
Introducing Lλ M, a λ-calculus for Effectful Computation

Jirka Maršíka, Maxime Amblardb,c, Philippe de Grootec

aOracle Labs, Prague
bUniversité de Lorraine, CNRS, Inria-Nancy Grand Est

cInria-Nancy Grand Est

Abstract

We present Lλ M, a calculus with special constructions for dealing with effects and handlers. This is an
extension of the simply-typed λ-calculus (STLC). We enrich STLC with a type for representing effectful
computations alongside with operations to create and process values of this type. The calculus is motivated
by natural language modelling, and especially semantic representation. Traditionally, the meaning of a
sentence is calculated using λ-terms, but some semantic phenomena need more flexibility. In this article
we introduce the calculus and show that the calculus respects the laws of algebraic structures and it enjoys
strong normalisation. To do so, confluence is proven using the Combinatory Reduction Systems (CRSs) of
Klop and termination using the Inductive Data Type Systems (IDTSs) of Blanqui.

Keywords: side effects, monads, λ-calculus, handlers, CRS, IDTS

1 Introduction

λ-calculus is a widely used tool for semantic analysis of natural language [1]. λ terms serve as higher order
logic formulas that give the truth conditions of sentences and they also describe how the meanings of the
individual constituents compose together using abstraction and function application. The numerous linguistic
phenomena in play lend themselves to analyses using computational side effects and monads [2, 3, 4, 5].
The idea of treating linguistic expressions as effectful actions or programs is also very relevant to dynamic
semantics, which treats the meanings of sentences as instructions to update some common ground or other
linguistic context [6, 7]. In order to study a fragment of natural language that encompasses several of the
effectful phenomena, we need a framework that would help us manage the increasing complexity of the λ-terms
involved. In this paper, we present an extension to the simply-typed λ-calculus for that exact purpose.

Taking stock of the different monadic structures of linguistic side effects, we can examine existing ap-
proaches that try to combine side effects to find a formalism that can talk about all the aspects of language
at the same time. One such theoretical framework are effects and handlers. In this framework, programs are
interpreted as sequences of instructions (or more generally as decision trees).1 The instructions are symbols
called operations, which stand for the different effects, the different ways that programs can interact with their
contexts. The process of calculating the semantic representation of a linguistic expression is then expressed
as a program using these operations. This is when handlers come into play. A handler is an interpreter
that gives a definition to the operation symbols in a program. Handlers can be made modular 2 so that the
interpreter for our vocabulary of context interactions can be defined as the composition of several smaller
handlers, each treating a different aspect of language (dynamicity, implicatures, deixis. . . ).

When using effects and handlers, we therefore start by enumerating the set of interactions that programs
can have with their contexts. We then write handlers which implement these instructions and produce a
suitable semantic representation. This approach thus closely follows the mantra given by Lewis:

In order to say what a meaning is, we may first ask what a meaning does and then find something
that does that.

General Semantics, David Lewis [11]

1More precisely, we are interpreting programs in a free monad [8].
2In a similar way that monads can be turned into monad transformers (monad morphisms) and then composed [9, 2, 10].

Preprint submitted to Theoretical Computer Science February 17, 2021



We can trace the origins of effects and handlers to two strands of work. One is Cartwright and Felleisen’s
work on Extensible Denotational Language Specifications [12], in which a technique for building semantics
is developed such that when a (programming) language is being extended with new constructions (and new
side effects), the existing denotations remain compatible and can be reused.

The other precursor is Hyland, Plotkin and Power’s work on algebraic effects [13], a categorical technique
for studying effectful computations, which was later extended by Plotkin and Pretnar to include handlers [14,
15, 16]. The reader can refer to [17, 18] for an overview of computational effects. This was further developed
in [19, 20].

The technique has gained in popularity in recent years (2012 and onward). It finds applications both
in the encoding of effects in pure functional programming languages [21, 22, 23, 24] and in the design of
programming languages [25, 26, 27, 28, 29], and also inspired extensions of other programming languages in
Java [30] and in C [31].

Algebraic effects provide a strong and deep foundation for a theory of computation side effects. Their
mathematical development is rooted in Lawvere theories [32, 33], with new generalizations [34] and exten-
sions [35] of the context still being discovered. The use of algebraic theories to describe computation also lends
itself to other fruitful applications, e.g. connecting the theories with algebraic specifications of programs.

The problem of the specification and verification of programs with algebraic effects has seen a lot of
progress recently [36, 37, 38, 39, 40, 41, 42]. Other interesting developments include the introduction of
dependent types [43], a generalization from monads to applicative functors and arrows [44], new mechanisms
for abstracting effects [45] and novel implementation techniques [46, 47]. Algebraic effects and effect handlers
provide a modular abstraction for effectful programming. They support user-defined effects, as in Haskell [48],
in conjunction with direct-style effectful programming, as in ML[49, 50]. They also present a structured
interface to programming with delimited continuations [51].

In this article, we will focus on defining a suitable calculus based on STLC which implement effects and
handlers: Lλ M.

We will be adding a new type constructor, F , into our language. The type F(α) will correspond to effectful
computations that produce values of type α. The idea comes from the programming language Haskell and
its use of monads [52, 53]. Our type constructor F will also stand in for a monad, one that has been already
encoded in Haskell in several ways [21, 23]. The motivation behind Lλ M is to build a minimal language which
directly gives us the primitive operations for working with this particular monad. This way, we end up with
a language that:

• is smaller than Haskell (and thus more mananageable to analyse),

• is closer to the STLC (favored by semanticists),

• and which makes more evident the features that our proposal relies on.

The distinction between the type α and the type F(α) will, in different analyses, align with dichotomies
such as reference/sense or static/dynamic meaning.

The question then is, what form should our general F type constructor take? We want to have a construc-
tion that can combine all the existing ones. One can do the combining at the level of monads with the use of
monad transformers, a technique pioneered by Moggi and very well-established in the Haskell programming
community [52]. Simon Charlow has made the case that this technique can be exploited to great benefit in
natural language semantics as well [5].

However, a competing technique has emerged in recent years. The technique goes by many names,
“algebraic effects and handlers” and “extensible effects” being the most commonly used ones. This is in part
due to the fact that it lies at the confluence of several research programs. This fact will allow us to present
the theory from two different perspectives.

Algebraic Effects and Handlers
Hyland, Power and Plotkin have studied the problem of deriving denotational semantics of programming

languages that combine different side effects [13]. In their approach, rather then modeling the individual
effects using monads and combining the monads, every effect is expressed in terms of operators on computa-
tions. Computations thus become algebraic expressions with effects as operations and values as part of the
generator set.

Let us take the example of nondeterminism. In the monadic framework, this effect is analyzed by shifting
the type of denotations from α to the powerset P(α). In the algebraic framework, a binary operator +

2



is introduced and is given meaning through a set of equations. In this case, these are the equations of a
semilattice (stating the operator’s associativity, commutativity and idempotence).

When the time comes to combine two effects, their signatures are summed together and their theories are
combined through either a sum or a tensor (tensor differs from sum in that it adds commutativity laws for
operators coming from the two different effects).

In order to fit exception handlers into their theory, Plotkin and Pretnar enriched the theory with a general
notion of a handler [16]. A handler’s purpose is to replace occurrences of an operator within a computation
by another expression. This notion was shown to be very useful. Since using a handler on a computation is
similar to interpreting its algebraic expression in a particular algebra, in many practical applications, the use
of handlers has replaced equational theories altogether [25, 23, 24].

Extensible Effects
In the early 90’s, Cartwright and Felleisen were working on the following problem. Imagine you have a

simple programming language along with some denotational semantics or some other interpretation. In your
simple language, numerical expressions might be interpreted as numbers. In that case, the literal number
3 would denote the number 3 and the application of the sum operator to two numerical expressions would
denote the sum of their interpretations. Now imagine that you want to add mutable variables to your
language. Numerical expressions no longer denote specific numbers, but rather functions from states of the
variable store to both a number and an updated variable store (since expressions can now both read from
and write to variables). The number 3 is thus no longer interpreted as the number 3 but as a combination of
a constant function yielding the number 3 and an identity function. The addition operator now has to take
care to thread the state of the memory through the evaluation of both of its arguments. In short, we are
forced to give new interpretations for the entire language.

Cartwright and Felleisen proposed a solution to this problem [54, 12]. In their system, an expression can
either yield a value or produce an effect. If it produces an effect, the effect percolates through the program all
the way to the top, with the context that the effect projected from stored as a continuation. The effect and
the continuation are then passed to an external “authority” that handles the effect, often by producing some
output and passing it back to the continuation. When a new feature is added to the language, it often suffices
to add a new kind of effect and introduce a new clause into the central “authority”. The central authority
then ends up being a collection of small modular interpreters for the various effect types. Denotation-wise,
every expression can thus have a stable denotation which is either a pure value or an effect request coupled
with a continuation.

Later on, this project was picked up by Kiselyov, Sabry and Swords, who, following Plotkin and Pretnar’s
work on handlers, proposed to break down the “authority” into the smaller constituent interpreters and have
them be part of the language themselves [21].

Synthesis
In our language, values of type F(α) can be seen either as algebraic expressions or as programs. Under

the algebraic perspective, an expression is either a variable or an operator applied to some other expressions,
whereas under the “extensible effects” perspective, a program is either a value or a request for an effect
followed by some other programs (the continuation).

Our calculus will also have a special form for defining handlers. In the “algebraic effects and handlers”
frame of mind, these can be thought of as algebras that interpret the operations within an algebraic expression.
On the other hand, with “extensible effects”, the intuition is more similar to that of an exception handler
which intercepts requests of a certain type and decides how the computation should continue.

There is a way to avoid lifting when working with monad transformers. We characterize every monad
transformer by some capabilities/operations it gives us and then we write abstract polymorphic terms which
can be interpreted in different monads provided that they have enough structure to interpret the capabili-
ty/operation. This is the method presented in [9, 55] and used in (Haskell) libraries implementing monad
transformers [56]. However, formalizing this method already leads us half of the way towards effect and
handlers (we write computations using abstract operations and the type of the computation indicates the
operations that must be interpreted).

Article structure
The article is organised as follows: Section 2 gives the fundamental definitions of Lλ M and Section 3 shows

some derivable rules. With all the equipment in place, we can now go deeper into the properties of the

3



calculus. We start in Section 4 with type soundness, which includes subject reduction and progress. Then
we discuss the algebraic properties in Section 5, confluence in Section 6 and termination in Section 7.

2 Definitions

We start with the formal definitions of all the essential components of Lλ M, starting with the syntax of
terms, then the syntax of types. We then continue with the judgments that relate types to terms and the
reduction semantics.

2.1 Terms
Let X be a set of variables, Σ a typed signature and E a set of operation symbols. The expressions of our

language are comprised of the following:

variable x, where x is a variable from X

constant c, where c is a constant from Σ

abstraction λx.M , where x is a variable from X and M is an expression

application M N , where M and N are expressions

injection ηM , where M is an expression

operation opMp (λx.Mc), where op is an operator from E , x is a variable from X and Mp and Mc are
expressions

handler L op1:M1, . . . , opn:Mn, η:Mη M where opi are operators from E and Mi and Mη are expressions

extraction

−◦

exchange C

The first four constructions — variables, constants, abstractions and applications — come directly from
STLC with constants.

The next four deal with the algebraic expressions used to encode computations. Let us sketch the behaviors
of these four kinds of expressions under the two readings outlined above.

Algebraic Expressions – The Denotational View
The set of algebraic expressions is generated by closing some generator set over the operations of the

algebra. The η function serves to inject values from the generator set into the set of algebraic expressions.
It is the constructor for the atomic algebraic expressions.

Next, for every symbol op in E , we have a corresponding constructor op in our calculus. op is a constructor
for algebraic expressions whose topmost operation is op. The op constructor takes as argument a function
that provides its operands, which are further algebraic expressions.

The banana brackets L op1:M1, . . . , opn:Mn, η:Mη M contain algebras: interpretations of operators and
constants. These components are combined into a catamorphism that can interpret algebraic expressions
(hence the use of banana brackets [57]).3

The extraction function

−◦ , pronounced “cherry”, takes an atomic algebraic expression (the kind produced
by η) and projects out the element of the generator set.

3Since the banana brackets can contain an arbitrary number of operator clauses, we adopt the syntax of named parameter-
s/records used in languages such as Ruby, Python or JavaScript.

4



Effectful Computations – The Operational View
We will now explain these constructions from the computational point of view.
The η function “returns” a given value. The result of applying it to a value x is a computation that

immediately terminates and produces the value x.
The symbols from E become something like system calls. A computation can interrupt its execution and

throw an exception with a request to perform a system-level operation. For every symbol op in E , there
is a constructor op that produces a computation which issues a request to perform the operation op. This
constructor takes as an argument a continuation which yields the computation that should be pursued after
the system-level operation op has been performed.

The banana brackets L op1:M1, . . . , opn:Mn, η:Mη M describe handlers: they contain clauses for different
kinds of interrupts (operation requests) and for successful computations (clause η). They behave very much
like handlers in languages with resumable exceptions such as Common Lisp or Dylan.

Finally, the cherry function

−◦ can take a computation that is guaranteed to be free of side effects and run
it to capture its result.

The 9th construction in our calculus is the C operator. C serves as a link between the function type
discussed by STLC (constructions 1–4) and the computation type introduced in our calculus (constructions
5–8). C is a (partial) function that takes a computation that produces a function and returns a function that
yields computations. In a way, C makes abstracting over a variable and performing an operation commute
together.4

We will see the utility of C later on. The idea came to us from a paper by Philippe de Groote [59]
which tried to solve a similar problem. The name comes from the C combinator, which reorders the order of
abstractions in a λ-term.

2.2 Types and Typing Rules
We now give a syntax for the types of Lλ M alongside with a typing relation. In the grammar below, ν

ranges over atomic types from a set T .
The types of our language consist of:

function α→ β, where α and β are types

atom ν, where ν is an atomic type from T

computation FE(α), where α is a type and E is an effect signature (defined next)

The only novelty here is the FE(α) computation5 type. This type will be inhabited by effectful computa-
tions that have permission to perform the effects described in E and yield values of type α. The representation
will be that of an algebraic expression with operators taken from the signature E and generators of type α.

In giving the typing rules, we will rely on the standard notion of a context. For us, specifically, a context
is a partial mapping from the variables in X to the types defined above. We commonly write Γ, x : α for a
context that assigns to x the type α and to other variables y the type Γ(y). We also write x : α ∈ Γ to say
that the context maps x to α. Note, however, that for ∆ = Γ, x : α, x : β, we have x : β ∈ ∆ while x : α /∈ ∆.

Effect signatures are very much like contexts. They are partial mappings from the set of operation symbols
E to pairs of types. We will write the elements of effect signatures the following way:
op : α� β ∈ E means that E maps op to the pair of types α and β.6 When dealing with effect signatures,
we will often make use of the disjoint union operator ]. The term E1 ]E2 serves as a constraint demanding
that the domains of E1 and E2 be disjoint and at the same time it denotes the effect signature that is the
union of E1 and E2.

The last kind of dictionary used by the type system is a standard higher-order signature for the constants
(a map from names of constants to types). For those, we adopt the same conventions.

4This is very reminiscent of the idea behind Paul Blain Levy’s call-by-push-value calculus [58], which treats abstracting over
a variable as an effectful operation of popping a value from a stack. Using call-by-push-value could prove to be a rewarding way
to refine our approach.

5Throughout this article, we will be using the term computation to mean values of type FE(α). Programs written in Lλ M
are simply called terms and their normal forms are called values. To break it down, in Lλ M, terms evaluate to values, some of
which can be computations (those of an F type).

6The two types α and β are to be seen as the operation’s input and output types, respectively.

5



x : α ∈ Γ [var]
Γ ` x : α

c : α ∈ Σ [const]
Γ ` c : α

Γ, x : α `M : β
[abs]

Γ ` λx.M : α→ β

Γ `M : α→ β Γ ` N : α
[app]

Γ `M N : β

Γ `M : α [η]
Γ ` ηM : FE(α)

Γ `Mp : α Γ, x : β `Mc : FE(γ)
op : α� β ∈ E

[op]
Γ ` opMp (λx.Mc) : FE(γ)

Γ `M : F∅(α)
[

−◦ ]
Γ `

−◦ M : α

E = {opi : αi� βi}i∈I ] Ef
E′ = E′′ ] Ef

[Γ `Mi : αi → (βi → FE′(δ))→ FE′(δ)]i∈I
Γ `Mη : γ → FE′(δ)

Γ ` N : FE(γ)
[L M]

Γ ` L (opi:Mi)i∈I , η:Mη MN : FE′(δ)

Γ `M : α→ FE(β)
[C]

Γ ` CM : FE(α→ β)

Figure 1: The typing rules for Lλ M.

In our typing judgments, contexts will appear to the left of the turnstile and they will hold information
about the statically (lexically) bound variables, as in STLC. Effect signatures will appear as indices of
computation types and they will hold information about the operations that are dynamically bound by
handlers. Finally, there will be a single higher-order signature that will globally characterize all the available
constants.

The typing judgments are presented in Figure 1. Metavariables M , N . . . stand for expressions, α, β, γ. . .
stand for types, Γ, ∆. . . stand for contexts, op, opi stand for operation symbols and E, E′. . . stand for effect
signatures. Σ refers to the higher-order signature giving types to constants.

The typing rules mirror the syntax of expressions. Again, the first four rules come from STLC. The
next four deal with introducing pure computations, enriching them with effectful operations, handling those
operations away and finally eliminating pure computations. The C rule lets us start to see what we meant
by saying that the C operator lets the function type and the computation type commute.

Let us ponder the types of the new constructions so as to get a grip on the interface that the calculus
provides us for dealing with computations.

[η]
First off, we have the η operator. It takes a value of type α and injects it into the type FE(α). The meta-

variable E is free, meaning η can take values of type α to type FE(α) for any E. The algebraic intuition would
say that elements of the generator set are valid algebraic expressions independent of the choice of signature.
Computationally, returning a value is always an option, independently of the available permissions.

[op]
More complicated computations can be built up by extending existing computations using the operation

construction. Let us have an effect signature E such that op : α � β ∈ E. To use op, we first apply it
to a value of the input type α and to a continuation. The continuation is a function of type β → FE(γ)
that accepts a value of the output type β (the result of performing the operation) and chooses in return a
computation that should be pursued next. The return type of our new computation will thus be the return
type γ of the computation provided by the continuation. The continuation’s computation and the new
extended computation will also share the same effect signature E. This means that all uses of the operation
op within the created computation have the same input and output types.7

7In general, the same operation symbol can be used with different input and output types, in computations whose types are
indexed by different effect signatures.

6



There is a parallel between the [var] rule and the [op] rule. The [var] rule lets us use a symbol x with
type α provided x : α ∈ Γ. The [op] rule lets us use a symbol op with type α → (β → FE(γ)) → FE(γ)
provided op : α� β ∈ E. The crucial difference is that contexts (Γ) are components of judgments whereas
effect signatures (E) are components of types. The meaning of a variable is determined by inspecting the
expression in which it occurs and finding the λ that binds it (this is known as lexical or static binding).
On the other hand, the meaning of an operation in a computation is determined by evaluating the term in
which the computation appears until the computation becomes the argument of a handler. This handler will
then give meaning to the operation symbol by substituting it with a suitable interpretation (this kind of late
binding is known as dynamic binding).

We have now seen how to construct pure computations using η and extend them by adding operations.
However, before we go on and start talking about handlers, we would like to give the algebraic intuition
behind [op], as the algebraic point of view makes explaining the handler rule [L M] easier.

We can see the effect signature as an algebraic signature. For every op : α� β ∈ E, we have an α-indexed
family of operators of arity β. Let’s unpack this statement.

• First, there is the matter of having an indexed family of operators. A common example of these is the
case of scalar multiplication in the algebra of a vector space. A single-sorted algebraic signature is a
set of operation symbols, each of which is given an arity (a natural number). For vector addition, the
arity is 2, since vector addition acts on two vectors (two elements of the domain). Scalar multiplication
acts on one scalar and one vector. However, neither arity 1 nor arity 2 adequately express this. We can
get around the limitations of a single-sorted signature by introducing for every scalar k an operation of
arity 1 that corresponds to multiplying the vector by k. Scalar multiplication is therefore not a single
operator but a scalar-indexed family of operators.

The very same strategy is applied here as well. A single operation symbol doesn’t need to map to a
single operator but can instead map to (possibly infinitely) many operators indexed by values of some
type α. For example, writing messages to the program’s output (print : string� 1) can be seen as a
string-indexed family of unary operators on computations. For every string s, we get an operator that
maps computations c to computations that first print s and then continue as c.

• Next, we were speaking about operators of arity β. The use of a type in place of a numerical arity is due
to a certain generalization. In set theory, natural numbers become sets that have the same cardinality
as the number they represent (|N | = N). We can therefore conservatively generalize the idea of arity
to a set by saying that an operator of arity X takes one operand per each element of the set X. It’s
a short step from there to using types as arities, wherein an operator of arity β takes one operand per
possible value of type β.

This will come in very handy in our system. We want our operator op to have as many operands as
there are possible values in the output type β. Therefore, we simply say that the operator has arity β.

How do we write down the application of an operator of arity β to its operands? We can no longer just
list out all the operands, since types in Lλ M may have an unbounded number of inhabitants. We will
organize operands in operand clusters,8 arity-indexed families of operands. We will write them down
as functions, using λ-abstraction, from the arity type β to some operand type, e.g., FE(γ).

Now we can understand what it means to say that op : α� β ∈ E gives rise to an α-indexed family of
operators of arity β. We apply to op an index of type α to get an operator and then we apply that operator
to an operand cluster of type β → FE(γ) to get a new expression of type FE(γ).

We suggest visualizing these algebraic expressions as trees (see Section 2 of [60] for the original idea).
Trees of type FE(α) consist of leafs containing values of type α and internal nodes labelled with operations
and their parameters. Every internal node is labelled with some op : α � β ∈ E and with a parameter of
type α and it has a cluster of children indexed by β.

[L M]
Now we are ready to explain the handler rule. The typing rule for L M is repeated in Figure 2.

8Our use of the word cluster is synonymous with the mathematical term family. We will be using the term cluster for families
of computations passed to operations and handlers.

7



E = {opi : αi� βi}i∈I ] Ef
E′ = E′′ ] Ef

[Γ `Mi : αi → (βi → FE′(δ))→ FE′(δ)]i∈I
Γ `Mη : γ → FE′(δ)

Γ ` N : FE(γ)
[L M]

Γ ` L (opi:Mi)i∈I , η:Mη MN : FE′(δ)

Figure 2: The typing rule for the handler construction.

To illustrate the constraints on the types of the components, Mi and Mη, of a handler, we will examine
its semantics. The handler processes the algebraic expression N by recursive induction. Depending on the
shape of the expression, one of the following will happen:

• If N = η N ′, then N ′ is of type γ. This is where the Mη function comes in. It must take a value of
type γ and produce a new tree of type FE′(δ), hence the fourth hypothesis of the L M rule.

• If N = opiNp (λx.Nc) for some i ∈ I, then Np must be of type αi. Furthermore, for every x : βi, we
have an operand Nc : FE(γ). We know this since N is of type FE(γ) and the first hypothesis tells us
that opi : αi� βi ∈ E.

We will recursively apply our handler to the cluster of operands, changing their type from FE(γ)
to FE′(δ). We now need something which takes Np, whose type is αi, and the cluster of processed
operands, type βi → FE′(δ), which is exactly the function Mi in the third hypothesis of the L M rule.

