm′ covers both graphsJS1K
go
Γ andJS2KΓ and thepopen rule has been

applied. The graphJSK
go
Γ has interfaces({a, p},Γ) and exactly one occurrence of ago edge,

which is outgoing from the image of the inputa. Moreover, sinceJSK
go
Γ satisfies the property

stated in Lemma A.4, any matchm′ for the rulepout has to be injective. So, we have that the
graphical encoding forS has to have the following shape

JSK
go
Γ = (Lopen ◦ C)⊗ JS3KΓ

whereC = idn⊗
a1,p1JT1KΓ⊗

a2,p2JT2KΓ, for T1, T2 andS3 processes andn an ambient name,
while Lopen is the expression corresponding to the left-hand side of thepopen rule, shown in the
proof of Theorem 3.2. So, we have thatG = (Ropen ◦ C)⊗ JS3KΓ.
Now, we notice that the value ofJSK

go
Γ is isomorphic to the value ofJT K

go
Γ , for T = open n.T1 |

n[T2] | S3. HenceS ≡ T by Theorem 3.1.
Let us recall that we have to prove that there exists a processS′, such thatS → S′ andG =
JS′K

go
Γ . We takeS′ = T1 | T2 | S3. SinceT → S′ by applyingRed-OpenandRed-Parrules,

andS ≡ T , we haveS → S′ by Red-Congrule.
Now, we consider the graphical encoding forS′. By definition, we have

JS′K
go
Γ = JT1KΓ ⊗ JT2KΓ ⊗ JS3KΓ ⊗ go .

It is easy to check that the value of the last expression is isomorphic to the value of(Ropen ◦
C)⊗ JS3KΓ, hence the result holds.

Now, we can at last show the proof of Theorem 3.3.

Proof of Theorem 3.3.Let P ′ = (νn1) . . . (νni)S be the normal form ofP , such that∀j : nj /∈ Γ. If
i = 0, that is,P ′ is a process without restrictions as top operators, the result holds thanks to Lemma A.6. If
i > 0, by definition, we have

JP KΓ = {νn1
⊗ {{νn2

⊗ {. . .⊗ {(νni ⊗ JSKΓ∪ΓP ′
) ◦ (0ni ⊗ idΓ∪ΓP ′\{ni})} ◦

. . .}} ◦ (0n2
⊗ idΓ∪{n1})}} ◦ (0n1

⊗ idΓ)

whereΓP ′ = {n1, . . . , ni}.
The value of the expression above is isomorphic to the value of the following

(νn1
⊗ . . .⊗ νni ⊗ JSKΓ∪ΓP ′

) ◦ (0ΓP ′ ⊗ idΓ) .

Note that, by Proposition A.3, we haveP ≡ P ′, henceJP K
go
Γ = JP ′K

go
Γ . Since, by hypothesis,JP K

go
Γ =⇒

G, and any match covers onlyJSKΓ∪ΓP ′
, by Lemma A.5, there exists a graphG1, such thatJSKΓ∪ΓP ′

=⇒

G1 andG = G1 ◦ (0ΓP ′ ⊗ idΓ). SinceJSKΓ∪ΓP ′
=⇒ G1, we can apply Lemma A.6 and say that there
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exists a processS′, such thatS → S′ andG1 = JS′K
go
Γ∪ΓP ′

.
Let us recall that we have to prove that there exists a processQ, such thatP → Q andG = JQK

go
Γ . We

takeQ = (νn1) . . . (νni)S
′. SinceS → S′, then by applyingRed-Resrule, we haveP ′ → Q. We

also know thatP ≡ P ′, so byRed-Congrule we haveP → Q. Moreover, sinceG1 = JS′K
go
Γ∪ΓP ′

, then
G = (νn1

⊗ . . . ⊗ νni ⊗ JS′K
go
Γ∪ΓP ′

) ◦ (0ΓP ′ ⊗ idΓ). We conclude by observing that the value of the last
expression is isomorphic to the value ofJQK

go
Γ .