• If N = opNp (λx.Nc) and op : α� β ∈ Ef for some α and β, then we will ignore the node and process
only its children. This means that the resulting expression will contain the operation symbol op from
Ef ,9. In order for such an expression to be of the desired type FE′(δ), Ef must be included in E′,
which is what the second hypothesis of the L M rule guarantees.

We have covered the whole L M rule, except for the presence of the effect signature E′′. It serves two roles.

• First of all, it acts as a “free” variable over effect signatures. This means that we can give any effect
signature E′ to the type FE′(δ) of the resulting computationN ′ as long as E′ contains Ef (E′′ represents
the relative complement of Ef in E′). This is in analogy to the free effect variable E in the [η] and [op]
rules. This freedom of effect variables is a way of implementing the idea that a computation of type
FE1

(α) can be used anywhere that a computation of type FE2
(α) is needed given that E1 ⊆ E2.

• In the previous paragraph, why did we put the word “free” in quotation marks? Because the effect
variable E′′ is not actually free. It is the complement of Ef in E′ and E′ is constrained by the types of
Mi and Mη in the third and fourth hypotheses, respectively. The handler’s clauses might themselves
introduce new effects, which will in turn translate into constraints on E′ and E′′. This happens when
a handler interprets an operation by making an appeal to some other operation (e.g. a handler could
interpret computations using n-ary choice into computations using binary choice).

As the simplest example, we can take a handler that replaces one operation symbol with another,
L old: (λpc. new p (λy. c y)), η: (λx. η x) M. The type scheme corresponding to the term is
F{old:α�β}]Ef (γ)→ F{new:α�β}]E+]Ef (γ). In this scheme, α, β and γ are free meta-variables ranging
over types and Ef and E+ range over effect signatures. The E′′ of the L M rule corresponds to {new :
α� β} ]E+ (i.e. E′′ is not free, it must contain new). The handler has eliminated the old effect but
it has also introduced the new effect.

This concludes our exploration of the L M rule. We have explained it in terms of algebraic expressions and
trees, using the denotational intution. We will develop the operational intuition, which talks about handlers
in terms of computations and continuations, in Section 2.3, where we will give the semantics of our language
using reduction rules.

9The f in Ef stands for forwarded effects since it refers to effects that the handler will not interpret but instead forward to
some other interpreter. The notation comes from a similar rule in the λeff calculus [23].

8



M = λ

op1(M1)

op2(M2)

B2

B1

op1(M1)

op2(M2)

A2

A1

CM = op1(M1)

op2(M2)

λ

A2 B2

λ

A1 B1

Figure 3: Example of applying the C operator to a term.

[cherry]
Next up is the cherry operator,

−◦ . Its type is F∅(α)→ α and it serves as a kind of dual to the η opertator,
an elimination for the F type.

The type F∅(α) demands that the effect signature be empty. In such a case, the tree has no internal
nodes and is composed of just a leaf containing a value of the type α. The

−◦ operator serves to extract that
value.

Another way to look at it is to say that a computation of type F∅(α) cannot perform any “unsafe”
operations and it is therefore always safe to execute it and get the resulting value of type α.

[C]
Finally, we take a look at the C operator. The type of the operator is (α → FE(β)) → FE(α → β). Its

input is an α-indexed family of computations and its output is a computation of α-indexed families. The
operator applies only in the case when all the computations in the family share the same internal structure.
By sharing the same internal structure, we mean that the trees can only differ in their leaves. What the C
operator then does is to push the λ-binder down this common internal structure into the leaves. This way,
we can evaluate/handle the common operations without commiting to a specific value of type α.

The action of the C operator is illustrated in Figure 3. Here, M is a function of some two-value type. It
maps one value to the left subtree of λ (with leaves Ai) and the other value to the right subtree (leaves Bi).
Both subtrees correspond to computations, in which a box is an operation and a circle is an atomic expression
(i.e. a return value). Furthermore, op1 has a two-value output type (arity 2) and op2 has a one-value output
type (arity 1).

Since the operations op1 and op2 and their argumentsM1 andM2 are the same in both subtrees, and thus
independent of the value passed to the λ, we can apply the C operator. The C pulls this common structure
out of the λ and gives us a computation that produces a function.

We can also explain the action of C in operational terms. As in call-by-push-value [58], we can think of
abstraction over α as some effectful operation that tries to pop a value x : α off a stack. The input of C can
then be seen as a continuation waiting for this x and wanting to perform some further operations. C assumes
that the continuation performs operations independently of x10 and it can thus postpone popping x off the
stack until after the operations dictated by the continuation have been evaluated. C is therefore a kind of
commutativity law for operations and abstractions (the popping of a value off the operand stack): as long
as one does not depend on the other, it does not matter whether we first perform an operation and then
abstract over an argument or whether we do so the other way around.11

10Violating this assumption will yield terms which get stuck during evaluation (we will see the partial reduction rules in
Section 2.3). Sam Lindley presented a refined type system for a similar calculus to track the use of variables [60]. A similar
refinement should be possible in our case as well but it would obscure the already dense type notation.

11The other direction, typed FE(α → β) → (α → FE(β)), is already possible without introducing a special operator since
FE is a functor.

9



2.3 Reduction Rules
We will now finally give a semantics to Lλ M. The semantics will be given in the form of a reduction

relation on terms. Even though the point of the calculus is to talk about effects, the reduction semantics will
have no notion of order of evaluation; any reducible subexpression can be reduced in any context.

Before we dive into the reduction rules proper, we will first have to handle some formal paperwork, most
of it due to the fact that we use variables and binders in our calculus. In order to quotient out the irrelevant
distinction between terms that are the same up to variable names, we will introduce a series of definitions
leading up to a notion of α-equivalence.

Definition 2.1. Evaluation contexts are terms with a hole (written as []) inside. They are formally defined
by the following grammar.

C ::= []

| λx.C
| C N
| M C

| opC (λx.Mc)

| opMp (λx.C)

| η C
| L op1:M1, . . . , opn:Mn, η:Mη MC
| L op1:M1, . . . , opi:C, . . . , opn:Mn, η:Mη MN
| L op1:M1, . . . , opi:Mi, . . . , opn:Mn, η:C MN
|

−◦ C
| C C

Definition 2.2. Let ∼ be a binary relation on the terms of Lλ M. We define the relation [∼], called the
context closure of ∼, as the smallest relation that contains ∼ and satisfies the following closure property
for any evaluation context C:

• if M [∼]M ′, then C[M ] [∼] C[M ′]

We will be defining relations on the terms of Lλ M that will correspond to different transformations (such
as swap and the reduction rules). The notion of context closure will allow us to say that a term can be
transformed by transforming any of its parts.

We are now at a point where we can easily lay down the reduction rules for Lλ M. A reduction rule ξ will
be a relation on terms. Most of the time, we will deal with their context closures, [ξ], for which we will also
adopt the notation →ξ. We will also use the notation →ξ1,...,ξn for the composition →ξn ◦ · · · ◦ →ξ1 . The
reduction relation → of Lλ M is the union of the →ξ relations for every reduction rule ξ. We will also use
the symbols � and �� to stand for the reflexive-transitive and reflexive-symmetric-transitive closures of →,
respectively. If M �� N , we will also say that M and N are convertible. A term which is not reducible to
some other term is said to be in normal form.

We will now go through the reduction rules of Lλ M, presented in Figure 4, one by one.
First off, we have the β and η rules. By no coincidence, they are the same rules as the ones found in

STLC.
Next we have the three rules that govern the behavior of handlers. We recognize the three different rules

as the three different cases in the informal denotational semantics given in Section 2.2.

• When the expression is just an atom (i.e. η N), rule L η M applies the clauseMη to the value N contained
within.

• When the expression is an operation opj Np (λx.Nc(x)) with j ∈ I, we first recursively apply the
handler to every child Nc(x). We then pass the parameter Np stored in the node along with the cluster
of the processed children to the clause Mj .

• When the expression is an operation opj Np (λx.Nc(x)) but where j /∈ I, we leave the node as it is and
just recurse down on to the subexpressions (effectively using opj as the handler clause for opj).

10



(λx.M)N → rule β
M [x := N ]

λx.M x→ rule η
M where x /∈ FV(M)

L (opi:Mi)i∈I , η:Mη M (η N)→ rule L η M
Mη N

L (opi:Mi)i∈I , η:Mη M (opj Np (λx.Nc))→ rule L op M
Mj Np (λx. L (opi:Mi)i∈I , η:Mη MNc) where j ∈ I

and x /∈ FV((Mi)i∈I ,Mη)

L (opi:Mi)i∈I , η:Mη M (opj Np (λx.Nc))→ rule L op′ M
opj Np (λx. L (opi:Mi)i∈I , η:Mη MNc) where j /∈ I

and x /∈ FV((Mi)i∈I ,Mη)

−◦ (ηM)→ rule

−◦

M

C (λx. ηM)→ rule Cη
η (λx.M)

C (λx. opMp (λy.Mc))→ rule Cop
opMp (λy. C (λx.Mc)) where x /∈ FV(Mp)

Figure 4: The reduction rules of Lλ M.

By looking at these rules, we also notice that all they do is just traverse the continuations (Nc) and replace
η with Mη and opi with Mi. This justifies thinking of η and the operation symbols as special variables which
are bound to a value when being passed through a handler. This substitutability is already hinted at by
the types of Mη and Mi in the L M typing rule and their correspondence with the typing rules [η] and [op],
respectively.

The next rule talks about the cherry operator. It does what we would expect it to do.12 It expects its
argument to always be an atomic algebraic expression, a pure computation, and it extracts the argument
that was passed to the η constructor.

Finally, we have the two rules defining the behavior of C. We remind ourselves that the goal of C is to
make computations and abstractions commute by pushing λ below operation symbols and η.

• Rule Cη treats the base case where the computation that we try to push λ through is a pure computation.
In that case, we just reorder the λ binder and the η operator.

• Rule Cop deals with the case of the λ meeting an operation symbol. The solution is to push the C
operator down through the continuation. The operation C (λx. . . . ) is applied recursively to every child
Mc (y). However, this strategy is sound only when Mp has no free occurrence of x (which would have
been bound by the λ in the redex but would become unbound in the contractum). We therefore have
a constraint saying that x must not occur free in Mp. Unlike the other freshness constraints, this one
cannot be fixed by a simple renaming of variables. If this constraint is not met, the C will not be able
to reduce.

When talking about the C operator in Section 2.2, we talked about how it applies only to families of
computations that share the same internal structure (i.e. functions of x where the internal structure
does not depend on x). This is reflected in the reduction rules in two ways:

– Firstly, in order for Cop to kick in, the body of the function must have already reduced to something

12Based on what we said about it in Section 2.2, not on its name.

11



of the form opMpMc. This means that the next operation to be performed has already been
determined to be op without needing to wait for the value of x.

– Secondly, the reduction can only proceed if Mp does not contain a free occurrence of x. This
means that Mp is independent of x.

2.4 Common Combinators
Here we will introduce a collection of useful syntactic shortcuts and combinators for our calculus.

2.4.1 Composing Functions and Computations
First of all, to save some space and write functions in a terse “point-free” style, we introduce the compo-

sition operator (known as the B combinator in combinatory logic).

_ ◦_ : (β → γ)→ (α→ β)→ (α→ γ)

f ◦ g = λx. f (g x)

We will also “functionalize” our term constructors (i.e. we will write η as a shortcut for (λx. η x)). Our
motive in not defining our symbols directly as function constants in the core calculus is due to the proofs of
confluence and termination. A complete list of functionalized symbols is given below.13

η : α→ FE(α) π1 : (α× β)→ α

η = λx. η x π1 = λP. π1 P

op : α→ (β → FE(γ))→ FE(γ) π2 : (α× β)→ β

op = λpc. op p (λx. c x) π2 = λP. π2 P

L (opi:Mi)i∈I , η:Mη M : FE(γ)→ FE′(δ) inl : α→ (α+ β)

L (opi:Mi)i∈I , η:Mη M = λx. L (opi:Mi)i∈I , η:Mη Mx inl = λx. inl x

−◦ : F∅(α)→ α inr : β → (α+ β)

−◦ = λx.

−◦ x inr = λx. inr x

C : (α→ FE(β))→ FE(α→ β)

C = λf. C f

Later on, in Section 5, we will see that our FE is a functor which, combined with some other elements,
forms a monad, or equivalently, a Kleisli triple. We use a star to denote the extension of a function from
values to computations, as in [52], and we use �= to denote the bind of a monad, as in Haskell.14

_∗ : (α→ FE(β))→ (FE(α)→ FE(β))

f∗ = L η: f M
_�= _ : FE(α)→ (α→ FE(β))→ FE(β)

M �=N = N∗M

Finally, we will define a notation for applying infix operators to arguments wrapped inside computations.
Let _}_ be an infix operator of type α→ β → γ. Then we define the following:

13The type and effect signature metavariables that appear in the types are bound by the typing constraints of the terms on
the right-hand side.

14In the types of the operators given below, we use the same effect signature E everywhere. Technically, a more general type
could be derived for these terms given our system. However, we will rarely need this extra flexibility and so we stick with these
simpler types.

12



_�}_ : FE(α)→ β → FE(γ)

X �} y = X �= (λx. η (x} y))

_}�_ : α→ FE(β)→ FE(γ)

x}� Y = Y �= (λy. η (x} y))

_�}�_ : FE(α)→ FE(β)→ FE(γ)

X �}� Y = X �= (λx. Y �= (λy. η (x} y)))

In particular, we will be using this notation for the function application operator:

_ ·_ : (α→ β)→ α→ β

f · x = f x

which will yield the following combinators:

_�·_ : FE(α→ β)→ α→ FE(β)

F �· x = F �= (λf. η (f x))

_ ·�_ : (α→ β)→ FE(α)→ FE(β)

f ·�X = X �= (λx. η (f x))

_�·�_ : FE(α→ β)→ FE(α)→ FE(β)

F �·�X = F �= (λf.X �= (λx. η (f x)))

The first of the three, �·, is the inverse function to C. The second, ·�, is the morphism component of
the FE functor (which we will demonstrate in Section 5). FE is also an applicative functor [61] and the third
operator in the list above, �·�, is the operator for application within the functor.

We also need to introduce some shortcuts to allow us to proceed faster and at a higher level of abstraction.
For exemple a regular pattern is a sequences of �= and ∗. We note η.�= this rule.

2.4.2 Operations and Handlers
Now we will look at syntactic sugar specific to Lλ M. In 2.4.1, we have seen the bind operator �= and

other ways of composing computations. Since we now have a practical way to compose computations, we
can simplify the way we write effectful operations.

op! = λp. op p (λx. η x)

The exclamation mark partially applies an operation by giving it the trivial continuation η. However, we
can still recover op from op! using �=:

op! p�= k = (λp. op p (λx. η x)) p�= k

→β op p (λx. η x)�= k

= k∗ (op p (λx. η x))

= L η: k M (op p (λx. η x))

→L op′ M op p (λx. L η: k M (η x))

→L η M op p (λx. k x)

The exclamation mark streamlines the typing rule for operations, as it is presented on the pair of rules
below:

op : α� β ∈ E
[op]

Γ ` op : α→ (β → FE(γ))→ FE(γ)

op : α� β ∈ E
[op!]

Γ ` op! : α→ FE(β)

13



We can also see that the � arrow used in effect signatures gives rise to a Kleisli arrow since FE is a
monad.

Handlers
In Section 2.3, we have seen how the reduction rules treat unknown operation symbols: by leaving

them intact. With some syntactic sugar, we can extend this behavior to the η operator as well. We will
sometimes write a handler and omit giving the η clause. In that case, the η clause is presumed to be just
η.15 Schematically, we can define this piece of new syntax in the following way:

L (opi:Mi)i∈I M = L (opi:Mi)i∈I , η: η M

Finally, we will introduce a special syntax for closed handlers [23]. A closed handler is a handler that
interprets the entire computation that is given as its input (it must have a clause for every operator that
appears within). Since all effects are handled and none are forwarded, the codomain of the handler can be
something else than a computation. However, trying to write handlers that want to exploit this possibility,
implies that there is a lot of translating between α types and F∅(α) types that needs to be done and that
clouds the inherent simplicity of a closed handler. We introduce syntax for closed handlers which takes care
of this problem.

(opi:Mi)i∈I , η:Mη N =

−◦ (L (opi: (λxk. η (Mi x (
−◦ ◦ k))))i∈I , η: (λx. η (Mη x)) MN)

As we can see, the only material added by the closed handler brackets are the functions η and

−◦ ,16 which
simply translate between the types α and F∅(α). Rather than closely studying the definition and scrutinizing
the etas and the cherries, the idea of a closed handler is better conveyed by giving its typing rule. The
following rule will be proven sound in 3.3:

E = {opi : αi� βi}i∈I
[Γ `Mi : αi → (βi → δ)→ δ]i∈I

Γ `Mη : γ → δ
Γ ` N : FE(γ)

[ ]
Γ ` (opi:Mi)i∈I , η:Mη N : δ

The lack of multiple effect signatures to implement effect forwarding makes the rule simpler than the
one of L M:

• Mη gives δ-typed interpretations to the terminal values of type γ

• Mi maps the parameter of type αi and the δ-typed interpretations of the βi-indexed family of children
to a δ-typed interpretation of an internal node

The η clause in a closed handler is optional. Similarly to open handlers, we will assume that γ = δ and
that Mη is the identity function. This is the same as saying that a closed handler without an η clause is
translated into an open handler without an η clause.

(opi:Mi)i∈I N =

−◦ (L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I MN)

=

−◦ (L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I , η: (λx. η x) MN)

=

−◦ (L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I , η: (λx. η ((λx. x)x)) MN)

= (opi:Mi)i∈I , η: (λx. x) N

3 Derived Rules

At the end of Section 2, in 2.4, we have introduced some new syntax for Lλ M terms and we have translated
that syntax into terms of the core Lλ M calculus. In this section, we will give typing rules and reduction rules
to these new constructions and prove their correctness.

15This is not a part of the core calculus as this is only sound when the type of the handler is of the shape FE(γ) → FE′ (γ)
(i.e. when the handler preserves the type γ of values returned by the computation).

16Composing the

−◦ operator with a L M handler is an identifying characteristic of closed handlers: a closed handler is a banana
with a cherry on the top.

14



3.1 Function Composition (◦)
The first piece of syntactic sugar we have introduced was an infix symbol for function composition.

f ◦ g = λx. f (g x)

In order to type terms containing this symbol, it will be useful to have a typing rule.

Proposition 3.1. The following typing rule is derivable in Lλ M:

Γ `M : β → γ Γ ` N : α→ β
[◦]

Γ `M ◦N : α→ γ

Proof. Since M ◦N = λx.M (N x), we can prove the validity of this rule with the typing rule below:

Γ, x : α `M : β → γ

Γ, x : α ` N : α→ β Γ, x : α ` x : α
[app]

Γ, x : α ` N x : β
[app]

Γ, x : α `M (N x) : γ
[abs]

Γ ` λx.M (N x) : α→ γ

x is presumed to be fresh for M and N and so we can equate Γ, x : α ` M : β → γ with Γ ` M : β → γ
and the same for N .

The result of function composition is another function and functions can be applied to arguments. We
can derive a reduction rule for this kind of function.

Proposition 3.2. The following reduction is derivable in Lλ M:

(M1 ◦M2)N →◦ M1 (M2N)

Proof.

(M1 ◦M2)N = (λx.M1 (M2 x))N

→β M1 (M2N)

3.2 Monadic Bind (�=)
As a reminder, we give the definition of �= from 2.4.1.

M �=N = N∗M

= L η:N MM

First, we will prove the correct typing for �=.

Proposition 3.3. The following typing rule is derivable in Lλ M:

Γ `M : FE(α) Γ ` N : α→ FE(β)
[�=]

Γ `M �=N : FE(β)

Proof. We note that M �=N = L η:N MM and construct the following typing derivation in Lλ M:

Γ ` N : α→ FE(β)
[L M]

Γ ` L η:N M : FE(α)→ FE(β) Γ `M : FE(α)
[app]

Γ ` L η:N MM : FE(β)

Next, we will prove the validity of two reduction rules for �=.

15



Proposition 3.4. The following reductions are derivable in Lλ M:

ηM �=N →η.�= N M
opMp (λx.Mc)�=N →op.�= opMp (λx.Mc�=N)

Proof.

ηM �=N = L η:N M (ηM)

→L η M N M

opMp (λx.Mc)�=N = L η:N M (opMp (λx.Mc))

→L op′ M opMp (λx. L η:N MMc)

= opMp (λx.Mc�=N)

3.3 Closed Handlers
In 2.4.2, we introduced a notation for closed handlers. Even though we define closed handlers in terms

of (open) handlers, their typing and reduction rules are actually simpler, since they do not have to go out of
their way to support openness (i.e. passing through uninterpreted operations).

(opi:Mi)i∈I , η:Mη N =

−◦ (L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I , η: (λx. η (Mη x)) MN)

We will first go through the typing rule.

Proposition 3.5. The following typing rule is derivable in Lλ M:

E = {opi : αi� βi}i∈I
[Γ `Mi : αi → (βi → δ)→ δ]i∈I

Γ `Mη : γ → δ
Γ ` N : FE(γ)

[ ]
Γ ` (opi:Mi)i∈I , η:Mη N : δ

Proof. We have (opi:Mi)i∈I , η:Mη N =

−◦ (L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I , η: (λx. η (Mη x)) MN) and we
will proceed by building a typing derivation for this term.

E = {opi : αi� βi}i∈I
[Γ ` λxk. η (Mi x (

−◦ ◦ k)) : αi → (βi → F∅(δ))→ F∅(δ)]i∈I
Γ ` λx. η (Mη x) : γ → F∅(δ)

Γ ` N : FE(γ)
[L M]

Γ ` L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I , η: (λx. η (Mη x)) MN : F∅(δ) [

−◦ ]
Γ `

−◦ (L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I , η: (λx. η (Mη x)) MN) : δ

We still need to prove both Γ ` λxk. η (Mi x (

−◦ ◦ k)) : αi → (βi → F∅(δ)) → F∅(δ) for every i ∈ I and
Γ ` λx. η (Mη x) : γ → F∅(δ).

Γ `Mi : αi → (βi → δ)→ δ Γ, x : αi ` x : αi [app]
Γ, x : αi `Mi x : (βi → δ)→ δ

Γ `

−◦ : F∅(δ)→ δ Γ, k : βi → F∅(δ) ` k : βi → F∅(δ) [◦]
Γ, k : βi → F∅(δ) `

−◦ ◦ k : βi → δ
[app]

Γ, x : αi, k : βi → F∅(δ) `Mi x (

−◦ ◦ k) : δ
[η]

Γ, x : αi, k : βi → F∅(δ) ` η (Mi x (

−◦ ◦ k)) : F∅(δ) [abs]
Γ, x : αi ` λk. η (Mi x (

−◦ ◦ k)) : (βi → F∅(δ))→ F∅(δ) [abs]
Γ ` λxk. η (Mi x (

−◦ ◦ k)) : αi → (βi → F∅(δ))→ F∅(δ)
x and k are assumed to be fresh for Mi.

Γ, x : γ `Mη : γ → δ Γ, x : γ ` x : γ
[app]

Γ, x : γ `Mη x : δ
[η]

Γ, x : γ ` η (Mη x) : F∅(δ) [abs]
Γ ` λx. η (Mη x) : γ → F∅(δ)

16



x is assumed to be fresh for Mη.

We can also have reduction rules for closed handlers, which work exactly the same way as the open handler
reduction rules (only they do not include cases for uninterpreted operations).

Proposition 3.6. The following reductions are derivable in Lλ M:

(opi:Mi)i∈I , η:Mη (η N) → η Mη N

(opi:Mi)i∈I , η:Mη (opiNp (λx.Nc)) →
op

MiNp (λx. (opi:Mi)i∈I , η:Mη Nc)

Proof.

(opi:Mi)i∈I , η:Mη (η N) =

−◦ (L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I , η: (λx. η (Mη x)) M (η N))

→L η M

−◦ ((λx. η (Mη x))N)

→β

−◦ (η (Mη N))

→ −◦ Mη N

(opi:Mi)i∈I , η:Mη (opiNp (λx.Nc)) =

−◦ (L (opi: (λxk. η (Mi x (
−◦ ◦ k))))i∈I , η: (λx. η (Mη x)) M (opiNp (λx.Nc)))

→L op M

−◦ ((λxk. η (Mi x (

−◦ ◦ k)))Np (λx. L . . . MNc))

→β

−◦ ((λk. η (MiNp (

−◦ ◦ k))) (λx. L . . . MNc))

→β

−◦ (η (MiNp (

−◦ ◦ (λx. L . . . MNc))))

→ −◦ MiNp (
−◦ ◦ (λx. L . . . MNc))

= MiNp (λx.

−◦ ((λx. L . . . MNc)x))

→β MiNp (λx.

−◦ (L . . . MNc))

= MiNp (λx. (opi:Mi)i∈I , η:Mη Nc)

In the above, L . . . M is taken to be a shortcut for L (opi: (λxk. η (Mi x (

−◦ ◦ k))))i∈I , η: (λx. η (Mη x)) M.

4 Type Soundness

In Section 2, we have introduced both a type system and a reduction semantics for Lλ M. Now we will give
more substance to these two definitions by proving properties which outline the relationship between them.
Types can give us two guarantees: typed terms do not get stuck and typed terms always terminate. The
former property is known as progress and, in Subsection 4.2, we will show that it holds for Lλ M as long as we
abstain from using the partial function C. The latter is known as termination and its proof is more involved,
so we will delay it until section 7. For both of these properties to hold, it will be essential to prove that a
typed term stays typed after performing a reduction. This will be the object of the next subsection.

4.1 Subject Reduction
We now turn our attention to the subject reduction property. We can summarize subject reduction with

the slogan “reduction preserves types”. The rest of this section will consider a formal proof of this property
for Lλ M, but before we begin, we present a the definition of substitution and a lemma.

Definition 4.1. Let M and N be terms and x a variable. We define the (capture-resolving) substitution
of N for x in M , written as M [x := N ],17 using the following equations:

17From now on, this notation will be used for capture-resolving substitution only.

17



(λy.M)[x := N ] = λy. (M [x := N ]) assuming that y 6= x and y is fresh for N18

(M K)[x := N ] = (M [x := N ]) (K[x := N ])

x[x := N ] = N

y[x := N ] = y given that x 6= y19

c[x := N ] = c

(opMp (λy.Mc))[x := N ] = op (Mp[x := N ]) (λy.Mc[x := N ]) assuming that y 6= x and y is fresh for N
(ηM)[x := N ] = η (M [x := N ])

(L (opi:Mi)i∈I , η:Mη MN ′)[x := N ] = L (opi: (Mi[x := N ]))i∈I , η: (Mη[x := N ]) M (N ′[x := N ])

(

−◦ M)[x := N ] =

−◦ (M [x := N ])

(CM)[x := N ] = C (M [x := N ])

We are now at a point where we can easily lay down the reduction rules for Lλ M. A reduction rule ξ will
be a relation on terms. Most of the time, we will deal with their context closures, [ξ], for which we will also
adopt the notation →ξ. We will also use the notation →ξ1,...,ξn for the composition →ξn ◦ · · · ◦ →ξ1 . The
reduction relation → of Lλ M is the union of the →ξ relations for every reduction rule ξ. We will also use
the symbols � and �� to stand for the reflexive-transitive and reflexive-symmetric-transitive closures of →,
respectively. If M �� N , we will also say that M and N are convertible. A term which is not reducible to
some other term is said to be in normal form.

Lemma 4.2. Substitution and types
Whenever we have Γ, x : α `M : τ and Γ ` N : α, we also have Γ `M [x := N ] : τ (i.e. we can substitute

in M while preserving the type).

Proof. The proof is carried out by induction on the structure of M (or rather the structure of the type
derivation Γ `M : τ).

• M = y

– If y = x, then M [x := N ] = N and α = τ . We immediately have Γ ` M [x := N ] : τ from the
assumption that Γ ` N : α.

– If y 6= x, then M [x := N ] = x and we get Γ ` M [x := N ] : τ from the assumption that
Γ, x : α `M : τ and the fact that x /∈ FV(M).

• All the other cases end up being trivial. We follow the definition of substitution (Definition 4.1) which
just applies substitution to all of the subterms. For every such subterm, we make appeal to the induction
hypothesis and construct the new typing derivation.

Property 4.3. Subject reduction
If Γ `M : τ and M → N , then Γ ` N : τ .

Proof. We prove this by induction on the reduction rule used in M → N .

• M →β N It must be the case that M = (λx.M ′)M ′′ and N = M ′[x := M ′′]. Since, Γ ` M : τ , we
must have the following typing derivation:

Γ, x : α `M ′ : τ
[abs]

Γ ` λx.M ′ : α→ τ Γ `M ′′ : α [app]
Γ ` (λx.M ′)M ′′ : τ

18Here, y is a bound variable and we can simply assume that it is different from x and proceed. . .
19. . . whereas here, y is a free variable and therefore, we have to examine whether it is different from x or not.

18



We apply Lemma 4.2 to Γ, x : α ` M ′ : τ and Γ ` M ′′ : α to get a typing derivation for Γ ` M ′[x :=
M ′′] : τ .

• M →η N We have M = λx.M ′ x with x fresh for M ′, N = M ′ and τ = τ1 → τ2. Since Γ `M : τ , we
have the following:

Γ, x : τ1 `M ′ : τ1 → τ2 Γ, x : τ1 ` x : τ1 [app]
Γ, x : τ1 `M ′ x : τ2 [abs]

Γ ` λx.M ′ x : τ1 → τ2

From the above derivation, we can extract Γ, x : τ1 ` M ′ : τ1 → τ2. However, since x is fresh for M ′,
we can strengthen this to Γ `M ′ : τ1 → τ2, which is what we wanted to prove.

• M →L η M N

We have M = L (opi:Mi)i∈I , η:Mη M (ηM ′), N = MηM
′, τ = FE′(δ) and the following typing deriva-

tion for M :

Γ `Mη : γ → FE′(δ)
Γ `M ′ : γ

Γ ` ηM ′ : FE(γ) . . .
[L M]

Γ ` L (opi:Mi)i∈I , η:Mη M (ηM ′) : FE′(δ)

From the inferred typing judgments for Mη and M ′, we can build the typing derivation for MηM
′.

Γ `Mη : γ → FE′(δ) Γ `M ′ : γ
[app]

Γ `MηM
′ : FE′(δ)

• M →L op M N

We have M = L (opi:Mi)i∈I , η:Mη M (opjMp (λx.Mc)), N = MjMp (λx. L (opi:Mi)i∈I , η:Mη MMc)
and τ = FE′(δ).

Γ `Mj : αj → (βj → FE′(δ))→ FE′(δ)

Γ `Mp : αj Γ, x : βj `Mc : FE(γ)
opj : αj � βj ∈ E

[op]
Γ ` opjMp (λx.Mc) : FE(γ) . . .

[L M]
Γ ` L (opi:Mi)i∈I , η:Mη M (opjMp (λx.Mc)) : FE′(δ)

From the types ofMp,Mc andMj , we can calculate the type of our redex,MjMp (λx. L (opi:Mi)i∈I , η:Mη MMc).

Γ `Mj : αj → (βj → FE′(δ))→ FE′(δ) Γ `Mp : αj [app]
Γ `MjMp : (βj → FE′(δ))→ FE′(δ)

Γ, x : βj `Mc : FE(γ) . . .
[L M]

Γ, x : βj ` L (opi:Mi)i∈I , η:Mη MMc : FE′(δ) [abs]
Γ ` λx. L (opi:Mi)i∈I , η:Mη MMc : βj → FE′(δ) [app]

Γ `MjMp (λx. L (opi:Mi)i∈I , η:Mη MMc) : FE′(δ)

• M →L op′ M N

We have M = L (opi:Mi)i∈I , η:Mη M (opMp (λx.Mc)), N = opMp (λx. L (opi:Mi)i∈I , η:Mη MMc) and
τ = FE′(δ).

Γ `Mp : α Γ, x : β `Mc : FE(γ)
op : α� β ∈ E

[op]
Γ ` opMp (λx.Mc) : FE(γ) op : α� β ∈ E′ . . .

[L M]
Γ ` L (opi:Mi)i∈I , η:Mη M (opMp (λx.Mc)) : FE′(δ)

19



From the inferred judgments, we can build a typing derivation for the redex.

Γ `Mp : α

Γ, x : β `Mc : FE(γ) . . .
[L M]

Γ, x : β ` L (opi:Mi)i∈I , η:Mη MMc : FE′(δ) op : α� β ∈ E′
[op]

Γ ` opMp (λx. L (opi:Mi)i∈I , η:Mη MMc) : FE′(δ)

• M → −◦ N

In this case, M =

−◦ (ηM ′) and N = M ′.

Γ `M ′ : τ [η]
Γ ` ηM ′ : F∅(τ)

[

−◦ ]
Γ `

−◦ (ηM ′) : τ

We immediately get Γ `M ′ : τ , which is the sought after typing derivation of the redex.

• M →Cη N

M = C (λx. ηM), N = η (λx.M) and τ = FE(γ → δ).

Γ, x : γ `M : δ
[η]

Γ, x : γ ` ηM : FE(δ)
[abs]

Γ ` λx. ηM : γ → FE(δ)
[C]

Γ ` C (λx. ηM) : FE(γ → δ)

From these judgments, we build a type for the redex.

Γ, x : γ `M : δ
[abs]

Γ ` λx.M : γ → δ
[η]

Γ ` η (λx.M) : FE(γ → δ)

• M →Cop N

M = C (λx. opMp (λy.Mc)), N = opMp (λy. C (λx.Mc)) and τ = FE(γ → δ).

Γ, x : γ `Mp : α Γ, x : γ, y : β `Mc : FE(δ)
op : α� β ∈ E

[op]
Γ, x : γ ` opMp (λy.Mc) : FE(δ)

[abs]
Γ ` λx. opMp (λy.Mc) : γ → FE(δ)

[C]
Γ ` C (λx. opMp (λy.Mc)) : FE(γ → δ)

With the judgments above, we build the derivation below.

Γ `Mp : α

Γ, y : β, x : γ `Mc : FE(δ)
[abs]

Γ, y : β ` λx.Mc : γ → FE(δ)
[C]

Γ, y : β ` C (λx.Mc) : FE(γ → δ) op : α� β ∈ E
[op]

Γ ` opMp (λy. C (λx.Mc)) : FE(γ → δ)

In the above we get Γ `Mp : α from Γ, x : γ `Mp : α and the rule’s condition that x /∈ FV(Mp).

20



• C[M ′]→ C[N ′]

The reduction relation of Lλ M is defined as the context closure of the individual reduction rules. We
have covered the rules themselves, we now address the context closure. By induction hypothesis, we
know that the reduction from M ′ → N ′ preserves types, i.e. for any ∆ and α such that ∆ ` M ′ : α,
we have ∆ ` N ′ : α. We observe that the typing rules of Lλ M (Figure 1) are compositional, meaning
that the type of a term depends only on the types of its subterms, not on their syntactic form. We can
check this easily by looking at the premises of all of the typing rules. For every immediate subterm T ,
there is a premise ∆ ` T : α where T is a metavariable. We can therefore replace T and its typing
derivation by some other T ′ with ∆ ` T ′ : α. Since the typing rules of Lλ M are compositional, we can
replace the ∆ `M ′ : α in Γ ` C[M ′] : τ by ∆ ` N ′ : α and get Γ ` C[N ′] : τ .

We have proven subject reduction for core Lλ M. The syntax, semantics and types that we have introduced
for sums and products are standard. Their proofs of subject reduction carry over into our setting as well.

4.2 Progress
Progress means that typed terms are never stuck. Among the terms of Lλ M, we will have to identify

terms which are acceptable stopping points for reduction. Progress will mean that if a term is not in one of
these acceptable positions, then there must be a way to continue reducing. The term we will use for these
acceptable results is value.

Definition 4.4. A Lλ M term is a value if it can be generated by the following grammar:

V ::= λx.M

| opV (λx.M)

| η V

where M ranges over Lλ M terms.

The above definition reflects the intuition that Lλ M consists of functions and computations, where functions
are built using λ and computations using op and η. The other syntactic constructions (application, L M,

−◦ and
C) all have rules which are supposed to eventually replace them with other terms. As with subject reduction,
before we proceed to the main property, we start with a lemma.

Lemma 4.5. Value classification Let V be a closed well-typed value (i.e. ∅ ` V : τ). Then the following
hold:

• if τ = α→ β, then V = λx.M

• if τ = FE(α), then either V = opVp (λx.Mc) or V = η V ′

Proof.

• Assume τ = α → β. If V = opVp (λx.Mc) or V = η V ′, then τ must be a computation type FE(γ),
which is a contradiction. The only remaining possibility is therefore V = λx.M .

• Assume τ = FE(α). If V = λx.M , then τ must be a function type β → γ, which is a contradiction.
The only remaining possibilities are therefore V = opVp (λx.Mc) or V = η V ′.

Property 4.6. Progress Every closed well-typed term M from Lλ M without C and constants20 is either a
value or is reducible to some other term.

Proof. We will proceed by induction on M .

20Constants are assumed to be reduced away by some external rule. In our case, this will be the application of an ACG lexicon
(??).

21



• M = λx.M ′ Then M is already a value.

• M = x Impossible, since M must be a closed term.

• M = M1M2 By induction hypothesis, M1 and M2 are either values or reducible terms. If either one is
reducible, then our term is reducible as well and we are done. If neither is reducible, then they are both
values. Since M is a closed well-typed term (i.e. ∅ ` M : τ), then ` M1 : α → τ for some α. Thanks
to Lemma 4.5, we have that M1 = λx.M ′1. This means that M = (λx.M ′1)M2 and M is therefore
reducible with β.

• M = opMp (λx.Mc) By induction hypothesis, Mp is either reducible or a value. If Mp is reducible,
then so is M . If it is a value, then so is M as well.

• M = η N The same argument as for op. By induction hypothesis N is reducible or a value and therefore
the same holds for M .

• M = L (opi:Mi)i∈I , η:Mη MN By induction hypothesis, N is either a value or it is itself reducible. If it
is reducible, then so is M . If it is not, then it must be a (closed) value. The type of N is a computation
type FE(α) and so by Lemma 4.5, it must either be opVp (λx.Mc) or η V . If N = opVp (λx.Mc), then
L (opi:Mi)i∈I , η:Mη M (opVp (λx.Mc)) is reducible by L op M or L op′ M (depending on whether or not
op ∈ {opi}i∈I). Otherwise, if N = η V , then L (opi:Mi)i∈I , η:Mη M (η V ) is reducible by L η M.

• M =

−◦ N By induction hypothesis, N is either reducible or a value. As before, we only have to focus on
the case when N is a value. From Lemma 4.5, we know that N = opVp (λx.Mc) or N = η V . However,
we can rule out the former since we know that ∅ ` N : F∅(α), meaning that op is not in the empty
effect signature ∅. We therefore end up with

−◦ (η V ), which is reducible by

−◦ .

We have shown progress for Lλ M without C. It is easy to see that we cannot do better, as the C operator
can violate progress and get us stuck quite easily.

Observation 4.7. There exists a closed well-typed term M from Lλ M without constants that is neither a
value nor reducible to some other term.

Proof. The most trivial example is C (λx. x). The computation that is performed by the body of the function
λx. x is entirely determined by the parameter x. It is therefore not possible to pull out this structure outside
of the function. Therefore, applying the C operator to this function is undefined and evaluation gets stuck.

5 Algebraic Properties

In this section, we will clarify what we mean when we say that the FE(α) computation types form a
functor/applicative functor/monad and we will prove that the constructions in Lλ M conform to the laws
of these algebraic structures. The object on which we will build these mathematical structures will be
the meanings of Lλ M terms. We will therefore start by building an interpretation for Lλ M, a denotational
semantics. Then we will be in measure to define the algebraic structures mentioned above and verify that
their laws are satisfied.

5.1 Denotational Semantics
We start by identifying the domains of interpretation. For each type, we designate a set such that all

terms having that type will be interpreted in that set. Before we do so, we introduce some notation on sets.

Notation 5.1. Let A and B be sets. Then:

• AB is the set of functions from B to A

• A×B is the cartesian product of A and B

• A tB is the disjoint union of A and B21

21Note that this disjoint union operator t is different from the ] one from Section 2. A t B is defined as {(x, 0) | x ∈
A} ∪ {(x, 1) | x ∈ B}.

22



• A⊥ is the disjoint union of A and {⊥}

Definition 5.2. Given a set Aν for every atomic type ν, the interpretation of a type τ is a set JτK defined
inductively by:

JνK = (Aν)⊥

Jα→ βK = (JαK→ JβK)⊥

JFE(γ)K = (JγK t
⊔

op:α�β∈E

JαK× JFE(γ)KJβK)⊥

Note that JFE(γ)K is recursively defined not only by induction on the type itself but also by its use of
JFE(γ)K on the right hand side. Formally, we take JFE(γ)K to be the least fixed point of the monotone
functional F (X) = (JγK t

⊔
op:α�β∈EJαK × XJβK)⊥, whose existence is guaranteed by the Knaster-Tarski

theorem [62, 63].

Notation 5.3. We will use λ notation to write down elements of Jα→ βK:

• λx. F (x) ∈ Jα→ βK when F (x) ∈ JβK for every x ∈ JαK

• ⊥ ∈ Jα→ βK

We will use the following syntax to write down elements of JFE(γ)K:

• η(x) ∈ JFE(γ)K with x ∈ JγK

• op(p, c) ∈ JFE(γ)K with op : α� β ∈ E, p ∈ JαK and c ∈ JFE(γ)KJβK

• ⊥ ∈ JFE(γ)K

The definition of JτK follows the definition of a value (Definition 4.4): function types denote functions
and computation types either denote atomic algebraic expressions (η) or applications of algebraic operations
(op). In the denotational semantics, we also take care of the fact that terms can get stuck and fail to yield
the expected value. We represent this by adding the element ⊥ to the interpretation of every type.

Definition 5.4. We define the interpretation of a typing context Γ as the set JΓK of functions that map
every x : α ∈ Γ to an element of JαK.

We will call these functions valuations. We will use the notation e[x := f ] to stand for the extension
of e with x 7→ f . The domain of the extension is dom(e) ∪ x. The extension maps x to f and every other
variable in its domain to e(x).

Definition 5.5. Assume given I(c) ∈ JαK for every constant c : α ∈ Σ. For a well-typed term M with
Γ ` M : τ , we define the interpretation of term M as a function JMK from JΓK to JτK. The definition
proceeds by induction on M :22

Jλx.MK(e) = λX. (JMK(e[x := X]))

JxK(e) = e(x)

JM NK(e) =

{
JMK(e)(JNK(e)), if JMK(e) is a function
⊥, if JMK(e) is ⊥

JcK(e) = I(c)

JopMp (λx.Mc)K(e) = op(JMpK(e), λX. (JMcK(e[x := X])))

JηMK(e) = η(JMK(e))
JL (opi:Mi)i∈I , η:Mη MNK(e) = JL (opi:Mi)i∈I , η:Mη MK(e)(JNK(e))

J

−◦ MK(e) =

{
x, if JMK(e) = η(x)

⊥, otherwise

JCMK(e) = JCK(JMK(e))

22In the definition, we make use of JL (opi:Mi)i∈I , η:Mη MK(e) and JCK. This notation is introduced right after this definition.

23



Definition 5.6. The interpretation of a handler L (opi:Mi)i∈I , η:Mη M within a valuation e (also written
as JL (opi:Mi)i∈I , η:Mη MK(e)) is the function h defined inductively by:

h(η(x)) =

{
JMηK(e)(x), if JMηK(e) is a function
⊥, otherwise

h(opj(p, c)) =


JMjK(e)(p)(λx. h(c(x))), if j ∈ I, and JMjK(e) and JMjK(e)(p) are both functions
opj(p, λx. h(c(x))), if j /∈ I
⊥, otherwise

h(⊥) = ⊥

The equations defining h use h on the right-hand side. Nevertheless, h is well-defined since we can rely on
induction. There is a well-founded ordering on the elements of JFE(γ)K, where ∀x. op(p, c) > c(x). The
monotonic functional F (X) = (JγKt

⊔
op:α�β∈EJαK×XJβK)⊥ used in defining JFE(γ)K (Definition 5.2) is also

Scott-continuous (i.e. it is both monotonic and it preserves suprema). By Kleene fixed-point theorem [64], we
have that the least fixed point of F is the supremum of the series ∅ ⊆ F (∅) ⊆ F (F (∅)) ⊆ . . .. Let the rank of
x be the smallest n such that x ∈ Fn(∅). The ordering <r, defined as x <r y whenever rank(x) < rank(y), is a
well-founded ordering. It is also the inductive ordering that we were looking for. Whenever rank(op(p, c)) = n,
then c is a function whose codomain is Fn−1(∅) and therefore ∀x. op(p, c) >r c(x).

Definition 5.7. The interpretation of the C operator is a function g defined inductively by:

g(f) =


η(h), if f is a function and ∃h. ∀x. f(x) = η(h(x))

op(p, λy. g(λx. c(x)(y))), if f is a function and ∃op, p, c. ∀x. f(x) = op(p, c(x))

⊥, otherwise

As with Definition 5.6, we have to show that this is actually a valid definition since we are using g on
the right-hand side of an equation defining g. This time around, the arguments to g are functions whose
codomain is the interpretation of some computation type FE(β). We can extend a well-founded ordering on
the set JFE(β)K to a well-founded ordering on Jα→ FE(β)K by stating that f < g whenever f and g are
both functions (not ⊥) and ∀x ∈ JαK. f(x) < g(x).

We have to show that the recursive call to g in the definition above is performed on an argument which is
smaller than the original function. Let f ′ = λx. c(x)(y) be the function to which we recursively apply g. We
have that f(x) = op(p, c(x)) and f ′(x) = c(x)(y). We know that ∀y. op(p, c(x)) > c(x)(y), since that is the
property of the well-founded ordering on the elements of JFE(γ)K established above. Therefore, we have that
∀x ∈ JαK. f(x) > f ′(x) and so f > f ′.

This was the entire definition of our denotational semantics.23 We will now compare it to the reduction
semantics introduced in 2.3.

Property 5.8. Soundness of reduction w.r.t. denotationsWheneverM → N in Lλ M, then JMK = JNK.

Proof. The property relies on two facts: that our denotational semantics is compositional, which means that
the context closure of reduction rules preserves denotations, and that every individual reduction preserves
denotations. To prove so for the β rule is a matter of proving a lemma stating that JMK(e[x := JNK(e)]) =
JM [x := N ]K(e), which follows from the compositionality of the denotational semantics. For all the other
rules, it suffices to use the definition of interpretation (Definition 5.5) to calculate the denotation of both the
left-hand side and the right-hand side and verify that they are the same object.

We see that equalities from the reduction semantics are carried over to the denotational semantics. The
converse, however, is not the case.

Observation 5.9. Incompleteness of reduction w.r.t. denotations
There exist terms M and N in Lλ M such that JMK = JNK but M and N are not convertible.

23We could also extend this interpretation to sums and products. The types would be interpreted by Jα× βK = (JαK× JβK)⊥
and Jα+βK = (JαKt JβK)⊥. The term level definitions would be the standard definitions one would expect for pairs and variants
(modulo the treatment of ⊥).