A.3 Collecting useless restrictions
In this appendix we turn our attention to the proofs of Proposition 3.3 and Theorem 3.4, which formalise
respectively the relation between the structural congruence≡′ and the encoding introduced in Definition
3.16, and the relation between process reductions according to→′ and graph rewrites.

We begin by a lemma showing that the encoding of reductions are closed with respect to the removal of
restrictions.

Lemma A.7. LetP,Q be processes and letΓ be a set of names, such thatfn(P )∪ fn(Q) ⊆ Γ. If P → Q
thennf(JP KΓ) =⇒ nf(JQKΓ).

The proof exploits an obvious extension of Proposition 3.2,which is applied to finite sequences of
derivations.

Lemma A.8. LetP,Q be processes and letΓ be a set of names, such thatfn(P )∪ fn(Q) ⊆ Γ. If P ≡′ Q
thennf(JP KΓ) = nf(JQKΓ).

The proof of the result above, the soundness of Proposition 3.3, is straightforward: eitherP ≡ Q, or
at least once the law(νn)0 = 0 has been applied. Sincepν/id : J(νn)0KΓ =⇒ J0KΓ, the proof goes by
induction on the derivation, proving that rewrites withpν are closed with respect to context application.

The completeness amounts to prove the following proposition.

Proposition A.5. If pν/m : JP KΓ =⇒ G then there existsQ such thatP ≡′ Q andJQKΓ = G.

The proof proceeds by induction on the structure ofP which, with no loss of generality, could be
considered in normal form. The only interesting case is whenP = ((νNr)S) | ((νNg)0). It is easy to
check that ifpν/m : JP KΓ =⇒ G, thenG is JP KΓ without the graphical restriction operator for a namenj

in Ng. It is the graphical encoding ofQ = ((νNr)S) | ((ν(Ng \ {nj})0), and obviouslyP ≡′ Q.

Proof of Theorem 3.4.Let us assume thatP →′ Q. Then, there existsR such thatP → R andR ≡′ Q by
Proposition 3.1. This implies thatnf(JP KΓ) =⇒ nf(JRKΓ) andnf(JP KΓ) =⇒ nf(JRKΓ) by the lemmas
above.

Vice versa, let us assume thatnf(JP KΓ) =⇒ G. Then, there existsH such thatJP KΓ =⇒ H andH
reachesG by a sequence of derivations applying the rulepν , sonf(H) = nf(G). HenceP → Q and
JQKΓ = H, sonf(JP KΓ) =⇒ nf(JQKΓ) andnf(JQKΓ) = nf(G).
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Appendix B

Proofs of Chapter 4

B.1 Equivalence between the LTSDI and the LTS SI

This section discusses the equivalence between the LTSDI, presented in Section 4.6, and the LTSSI,
introduced in Section 4.7. In particular, we provide a proofof Theorem 4.2, and to this end, in the following
we introduce two useful propositions.

Proposition B.1. LetP be a pure process. IfP
C[−]ǫ
−−→D Qǫ then there exists a well-formed processQ′ǫ such

thatP
C[−]ǫ
−−→S Q

′
ǫ and for each substitutionσ,Qǫσ ≡ Q

′
ǫσ.

Sketch.We begin by observing that the rules in Figure 4.17 and the rules in the first two rows of Figure 4.19
exactly derive the same transition relation of the reduction relation of mobile ambients. So for them the
proposition trivially holds.

The proof is by cases on the rules to obtainP
C[−]ǫ
−−→D Qǫ.

For the rules in Figure 4.18 we show as an example the case of the IN rule.

Assume thatP
Cǫ[−]
−−→D Qǫ by IN rule. It means thatP ≡ (νA)(in m.P1|P2), m 6∈ A, Qǫ =

(νA)(m[x[P1|P2|X1]|X2]) andCǫ[−] = x[−|X1]|m[X2].

We can note that, by applying IN rule, in m.P1
x[−|X1]|m[X2]
−−−−−−−−→S m[x[P1|X1]|X2]. So, we can apply IN-

PAR rule and obtainin m.P1|P2
x[−|X1]|m[X2]
−−−−−−−−→S m[x[P1|P2|X1]|X2]. Since we also knowm 6∈ A, thanks

to the rule INRES, we can conclude(νA)(in m.P1|P2)
x[−|X1]|m[X2]
−−−−−−−−→S Qǫ, thereforeP

x[−|X1]|m[X2]
−−−−−−−−→S Qǫ

and trivially, for each substitutionσ,Qǫσ ≡ Qǫσ.

Proposition B.2. LetP be a pure process. IfP
C[−]ǫ
−−→S Qǫ then there exists a well-formed processQ′ǫ such

thatP
C[−]ǫ
−−→D Q′ǫ and for each substitutionσ,Qǫσ ≡ Q

′
ǫσ.

Sketch.We proceed by induction on the depth of the derivation ofP
C[−]ǫ
−−→S Qǫ.

As in the proof above, for the rules in the first two rows of Figure 4.19 the proposition trivially holds.
Instead, for the remaining rules of the same figure, we show asan example the cases for IN, INPAR and
CONG rules.

• Assume thatP
Cǫ[−]
−−→S Qǫ by IN rule of Figure 4.19. It means thatP = in m.P1,Qǫ = m[x[P1|X1]|X2]

andCǫ[−] = x[−|X1]|m[X2]. It is easy to check thatP
x[−|X1]|m[X2]
−−−−−−−−→D Qǫ by IN rule of Figure 4.18,

so the proposition trivially holds.

• Assume thatP
Cǫ[−]
−−→S Qǫ by INPAR rule. This means thatP = P ′|R′, Cǫ[−] = x[−|X1]|m[X2],

P ′
Cǫ[−]
−−→S Q

′
ǫ andQǫ = Q′′ǫ {

R′|X1/X1
}.
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By induction hypothesis, we haveP ′
x[−|X1]|m[X2]
−−−−−−−−→D Q′′ǫ . This means thatP ′ ≡ (νA)(in m.P1|P2),

m 6∈ A andQ′′ǫ = (νA)(m[x[P1|P2|X1]|X2]).

Note thatP ′|R′ ≡ (νA)(in m.P1|P2)|R
′ and(νA)(in m.P1|P2)|R

′ ≡ (νA′)(in m.P ′1|P
′
2|R
′), by

considering(νA)(in m.P1|P2) α-equivalent to(νA′)(in m.P ′1|P
′
2) andA′ ∩ fn(R′) = ∅.

So, thanks to IN rule,P ′|R′
x[−|X1]|m[X2]
−−−−−−−−→D Q′ǫ, whereQ′ǫ = (νA′)(m[x[P ′1|P

′
2|R
′|X1]|X2]) and it

is easy to check that for each substitutionσ,Qǫσ ≡ Q
′
ǫσ.

• Assume thatP
Cǫ[−]
−−→S Qǫ by CONG rule. This means thatP ≡ P ′, P ′

Cǫ[−]
−−→S Qǫ. By induction

hypothesis, we haveP ′
Cǫ[−]
−−→D Qǫ, hence alsoP

Cǫ[−]
−−→D Qǫ and so the proposition trivially holds.

Theorem 4.2 trivially follows from the two propositions above and from Definitions 4.6 and 4.7.

B.2 Correspondence between the LTSSI and the LTS CA

This section shows the proofs of Propositions 4.3 and 4.4 used to formally prove the correspondence be-
tween our LTSSI , defined on pure processes of mobile ambients, and the LTSCA for mobile ambients
proposed by Rathke and Sobociński in [60].

First of all, we introduce the proof of Proposition 4.3, needed to prove the first statement of Theorem
4.3.