24



Proof. Consider a stuck term such as M = C (λx. x) and another term N = L MM = L M (C (λx. x)). Neither
one of these two terms is reducible and neither one is a value. They are stuck and the denotational semantics
assigns the value ⊥ to both of them, therefore JMK = JNK. However, as a consequence of confluence (coming
up in section 6), a pair of different normal terms is never convertible, and therefore M and N are not
convertible.

And this concludes the definition of the denotational semantics of Lλ M. Throughout most of the article,
we will be using the reduction semantics introduced in 2.3, even though it is incomplete, since it allows us to
simplify terms in a mechanical and transparent step-by-step manner. However, the denotational semantics
will be useful to us in the rest of this section since it will let us access extra equalities needed to prove some
general laws.

5.2 Category
We aim to show that the computation types in Lλ M form a monad. All these terms are defined w.r.t.

some category and so we will start by introducing the category underlying Lλ M.
We will be working with a particular category, which we will call Lλ M. The Lλ M category consists of:

objects: the types of the Lλ M calculus

arrows: for any two types α and β, the arrows from α to β are the functions from JαK to JβK

composition: composition of arrows is defined as composition of functions

identities: for every type α, we define idα as the identity function with domain JαK

Since the arrows in our category are functions, the three laws of a category (associativity, left identity and
right identity) fall out of the same properties for functions.

Since the arrows in our category are functions, the three laws of a category (associativity (??), left identity
(??) and right identity (??)) fall out of the same properties for functions.

5.3 The Three Laws
Monads form a subset of applicative functors which in turn is a subset of functors. Instead of incrementally

building up from a functor all the way to a monad, it will end up being more practical to first prove the
monad laws and then illustrate how they let us verify the functor and applicative functor laws. Therefore,
we first define our monadic bind operator and prove the three monad laws.

Definition 5.10. Let X be from JFE(α)K and f be a function from JαK to JFE(β)K. We define X �= f
inductively on the structure of X:

op(p, c)�= f = op(p, λx. c(x)�= f)

η(x)�= f = f(x)

⊥�= f = ⊥

Note that X �= f is equivalent to Jx�= yK([x 7→ X, y 7→ f ]).

Law 5.11. (Associativity of �=)
Let X be from JFE(α)K, f be a function from JαK to JFE(β)K and g be a function from JβK to JFE(γ)K.

Then the following equation holds:

(X �= f)�= g = X �= (λx. f(x)�= g)

Proof. Proof by induction on the well-founded structure of X:

• X = ⊥ (⊥�= f)�= g = ⊥�= g

= ⊥
= ⊥�= (λx. f(x)�= g)

• X = η(x) (η(x)�= f)�= g = f(x)�= g

= (λx. f(x)�= g)(x)

= η(x)�= (λx. f(x)�= g)

25



• X = op(p, c) (op(p, c)�= f)�= g = op(p, λy. c(y)�= f)�= g

= op(p, λy. (c(y)�= f)�= g)

= op(p, λy. c(y)�= (λx. (f(x)�= g)))

= op(p, c)�= (λx. f(x)�= g)

Law 5.12. (Left identity for �=)
Let η(x) be from JFE(α)K and f be a function from JαK to JFE(β)K. Then the following holds:

η(x)�= f = f(x)

Proof. Follows immediately from the definition of �= (Definition 5.10).

Law 5.13. (Right identity for �=)
Let X be from JFE(α)K. Then the following holds:

X �= (λx. η(x)) = X

Proof. By induction on the structure of X:

• X = ⊥
⊥�= (λx. η(x)) = ⊥

• X = η(x)
η(x)�= (λx. η(x)) = (λx. η(x))(x)

= η(x)

• X = op(p, c)
op(p, c)�= (λx. η(x)) = op(p, λy. c(y)�= (λx. η(x)))

= op(p, λy. c(y))

= op(p, c)

5.4 Monad
Definition 5.14. A monad is a functor F and two combinators, η : α → F (α) and �= : F (α) → (α →
F (β))→ F (β), polymorphic in α and β. These objects must also satisfy the following laws:

(X �= f)�= g = X �= (λx. f(x)�= g) (Associativity) (1)
η(x)�= f = f(x) (Left identity) (2)
X �= η = X (Right identity) (3)

To understand why the laws look the way they do, we will consider functions of type α → F (β). These
are the kinds of functions one might use to model call-by-value [52, 65]: we take a value α and then yield
some computation F (β). Now assume we would use this type of functions to model procedures of input
type α and output type β and we would want these procedures to form a category. For every type α, we
would like an identity procedure with input type and output type α, therefore a function of type α→ F (α).
The polymorphic η combinator will be this identity procedure. We would also like to be able to compose a
procedure from α to β with a procedure from β to γ, i.e. compose functions of types α→ F (β) and β → F (γ).
When composing f : α → F (β) with g : β → F (γ), we run into the problem of having some f(x) : F (β)
and g : β → F (γ) that we cannot compose. This is where �= comes in and composes these two values for
us. Let f >=> g = λx. f(x)�= g be the resulting composition operator. In order for this structure to be a
category, it needs to satisfy the following:

(f >=> g)>=> h = f >=> (g >=> h)

η >=> f = f

f >=> η = f

26



By taking f to be the constant function that returns X, we end up with the laws of the monad. Conversely,
with the principle of extensionality [66], we can derive these laws from the monad laws. Therefore 〈F, η,�=〉
forms a monad whenever the derived >=> and η form a category. This kind of category is called a Kleisli
category and the particular presentation of a monad that we have given here is known as a Kleisli triple.
To prove that FE is a monad will be trivial: we have already done so! The η combinator is of course our
η and �= is our �=. The three laws that we need to verify are three laws that we have introduced in 5.3
and have been using throughout this section. Monads have been introduced to natural language semantics
by Chung-chieh Shan in 2002 [2]. Since then, they have seen occasional use, mostly to handle dynamics
without burdening the semantics with context/continuation passing [67, 68], but also other phenomena such
as conventional implicature/opacity [69, 70, 71]. The challenge of combining different phenomena which rely
on different monads has been tackled from two angles: using distributive laws for monads [72] and using
monad transformers [5, 73]. In the Lλ M calculus, the monadic operations η and �= are available as the η
constructor and the �= combinator introduced in 2.4.1.

6 Confluence

The object of our study during this section will be the proof of the confluence property of Lλ M. Informally,
it means that a single term cannot reduce to two or more different results. Together with the termination
from Section 7, this will give us the property that every term yields exactly one result and does so in a finite
amount of steps (a property known as strong normalization). Confluence also gives us a strong tool to prove
an inequality on terms. If two terms reduce to different normal forms, confluence guarantees us that they
are not convertible.

Definition 6.1. A reduction relution → on a set A is said to be confluent whenever for each a, b, c ∈ A
such that a→ b and a→ c there is a d ∈ A such that b� d and c� d.

Proofs of this property are often mechanical and follow the same pattern. Our strategy will be to reuse
a general result which applies one such proof for a general class of rewriting systems. Our rewriting system
is a system of reductions on terms and the reductions have side conditions concerning the binding of free
variables. A good fit for this kind of system are the Combinatory Reduction Systems (CRSs) of Klop [74].
The main result about CRSs that we will make use of is the following (Corollary 13.6 in [74]).

Theorem 6.2. Confluence of orthogonal CRSs Every orthogonal CRS is confluent.

We will model Lλ M as a CRS. However, η-reduction will deny us orthogonality. We will therefore first
prove confluence of Lλ M without η-reduction and then we will manually show that confluence is preserved on
adding η-reduction back.

Notation 6.3. The intensional Lλ M calculus Lλ M−η is the Lλ M calculus without the η-reduction rule.

The rest of this section will go like this:

• CRS: a formalism for higher-order rewriting (6.1)

• Lλ M is a CRS (6.2)

• Klop et al [93]: Every orthogonal CRS is confluent (6.3)

– Lλ M−η is an orthogonal CRS ⇒ Lλ M−η is confluent (Lemma 6.12)

– η is an orthogonal CRS ⇒ η is confluent (Lemma 6.13)

• Lλ M−η + η is confluent (6.4, Theorem 6.18)

– because Lλ M−η and η commute (Lemma 6.17)

27



6.1 Combinatory Reduction Systems
A Combinatory Reduction System is defined by an alphabet and a set of rewriting rules. We will first

cover the alphabet.

Definition 6.4. A CRS alphabet consists of:

• a set Var of variables (written lower-case as x, y, z,. . . )

• a set MVar of metavariables (written upper-case as M , N , . . . ), each with is own arity

• a set of function symbols, each with its own arity

Let us sketch the difference between the variables in Var and the metavariables in MVar. The variables
in Var are the variables of the object-level terms, in our case it will be the variables of Lλ M. The variables in
MVar are the metavariables that will occur in our reduction rules and which we will have to instantiate in
order to derive specific application of those rules. In other words, the variables in Var are there to express
the binding structure within the terms being reduced and the metavariables in MVar are there to stand in
for specific terms when applying a reduction rule.

Definition 6.5. The metaterms of a CRS are given inductively:

• variables are metaterms

• if t is a metaterm and x a variable, then [x]t is a metaterm called abstraction

• if F is an n-ary function symbol and t1,. . . ,tn are metaterms, then F (t1, . . . , tn) is a metaterm

• if M is an n-ary metavariable and t1,. . . ,tn are metaterms, then M(t1, . . . , tn) is a metaterm

Definition 6.6. The terms of a CRS are its metaterms which do not contain any metavariables.

To finish the formal introduction of CRSs, we give the definition of a CRS reduction rule.

Definition 6.7. A CRS reduction rule is a pair of metaterms s→ t such that:

• s and t are both closed, i.e. all variables are bound using the [_]_ abstraction binder

• s is of the form F (t1, . . . , tn)

• all the metavariables that occur in t also occur in s

• any metavariable M that occurs in s only occurs in the form M(x1, . . . , xk), where xi are pairwise
distinct variables

Definition 6.8. A Combinatory Reduction System (CRS) is a pair of a CRS alphabet and a set of
CRS reduction rules.

We will only sketch the way that a CRS gives rise to a reduction relation and we will direct curious readers
to Sections 11 and 12 of [74]. When we instantiate the metavariables in a CRS rule, we use a valuation that
assigns to every n-ary metavariable a term with holes labelled from 1 to n. The instantiation ofM(t1, . . . , tn)
then replaces the metavariable M using the valuation and then fills the holes labelled 1, . . . , n with the
terms t1, . . . , tn respectively. The crucial detail is that in a particular context, a metavariable can only be
instantiated with terms M that do not contain any free variables bound in that context. This means that
for the instantiation of M to contain a variable bound in its context, M must explicitly take that variable as
an argument. All other variables not explicitly declared can therefore be safely assumed to not occur freely
within M . Consider the following examples of β and η-reduction.

(λx.M(x))N →M(N)

λx.N x→ N

More formally written as:

@(λ([x]M(x)), N)→M(N)

λ([x]@(N, x))→ N

28



where λ is a unary function symbol and @ is a binary function symbol. In both of the versions, M is a
unary metavariable and N is a nullary metavariable. In the rule for β-reduction, we can observe how the
idea of instantiating metavariables by terms with holes lets us express the same idea for which we had to
introduce the meta-level operation of substitution. In the rule for η-reduction, we see that N appears in a
context where x is bound but it does not have x as one of its arguments. Therefore, it will be impossible to
instantiate N in such a way that it contains a free occurrence of x. In both of those rules, we were able to get
rid of meta-level operations (substitution) and conditions (x /∈ FV (N)) and have them both implemented
by the formalism itself.

6.2 Lλ M as a CRS
We will now see how to rephrase the reduction rules of Lλ M in order to fit in to the CRS framework. We

have already seen how to translate the β and η rules in the previous subsection. The next rules to address are
the rules defining the semantics of the L M handlers. We will repeat the rules for handlers to make the issue at

hand clear.

L (opi:Mi)i∈I , η:Mη M (η N)→ rule L η M
Mη N

L (opi:Mi)i∈I , η:Mη M (opj Np (λx.Nc))→ rule L op M
Mj Np (λx. L (opi:Mi)i∈I , η:Mη MNc) where j ∈ I

and x /∈ FV((Mi)i∈I ,Mη)

L (opi:Mi)i∈I , η:Mη M (opj Np (λx.Nc))→ rule L op′ M
opj Np (λx. L (opi:Mi)i∈I , η:Mη MNc) where j /∈ I

and x /∈ FV((Mi)i∈I ,Mη)

The syntax of CRSs

does not allow us to use the (opi:Mi)i∈I notation nor capture the j ∈ I or j /∈ I conditions. The symbols
opi are problematic as well, since technically, they are not concrete Lλ M syntax but metavariables standing
in for operation symbols. We do away with all of the above problems by expanding these meta-notations and
adding a separate rule for every possible instantiation of the schema. This means that for each sequence of
distinct operation symbols op1,. . . ,opn, we end up with:

• a special rewriting rule L op1:M1, . . . , opn:Mn, η:Mη M (η N)→Mη N

• for every 1 ≤ i ≤ n, a special rewriting rule
L op1:M1, . . . , opn:Mn, η:Mη M (opiNp (λx.Nc(x)))
→MiNp (λx. L op1:M1, . . . , opn:Mn, η:Mη MNc(x))

• for every op′ ∈ E \ {opi‖1 ≤ i ≤ n}, a special rewriting rule
L op1:M1, . . . , opn:Mn, η:Mη M (op′Np (λx.Nc(x)))
→ op′Np (λx. L op1:M1, . . . , opn:Mn, η:Mη MNc(x))

The rule for the cherry

−◦ extraction operator is already in CRS form, so all we have to do is address the
rules for the C operator. We present them side-by-side in their original form and in CRS-style. Original:

C (λx. ηM)→ η (λx.M)

C (λx. opMp (λy.Mc))→ opMp (λy. C (λx.Mc))

where x /∈ FV(Mp)

CRS-style:

C (λx. η (M(x)))→ η (λx.M(x))

C (λx. opMp (λy.Mc(x, y)))→ opMp (λy. C (λx.Mc(x, y)))

We can see that the only difference is to replace “simple” metavariablesM ,Mp andMc with their higher-order
versions: the unary M , nullary Mp and binary Mc. We see that every CRS metavariable is applied to the
variables in its scope, except for Mp, which thus loses access to the variable x. This way, the condition that
x must not appear free in Mp is now encoded directly in the reduction rule itself. In 6.1, we have said that
a CRS is formed by a set of reduction rules and by an alphabet. We have already seen all of the rules of our
CRS (β and η were given at the end of 6.1 and the

−◦ rule is the same as the original one in 2.3). In order to
have a complete definition, all that remains is to identify the alphabet. The set of variables V ar is exactly

29



the set of variables X used in the definition of Lλ M. The set of metavariables MV ar consists of the unary M ,
nullary N , nullary Np, unary Nc, nullary Mp, binary Mc, nullary Mi and nullary Mη. The set of function
symbols is composed of the following:

• the binary symbol @ for function application

• the unary symbol λ for function abstraction

• a nullary symbol for every constant in the signature Σ

• the unary symbol η for the injection operator

• a binary symbol op for every op ∈ E

• a (n+2)-ary symbol (L op1:_, . . . , opn:_, η:_ M_) for every sequence op1, . . . , opn of distinct symbols
from E of length n

• the unary symbol

−◦ for the extraction operator

• the unary symbol C for the C operator

In giving the CRS-style reduction rules above, we have used the “native” syntax of Lλ M instead of writing
out everything in terms of function symbols. For clarity, we give the rules governing the relationship of the
two. We write:

• @(t, u) as t u

• λ([x]t) as λx. t

• η(t) as η t

• op(tp, [x]tc) as op tp (λx. tc)24

• (L op1:_, . . . , opn:_, η:_ M_)(t1, . . . , tn, tη, u) as L op1: t1, . . . , opn: tn, η: tη Mu

•

−◦ (t) as

−◦ t

• C(t) as C t

We have connected the terms of Lλ M with CRS terms and we have also expressed all of our reduction rules in
terms of CRS reduction rules. As in Lλ M, CRS then proceeds to take a context closure of this redex-contractum
relation. Our translation from Lλ M to a CRS also preserves subterms25 and so we end up constructing the
same reduction relation.

6.3 Orthogonal CRSs
In order to use Theorem 6.2, we need to show that our CRS is orthogonal, so let us start us by looking

at what “orthogonal” means in the context of CRSs.

Definition 6.9. A CRS is orthogonal if it is non-overlapping and left-linear.

We will need to satisfy two criteria: no overlaps and left linearity. We will start with the latter.

Definition 6.10. A CRS is left-linear if the left-hand sides of all its reduction rules are linear. A CRS
metaterm is linear if no metavariable occurs twice within it.

By going through the rules we have given in 6.2, we can see at a glance that no rule uses the same
metavariable twice in its left-hand side and so our CRS is indeed left-linear.

24Note that with this translation, op tp (λx. tc) does not contain λx. tc as a subterm. This is the same as in Lλ M, where
the notion of evaluation context (see 2.3) does not identify λx. tc, but rather tc, as a subterm of op tp (λx. tc). This becomes
important in our discussion of confluence since it makes it impossible to make the λ disappear by something like η-reduction.

25More precisely, if a is a subterm of b in Lλ M then the CRS version of a is a subterm of the CRS version of b. In the other
direction, whenever a is a variable or a function-headed term which is a subterm of b in the CRS version of Lλ M, then the
corresponding a in Lλ M is a subterm of the corresponding b.

30



Definition 6.11. A CRS is non-overlapping if:

• Let r = s→ t be some reduction rule of the CRS and let M1,. . . ,Mn be all the metavariables occurring
in the left-hand side s. Whenever we can instantiate the metavariables in s such that the resulting term
contains a redex for some other rule r′, then said redex must be contained in the instantiation of one
of the metavariables Mi.

• Similarly, whenever we can instantiate the metavariables in s such that the resulting term properly
contains a redex for the same rule r, then that redex as well must be contained in the instantiation of
one of the metavariables Mi.

In simpler words, no left-hand side of any rule can contain bits which look like the top of the left-hand
side of some other rule. Let us try and verify this property in Lλ M:

• The L M rules have no overlaps with any of the other rules. Their left-hand sides are constructed only
of the L M symbols and the op and η constructors. Since there is no reduction rule headed by op and
η, they have no overlap with any of the other rules. Furthermore, the three L M rules are mutually
exclusive, so there is no overlap between themselves.

• The

−◦ rule does not overlap with any of the other neither, since the left-hand side contains only

−◦ and
η, and there is no reduction rule headed by η.

• The C rules are both mutually exclusives, so there is no overlap between the two. However, their left-
hand sides are built not only out of C, op and η, but also of λ, for which there is the η-reduction rule.
Fortunately, in this case, the C rules only apply when the λ-abstraction’s body is an η expression or an
op expression, whereas the η rule applies only when the body is an application expression.26 Therefore,
there is no overlap.

We have established that all the reduction rules in our system are pairwise non-overlapping except for β and
η. However, these two have a notorious overlap. We can instantiate the metavariables in the left-hand side
of the β rule to get a term which contains an η-redex which shares the λ-abstraction with the β-redex.

(λx. y x) z

We can also instantiate the metavariables in the left-hand side of the η rule to create a β-redex which shares
the application with the η-redex.

λx. (λz. z)x

Because of these overlaps, the Lλ M CRS is therefore not orthogonal. However, we can still make good use of
Theorem 6.2.

Lemma 6.12. Confluence of Lλ M−η The Lλ M reduction system without the η rule is confluent.

Proof. If we exclude the η rule, we have a CRS which is left-linear and also non-overlapping.27 Therefore, it
is orthogonal and thanks to Theorem 6.2, also confluent.

Lemma 6.13. Confluence of η-reduction The reduction system on Lλ M terms containing only the η-
reduction rule is confluent.28

Proof. We have seen that η is a valid left-linear CRS rule. It also does not overlap itself since its left-hand
side does not contain any λ subexpression. The CRS consisting of just the η rule is therefore orthogonal and
confluent.

26This is not so much a fortunate conincidence but rather a deliberate choice in the design of the calculus. For example, it
is one of the reasons why, in Lλ M, η x is not decomposed as an application of the built-in function η to x, but is treated as a
special form.

27We know that β does not overlap any of the other rules. Neither does it overlap itself since its left-hand side does not have
an application subexpression.

28This also holds for Lλ M with sums and products since their rules are left-linear and do not overlap with the Lλ M rules.

31



6.4 Putting η Back in Lλ M
We have shown that both Lλ M−η and η are confluent. The reduction relation of the complete Lλ M calculus

is the union of these two reduction relations. Using the Lemma of Hindley-Rosen (1.0.8.(2) in [75]), we can
show that this union is confluent by showing that the two reduction relations commute together.

Definition 6.14. Let →1 and →2 be two reduction relations on the same set of terms A. →1 and →2

commute if for every a, b, c ∈ A such that a �1 b and a �2 c, there exists a d ∈ A such that b �2 d and
c�1 d.

Lemma 6.15. Lemma of Hindley-Rosen [75]
Let →1 and →2 be two confluent reduction relations on the same set of terms. If →1 and →2 commute,

then the reduction relation →1 ∪ →2 is confluent.

We will not be proving the commutativity directly from the definition. Instead, we will use a lemma due
to Hindley (1.0.8.(3) in [75]).

Lemma 6.16. Let→1 and→2 be two reduction relations on the same set of terms A. Suppose that whenever
there are a, b, c ∈ A such that a →1 b and a →2 c, there is also some d ∈ A such that b �2 d and c →=

1 d
(meaning c→1 d or c = d). In that case, →1 commutes with →2. [75]

We can use this to prove that Lλ M−η commutes with the η-reduction rule.

Lemma 6.17. Commutativity of η and Lλ M−η The reduction relations induced by η and by the rest of
the Lλ M rules commute.

Proof. We will prove this lemma by an appeal to Lemma 6.16. Let →η be the reduction relation induced by
the rule η and →Lλ M−η the reduction relation induced by all the other reduction rules in Lλ M. We need to
prove that for all terms a, b and c where a →Lλ M−η b and a →η c, we have a term d such that b �η d and
c→=

Lλ M−η d. This will turn out to be a routine proof by induction on the structure of the term a. The base
cases are trivial since terms without any proper subterms happen to have no redexes in Lλ M and therefore
trivially satisfy the criterion. In the inductive step, we will proceed by analyzing the relative positions of the
redexes which led to the reductions a→Lλ M−η b and a→η c.

• If both reductions occurred within a common subterm of a, i.e. a = C[a′], b = C[b′] and c = C[c′] while
at the same time a′ →Lλ M−η b

′ and a′ →η c
′, we can use the induction hypothesis for a′. This gives

us a d′ such that b′ �η d
′ and c′ →=

Lλ M−η d
′ and therefore we also have d = C[d′] with b �η d and

c→=
Lλ M−η d.

• If both reductions occurred within non-overlapping subterms of a, i.e. a = C[a1, a2], b = C[b′, a2] and
c = C[a1, c

′] with a →Lλ M−η b and a →η c: We can take d = C[b′, c′] since we have b �η d in one step
and c→=

Lλ M−η d in one step too.

• If the redex in a→Lλ M−η b is the entire term a, but the redex in a→η c is a proper subterm of a: We
will solve this by case analysis on the form of a:

– If a is an application: Since a is an application and also a Lλ M−η-redex, it must match the left-hand
side of the β rule, (λx.M(x))N , and b must be M(N).

∗ We will first deal with the case when the η-redex which lead to c originated in M(x). In
that case M(x) →η M

′(x) and c = (λx.M ′(x))N . Our sought-after d is then M ′(N), since
c→=

Lλ M−η d via β in one step and b = M(N)�η d = M ′(N).
∗ Now we get to one of the two interesting cases which necessitated this whole lemma: the

overlap between β and η, with β on the top. If the η-redex did not originate in M(x), then
the η-redex must be λx.M(x). Therefore, M = T x and a = (λx. T x)N . Performing the
η-reduction yields c = T N . In this case, both b and c are equal to T N and so we can choose
T N as our d.

– If a is any other kind of term: Let l → r be the rule used in a →Lλ M−η b. Not counting β, which
only acts on applications and which we dealt with just above, the rules of Lλ M−η do not overlap
with the η rule. This means the η-redex which led to c must lie entirely inside a part of l which
corresponds to a metavariable. Let M be that metavariable, then we will decompose l into L(M)

32



and r into R(M). We have a = L(a′) for some a′, b = R(a′) and c = L(a′′)29. Our d will be R(a′′)
and we have b = R(a′) �η d = R(a′′) in several steps30 and c = L(a′′) →=

Lλ M−η d = R(a′′) in one
step of l→ r.

• If the redex in a →η c is the entire term a, but the redex in a →Lλ M−η b is a proper subterm of a: In
this case, a must be an abstraction that matches the left-hand side of the η rule, i.e. a = λx.N x. Also,
we have c = N .

– As before, we will first deal with the case when the Lλ M−η-redex is contained completely within
N . Then N →Lλ M−η N

′ and b = λx.N ′ x. The common reduct d is N ′ since b �η d in one step
and c = N →=

Lλ M−η d = N ′ as established before.

– Now this is where we deal with the second overlap between β and η in our reduction system, the
one with η on top. The Lλ M−η-redex in a must be N x and the reduction rule in question must
therefore be β. Therefore, N = λy. T (y) and a = λx. (λy. T (y))x. Performing the β-reduction
gives us b = λx. T (x) which is, however, equal to c = N = λy. T (y). So we can choose d = b and
we are done.

• If a is the redex for both reductions a→Lλ M−η b and a→η c, then a must match the left-hand side of a
Lλ M−η rule and the η rule. However, this is impossible since the left-hand side of the η rule is headed
by abstraction, which is the case for none of the rules of Lλ M−η.

Equipped with this lemma, we can go on to prove our main result, Theorem 6.18, the confluence of Lλ M.

Theorem 6.18. Confluence of Lλ M
The reduction relation → on the set of Lλ M terms, defined by the reduction rules in 2.3, is confluent.

Proof. From Lemma 6.12, we know that the Lλ M−η system is confluent and from Lemma 6.13, we know that
the η-reduction rule is confluent as well. Lemma 6.17 tells us that these two reduction systems commute and
therefore, by Lemma 6.15, their union, which is the Lλ M reduction system, commutes as well.

7 Termination

Definition 7.1. A reduction relation is terminating if there is no infinite chain M1 →M2 → . . ..

In this section, we will prove termination with a similar strategy as the one we employed for confluence.
Lλ M is an extension of the λ-calculus with computation types and some operations on computations. Our
computations can be thought of as algebraic expressions, i.e. they have a tree-like inductive structure. The
reason that all computations in Lλ M terminate is that the operations defined on computations rely on well-
founded recursion. However, it is quite tricky to go from this intuition to a formal proof of termination.
Fortunately, we can rely on existing results. Blanqui, Jouannaud and Okada have introduced Inductive Data
Type Systems (IDTSs) [76, 77]. Like CRSs, IDTSs are a class of rewriting systems for which we can prove
certain interesting general results. In this section, we will start by examining the definition of an IDTS and
fitting Lλ M into that definition. The theory of IDTSs comes with a sufficient condition for termination known
as the General Schema. Lλ M will not satisfy this condition and so we will first transform it using Hamana’s
technique of higher-order semantic labelling [78]. As with our proof of confluence, we will first consider the
case of Lλ M without η-reduction and then add η manually while preserving termination. The plan will look
like this:

• IDTS = Typed CRS (7.1)

• The Lλ Mτ IDTS (7.2)

29Since our rules are left-linear, M is guaranteed to appear in L(M) at most once. Therefore, if a′ →η a′′ in one step, then
also L(a′)→η L(a′′) in one step as well.

30a′ can occur multiple times in R(a′) when the rule l → r is duplicating (which is actually the case for the L op M rules).
However, we are able to go from R(a′) to R(a′′) in multiple steps. NB: This is why we use Lemma 6.16 instead of trying to
prove commutativity directly.

33



– if Lλ Mτ terminates, then Lλ M−η terminates (Lemma 7.11)

• Blanqui [77]: General Schema ⇒ termination (7.3)

• Hamana [78]: IDTS R terminates iff the labelled IDTS R terminates (7.4)

– Theorem 7.40: Lλ Mτ terminates (via Blanqui [77])

– Corollary 7.41: Lλ Mτ terminates (via Hamana [78])

– Corollary 7.42: Lλ M−η terminates (via Lemma 7.11)

• Lλ M−η + η terminates (7.5, Theorem 7.46)

– because Lλ M−η and η are exchangeable (Lemma 7.44)

– and therefore Lλ M is strongly normalizing (Theorem7.47)

7.1 Inductive Data Type Systems
We will go by the revised definition of Inductive Data Type Systems that figures in [77] and [78]. This

formulation extends IDTSs to higher-order rewriting and does so using the CRS formalism that we introduced
earlier.

Definition 7.2. An Inductive Data Type System (IDTS) is a pair of an IDTS alphabet and a set of
IDTS rewrite rules.

Just like a CRS, an IDTS is an alphabet coupled with some rewrite rules. Let us first look at the alphabet
and the rules for building terms out of the elements of the alphabet; the rewrite rules will follow.

Definition 7.3. The set of types T (B) contains:

• all the types from B

• a type α⇒ β for every α and β in T (B)

Definition 7.4. An IDTS alphabet consists of:

• B, a set of base types

• X , a family (Xτ )τ∈T (B) of sets of variables

• F , a family (Fα1,...,αn,β)α1,...,αn,β∈T (B) of sets of function symbols

• Z, a family (Zα1,...,αn,β)α1,...,αn,β∈T (B) of sets of metavariables

The distinction between a CRS-alphabet and an IDTS alphabet is that the IDTS alphabet comes equipped
with a set of types. Furthermore, all the other symbols in the alphabet are indexed by types, so we end up
with typed variables, typed function symbols and typed metavariables. When we consider IDTS metaterms,
we admit only well-typed terms. The definition of IDTS metaterms refines the definition of CRS metaterms
by restraining term formation in accordance with the types.

Definition 7.5. The typed metaterms of an IDTS are given inductively:

• variables from Xτ are metaterms of type τ

• if t is a metaterm of type β and x a variable from Xα, then [x]t is a metaterm of type α ⇒ β called
abstraction

• if F is an function symbol from Fα1,...,αn,β and t1,. . . ,tn are metaterms of types α1, . . . , αn, respectively,
then F (t1, . . . , tn) is a metaterm of type β

• if M is a metavariable from Zα1,...,αn,β and t1,. . . ,tn are metaterms of types α1, . . . , αn, respectively,
then M(t1, . . . , tn) is a metaterm of type β

Definition 7.6. The terms of an IDTS are its metaterms which do not contain any metavariables.

34



The definition of an IDTS rewrite rule is almost identical to the one for CRS reduction rules. The only
difference is the extra condition stating that the redex and contractum must have identical types.

Definition 7.7. An IDTS rewrite rule is a pair of metaterms s→ t such that:

• s and t are both closed, i.e. all variables are bound using the [_]_ abstraction binder

• s is of the form F (t1, . . . , tn)

• all the metavariables that occur in t also occur in s

• any metavariable M that occurs in s only occurs in the form M(x1, . . . , xk), where xi are pairwise
distinct variables

• s and t are both of the same type

As stated above, an IDTS is just an alphabet along with a set of rewrite rules. An IDTS induces a
rewriting relation in exactly the same way as a CRS does, see [77] for more details.

7.2 Lλ M as an IDTS
Now we will link Lλ M to the IDTS framework in order to benefit from its general termination results. The

biggest obstacle will be that IDTS assigns a fixed type to every symbol. In Lλ M, symbols are polymorphic:
the η constructor can produce expressions like η ? : FE(1) or η (λx. x) : FE(α → α) and that for any choice
of E. We would therefore like to replace function symbols such as η with specialized symbols ηFE(α). For a
given type α and effect signature E, the symbol ηFE(α) would have the type α→ FE(α), i.e. it would belong
to Fα,FE(α). We will call this calculus with specialized symbols Lλ Mτ . There will not be a bijection between
Lλ M and Lλ Mτ since a single term in Lλ M will generally correspond to a multitude of specialized versions in
Lλ Mτ (think of λx. x in Lλ M versus λxι. xι, λxo. xo . . . in Lλ Mτ ). Therefore, the results we prove for Lλ Mτ will
not automatically transfer to Lλ M. In the rest of this subsection, we will elaborate the definition of Lλ Mτ and
show why termination carries over from Lλ Mτ to Lλ M−η.31

7.2.1 Defining Lλ Mτ
Lλ Mτ will be defined as an IDTS. This means we need to first identify the alphabet. The base types B

of Lλ Mτ will be the set of types of Lλ M. 32 Note that both Lλ M and IDTS have a notion of function type,
but the notation is different. Contrary to common practice, in our exposition of IDTS we use α⇒ β for the
IDTS function type. This allows us to keep using the α→ β notation for Lλ M types, as we do in the rest of
the article. Next, we will introduce function symbols for all the syntactic constructions of Lλ M, except for
abstraction, which is handled by the [_]_ binder construct already found in IDTSs:

• apα,β ∈ Fα→β,α,β (i.e. for every pair of types α and β, there will be a function symbol apα,β of type
(α→ β)⇒ α⇒ β in our alphabet)

• λα,β ∈ Fα⇒β,α→β

• c ∈ Fα for any constant c : α ∈ Σ

• ηα,E ∈ Fα,FE(α)

• opγ,E ∈ Fα,β⇒FE(γ),FE(γ) for any operation symbol op from E and any E such that op : α� β ∈ E

•

−◦

α ∈ FF∅(α),α

• L Mop1,...,opn,γ,δ,E,E
′ ∈ Fα1→(β1→FE′ (δ)),...,αn→(βn→FE′ (δ)),γ→FE′ (δ),FE(γ),FE′ (δ) where:

– op1 : α1 � β1 ∈ E, . . . , opn : αn� βn ∈ E

31In the sequel, we will ignore the η-reduction and use IDTSs to prove the termination of Lλ M without η-reduction, Lλ M−η .
32Note that throughout this section, we will make a distinction between two notions of “basic” types: atomic types and base

types. Atomic types are the basic types of Lλ M. Base types are the basic types of IDTSs. In our particular IDTS, the base types
consist of all the types of Lλ M, i.e. the atomic types, the Lλ M function types α → β and the computation types. This means
that, from the point of view of the IDTS, Lλ M function types and computation types are just another base type.

35



– E \ {op1, . . . , opn} ⊆ E′

• Cα,β,E ∈ Fα→FE(β),FE(α→β)

The list above is based on the typing rules of Lλ M found on Figure 1. We convert the typing rules of Lλ M
into the typed function symbols of Lλ Mτ with the following process:

• We take a typing rule of Lλ M, other than [var] (since variables are already present in the language of
IDTS terms).

• We identify all the type-level metavariables. That is, metavariables α, β, γ . . . ranging over types,
metavariables E,E′ . . . ranging over effect signatures and metavariables op ranging over operation
symbols.

• We strip these metavariables down to a minimal non-redundant set (e.g. in the [op] rule, we have that
op : α� β ∈ E, therefore E and op determine α and β and α and β are redundant).

• We introduce a family of symbols: for every possible instantiation of the metavariables mentioned
above, we will have a different symbol. The arity of the symbol will correspond to the number of typing
judgments that serve as hypotheses to the typing rule. The types of the arguments and of the result
will be derived from the types of the judgments of the hypotheses and the conclusion respectively. If
a variable of type α is bound in a premise of type β, then that will correspond to the IDTS function
type α⇒ β.

– Example: In the [η] rule, we have two metavariables: α standing in for a type and E standing in
for an effect signature. The rule has one typing judgment hypothesis. For every type α and every
effect signature E, we will therefore have a unary symbol ηα,E of type α⇒ FE(α) (i.e. belonging
to Fα,FE(α)).

A specifically-typed symbol in Lλ Mτ then corresponds to an instantiation of the type metavariables in a Lλ M
typing rule. We can follow this correspondence further and see that Lλ Mτ IDTS terms, written using the
above function symbols, correspond to typing derivations in Lλ M. Our alphabet now has types and function
symbols. We also need to specify the sets of variables and metavariables and so we will take some arbitrary
sets with xτ , yτ , . . . ∈ Xτ and Mα1,...,αn,β , Nα1,...,αn,β , . . . ∈ Zα1,...,αn,β . To complete our IDTS, we have to
give the rewrite rules. The rules for Lλ Mτ are given in Figure 5. An important property of an IDTS rewrite
rule is that both its left-hand and right-hand side are well-typed and that they have the same type. In order
to facilitate the reader’s verification that this is indeed the case, we have used a different labelling scheme
for function symbols. When we write fα1,...,αn,β , we are referring to the instance of symbol f which has the
type α1 ⇒ . . . ⇒ αn ⇒ β (i.e. belongs to Fα1,...,αn,β). This way, instead of using a symbol name like ηα,E ,
forcing to look up its type α⇒ FE(α), we will refer to this symbol directly as ηα,FE(α). In Figure 5 presents
the rewrite rules with all the subscripts removed. This allows to get a high-level look at the term without
any of the type annotation noise. By removing the type indices from the Lλ Mτ IDTS rewrite rules, we get
the Lλ M CRS-reduction rules of Section 6 (modulo the renaming of @ to ap). When describing the rewrite
rules for handlers, we introduce a shortcut L M(opi)i∈I

FE(γ),FE′ (δ)
(NFE(γ)), which stands for L M partially applied to

the clauses M i and Mη. We then reuse this shortcut in all of the L M rules.

7.2.2 Connecting Lλ Mτ to Lλ M
We have given a complete formal definition of Lλ Mτ . This will let us find a proof of termination for Lλ Mτ

using the theory of IDTSs. However, in order to carry over this result to our original calculus, we will need
to formalize the relationship between the two.

Definition 7.8. Term is a (partial) function from Lλ Mτ terms to Lλ M terms which removes any type anno-
tations (the subscripts on function symbols, variables and metavariables) and translates Lλ Mτ syntax to Lλ M
syntax using the following equations:

36



ap
(λ

([
x

]M
(x

))
,N

)
→

ru
le
s
β
α
,γ

M
(N

)
ap
α
→
γ
,α
,γ

(λ
α
⇒
γ
,α
→
γ
([
x
α

]M
α
,γ

(x
α

))
,N

α
)
→

M
α
,γ

(N
α

)

le
t

L
M(o

p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)
(N
F
E

(γ
)
)

=
L

M(o
p
i
) i
∈
I

(α
i
→

(β
i
→
F
E
′(
δ
))
→
F
E
′(
δ
))
i
∈
I
,γ
→
F
E
′(
δ
),
F
E

(γ
),
F
E
′(
δ
)
((
M

i α
i
→

(β
i
→
F
E
′(
δ
))
→
F
E
′(
δ
)
) i
∈
I
,M

η γ
→
F
E
′(
δ
)
,N
F
E

(γ
)
)

L
M(
o
p
i
) i
∈
I
(η

(N
))
→

ru
le
s

Lη
M(o

p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)

ap
(M

η
,N

)

L
M(o

p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)
(η
γ
,F
E

(γ
)
(N

γ
))
→

ap
γ
→
F
E
′(
δ
),
γ
,F
E
′(
δ
)
(M

η γ
→
F
E
′(
δ
)
,N

γ
)

L
M(
o
p
i
) i
∈
I
(o
p
j
(N

p
,[
y
]N

c
(y

))
)
→

ru
le
s

Lo
p

M(o
p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)

ap
(a
p
(M

j
,N

p
),
λ

([
y
]L

M(
o
p
i
) i
∈
I
(N

c
(y

))
))

w
he
re
j
∈
I

L
M(o

p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)
(o
p
j
α
,β
⇒
F
E

(γ
),
F
E

(γ
)
(N

p α
,[
y β

]N
c β
,F
E

(γ
)
(y
β
))

)
→

ap
(β
→
F
E
′(
δ
))
→
F
E
′(
δ
),
β
→
F
E
′(
δ
),
F
E
′(
δ
)
(a
p
α
→

(β
→
F
E
′(
δ
))
→
F
E
′(
δ
),
α
,(
β
→
F
E
′(
δ
))
→
F
E
′(
δ
)
(M

j α
→

(β
→
F
E
′(
δ
))
→
F
E
′(
δ
)
,N

p α
),
λ
β
⇒
F
E
′(
δ
),
β
→
F
E
′(
δ
)
([
y β

]L
M(o

p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)
(N

c β
,F
E

(γ
)
(y
β
))

))

L
M(
o
p
i
) i
∈
I
(o
p
j
(N

p
,[
y
]N

c
(y

))
)
→

ru
le
s

Lo
p
′ M

(o
p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)

o
p
j
(N

p
,[
y
]L

M(
o
p
i
) i
∈
I
(N

c
(y

))
)

w
he
re
j
/∈
I

L
M(o

p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)
(o
p
j
α
,β
⇒
F
E

(γ
),
F
E

(γ
)
(N

p α
,[
y β

]N
c β
,F
E

(γ
)
(y
β
))

)
→

o
p
j
α
,β
⇒
F
E
′(
δ
),
F
E
′(
δ
)
(N

p α
,[
y β

]L
M(o

p
i
) i
∈
I

F
E

(γ
),
F
E
′(
δ
)
(N

c β
,F
E

(γ
)
(y
β
))

)

−◦(
η
(N

))
→

ru
le
s

−◦ α
N −◦ F
∅
(α

),
α

(η
α
,F
∅
(α

)
(N

α
))
→

N
α

C(
λ

([
x

]η
(M

(x
))

))
→

ru
le
s
Cη α
,β
,E

η
(λ

([
x

]M
(x

))
)

C α
→
F
E

(β
),
F
E

(α
→
β

)
(λ
α
⇒
F
E

(β
),
α
→
F
E

(β
)
([
x
α

]η
β
,F
E

(β
)
(M

α
,β

(x
α

))
))
→

η (
α
→
β

),
F
E

(α
→
β

)
(λ
α
⇒
β
,α
→
β
([
x
α

]M
α
,β

(x
α

))
)

C(
λ

([
x

]o
p
(M

p
,[
y
]M

c
(x
,y

))
))
→

ru
le
s
Co

p
α
,β
,E

o
p
(M

p
,[
y
]C

(λ
([
x

]M
c
(x
,y

))
))

C α
→
F
E

(β
),
F
E

(α
→
β

)
(λ
α
⇒
F
E

(β
),
α
→
F
E

(β
)
([
x
α

]o
p
γ
,δ
⇒
F
E

(β
),
F
E

(β
)
(M

p γ
,[
y δ

]M
c α
,δ
,F
E

(β
)
(x
α
,y
δ
))

))
→

o
p
γ
,δ
⇒
F
E

(α
→
β

),
F
E

(α
→
β

)
(M

p γ
,[
y δ

]C
α
→
F
E

(β
),
F
E

(α
→
β

)
(λ
α
⇒
F
E

(β
),
α
→
F
E

(β
)
([
x
α

]M
c α
,δ
,F
E

(β
)
(x
α
,y
δ
))

))

F
ig
ur
e
5:

T
he

ID
T
S
re
w
ri
te

ru
le
s
fo
r

Lλ
M τ
,
sh
ow

n
in

pa
ra
lle

l
w
it
h
th
e
C
R
S
ru
le
s
fo
r

Lλ
M.

37



Term(x) = x

Term(λ([x]M)) = λx. Term(M)

Term(ap(M,N)) = (Term(M)) (Term(N))

Term(c) = c

Term(η(M)) = η (Term(M))

Term(op(Mp, [x]M c)) = op (Term(Mp)) (λx. Term(M c))

Term(

−◦ (M)) =

−◦ (Term(M))

Term(L Mop1,...,opn
(M1, . . . ,Mn,Mη, N)) = L op1: Term(M1), opn: Term(Mn), η: Term(Mη) M (Term(N))

Term(C(M)) = C (Term(M))

Definition 7.9. Types is a function from Lλ M terms to sets of Lλ Mτ terms, defined by the equation below.

Types(M) = {m | Term(m) = M}

Lemma 7.10. Let M and N be Lλ M terms. Then,

M →Lλ M−η N ⇒ ∀m ∈ Types(M). ∃n ∈ Types(N). m→ n

In the above, upper-case letters stand for Lλ M terms, while lower-case letters stand for Lλ Mτ terms.

Proof. This property is essentially a stronger kind of subject reduction for Lλ M−η. In proofs of subject reduc-
tion, we examine every reduction rule and we show how a typing derivation of the redex can be transformed
into a typing derivation of the contractum. We can think of Lλ Mτ terms as Lλ M typing derivations. The
reduction rules in Figure 5 are the rules which tell us how to take a typing of the redex and transform it into
a typing of the contractum.

In order to prove this property, we will need to check the following:

• The redexes and contracta in Figure 5 are well-formed (i.e. well-typed). For that reason, we have
included the type of every variable, metavariable and function symbol as a subscript.

• Applying Term to the left-hand and right-hand sides of the Lλ Mτ rules yields the left-hand and right-
hand sides of all the Lλ M−η rules (and therefore the left-hand and right-hand sides of Lλ Mτ rules belong
to the Types image of the left-hand and right-hand sides of the Lλ M−η rules). Since in Figure 5, we
have included the terms with their type annotations removed, we can see at a glance that the stripped
rules align with the CRS formulation of Lλ M.

• Finally, we have to check whether the rewriting rules in Figure 5 actually apply to all them ∈ Types(M).
In other words, we need to check whether the type annotation scheme used for the left-hand sides is
the most general and covers all possible typings of the left-hand side. This is the case because we have
followed the typing rule constraints and given the most general type annotations.

Given a reduction in Lλ M−η from M to N , we can find the untyped reduction rule used in Figure 5. We
know that if m ∈ Types(M), then m then matches the left-hand side of the corresponding typed rule. We
also know that the right-hand side of the typed rule belongs to Types(N) and therefore, the property holds.
Furthermore, if we were to formalize the correspondence between Lλ M typing derivations and Lλ Mτ terms, we
would get another proof of subject reduction for Lλ M−η.

Lemma 7.11. If the reduction relation of Lλ Mτ is terminating, then so is the Lλ M−η reduction relation on
well-typed terms.

Proof. Consider the contrapositive: if there exists an infinite Lλ M−η chain of well-typed Lλ M terms, we can
use Lemma 7.10 to translate it, link by link, to an infinite Lλ Mτ chain. However, infinite Lλ Mτ reduction
chains do not exist since Lλ Mτ is terminating.

38



7.3 Termination for IDTSs
So far, we have introduced an IDTS and have shown that if this IDTS is terminating, then so is Lλ M−η.

We will now look at a general result for IDTSs that we will make use of.

Theorem 7.12. Strong normalization [77] Let I = (A,R) be a β-IDTS satisfying the assumptions (A).
If all the rules of R satisfy the General Schema, then →I is terminating.

The theorem was lifted verbatim33 from [77] and parts of it deserve explaining:

• What is a β-IDTS?

• What are the assumptions (A)?

• What is the General Schema?

We will deal with these in order. A β-IDTS is an IDTS which, for every two types α and β, has a function
symbol @α,β ∈ Fα⇒β,α,β and a rule @α,β([xα]Mα,β(xα), Nα) → Mα,β(Nα). Furthermore, there must be
no other rules whose left-hand side is headed by @. We can turn our IDTS from 7.2 into a β-IDTS by
extending it with these function symbols and reduction rules.34 Termination in a larger system will still
imply termination in our system.