Proof sketch of Proposition 4.3.The proof is by cases on the rules to obtainP
α↓ ~Mα

−−−→CA Q. We only show
the proof for some rules, because the other cases are analogous.

• Assume thatP
α↓ ~Mα

−−−→CA Q byCλ rule. It means thatP
α
−→C A,A

~Mα↓
−−→A Q andα 6∈ {[inm], openn, τ}.

Now we proceed by cases on the rules to obtainP
α
−→C A with α 6∈ {[inm], openn, τ}. As an ex-

ample, we show the cases of the IN and||IN rules.

Assume thatP
α
−→C A by IN rule. It means thatP = in m.P1, A = λXxY.m[x[P1|X]|Y ] and

α = in m. We assume that~Mα = R,n, S, for R,S processes andn ambient name, therefore we
haveQ = m[n[P1|R]|S].

We have to show that there existsQǫ, such thatP
Cinmǫ [−]
−−−−→S Qǫ andQ ≡ Qǫσ

α
M , with σα

M =

{R/X1
,n /x,

S /X2
}. We takeQǫ = m[x[P1|X1]|X2]. It is easy to check thatin m.P1

Cinmǫ [−]
−−−−→S

m[x[P1|X1]|X2] by IN rule. Moreover, we havem[x[P1|X1]|X2]σ
α
M = m[n[P1|R]|S].

Assume thatP
α
−→C A by ||IN rule. It means thatα = in m, P = P1|P2, P1

in m
−→C A′, and

A = λX.A′(P2|X). We assume that~Mα = R,n, S, for R,S processes andn ambient name,

therefore we haveQ = A′(P2|R,n, S). Let us consider~M ′α = P2|R,n, S. SinceA
~Mα↓
−−→A Q, then

A′
~M ′α↓
−−→A Q. Therefore, we haveP1

in m↓ ~M ′α

−−−−−→CA Q. By induction hypothesis, there existsQ′ǫ such

thatP1
Cinmǫ [−]
−−−−→S Q

′
ǫ andQ ≡ Q′ǫσ

α
M ′ , whereσα

M ′ = {P2|R/X1
,n /x,

S /X2
}. We have to show that

there existsQǫ, such thatP
Cinmǫ [−]
−−−−→S Qǫ andQ ≡ Qǫσ

α
M , with σα

M = {R/X1
,n /x,

S /X2
}. We

takeQǫ = Q′ǫ{
P2|X1/X1

}. It is easy to check thatP1|P2
Cinmǫ [−]
−−−−→S Q′ǫ{

P2|X1/X1
} by INPAR rule.

Moreover, it is obvious thatQ′ǫ{
P2|X1/X1

}{R/X1
,n /x,

S /X2
} = Q′ǫ{

P2|R/X1
,n /x,

S /X2
} ≡ Q.

• Assume thatP
α↓ ~Mα

−−−→CA Q by COINλ rule. This means thatα = [inm], P
[in m]
−−→C A, ~Mα =

R,S, n andA(λXY Zx.m[x[Y |Z]|X])
R,S,n↓
−−−→A Q. Now we proceed by cases on the rules to obtain

P
[in m]
−−→C A. As an example, we show the case of theCOIN rule.

Assume thatP
[in m]
−−→C A by COIN rule. It means thatP = m[P1] andA = λZ.Z(P1), and hence we

haveQ = m[n[R|S]|P1].
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We have to show that there existsQǫ, such thatP
C[inm]
ǫ [−]
−−−−−→S Qǫ andQ ≡ Qǫσ

α
M , with σα

M =

{R/X1
,S /X2

,n /x}. We takeQǫ = m[x[X1|X2]|P1]. It is easy to check thatm[P1]
C[inm]
ǫ [−]
−−−−−→S

m[x[X1|X2]|P1] by COIN rule. andm[x[X1|X2]|P1]{
R/X1

,S /X2
,n /x} = m[n[R|S]|P1].

Now we show the proof of Proposition 4.4, needed to prove the second statement of Theorem 4.3.