7.3.1 Checking Off the Assumptions
Next, we will deal with the assumptions (A).

Definition 7.13. The Assumptions (A) are defined as the following four conditions:

1. every constructor is positive

2. no left-hand side of rule is headed by a constructor

3. both >B and >F are well-founded

4. statf = statg whenever f =F g

For these to make sense to us, we will need to identify some more structure on top of our IDTS: the
notion of a constructor and the >B and >F relations. We will need to designate for every base type γ a
set Cγ ⊆ ∪p≥0,α1,...,αp∈T (B)Fα1,...,αp,γ (i.e. a set of function symbols with result type γ). We will call the
elements of these sets constructors of γ. The base types of our IDTS consist of atomic types, function
types and computation types. We will have no constructors for atomic types. On the other hand, every
function type α → β will have a constructor λα,β (∈ Fα⇒β,α→β) and every computation type FE(γ) will
have constructors ηγ,E (∈ Fγ,FE(γ)) and opγ,E (∈ Fα,β⇒FE(γ),FE(γ)) for every op : α � β ∈ E. We can
now check assumption (A.2). Since the only constructors in our IDTS are η, op and λ, we validate this
assumption.35 Our choice of constructors induces a binary relation on the base types.

Definition 7.14. The base type α depends on the base type β if there is a constructor c ∈ Cα such that β
occurs in the type of one of the arguments of c.

We will use ≥B to mean the reflexive-transitive closure of this relation. Furthermore, we will use =B and
>B to mean the associated equivalence and strict ordering, respectively.

Observation 7.15. If τ1 ≤B τ2, then τ1 is a subterm of τ2.

Proof. We will prove this by induction on the structure of the base type τ2. If τ2 is an atomic type, then τ2
has no constructors, so it does not depend on any other type. If we look at the reflexive-transitive closure of
that, ≥B, then the only type α such that τ2 ≥B α is, by reflexivity, τ2 itself, which is a subterm of τ2.

If τ2 is the computation type FE(γ), then we will have several constructors. We have ηγ,E with a single
argument of type γ. We thus know that FE(γ) depends on γ. For every op : α � β ∈ E, we have a

33In fact, the actual Theorem in [77] states that the system is strongly normalizing. However, by strongly normalizing they
mean that every term is computable, i.e. that there is no infinite reduction chain.

34These β rules and application operators are different from the ones already in our IDTS. ap is defined for the α→ β function
type from Lλ M whereas @ serves the α⇒ β type of IDTS.

35This is why we have to prove termination with η reduction separately

39



constructor opγ,E with arguments of types α and β ⇒ FE(γ). This tells us that FE(γ) also depends on α,
β and FE(γ). FE(γ) does not have any more constructors, so those are all the types it depends on. The ≥B
relation, which is the subject of this observation, is the reflexive-transitive closure of the dependency relation
between base types. This means that τ2 ≥B τ1 if either τ2 = τ1 or τ2 depends on some τ ′2 6= τ2 such that
τ ′2 ≥B τ1.

• If τ2 = τ1, then trivially τ1 is a subterm of τ2 and we are done.

• If τ2 depends on some τ ′2 6= τ2, then τ ′2 must be either γ or one of the α or β from E since τ2 = FE(γ).
In all these cases, we can apply the induction hypothesis for τ ′2. We know that τ ′2 ≥B τ1 and by the
induction hypothesis, we now know that τ1 is a subterm of τ ′2. Since τ ′2 is a subterm of τ2, we have that
τ1 is a subterm of τ2.

Corollary 7.16. If τ1 =B τ2, then τ1 = τ2.

Corollary 7.17. If τ1 <B τ2, then τ1 is a proper subterm of τ2.

We can now check assumption (A.3). Since the proper subterm relation is well-founded (i.e. has no infinite
descending chains) and >B is a subset of the proper subterm relation, then >B must be well-founded as well.
We can also check assumption (A.1) once we explain what a strictly positive type is.

Definition 7.18. A constructor c ∈ Cβ is positive if every base type α =B β occurs only at positive positions
in the types of the arguments of c.

Definition 7.19. The base types occurring in positive positions (Pos) and the base types occurring in
negative positions (Neg) within a type are defined by the following mutually recursive equations:

Pos(α⇒ β) = Neg(α) ∪ Pos(β)

Neg(α⇒ β) = Pos(α) ∪Neg(β)

Pos(ν) = {ν} with ν an atomic type
Neg(ν) = ∅ with ν an atomic type

In our IDTS, α =B β is true only when α = β. The only time a base type occurs in the type of one of its
constructor’s arguments is in the case of the op constructors. Given op : α� β ∈ E, opγ,E is a constructor
of FE(γ); the type of its second argument is β ⇒ FE(γ). This occurrence is positive and so we validate
assumption (A.1). To validate the second half of (A.3), we will need to introduce the >F relation. As >B
was induced by the structure of constructors, >F will be induced by the structure of the rewriting rules R
of our IDTS.

Definition 7.20. A function symbol f depends on a function symbol g if there is a rule defining f (i.e.
whose left-hand side is headed by f) and in the right-hand side of which g occurs. We will use ≥F as the
name for the reflexive-transitive closure of this relation. We will also write =F and >F for the associated
equivalence and strict ordering, respectively.

If we scan the rules of Lλ M, we will see that the L M symbols depend on op (for when there is no handler
and the op is copied), ap (for applying the handler clauses to their arguments), λ (for the continuation) and
on L M (for recursion). The C symbols depend on op (when passing the λ through an op), η (when switching
the λ with the η), λ (for the argument) and C (for recursion). There is no other dependency in our IDTS.
This means we can check off the second part of assumption (A.3) since >F is well-founded (it contains only
L M >F op, L M >F ap, L M >F λ, C >F op, C >F η and C >F λ). Assumption (A.4) is trivial in our case since,
within our IDTS, f =F g only when f = g. This assumption comes into play only in the general theory of
IDTSs when one exploits mutual recursion with functions of multiple arguments. The statf values mentioned
in the assumption (A.4) describe the way in which a function’s arguments should be ordered to guarantee
that recursive calls are always made to smaller arguments. In the case of mutual recursion, both functions
must agree on the order according to which they will decrease their arguments. Since we do not deal with
mutual recursion in Lλ M, we will not go into any more detail into this.

40



7.3.2 General Schema
There is one last obstacle in our way towards proving termination of Lλ Mτ . We will need to verify that

the rewrite rules that we have given in Figure 5 follow the General Schema.

Definition 7.21. A rewrite rule f(l1, . . . , ln)→ r follows the General Schema if r ∈ CCf (l1, . . . , ln).

CCf (l1, . . . , ln) refers to the so-called computable closure of the left-hand side f(l1, . . . , ln). The idea
behind the computable closure is that the left-hand side of a rewrite rule can tell us what are all the possible
right-hand sides that still lead to a correct proof of termination.36 A formal definition of computable closure
is given in [77, p. 8]. Informally, r ∈ CCf (l1, . . . , ln) if:

• Every metavariable used in r is accessible in one of l1, . . . , ln.

• Recursive function calls (i.e. uses of function symbols g =F f) are made to arguments smaller than the
arguments l1, . . . , ln.

A metavariable is accessible in a term if it appears at the top of the term or under abstractions or con-
structors. If a metavariable occurs inside an argument of a function symbol which is not a constructor, then
there are some technical constraints on whether it is accessible. However, in every rewrite rule of our IDTS,
the arguments of the function symbol being defined contain only constructors as function symbols. Finally,
we will need to show that the arguments being recursively passed to L M and C are smaller than the original
arguments and therefore the recursion is well-founded and terminating. However, the General Schema pre-
sented in [77] uses a notion of “smaller than” which is not sufficient to capture the decrease of our arguments.
On the other hand, when we were defining a denotational semantics for Lλ M, we gave a well-founded ordering
showing that the successive arguments to these operations are in fact decreasing. We will therefore make use
of a technique which will allows us to incorporate this semantic insight into the IDTS so that the General
Schema will be able to recognize the decreasing nature of the arguments.

7.4 Higher-Order Semantic Labelling
We will make use of the higher-order semantic labelling technique presented by Makoto Hamana in [78].

The idea behind the semantic labelling technique is to label function symbols with the denotations of their
arguments. Whereas before, a function symbol was rewritten to the same function symbol on a smaller
argument, in the labelled IDTS, a labelled symbol will be rewritten to a different smaller symbol (i.e. one
with a smaller label). The theory in [78] is expressed in terms of category theory. This results in a very
elegant and concise formulation of the theorems and their proofs. In this article, we only care about the
applications of the theory and so we will try to introduce the technique without presupposing the reader’s
familiarity with category theory.

7.4.1 Presheaves and Binding Algebras
We will nevertheless introduce a few terms from category theory. When dealing with binding and types,

it is usually not so useful to consider a mixed set of terms or denotations of different types. It is much more
pertinent to speak of families of terms having the same type in the same typing context, i.e. Tτ (Γ) = {t | Γ `
t : τ}. In this example, T is a family of sets, indexed first by type and second by context. We can therefore
say that T ∈ (SetF↓B)B, where B is the set of base types of our IDTS (i.e. the set of Lλ M types) and F ↓ B
is the set of Lλ M typing contexts (functions from finite sets to B). The category-theoretical presentation of
abstract syntax and binding originating in [80] relies on a similar notion known as presheaf. Presheaf can be
seen as a synonym for functor, usually going from some kind of “index category” to some other category. In
the above example, B, F ↓ B and Set can be seen as categories:

• B has base types as objects and no arrows besides the mandatory identities

• F ↓ B has typing contexts as objects and renamings of contexts (exchanges, weakenings, contractions)
as arrows

• Set is the standard category with sets as objects and functions as arrows

36Theorem 7.12 is proven using Tait’s method of computability predicates [79]. The term computable closure comes from
the fact that the admissible right-hand sides are the metavariables of the left-hand side closed on operations that preserve
computability.

41



SetF↓B is the category of functors from F ↓ B to Set. The object component of such a functor maps contexts
to sets (usually sets of objects having some type within the given context). The arrow component translates
the renamings of contexts into renamings of variables in these objects. The functors in the category (SetF↓B)B

map types to the objects of SetF↓B; their arrow component is trivial since B has only trivial arrows. We will
call the objects of (SetF↓B)B presheaves (sometimes, we will also call the objects in SetF↓B presheaves). In
our presentation, we will care only about the object level, meaning that we will identify a presheaf with a
family of sets. We will now consider some presheaves that will come into play:

• The key presheaf will be the presheaf T of Lλ M terms, Tτ,Γ = {M | Γ ` M : τ}. Every element of Tτ,Γ
is a well-typed Lλ M term.

• Another useful presheaf is the presheaf V of variables where Vτ,Γ = {x | x : τ ∈ Γ}.

• Z is the presheaf of the IDTS metavariables from Z, Zτ,(x1:α1,...,xn:αn) = {M |M ∈ Zα1,...,αn,τ}.

• TΣV is the presheaf of IDTS terms with alphabet Σ.

• MΣZ is the presheaf of IDTS metaterms with alphabet Σ and typed metavariables Z.

Now we will define some endofunctors on the category of presheaves. As before, we will ignore the arrow
component and give only a mapping from one family to another.

• First, we introduce an endofunctor on the category of presheaves in SetF↓B. For every base type τ , we
have a functor δτ : SetF↓B → SetF↓B. For A ∈ SetF↓B, we define (δτA)(Γ) = A(Γ + τ) where Γ + τ is
the extension of context Γ by a variable of type τ .37 The idea behind this operation is to model binders,
i.e. the arrow type ⇒ of IDTS. If the presheaf Aβ ∈ SetF↓B models the type β, then the presheaf δαAβ
models the type α⇒ β.

• The alphabet of our IDTS, Σ, induces an endofunctor on the category (SetF↓B)B mapping presheaves
A to presheaves ΣA.

(ΣA)γ =
∐

f∈F ~α1⇒β1,..., ~αl⇒βl,γ

∏
1≤i≤l

δ ~αiAβi

In the above, we use the vector notation ~α⇒ β for α1 ⇒ . . .⇒ αn ⇒ β and δ~α for δα1 ◦ . . . ◦ δαn . Note
that the above definition assumes that ~αi, βi and γ are all base types. Since in our encoding of Lλ M,
we use a function constructor → on the level of base types, this is the case.

We are now ready to define the notion of a Σ-binding algebra.

Definition 7.22. A Σ-(binding) algebra A is a pair of a presheaf A and a natural transformation38

α : ΣA → A. The presheaf is the carrier and the natural transformation interprets the operations. Since
ΣA is a coproduct over all the f ∈ F , we can also see α as the copair [fA]f∈F , where fA is the interpretation
in algebra A of operation f .

We will need to construct a (V +Σ)-algebra in order to proceed, where (V +Σ)(A) is defined as V +Σ(A).
Our algebra will be a term algebra, the carrier will be the presheaf T . We will need to give an interpretation
to variables and to every function symbol defined in the alphabet Σ. This interpretation must be given as an
α : V + ΣT → T , meaning that the interpretation of every function symbol must be compositional. A value
from (ΣT )γ,Γ is composed of some function symbol f of result type γ together with the interpretation of all
of the symbol’s arguments. If the i-th argument of the function symbol f has type βi and binds variables ~αi,
then the interpretation of the argument in our term model will be a Lλ M term whose type in the context Γ+ ~αi
is βi. The translation Term from Lλ Mτ terms to Lλ M terms that we have given in 7.2 gives us the operations

37When we extend a context, we usually extend it with a pair of a variable name and a type, e.g. Γ, x : τ . However, the
theory of binding algebras uses Bruijn levels [81], where the names of variables in a context are always integers from 1 to some
n. Extending a context x1 : α1, . . . , xn : αn with a type τ then yields a context x1 : α1, . . . , xn : αn, xn+1 : τ .

38Natural transformation is the name for an arrow between two functors (presheaves). In our particular setting, naturality
boils down to Aγ being a function of (ΣA)γ for every γ.

42



of the term model algebra. For example, the line defining the translation of the expression op(Mp, [x]M c)
can be transformed into an interpretation for the function symbol op the following way:

Term(op(Mp, [x]M c)) = op (Term(Mp)) (λx. Term(M c))

opΓ(Mp,M c) = op (Term(Mp)) (λxn+1. Term(M c))

where n = |Γ|. Therefore, the Term translation function from 7.2 gives us a (V + Σ)-algebra T with carrier
T .

7.4.2 Building a Quasi-Model
We will now deal with presheaves equipped with partial orders.

Definition 7.23. A presheaf equipped with a partial order is a pair of a presheaf A and a family of
partial orders ≥A such that ≥Aτ,Γ is a partial order on the set Aτ,Γ.

Definition 7.24. An arrow f : A1 × · · · × An → B in SetF↓B is weakly monotonic if for all Γ and
a1, b1 ∈ A1

Γ, . . . , an, bn ∈ AnΓ with ak ≥Ak,Γ bk for some k and aj = bj for all j 6= k, we have that
f(Γ)(a1, . . . , an) ≥BΓ

f(Γ)(b1, . . . , bn).

Definition 7.25. A weakly monotonic (V +Σ)-algebra is a (V +Σ)-algebra A whose carrier A is equipped
with a partial order ≥A such that every operation of A is weakly monotonic.

We want to equip our (V + Σ)-algebra T with the � order. However, while we know that � is by
definition a preorder, reflexive and transitive, we do not know whether it is antisymmetric and therefore
whether it forms a partial order. Because of this, we will build a partial order on top of the � preorder.

Definition 7.26. We say that terms M and N are interreducible, M � N , if M � N and N �M .

The interreducibility relation defined above is an equivalence relation and we can use it to quotient sets
of terms. We define the T /� presheaf as the presheaf with T /�τ,Γ = {{N |M � N} | Γ `M : τ}, i.e. T /� is

the quotient of the T presheaf w.r.t. the interreducibility relation. The elements of T /�τ,Γ are interreducibility
classes of terms having the type τ in the typing context Γ. We will use the metavariables M and N for
these equivalence classes. The preorder � on Lλ M terms can be extended to interreducibility classes of Lλ M
terms. Formally, we have M � N if there exists M ∈ M and N ∈ N such that M � N . This preorder
is antisymmetric and the � relation on interreducibility classes therefore forms a partial order. This means
that (T /�,�) is a presheaf equipped with a partial order. We can verify that � is a congruence on the
(V + Σ)-algebra T . All of the operations in the algebra T construct new Lλ M terms with the operands as
subterms of the constructed term. Let f be an operation of T and M1, . . . ,Mk, and N1, . . . , Nk be Lλ M
terms such that ∀i.Mi � Ni. Then we have f(M1, . . . ,Mk) � f(N1, . . . , Nk) because ∀i.Mi � Ni and
f(N1, . . . , Nk)� f(M1, . . . ,Mk) because ∀i.Ni �Mi. Therefore, we have f(M1, . . . ,Mk)� f(N1, . . . , Nk).
Since � is a congruence on (V + Σ)-algebra, we can quotient it and get a (V + Σ)-algebra T /� whose
carrier is the T /� presheaf. We now have a (V + Σ)-algebra, T /�, whose carrier is equipped with a partial
order, �. Because the reduction relation � of Lλ M is closed on contexts, the operations of T /� are weakly
monotonic: if we replace one of the arguments Mi in f(M1, . . . ,Mn) with an M′i such that Mi � M′i,
then we will also have f(M1, . . . ,Mi, . . . ,Mn) � f(M1, . . . ,M′i, . . . ,Mn). Therefore, we have a weakly
monotonic (V + Σ)-algebra T /�.

Definition 7.27. For a given (V +Σ)-algebra A, a term-generated assignment φ is an arrow in (SetF↓B)B

from the presheaf Z to the presheaf A such that φ = ! ◦θ, where:

• θ is an IDTS valuation,39 i.e. an arrow from Z to TΣV .

• ! is the unique homomorphism from the initial (V + Σ)-algebra TΣV to A.40

39Same as the CRS valuations introduced in 6.1, but typed.
40Homomorphisms between Σ-algebras are defined in the same way as homomorphisms for first-order algebras. The term

algebra TΣV is called an initial algebra because we can find a (unique) homomorphism from TΣV to any other algebra A that
works by interpreting terms from TΣV using the operations of A.

43



To clarify the nomenclature: valuations replace metavariables with terms, assignments replace metavari-
ables with interpretations in some algebra and term-generated assignments are assignments that can only
assign an interpretation x if x can be computed as the interpretation of some term.

Definition 7.28. A weakly monotonic (V + Σ)-algebra (A,≥A) satisfies an IDTS rewrite rule l → r,
with l and r of type τ , if for all term-generated assignments φ of the free metavariables Z in l and r, we
have:

! θ∗τ,Γ(l) ≥Aτ,Γ ! θ∗τ,Γ(r)

where φ = ! ◦θ, θ∗ is the extension of the valuation θ to meta-terms and Γ is the context regrouping all the
free variables exposed by θ.

Definition 7.29. A weakly monotonic (V + Σ)-algebra (A,≥A) is a quasi-model for the IDTS (Σ,R) if
(A,≥A) satisfies every rule in R.

Our weakly monotonic algebra (T /�,�) is a quasi-model for the IDTS Lλ Mτ . The expressions L = ! θ∗τ,Γ(l)
and R = ! θ∗τ,Γ(r) are instances of the left-hand and right-hand side, respectively, of the Lλ M reduction rule
l→ r. Therefore, we always have L� R.

7.4.3 Labelling Our System
We will now decide how to label the L M and C symbols. The labels we will choose will be the Lλ M

denotations introduced in 5.1. We will build up some orders on the denotations that will become crucial
later.

Definition 7.30. For each Lλ M type τ , we define a well-founded strict partial order >JτK on the set of
denotations JτK by induction on τ .

• τ is an atomic type Then >JτK is the empty relation.

• τ = α→ β f >JτK g if and only if f and g are both functions (i.e. not ⊥) and ∀x ∈ JαK. f(x) >JβK g(x).
The new order is well-founded: any hypothetical descending chain f1 >JτK f2 >JτK . . . could be projected
to a descending chain f1(x) >JβK f2(x) >JβK . . ., which is well-founded by induction hypothesis.

• τ = FE(γ) Let E = {opi : αi� βi}i∈I . The order >JτK is the smallest transitive relation satisfying the
following:

– ∀i ∈ I, ∀p ∈ JαiK, ∀c ∈ JFE(γ)KJβiK, ∀x ∈ JβiK. opi(p, c) >JτK c(x)

The proof of the well-foundedness of this relation was given in the definition of the interpretation of
a handler (Definition 5.6). It relies on the fact that JFE(γ)K is defined as a union of an increasing
sequence of sets where c(x) always belongs to a set preceding the one in which opi(p, c) appears for the
first time.

As our labels, we will use denotations of (possibly open) Lλ M terms. These objects are functions from
JΓK to JτK for some typing context Γ and type τ . We will need to compare denotations of two objects having
the same type but not necessarily occurring in the same typing context. We introduce some notation to deal
with context and valuation extensions.

Notation 7.31. Let Γ and ∆ be typing contexts. The typing context Γ,∆, the extension of Γ with ∆, is
defined by:

(Γ,∆)(x) =

{
∆(x), if ∆(x) is defined
Γ(x), otherwise

Notation 7.32. Let e and d be valuations41 for the typing contexts Γ and ∆, respectively. The valuation
e+ d for the context Γ,∆, called the extension of e with d, is defined by:

(e+ d)(x) =

{
d(x), if x ∈ dom(d)

e(x), otherwise

41Not IDTS valuations, but the valuations used by the denotational semantics in 5.1.

44



Notation 7.33. We will use the term D(τ) for the set
⋃

ΓJτKJΓK, the set of possible denotations of τ -typed
Lλ M terms.

Definition 7.34. Let τ be a Lλ M type. The well-founded strict partial order >D(τ) on the set D(τ) is defined
by:

• f >D(τ) g if and only if:

– f : JΓK→ JτK

– g : JΓ,∆K→ JτK

– ∀e ∈ JΓK, ∀d ∈ J∆K. f(e) >JτK g(e+ d)

We will use the notation ≥D(τ) for the reflexive closure of >D(τ).

For every symbol f to label, we will now choose a non-empty well-founded poset (Sf ,≥Sf ), called the
semantic label set. In our application of the technique, we will always choose the set of possible denotations
of the argument that is being recursively decreased by the function. For the symbols that we do not care to
label, we will assume that their semantic label set is the singleton set 1.

• For L Mop1,...,opn,γ,δ,E,E
′ ∈ Fα1→(β1→FE′ (δ)),...,αn→(βn→FE′ (δ)),γ→FE′ (δ),FE(γ),FE′ (δ), we take as the se-

mantic label set the poset D(FE(γ)) ordered by ≥D(FE(γ)).

• For Cα,β,E ∈ Fα→FE(β),FE(α→β), we take as the semantic label set the poset D(α→ FE(β)) ordered by
≥D(α→FE(β)).

Having fixed the semantic label sets, we will now choose the semantic label maps. For each symbol f ∈
F ~α1⇒β1,..., ~αn⇒βn,γ to be labelled, we define a weakly monotonic arrow 〈〈−〉〉f in SetF↓B:

〈〈−〉〉f : δ ~α1
T
/�
β1
× · · · × δ ~αnT

/�
βn
−→ KSf

where KA is the constant presheaf KA(Γ) = A. This semantic label map has access to the interpretations of
all of the function symbol’s arguments and needs to map them to an element of the semantic label set. In
our model, the carrier containing the interpretations is the presheaf T /� of interreducibility classes of Lλ M
terms. However, the interreducibility relation � will be a congruence for all of the semantic label maps that
we will define and so we will define them directly on terms instead of interreducibility classes. This means
that for every L Mop1,...,opn,γ,δ,E,E

′ ∈ Fα1→(β1→FE′ (δ)),...,αn→(βn→FE′ (δ)),γ→FE′ (δ),FE(γ),FE′ (δ), we need to give:

〈〈−〉〉L M : Tα1→(β1→FE′ (δ)) × · · · × Tαn→(βn→FE′ (δ)) × Tγ→FE′ (δ) × TFE(γ) −→ KD(FE(γ))

We do so by projecting the last argument, which is a Lλ M term of type FE(γ) in the context Γ, and finding
its denotation using J−K.

〈〈M1, · · · ,Mn,Mη, N〉〉L M
Γ = JNK

We will do the same for the C symbols. For every Cα,β,E ∈ Fα→FE(β),FE(α→β), we give a:

〈〈−〉〉C : Tα→FE(β) → KD(α→FE(β))

by:
〈〈M〉〉CΓ = JMK

We can check that interreducibility is indeed a congruence for these semantic label maps: denotations are
preserved under reduction (Property 5.8), and therefore all the terms in an interreducibility class have the
same denotation. This means that we can extend these semantic label maps to T /�, the carrier of our quasi-
model (T /�,�). The semantic label maps must also be weakly monotonic. That is a condition that our
maps satisfy: whenever we haveM � N , then by Property 5.8, the denotations JMK and JNK for M ∈ M
and N ∈ N will be equal and therefore so will be the labels 〈〈M〉〉 and 〈〈N〉〉. Since, 〈〈M〉〉 = 〈〈N〉〉, we
have 〈〈M〉〉 ≥ 〈〈N〉〉. We have now built up enough structure to correctly label our IDTS with denotations.
Let us start with the alphabet.

Definition 7.35. Let Σ = (B,X ,F ,Z) be the alphabet of an IDTS (Σ,R) and Sf the chosen semantic label
sets. The alphabet of the labelled IDTS (Σ,R) is the IDTS alphabet Σ = (B,X ,F ,Z) where:

45



• For every symbol f ∈ Fα1,...,αn,β and for every label p in Sf , we will have fp ∈ Fα1,...,αn,β.

To complete our new IDTS, we will also have to transform the rules, so we will need a way to label
metaterms.

Definition 7.36. Let φ : Z → T /� be a term-generated assignment with φ = ! ◦θ. The labelling map
φL : MΣZ →MΣZ is the arrow in (SetF↓B)B defined by:

φL
τ,Γ(x) = x

φL
τ,Γ(Zα1,...,αn,β(t1, . . . , tn)) = Z(φL

α1,Γ(t1), . . . , φL
αn,Γ(tn))

φL
τ,Γ(f([ ~x1]t1, . . . , [ ~xn]tn)) = f 〈〈! θ

∗(t1),...,! θ∗(tn)〉〉fΓ([ ~x1]φL
βi,(Γ, ~x1: ~α1)(t1), . . . , [ ~xn]φL

βn,(Γ, ~xn: ~αn)(tn))

where f ∈ F ~α1⇒β1,..., ~αn⇒βn,τ .

The labelling map traverses an IDTS metaterm and replaces unlabelled function symbols from F with
labelled ones from F . Note that the term-generated assignment is not used to rewrite the metavariables:
the assignment has values in the carrier presheaf of our (V + Σ)-algebra and it can therefore be something
completely different than an IDTS term. The term-generated assignment φ = ! ◦θ is only used when labelling
a function symbol. The IDTS valuation θ is used to replace the metavariables in all of the arguments with
some specific terms and the resulting IDTS terms are then interpreted in our algebra T /� using ! (which
turns them into interreducibility classes of Lλ M terms). These interpretations are then given as arguments
to the semantic label map 〈〈−〉〉f , which chooses a label from the label set. Note also that there is no case
for bare abstraction ([x]t). In the theory of higher-order semantic labelling presented in [78], the IDTS is
assumed to not contain any bare abstractions: abstractions should always be arguments to function symbols.
This is the case in our IDTS Lλ Mτ . Knowing how to label metaterms, we can now label the rules of an IDTS.

Definition 7.37. Given an IDTS (Σ,R), a (V + Σ)-algebra M and a choice of semantic label sets Sf and
maps 〈〈−〉〉f , we define the rules of the labelled IDTS (Σ,R) with:

• R = {φL
τ,∅(l)→ φL

τ,∅ | l→ r : τ ∈ R, term-generated assignment φ : Z →M}

The labelled IDTS will multiply the number of rules. For every possible IDTS valuation of the free
metavariables of a rule, there will be a new rule in which the function symbols have been labelled using the
interpretations of their arguments. As we have done in 7.2, we will have to show that termination of this new
labelled system gives us termination of the unlabelled one. This is the object of the principal result in [78]
(Theorem 3.7):

Theorem 7.38. Higher-order semantic labelling LetM be a quasi-model for an IDTS (Σ,R) and (Σ,R)
the labelled IDTS with respect to M . Then (Σ,R) is terminating if and only if (Σ,R∪Decr) is terminating.

Definition 7.39. Given a labelled IDTS alphabet Σ with semantic label sets Sf , the rules of the IDTS
(Σ,Decr) (called decreasing rules) consist of:

fp([ ~x1]t1, . . . , [ ~xn]tn) −→ fq([ ~x1]t1, . . . , [ ~xn]tn)

where f ∈ F ~α1⇒β1,..., ~αn⇒βn,γ and p >Sf q.

The decreasing rules allow us to freely adjust the labels on function symbols to fit rewrite rules as long
as we do not increase them.

7.4.4 Verifying the General Schema
Now we will retrace the steps we have carried out in 7.3, this time with our semantically labelled system

Lλ Mτ .

1. every constructor is positive

2. no left-hand side of rule is headed by a constructor

3. both >B and >F are well-founded

46



4. statf = statg whenever f =F g

First we have to check off the assumptions (A.1) through (A.4), repeated above. The constructors of Lλ Mτ are
the same as the ones in Lλ Mτ and so we validate assumption (A.2). It also means that the induced ordering >B
is the same as before and it is therefore still well-founded, so we have the first half of assumption (A.3). Since
>B is still the same, then so is =B, which is used in the definition of positive constructors (Definition 7.18).
The constructors are therefore still positive as well and we get assumption (A.1). To verify the second half
of assumption (A.3) and assumption (A.4), we will need to investigate the ordering on function symbols >F
and it is here that we will reap the benefits of our labelling. We need to give a well-founded partial order ≥F
on the function symbols such that whenever we have a rule f(l1, . . . , ln) → r, then f ≥F g for all function
symbols g occurring in r. We propose the following relation:42

• L Mpop1,...,opn,γ,δ,E,E
′ >F L Mqop1,...,opn,γ,δ,E,E

′ if p >SL M q

• L Mop1,...,opn
>F opi

• L M >F ap

• L M >F λ

• Cpα,β,E >F Cqα,β,E if p >SC q

• C >F op

• C >F η

• C >F λ

Whenever we elide indices in the above (for labels, types or the operations in a handler), we assume that
they are universally quantified over. This relation is indeed a well-founded strict partial order: ap, op, η
and

−◦ are minimal elements and decreasing chains of L M or C symbols are all finite since the underlying
semantic label set orderings >Sf are well-founded. This means that our >F ordering validates the second
half of assumption (A.3). We also let ≥F be the reflexive closure of >F and then we validate assumption (A.4)
because f =F g only if f = g. We have checked off all of the assumptions and so now we need to check whether
the rewrite rules of our labelled IDTS Lλ Mτ all follow the General Schema. This boils down to checking
whether the ≥F order correctly describes the recursive behavior of our function definitions. Whenever we
use a function symbol g in the right-hand side r of a rule f(l1, . . . , ln) → r, we need to show that f ≥F g.
Furthermore, if f =F g, we need to show that the arguments passed to g are smaller than the arguments
l1, . . . , ln passed to f . However, thanks to the semantic labelling, we will be able to show that for every
rule f(l1, . . . , ln) → r, f >F g for any function symbol g occurring in r. We first check the rules in Decr.
These work out because >F contains the label ordering for both labelled function symbols, L M and C (i.e.
L Mp >F L Mq and Cp >F Cq whenever p > q).

L Mp(Mi . . . ,Mη, N)→ L Mq(Mi . . . ,Mη, N)

Cp(M)→ Cq(M) whenever p > q

Then we check the rules that correspond to reductions in Lλ M, looking at either the original formulation on
Figure 4 or the CRS/IDTS versions on Figure 5. For most of the rules, it is just a matter of checking that
only certain symbols appear in the right-hand sides of certain rules. However, in rules L op M, L op′ M and Cop,
we have the same (unlabelled) symbol on both the left-hand side and the right-hand side of the rule. In these
cases, we will need to prove that the label on the right-hand side occurrence is strictly smaller than the label
on the left-hand side occurrence. We will start with the rules L op M and L op′ M.

L (opi:Mi)i∈I , η:Mη Mp (opj Np (λx.Nc))→Mj Np (λx. L (opi:Mi)i∈I , η:Mη Mq Nc) where j ∈ I
L (opi:Mi)i∈I , η:Mη Mp (opj Np (λx.Nc))→ opj Np (λx. L (opi:Mi)i∈I , η:Mη Mq Nc) where j /∈ I

42In Subsection 7.3, we said that the ordering ≥F is induced by the form of the rewrite rules. Actually, we are free to define
≥F ourselves as long as it validates the assumptions and the General Schema.

47



In both cases, the L M on the left-hand side is applied to Γ ` opj Np (λx.Nc) : FE(γ) whereas the L M on the
right-hand side is applied to Γ, x : βj ` Nc : FE(γ) where opj : αj � βj ∈ E. The label p of the left L M
will be the denotation Jopj Np (λx.Nc)K whereas the label q of the right L M will be the denotation JNcK. The
ordering on these labels is the >D(FE(γ)) ordering. For the first to be greater than the second, we will need
to prove for all e ∈ JΓK and all d ∈ JβjK that Jopj Np (λx.Nc)K(e) >JFE(γ)K JNcK(e[x := d]).

Jopj Np (λx.Nc)K(e) = opj(JNpK(e), λX. (JNcK(e[x := X])))

From the definition of >JFE(γ)K (Definition 7.30), we know that for all d ∈ JβjK, opj(JNpK(e), (λX.
JNcK(e[x := X]))) >JFE(γ)K JNcK(e[x := d]) which is exactly what we wanted to show. Now we look at the
Cop rule.

Cp (λx. opMp (λy.Mc))→ opMp (λy. Cq (λx.Mc))

On the left-hand side, C is applied to Γ ` λx. opMp (λy.Mc) : γ → FE(δ), and on the right-hand side,
it is applied to Γ, y : β ` λx.Mc : γ → FE(δ) where op : α � β ∈ E. The label p of the left C is
the denotation Jλx. opMp (λy.Mc)K while the label q of the right-hand side C is Jλx.McK. These labels
are ordered by the >D(γ→FE(δ)) ordering under which p > q if for all e ∈ JΓK and all d ∈ JβK, we have
p(e) >Jγ→FE(δ)K q(e[y := d]). Then to show that p(e) >Jγ→FE(δ)K q(e[y := d]), we will need to show that they
are both functions and that for all c ∈ JγK, we have p(e)(c) >FE(δ) q(e[y := d])(c).

Jλx. opMp (λy.Mc)K(e)(c) = (λX. (JopMp (λy.Mc)K(e[x := X])))(c)

= JopMp (λy.Mc)K(e[x := c])

= op(JMpK(e[x := c]), λY. (JMcK(e[x := c, y := Y ])))

Jλx.McK(e[y := d])(c) = (λX. (JMcK(e[y := d, x := X])))(c)

= JMcK(e[y := d, x := c])

= JMcK(e[x := c, y := d])

We elaborate both of the expressions. The last step in rewriting Jλx.McK(e[y := d])(c) is due to e[x := X, y :=
Y ] = e[y := Y, x := X] for distinct variables x and y. From the definition of >FE(δ) (Definition 7.30), we
get that for all d ∈ JβK, op(JMpK(e[x := c]), λY. (JMcK(e[x := c, y := Y ]))) > (JMcK)(e[x := c, y := d]), which
is exactly what we need. Having shown that the function symbols that head the left-hand sides of rules are
strictly larger (in a well-founded poset) than the function symbols that occur in the right-hand sides gives
us termination for the labelled IDTS Lλ Mτ via Theorem 7.12.

Theorem 7.40. (Termination of Lλ Mτ ) The reduction relation induced by the labelled IDTS Lλ Mτ is
terminating.43

Proof. Proof given above by the application of the General Schema presented in [77].

Corollary 7.41. (Termination of Lλ Mτ ) The reduction relation induced by the IDTS Lλ Mτ is terminating.

Proof. By Theorem 7.40 and Theorem 7.38.

Corollary 7.42. (Termination of Lλ M−η)
The reduction relation of Lλ M without η-reduction is terminating.

Proof. By Corollary 7.41 and Lemma 7.11.

7.5 Putting η Back in Lλ M
We have shown termination for Lλ M−η. We know that the η-reduction on Lλ M is terminating: it decreases

the number of λ-abstractions in the term by one in each step. We would now like to show that the combination
of Lλ M−η and η is terminating as well. Note that we could not have used the General Schema to prove that
Lλ M with η is terminating. The General Schema does not admit η-reduction. The left-hand side of every
rule needs to be headed by a function symbol which is not a contructor. If we tried declaring that λ is not a

43This result can be extended to Lλ M with sums and products. The pair construction 〈−,−〉 and the injections inl and inr
will be the constructors for α× β and α+ β, respectively, with α <B α× β, β <B α× β, α <B α+ β and β <B α+ β. All of
the rules defining case analysis and projections π1 and π2 satisfy the General Schema.

48



constructor, we would run into problems with the notion of accessibility. When accessing the metavariables
of the left-hand side of a rule, we can access all of the arguments of a constructor but we can only access the
arguments of a non-constructor symbol that has a basic type. The type of the argument of λα,β is α ⇒ β
and so we could not access the arguments of λ in our rules (which would break the β rule, η rule and the C
rules). Termination is generally not a modular property of higher-order rewriting systems [82]. Our plan will
be to show that η-reduction does not interfere with the rewrite rules of Lλ M−η. Then we will be able to take
any reduction chain in Lλ M and pull out from it a chain which only uses rules from Lλ M−η. Since this chain
must be finite due to the termination of Lλ M−η, we will have a proof of finiteness for the reduction chain in
Lλ M.

Definition 7.43. An n-ary evaluation context Cn is a Lλ M term in which n disjoint subterms have been
replaced with the symbol []. We write Cn[M ] for the term in which all of the occurrences of the symbol [] have
been replaced with M .

Lemma 7.44. Exchanging η with Lλ M−η For every well-typed reduction chain s →η t →Lλ M−η u, there
exists a well-typed reduction chain s→+

Lλ M−η
t′ →∗η u.

Proof. We will consider all the possible relative positions of the contractum of the first reduction and the
redex for the second reduction within t.

• Assume the two are disjoint, i.e. s = C[M,N ], t = C[M ′, N ] with M →η M
′ and u = C[M ′, N ′] with

N →Lλ M−η N
′. Then we can easily reorder the two reductions, producing the chain C[M,N ] →Lλ M−η

C[M,N ′]→η C[M ′, N ′].

• Assume that the contractum of the first reduction contains the redex for the second reduction, i.e.
s = C[M ], t = C[D[N ]] withM →η D[N ] and u = C[D[N ′]] with N →Lλ M−η N

′. SinceM is an η-redex,
M = λx.D[N ]x. We can now build the chain C[λx.D[N ]x]→Lλ M−η C[λx.D[N ′]x]→η C[D[N ′]].

• Assume that the redex for the second reduction contains the contractum of the first reduction, i.e.
s = C[D[M ]], t = C[D[M ′]] with M →η M

′ and u = C[N ′] with D[M ′]→Lλ M−η N
′. Let R be the rule

used in D[M ′]→Lλ M−η N . We will now distinguish two scenarios:

– The occurrence of M ′ in D[M ′] is matched by a metavariable in the left-hand side of rule R.
The R-redex N ′ of D[M ′] will be a term En[M ′, . . . ,M ′] where En is an n-ary context for some
n which depends on the rule R and the metavariable that was matched.44 Furthermore, we can
replaceM ′ with any other term of the same type and the reduction will still go through, e.g. notably
D[M ] →R En[M, . . . ,M ]. We can now build our chain C[D[M ]] →Lλ M−η C[En[M, . . . ,M ]] →∗η
C[En[M ′, . . . ,M ′]] = C[N ′].

– The occurrence of M ′ in D[M ′] is not matched by a metavariable.
M ′ is an η-contractum and must therefore have a function type. If we investigate the left-hand
sides of all the rewriting rules in Lλ M−η and search for terms that have a function type, we end
up with:45

∗ D = []N and R = β

∗ D = C [] and R = Cop or R = Cη
We note that in all of these rules, the symbol which replaces [] must be a λ-abstraction. Therefore,
if D[M ′]→R N , then M ′ = λx.M ′′. From M →η M

′, we also know that M = λx.M ′ x. We can
replace this step by a β-reduction: M = λx. (λx.M ′′)x→β λx.M

′′ = M ′. The β rule is a part of
Lλ M−η and so we can now build the chain C[D[M ]]→Lλ M−η C[D[M ′]]→Lλ M−η C[N ′].

Lemma 7.45. Pulling a Lλ M−η link from a Lλ M chain
Let t1 → t2 → . . . be an infinite reduction chain in Lλ M. Then there exists another infinite reduction

chain u1 → u2 → . . . in Lλ M and t1 →Lλ M−η u1.

44Rules like L η M can delete metavariables (n = 0 for the metavariable Mη), while others, like L M, can copy them (n = 2 for
the variable Mj)

45The case of D = [] is not considered, because it is covered by the case where the contractum of the first reduction containts
the redex of the second reduction.

49



Proof. The goal of this lemma is to show that we can find an Lλ M−η link in every infinite Lλ M and move it
to the beginning of the chain. An infinite chain in Lλ M must use a rule from Lλ M−η, otherwise it would be
an η chain and those cannot be infinite since η is terminating.

Let tk → tk+1 be the first link in the chain that uses a rule from Lλ M−η. We will prove this lemma by
induction on k.

If k = 1, then we can use the chain t2 → t3 → . . . which also uses rules from Lλ M−η infinitely often and
which satisfies t1 →Lλ M−η t2.

If k > 1, then we replace the segment tk−1 →η tk →Lλ M−η tk+1 with the segment tk−1 →+
Lλ M−η

tk →∗η tk+1

using Lemma 7.44. By induction hypothesis, the chain t1 → . . . → tk−1 →+
Lλ M−η

tk →∗η tk+1 → tk+2 → . . .

gives us the necessary chain u1 → u2 → . . . with t1 →Lλ M−η u1.

Theorem 7.46. Termination of Lλ M
The reduction relation → on Lλ M terms given by the rules in Figure 4 is terminating.

Proof. We will prove this theorem by contradiction. Let t1 → t2 → . . . be an infinite reduction chain in Lλ M.
Since we have an infinite chain in Lλ M, we can iterate Lemma 7.45 to get an infinite sequence of chains such
that the first element of every chain reduces via Lλ M−η to the first element of the next chain in the sequence.
The first elements of these chains form an infinite reduction chain Lλ M−η, which is in contradiction with the
termination of Lλ M−η.

Theorem 7.47. Strong normalization of Lλ M
There are no infinite reduction chains in Lλ M and all maximal reduction chains originating in a Lλ M term

M terminate in the same term, the normal form of M .

Proof. The lack of infinite reduction chains is due to termination of Lλ M (Theorem 7.46) and the fact that
all maximal reduction chains lead to the same term is entailed by confluence of Lλ M (Theorem 6.18).

8 Comparison with Existing Work and Conclusion

8.1 Calculus
Lλ M can be compared to several existing calculi and implementations of effects and handlers:

• System F (i.e. the polymorphic λ-calculus or the second-order λ-calculus)

Lλ M extends the simply-typed λ-calculus with computation types FE(α). Computations are algebraic
expressions and as such can be expressed as inductive data types.46

In Lλ M, a computation of type FE(α) can also be given the type FE]E′(α), where E]E′ is an extension
of E. However, in the direct encoding of Lλ M into System F, for every effect signature E ] E′ that we
would like to ascribe to a computation, we would end up with a different term. On the other hand, in
Lλ M we can keep using the same term. This lets us give a semantics to lexical items that does not have
to change when new effects are introduced into the theory.

• Eff

The Eff language [25] is an ML-like programming language with effects and handlers. Like in ML,
effects can be freely used within any expression, without any term encoding (we say that the calculus
is direct-style). For this to work correctly, the calculus has a fixed evaluation order, which, following
ML, is call-by-value.

We have used Eff in our first explorations of effects and handlers in natural language semantics [83],
benefiting from the existing implementation. However, we have found that besides call-by-value, call-
by-name evaluation is also common, notably on the boundaries of lexical items. Call-by-name can be
simulated in call-by-value by passing around thunks (functions of type 1 → α for some α). However,
in the presence of both call-by-name and call-by-value, we have opted for an indirect presentation of
effects using monads which favors neither call-by-value nor call-by-name and that lets us manipulate
the order of execution using �=.

46An inductive type is a recursive type with positive constructors. In 7.3, we have seen that a computation type FE(α) has
positive constructors η and op for every op ∈ E.

50



Finally, we note that Eff is a general-purpose programming language which includes general recursion
(let rec) and therefore it is not terminating, contrary to Lλ M.

• λeff

The λeff calculus [23] is a call-by-push-value λ-calculus [58] with operations and handlers. Call-by-
push-value is special in introducing two kinds of terms: computations and values. The intuition behind
the two is that computations do, whereas values are. Two of the crucial things that computations do
are to pop values from a stack (that is what abstractions do) and to push values to the stack (that
is what applications do). Therefore, applications and abstractions are considered as computations.
Furthermore, the function in an application term must be a computation term (which is expected to,
among other things, pop a value from the stack), whereas the argument, which is the value to be pushed
to the stack, must be a value term.

This might make it look like that call-by-push-value is like call-by-value since all the arguments passed
to functions are values. However, in true call-by-value, we can use complex expressions as arguments
and we expect that the reduction system will evaluate the arguments down to values before passing them
to the function. To do this in call-by-push-value, we have to implement this manually by evaluating the
argument computation down to a value x and then passing the value x to the function in question (i.e.
in λeff syntax let x← M in F x). In Lλ M, this amounts to the term M �= F , where M : FE(α) and
F : α→ FE(β). To implement call-by-name, computations can be mapped to values by wrapping them
in thunks, which are primitive constructs in call-by-push-value (in λeff syntax F {M}, where M is a
computation and the thunk {M} is a value). In Lλ M, the corresponding term is F M , where M : FE(α)
and F : FE(α)→ FE(β).

λeff presents an intriguing alternative to Lλ M. The call-by-push-value calculus is flexible enough to
accommodate both call-by-name and call-by-value. λ-abstractions and operations are both treated as
effects, which might make the definition of the C operator, which permutes λ with operations, more
intuitive.47 λeff also has a well-developed metatheory, developed in [23]: it is both confluent (due to its
reduction relation being deterministic) and terminating (thanks to its effect type system).