Proof sketch of Proposition 4.4.The proof proceeds by induction on the depth of the derivation P
Cǫ[−]
−−→S

Qǫ. We only show some cases, because the other ones are analogous.

• Assume thatP
Cǫ[−]
−−→S Qǫ by IN rule. This means thatα = in m, P = in m.P1, Cin m

ǫ [−] =
x[−|X1]|m[X2] andQǫ = m[x[P1|X1]|X2]. Moreover, the substitutionσ has the following shape
{P2/X1

,n /x,
P3 /X2

}, for some ambient namen and some processesP1 andP2. Therefore, we
haveQ ≡ Qǫσ = m[x[P1|X1]|X2]{

P2/X1
,n /x,

P3 /X2
} = m[n[P1|P2]|P3]. We have to show that

P
in m↓ ~Mα

σ−−−−−→CA Q, where ~Mα
σ = P2, n, P3. It is easy to check thatP

in m
−→C λXxY.m[x[P1|X]|Y ]

tanks to IN rule in Figure 6 of [60]. Moreover, we can apply INST rule shown in Figure 7 of [60], and

sayλXxY.m[x[P1|X]|Y ]
~Mα
σ ↓−−→A m[n[P1|P2]|P3]. Therefore, thanks to Cλ rule in Figure 8 of [60],

P
in m↓ ~Mα

σ−−−−−→ m[n[P1|P2]|P3], and by STRCNG ruleP
in m↓ ~Mα

σ−−−−−→ Q.

• Assume thatP
Cǫ[−]
−−→S Qǫ by INPAR rule. This means thatα = in m, P = P1|Q1, Cin m

ǫ [−] =

x[−|X1]|m[X2], P1
Cinmǫ [−]
−−−−→S Pǫ andQǫ = Pǫ{

Q1|X1/X1
}. Moreover, the substitutionσ has the

following shape{P2/X1
,n /x,

P3 /X2
}, for some ambient namen and some processesP1 andP2.

Let us consider the substitutionσ′ = {P2|Q1/X1
,n /x,

P3 /X2
}. Note thatPǫσ

′ = Qǫσ ≡ Q. Since

P1
Cinmǫ [−]
−−−−→S Pǫ, thenP1

Cinmǫ [−]σ′

−−−−−−→SI
Pǫσ

′. Therefore, by applying the induction hypothesis, we

haveP1

in m↓ ~Mα
σ′−−−−−→CA Pǫσ

′, where ~Mα
σ′ = P2|Q1, n, P3.

We have to show thatP
in m↓ ~Mα

σ−−−−−→CA Q, where ~Mα
σ = P2, n, P3. We know thatP1

in m↓ ~Mα
σ′−−−−−→CA Pǫσ

′.

This means thatP1
in m
−→C A andA

~Mα
σ′
↓

−−→A Pǫσ
′. SinceP1

in m
−→C A, thanks to||IN rule of Figure

6 in [60], we haveP1|Q1
in m
−→C λX.A(Q1|X). It is easy to check that ifA

~Mα
σ′
↓

−−→A Pǫσ
′, then we

also haveλX.A(Q1|X)
~Mα
σ ↓−−→A Pǫσ

′. Therefore, by applying Cλ rule in Figure 8 of [60], we obtain

P1|Q1
in m↓ ~Mα

σ−−−−−→CA Pǫσ
′, and by STRCNG ruleP1|Q1

in m↓ ~Mα
σ−−−−−→CA Q.

• Assume thatP
Cǫ[−]
−−→S Qǫ by COIN rule. This means thatα = [in m], P = m[P1], C

[in m]
ǫ [−] =

−|x[in m.X1|X2] andQǫ = m[x[X1|X2]|P1]. Moreover, the substitutionσ has the following shape
{P2/X1

,P3 /X2
,n /x}, for some ambient namen and some processesP1 andP2. So, we haveQ ≡

Qǫσ = m[n[P2|P3]|P1].