λeff served as an inspiration to the design of Lλ M; notably, Lλ M’s effect system is based on that of
λeff . However, Lλ M diverges from λeff in that it is a proper extension of the simply-typed λ-calculus
(STLC): every term, type, typing judgment or reduction in STLC is also a term, type, typing judgment
or reduction in Lλ M. For example, the STLC term λx. x is not a λeff term. Its closest counterparts in
λeff would be either `∅ λx. return x : A→ F (A), where A is a value type, or `E λx. x! : UE(C)→ C,
where C is a computation type (a function or an effectful computation). On the other hand, in Lλ M,
` λx. x : α→ α is a valid term for any α, be it an atomic type such as o, a function type such as ι→ o
or a computation type such as FE(o).

The fact that Lλ M is an extension of STLC motivates its use for two reasons. First, STLC is the
lingua franca of formal semantics. Lλ M already introduces a lot of new notation and the use of effects
in natural language semantics is not yet ubiquitous. By basing Lλ M on STLC, we narrow the gap
between the common practice of formal semantics and our use of effects and monads, hopefully making
the technique more approachable to researchers in the field. Second, the purpose of the calculus is to
write down computations that produce logical representations. By having STLC as a subpart of Lλ M,
terms of Church’s simple theory of types (i.e. formulas of higher-order logic) are already included in
our calculus and we can reuse the same notions of λ-abstraction and variables. In λeff , we would either
need to add constructors for logic formulas (i.e. having some logic as an object language over the terms
of which the meta language λeff would calculate) or use call-by-push-value computations in our logical
representations.

• Extensible Effects of Kiselyov et al [21] and other implementations of effect systems in pure functional
programming languages (Haskell, Idris . . . )

47The extra typing rule for the C construction in λeff would look like this:

Γ `E M : A→ C

Γ `E CM : F (U∅(A→ C))

51



Our adoption of a free monad and effect handlers was motivated by the paper of Kiselyov, Sabry
and Swords on extensible effects [21]. The paper presented a Haskell library for encoding effectful
computations, combining computations with diverse effects and interpreting them by composing a
series of modular interpreters. The library used a free monad (in the style of [8]): a computation is
either a pure value (η in Lλ M) or a request to perform some kind of effect (an operation in Lλ M). These
requests are then handled by interpreters which behave similarly to effect handlers (the authors of [21]
also relate handlers to the technique of “extensible denotational language specifications” published in
1994 by Cartwright and Felleisen [12]). The paper demonstrated that the approach is more flexible when
it comes to combining interacting effects than the existing state-of-the-art technique of using monad
transformers. A more refined version of the approach was published in [22] and similar implementations
of effects and handlers exist also in other pure functional programming languages such as Idris [24].
The extensible effects discipline provides the tools that we would like to use to build a modular semantics
of natural language. However, we do not want our formal semantics to depend on the semantics
of a large programming language such as Haskell48 or Idris. We created Lλ M to reap the benefits
of extensible effects without incurring the complexity of using a language like Haskell as our meta
language. Lλ M extends STLC only with computation types, two constructors (η and operations), two
destructors (handlers and

−◦ ) and the C operator. Unlike Haskell, our extension of STLC preserves
strong normalization.

We have introduced Lλ M, a formal calculus that extends the simply-typed λ-calculus (STLC) with effects
and handlers. The definition of Lλ M is given in Section 2. Lλ M introduces a new family of types into STLC,
the computation types, and new terms, which are built out of computation constructors and destructors. We
gave a type system to the calculus which extends that of STLC and a reduction semantics which combines
the STLC β and η reductions with definitions of the new function symbols. In our exposition of the calculus,
we have given two perspectives on the intended meaning of the terms: computations can be seen as programs
that interact with a system through a selected set of “system calls” (operations) or they can be seen as
algebraic expressions built upon an infinitary algebraic signature.

We then devoted most of the article to the development of the metatheory of Lλ M. In Section 3, concepts
which are primitive in some other languages (closed handlers and the �= operator) were defined within Lλ M
and their typing rules and reduction rules were derived from those of Lλ M. In Section 5, we connected the
calculus to the theory of monads by identifying a monad in the category in which we interpret Lλ M with our
denotational semantics. In Section 4, we proved subject reduction of Lλ M. This result gives a basic coherence
between the type system of Lλ M and the reduction semantics, guaranteeing that types are preserved under
reduction. This is complemented by a proof of progress, which states that terms which do not use any of the
partial operators and which can no longer be reduced must have a very specific shape.

We followed this with another fundamental property: strong normalization. Its proof was split into two
parts: confluence (proved in Section 6) and termination (proved in Section 7). The proofs of both confluence
and termination proceed by similar strategies: prove the property for the calculus without η-reduction by
applying a general result and then extend the property to the complete calculus. In the case of confluence,
the general result is the confluence of orthogonal Combinatory Reduction Systems [74]. In the case of
termination, we rely on two techniques: the termination of the reduction relation of Inductive Data Type
Systems that validate the General Schema [77] and Higher-Order Semantic Labelling [78], which lets us use
our denotational semantics to label the terms of our calculus so that it validates the General Schema.

Finally we briefly discuss the comparison of Lλ M with other existing frameworks.
Andrej Bauer made the analogy that effects and handlers are to delimited continuations what while loops

or if-then-else statements are to gotos [84], continuations themselves having proven to be a useful tool in
natural language semantics [85, 86, 3, 87, 88, 89].

References

[1] B. H. Partee, The development of formal semantics in linguistic theory.

[2] C. Shan, Monads for natural language semantics, arXiv preprint cs/0205026.
URL http://arxiv.org/pdf/cs/0205026

48The implementations of extensible effects in Haskell make use of a wealth of language extensions which are not even part of
the Haskell standard.

52

http://arxiv.org/pdf/cs/0205026
http://arxiv.org/pdf/cs/0205026


[3] C. Shan, Linguistic side effects, in: In Proceedings of the Eighteenth Annual IEEE Symposium on Logic
and Computer Science (LICS 2003) Workshop on Logic and Computational, University Press, 2005, pp.
132–163.

[4] C. Shan, Linguistic side effects, Ph.D. thesis, Harvard University Cambridge, Massachusetts (2005).

[5] S. Charlow, On the semantics of exceptional scope, Ph.D. thesis, New York University (2014).

[6] H. Kamp, U. Reyle, From discourse to logic: Introduction to modeltheoretic semantics of natural lan-
guage, formal logic and discourse representation theory, no. 42, Kluwer Academic Pub, 1993.

[7] J. Groenendijk, M. Stokhof, Dynamic predicate logic, Linguistics and philosophy 14 (1) (1991) 39–100.

[8] W. Swierstra, Data types à la carte, Journal of functional programming 18 (04) (2008) 423–436.

[9] S. Liang, P. Hudak, M. Jones, Monad transformers and modular interpreters, in: Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ACM, 1995, pp.
333–343.

[10] N. Wu, Transformers, handlers in disguise, haskell eXchange 2015, recording at https://skillsmatter.
com/skillscasts/6733-transformers-handlers-in-disguise (2015).
URL https://skillsmatter.com/skillscasts/6733-transformers-handlers-in-disguise

[11] D. Lewis, General semantics, Synthese 22 (1) (1970) 18–67.

[12] R. Cartwright, M. Felleisen, Extensible denotational language specifications, in: Theoretical Aspects of
Computer Software, Springer, 1994, pp. 244–272.
URL http://dx.doi.org/10.1007/3-540-57887-0_99

[13] M. Hyland, G. Plotkin, J. Power, Combining effects: Sum and tensor, Theoretical Computer Science
357 (1) (2006) 70–99.

[14] G. Plotkin, M. Pretnar, Handlers of algebraic effects, in: Programming Languages and Systems, Springer,
2009, pp. 80–94.
URL http://dx.doi.org/10.1007/978-3-642-00590-9_7

[15] M. Pretnar, Logic and handling of algebraic effects, Ph.D. thesis, The University of Edinburgh (2010).
URL http://matija.pretnar.info/pdf/the-logic-and-handling-of-algebraic-effects.pdf

[16] G. D. Plotkin, M. Pretnar, Handling algebraic effects, arXiv preprint arXiv:1312.1399.

[17] G. Plotkin, J. Power, Computational effects and operations: An overview, Electronic Notes in Theoretical
Computer Science 73 (2004) 149–163, proceedings of the Workshop on Domains VI. doi:https://doi.
org/10.1016/j.entcs.2004.08.008.
URL https://www.sciencedirect.com/science/article/pii/S1571066104050893

[18] M. Pretnar, An introduction to algebraic effects and handlers. invited tutorial paper, Electronic notes
in theoretical computer science 319 (2015) 19–35.

[19] D. Hillerström, S. Lindley, Shallow effect handlers, in: Asian Symposium on Programming Languages
and Systems, Springer, 2018, pp. 415–435.

[20] D. Biernacki, M. Piróg, P. Polesiuk, F. Sieczkowski, Abstracting algebraic effects, Proceedings of the
ACM on Programming Languages 3 (POPL) (2019) 1–28.

[21] O. Kiselyov, A. Sabry, C. Swords, Extensible effects: an alternative to monad transformers, in: Pro-
ceedings of the 2013 ACM SIGPLAN symposium on Haskell, ACM, 2013, pp. 59–70.
URL http://dx.doi.org/10.1145/2578854.2503791

[22] O. Kiselyov, H. Ishii, Freer monads, more extensible effects, in: ACM SIGPLAN Notices, Vol. 50, ACM,
2015, pp. 94–105.

53

https://skillsmatter.com/skillscasts/6733-transformers-handlers-in-disguise
https://skillsmatter.com/skillscasts/6733-transformers-handlers-in-disguise
https://skillsmatter.com/skillscasts/6733-transformers-handlers-in-disguise
https://skillsmatter.com/skillscasts/6733-transformers-handlers-in-disguise
http://dx.doi.org/10.1007/3-540-57887-0_99
http://dx.doi.org/10.1007/3-540-57887-0_99
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://matija.pretnar.info/pdf/the-logic-and-handling-of-algebraic-effects.pdf
http://matija.pretnar.info/pdf/the-logic-and-handling-of-algebraic-effects.pdf
https://www.sciencedirect.com/science/article/pii/S1571066104050893
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2004.08.008
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2004.08.008
https://www.sciencedirect.com/science/article/pii/S1571066104050893
http://dx.doi.org/10.1145/2578854.2503791
http://dx.doi.org/10.1145/2578854.2503791


[23] O. Kammar, S. Lindley, N. Oury, Handlers in action, in: Proceedings of the 18th ACM SIGPLAN
international conference on Functional programming, ACM, 2013, pp. 145–158.
URL http://dx.doi.org/10.1145/2544174.2500590

[24] E. Brady, Programming and reasoning with algebraic effects and dependent types, in: Proceedings of the
18th ACM SIGPLAN international conference on Functional programming, ACM, 2013, pp. 133–144.

[25] A. Bauer, M. Pretnar, Programming with algebraic effects and handlers, J. Log. Algebr. Meth. Program.
84 (1) (2015) 108–123. doi:10.1016/j.jlamp.2014.02.001.
URL http://dx.doi.org/10.1016/j.jlamp.2014.02.001

[26] S. Lindley, C. McBride, C. McLaughlin, Do be do be do, draft available at http://homepages.inf.ed.
ac.uk/slindley/papers/frankly-draft-july2016.pdf (2016).
URL http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf

[27] S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, A. Madhavapeddy, Effective concurrency through
algebraic effects, in: OCaml Workshop, 2015, p. 13.

[28] O. Kiselyov, K. Sivaramakrishnan, Eff directly in ocaml, in: ML Workshop 2016, 2018, p. 23–58. doi:
10.4204/EPTCS.285.2.

[29] D. Hillerström, S. Lindley, K. Sivaramakrishnan, Compiling links effect handlers to the ocaml backend,
in: ML Workshop, 2016, pp. 1–2.

[30] J. I. Brachthäuser, P. Schuster, K. Ostermann, Effect handlers for the masses, Proceedings of the ACM
on Programming Languages 2 (OOPSLA) (2018) 1–27.

[31] D. Leijen, Implementing algebraic effects in c, in: Asian Symposium on Programming Languages and
Systems, Springer, 2017, pp. 339–363.

[32] M. Hyland, J. Power, The category theoretic understanding of universal algebra: Lawvere theories and
monads, Electronic Notes in Theoretical Computer Science 172 (2007) 437–458.
URL http://dx.doi.org/10.1016/j.entcs.2007.02.019

[33] F. W. Lawvere, Algebraic theories, algebraic categories, and algebraic functors, in: The theory of models,
Elsevier, 2014, pp. 413–418.

[34] F. Bonchi, D. Pavlovic, P. Sobocinski, Functorial semantics for relational theories, arXiv preprint
arXiv:1711.08699.

[35] J. C. Baez, C. Williams, Enriched lawvere theories for operational semantics, arXiv preprint
arXiv:1905.05636.

[36] T. Letan, Y. Régis-Gianas, P. Chifflier, G. Hiet, Modular verification of programs with effects and effects
handlers, Formal Aspects of Computing (2020) 1–24.

[37] P. E. de Vilhena, F. Pottier, A separation logic for effect handlers, Proceedings of the ACM on Pro-
gramming Languages 5 (POPL) (2021) 1–28.

[38] O. Kiselyov, S.-C. MU, A. Sabry, Not by equations alone: Reasoning with extensible effects, Journal of
Functional Programming 31.

[39] Z. LUKSIC, M. PRETNAR, Local algebraic effect theories, Journal of Functional Programming 30.
doi:10.1017/s0956796819000212.
URL http://dx.doi.org/10.1017/S0956796819000212

[40] W. Swierstra, T. Baanen, A predicate transformer semantics for effects (functional pearl), Proceedings
of the ACM on Programming Languages 3 (ICFP) (2019) 1–26.

[41] D. Biernacki, M. Piróg, P. Polesiuk, F. Sieczkowski, Handle with care: relational interpretation of
algebraic effects and handlers, Proceedings of the ACM on Programming Languages 2 (POPL) (2017)
1–30.

54

http://dx.doi.org/10.1145/2544174.2500590
http://dx.doi.org/10.1145/2544174.2500590
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://dx.doi.org/10.1016/j.jlamp.2014.02.001
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf
http://dx.doi.org/10.4204/EPTCS.285.2
http://dx.doi.org/10.4204/EPTCS.285.2
http://dx.doi.org/10.1016/j.entcs.2007.02.019
http://dx.doi.org/10.1016/j.entcs.2007.02.019
http://dx.doi.org/10.1016/j.entcs.2007.02.019
http://dx.doi.org/10.1017/S0956796819000212
http://dx.doi.org/10.1017/s0956796819000212
http://dx.doi.org/10.1017/S0956796819000212


[42] C. Matache, S. Staton, A sound and complete logic for algebraic effects, in: Foundations of Software
Science and Computation Structures: 22nd International Conference, FOSSACS 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6–11, 2019, Proceedings 22, Springer, 2019, pp. 382–399.

[43] D. Ahman, Handling fibred algebraic effects, Proc. ACM Program. Lang. 2 (POPL). doi:10.1145/
3158095.
URL https://doi.org/10.1145/3158095

[44] R. P. Pieters, E. Rivas, T. Schrijvers, Generalized monoidal effects and handlers, Journal of Functional
Programming 30.

[45] D. Biernacki, M. Piróg, P. Polesiuk, F. Sieczkowski, Abstracting algebraic effects, Proc. ACM Program.
Lang. 3 (POPL). doi:10.1145/3290319.
URL https://doi.org/10.1145/3290319

[46] D. Hillerström, S. Lindley, R. Atkey, Effect handlers via generalised continuations, Journal of Functional
Programming 30. doi:10.1017/S0956796820000040.

[47] S. Kawahara, Y. Kameyama, One-shot algebraic effects as coroutines, in: A. Byrski, J. Hughes (Eds.),
Trends in Functional Programming, Springer International Publishing, Cham, 2020, pp. 159–179.

[48] S. L. P. Jones, Haskell 98 language and libraries: the revised report, Cambridge University Press, 2003.

[49] M. Gordon, R. Milner, L. Morris, M. Newey, C. Wadsworth, A metalanguage for interactive proof in
lcf, in: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, 1978, pp. 119–130.

[50] R. Milner, Implementation and applications of scott’s logic for computable functions, ACM sigplan
notices 7 (1) (1972) 1–6.

[51] D. Hillerström, S. Lindley, R. Atkey, K. Sivaramakrishnan, Continuation passing style for effect handlers.

[52] E. Moggi, Notions of computation and monads, Information and computation 93 (1) (1991) 55–92.
URL http://dx.doi.org/10.1016/0890-5401(91)90052-4

[53] P. Wadler, The essence of functional programming, in: Proceedings of the 19th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ACM, 1992, pp. 1–14.

[54] M. Felleisen, M. Wand, D. Friedman, B. Duba, Abstract continuations: a mathematical semantics for
handling full jumps, in: Proceedings of the 1988 ACM conference on LISP and functional programming,
ACM, 1988, pp. 52–62.

[55] M. P. Jones, Functional programming with overloading and higher-order polymorphism, in: International
School on Advanced Functional Programming, Springer, 1995, pp. 97–136.

[56] mtl: Monad classes, using functional dependencies, http://hackage.haskell.org/package/mtl, ac-
cessed: 2016-07-22.

[57] E. Meijer, M. Fokkinga, R. Paterson, Functional programming with bananas, lenses, envelopes and
barbed wire, in: Functional Programming Languages and Computer Architecture, Springer, 1991, pp.
124–144.

[58] P. B. Levy, Call-by-push-value: A subsuming paradigm, in: Typed Lambda Calculi and Applications,
Springer, 1999, pp. 228–243.

[59] P. de Groote, On logical relations and conservativity.

[60] S. Lindley, Algebraic effects and effect handlers for idioms and arrows, in: Proceedings of the 10th ACM
SIGPLAN workshop on Generic programming, ACM, 2014, pp. 47–58.

[61] C. McBride, R. Paterson, Applicative programming with effects, Journal of functional programming
18 (01) (2008) 1–13.

55

https://doi.org/10.1145/3158095
http://dx.doi.org/10.1145/3158095
http://dx.doi.org/10.1145/3158095
https://doi.org/10.1145/3158095
https://doi.org/10.1145/3290319
http://dx.doi.org/10.1145/3290319
https://doi.org/10.1145/3290319
http://dx.doi.org/10.1017/S0956796820000040
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://hackage.haskell.org/package/mtl


[62] B. Knaster, A. Tarski, Un théoreme sur les fonctions d’ensembles, Ann. Soc. Polon. Math 6 (133) (1928)
2013134.

[63] A. Tarski, et al., A lattice-theoretical fixpoint theorem and its applications, Pacific journal of Mathe-
matics 5 (2) (1955) 285–309.

[64] S. C. Kleene, Introduction to metamathematics.

[65] E. Moggi, An abstract view of programming languages, University of Edinburgh, Department of Com-
puter Science, Laboratory for Foundations of Computer Science, 1990.

[66] V. Balat, R. Di Cosmo, M. Fiore, Extensional normalisation and type-directed partial evaluation for
typed lambda calculus with sums, ACM SIGPLAN Notices 39 (1) (2004) 64–76.

[67] C. Unger, Dynamic semantics as monadic computation, in: JSAI International Symposium on Artificial
Intelligence, Springer, 2011, pp. 68–81.

[68] L. Champollion, Back to events: More on the logic of verbal modification, University of Pennsylvania
Working Papers in Linguistics 21 (1) (2015) 7.

[69] G. Giorgolo, A. Asudeh, M. Butt, T. H. King, Multidimensional semantics with unidimensional glue
logic, Proceedings of LFG11 (2011) 236–256.

[70] G. Giorgolo, A. Asudeh, Monads for conventional implicatures, in: Proceedings of sinn und bedeutung,
Vol. 16, 2012, pp. 265–278.

[71] G. Giorgolo, A. Asudeh, Monads as a solution for generalized opacity, EACL 2014 (2014) 19.

[72] G. Giorgolo, A. Asudeh, Natural language semantics with enriched meanings (2015).

[73] C. Barker, D. Bumford, Monads for natural language (2015).

[74] J. W. Klop, V. Van Oostrom, F. Van Raamsdonk, Combinatory reduction systems: introduction and
survey, Theoretical computer science 121 (1) (1993) 279–308.

[75] J. W. Klop, et al., Term rewriting systems, Handbook of logic in computer science 2 (1992) 1–116.

[76] F. Blanqui, J.-P. Jouannaud, M. Okada, Inductive-data-type systems, Theoretical Computer Science
272 (1) (2002) 41–68.

[77] F. Blanqui, Termination and confluence of higher-order rewrite systems, in: Rewriting Techniques and
Applications, Springer, 2000, pp. 47–61.

[78] M. Hamana, Higher-order semantic labelling for inductive datatype systems, in: Proceedings of the 9th
ACM SIGPLAN international conference on Principles and practice of declarative programming, ACM,
2007, pp. 97–108.

[79] W. W. Tait, Intensional interpretations of functionals of finite type i, The journal of symbolic logic
32 (02) (1967) 198–212.

[80] M. P. Fiore, G. Plotkin, D. Turi, Abstract syntax and variable binding.

[81] N. G. De Bruijn, Lambda calculus notation with nameless dummies, a tool for automatic formula manip-
ulation, with application to the church-rosser theorem, in: Indagationes Mathematicae (Proceedings),
Vol. 75, Elsevier, 1972, pp. 381–392.

[82] C. Appel, V. v. Oostrom, J. Grue Simonsen, Higher-order (non-) modularity, Logic Group Preprint
Series 284 (2010) 1–26.

[83] J. Maršík, M. Amblard, Algebraic effects and handlers in natural language interpretation, in: Natural
Language and Computer Science, 2014.

[84] A. Bauer, Lambda the ultimate — programming with algebraic effects and handlers, personal Commu-
nication (2012).
URL http://lambda-the-ultimate.org/node/4481#comment-69863

56

http://lambda-the-ultimate.org/node/4481#comment-69863
http://lambda-the-ultimate.org/node/4481#comment-69863


[85] P. de Groote, Type raising, continuations, and classical logic, in: Proceedings of the thirteenth Amster-
dam Colloquium, 2001.

[86] C. Barker, Continuations and the nature of quantification, Natural language semantics 10 (3) (2002)
211–242.
URL http://dx.doi.org/10.1023/A:1022183511876

[87] P. de Groote, Towards a montagovian account of dynamics, in: Proceedings of SALT, Vol. 16, 2006.
URL http://elanguage.net/journals/salt/article/download/16.1/1791

[88] C. Barker, Continuations in natural language.

[89] C. Barker, C. Shan, Continuations and natural language, Vol. 53, Oxford University Press, USA, 2014.

[90] D. Sitaram, Handling control, in: ACM SIGPLAN Notices, Vol. 28, ACM, 1993, pp. 147–155.

57

http://dx.doi.org/10.1023/A:1022183511876
http://dx.doi.org/10.1023/A:1022183511876
http://elanguage.net/journals/salt/article/download/16.1/1791
http://elanguage.net/journals/salt/article/download/16.1/1791

	Introduction
	Definitions
	Terms
	Types and Typing Rules
	Reduction Rules
	Common Combinators
	Composing Functions and Computations
	Operations and Handlers


	Derived Rules
	Function Composition
	Monadic Bind
	Closed Handlers

	Type Soundness
	Subject Reduction
	Progress

	Algebraic Properties
	Denotational Semantics
	Category
	The Three Laws
	Monad

	Confluence
	Combinatory Reduction Systems
	Our Calculus as a CRS
	Orthogonal CRSs
	Putting eta Back in Our Calculus

	Termination
	Inductive Data Type Systems
	Our Calculus as an IDTS
	Defining   
	Connecting    to   

	Termination for IDTSs
	Checking Off the Assumptions
	General Schema

	Higher-Order Semantic Labelling
	Presheaves and Binding Algebras
	Building a Quasi-Model
	Labelling Our System
	Verifying the General Schema

	Putting eta Back in Our Calculus

	Comparison with Existing Work and Conclusion
	Calculus