We have to show thatP
[in m]↓ ~Mα

σ−−−−−→CA Qǫσ, where ~Mα
σ = P2, P3, n. It is easy to check thatP

[in m]
−−→

λZ.Z(P1), by COIN rule in Figure 6 of [60]. Moreover, by INST rule shown in Figure 7 of [60],

(λZ.Z(P1))(λXY Zx.m[x[Y |Z]|X])
~Mα
σ ↓−−→A m[n[P2|P3]|P1]. Therefore, thanks to COINλ rule of

Figure 8 of [60], we can concludeP
[in m]↓ ~Mα

σ−−−−−−→ m[n[P2|P3]|P1], and soP
[in m]↓ ~Mα

σ−−−−−−→ Q.
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Appendix C

Proofs of Chapter 5

C.1 ∼(W )BSS
=∼(W )BS

The proof of Proposition 5.1 is analogous to the proof of Proposition 5.2.
In order to prove Proposition 5.2 we give two additional definitions of weak barbed saturated bisimula-

tion and we prove that they are all equivalent.

Definition C.1 (Weak Barbed Saturated Bisimulation). A symmetric relationR is a weak barbed saturated
bisimulationiff wheneverP RQ, then

1. if P ↓o thenQ ⇓o,

2. ∀C[−], if C[P ]→∗ P ′ thenC[Q]→∗ Q′ andP ′RQ′.

Proposition C.1. Definition 5.9 and Definition C.1 coincide.

Proof. First of all notice that the second conditions of both definition coincide.
Now, let R be a symmetric relation that satisfies the Definition 5.9. Then R also satisfies the first

condition of Definition C.1. Indeed, suppose thatP R Q. If P ↓o, thenP ⇓o and, sinceR satisfies
Definition 5.9, thenQ ⇓o.

Now, let R be a symmetric relation that satisfies the Definition C.1. Then R also satisfies the first
condition of Definition 5.9. Indeed, suppose thatP R Q. If C[P ] ⇓o then there existsP ′ such that
C[P ]→∗ P ′ andP ′ ↓o. SinceR satisfies the second condition of Definition C.1, then there existsQ′ such
thatC[Q]→∗ Q′ andP ′ R Q′. Now, sinceR satisfies the first condition of Definition C.1, thenQ′ ⇓o, i.e.,
Q′ →∗ Q′′ ↓o. So,C[Q]→∗ Q′ →∗ Q′′ ↓o, i.e.,C[Q] ⇓o.

Definition C.2 (Weak Barbed Saturated Bisimulation). A symmetric relationR is a weak barbed saturated
bisimulationiff wheneverP RQ, then

1. if P ↓o thenQ ⇓o,

2. ∀C[−], if C[P ]→ P ′ thenC[Q]→∗ Q′ andP ′RQ′.

Proposition C.2. Definition C.1 and Definition C.2 coincide.

Proof. First of all notice that the first conditions of both definitions coincide.
Now, let R be a symmetric relation that satisfies the Definition C.1. Then R also satisfies the second

condition of Definition C.2. Indeed, suppose thatP RQ. If C[P ]→ P ′, then alsoC[P ]→∗ P ′ and, since
R satisfies Definition C.1, then there existsQ′ such thatC[Q]→∗ Q′ andP ′RQ′.

Now, let R be a symmetric relation that satisfies the Definition C.2. Then R also satisfies the second
condition of Definition C.1. Indeed, suppose thatP R Q. If C[P ] →∗ P ′ then there existP ′1 . . . P

′
n such

thatP ′n = P ′ andC[P ] → P ′1 → . . . → P ′n. SinceR satisfies the second condition of Definition C.2,
then there existQ′1 . . . Q

′
n such thatC[Q] →∗ Q′1 →

∗ . . . →∗ Q′n and∀i ∈ 1 . . . n, P ′i R Q′i. Thus,
C[Q]→∗ Q′n such thatP ′ = P ′n RQ′n.
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Now we can prove Proposition 5.2.

Proof of Proposition 5.2.We prove that∼WBSS ⊆∼WBS , showing that the contextual closureS of weak
barbed semi-saturated bisimilarity

S = {〈C[P ], C[Q]〉 | P ∼WBSS Q, C ∈ C}

is a weak barbed saturated bisimulation with respect to Definition C.2. Suppose thatC[P ]S C[Q]. The first
condition of Definition C.2 is trivially satisfied, sinceP ∼WBSS Q.
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>>~~~~~~~

(i) (ii)

Suppose thatf [C[P ]]→ P ′.
Then for some〈l, r〉 ∈ R andd ∈ D we have that the exterior square of diagram (i) commutes and

P ′ = d[r]. SinceR has redex IPOs we are able to construct an IPO as the lower square of diagram (i)
and thenP

g
→IPO d′[r]. SinceP ∼WBSS Q we have thatg[Q] →∗ Q′ with d′[r] ∼WBSS Q′. Now,

sinced′′[−] is reactive, we have thatf [C[Q]] = d′′[g[Q]] →∗ d′′[Q′]. Sinced′[r] ∼WBSS Q′, then
P ′ = d′′[d′[r]]S d′′[Q′].

In order to prove that∼WBS ⊆∼WBSS it is enough to consider Definition 5.9 and to observe that if

C[P ] ↓o thenC[P ] ⇓o and that ifP
C[−]
→IPO P ′ thenC[P ]→∗ P ′.

C.2 Mobile Ambients Barbs are Contextual
Before proving Proposition 5.4, we recall the mobile ambients barbs and mobile ambients contexts.

Given a mobile ambients processP , we haveP ↓n if P ≡ (νA)(n[Q]|R) andn 6∈ A, for some
processesQ andR and a set of restricted namesA.

Mobile ambients contexts are terms of the extended syntax with a hole−, formally, they are generated
by the following grammar:

C[−] ::= −, C[−]|R, (νn)C[−], n[C[−]]

whereR is an arbitrary process.
Now we show the proof of Proposition 5.4.

Proof of Proposition 5.4.We only prove that mobile ambients barbs are strong contextual barbs. The proof
for the weak case is similar.

We have to show that wheneverP ↓n impliesQ ↓n then for all contextC[−],C[P ] ↓n impliesC[Q] ↓n.
We assumeP ↓n impliesQ ↓n and we prove that∀C[−],C[P ] ↓n impliesC[Q] ↓n. The proof proceeds

by structural induction on the contextC[−].

• Assume thatC[−] = −. It means thatC[P ] = P andC[Q] = Q. SinceP ↓n impliesQ ↓n, it is
obvious thatC[P ] ↓n impliesC[Q] ↓n.

• Assume thatC[−] = C ′[−]|R. It means thatC[P ] = C ′[P ]|R andC[Q] = C ′[Q]|R. If C ′[P ]|R ↓n,
then eitherC ′[P ] ↓n orR ↓n. If C ′[P ] ↓n, then we can apply the induction hypothesis and say that
C ′[Q] ↓n, and hence alsoC ′[Q]|R ↓n. In the case ofR ↓n, it obvious that alsoC ′[Q]|R ↓n.
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• Assume thatC[−] = (νm)C ′[−]. It means thatC[P ] = (νm)C ′[P ] andC[Q] = (νm)C ′[Q]. If
(νm)C ′[P ] ↓n, thenC ′[P ] ↓n andn 6= m. Therefore, we can apply the induction hypothesis and
say thatC ′[Q] ↓n, and hence also(νm)C ′[Q] ↓n.

• Assume thatC[−] = m[C ′[−]]. It means thatC[P ] = m[C ′[P ]] andC[Q] = m[C ′[Q]]. If
m[C ′[P ]] ↓n, thenn = m. Therefore, it is obvious thatC[Q] ↓n.
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