764 research outputs found

    MeGARA: Menu-based Game Abstraction and Abstraction Refinement of Markov Automata

    Full text link
    Markov automata combine continuous time, probabilistic transitions, and nondeterminism in a single model. They represent an important and powerful way to model a wide range of complex real-life systems. However, such models tend to be large and difficult to handle, making abstraction and abstraction refinement necessary. In this paper we present an abstraction and abstraction refinement technique for Markov automata, based on the game-based and menu-based abstraction of probabilistic automata. First experiments show that a significant reduction in size is possible using abstraction.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains

    Get PDF
    The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition and artificial intelligence (AI). The deduction camp concerns itself with questions about the expressiveness of formal languages for capturing knowledge about the world, together with proof systems for reasoning from such knowledge bases. The learning camp attempts to generalize from examples about partial descriptions about the world. In AI, historically, these camps have loosely divided the development of the field, but advances in cross-over areas such as statistical relational learning, neuro-symbolic systems, and high-level control have illustrated that the dichotomy is not very constructive, and perhaps even ill-formed. In this article, we survey work that provides further evidence for the connections between logic and learning. Our narrative is structured in terms of three strands: logic versus learning, machine learning for logic, and logic for machine learning, but naturally, there is considerable overlap. We place an emphasis on the following "sore" point: there is a common misconception that logic is for discrete properties, whereas probability theory and machine learning, more generally, is for continuous properties. We report on results that challenge this view on the limitations of logic, and expose the role that logic can play for learning in infinite domains

    Probabilistic thread algebra

    Get PDF
    We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution environments of instruction sequences. In a paper concerned with probabilistic instruction sequences, we proposed several kinds of probabilistic instructions and gave an informal explanation for each of them. The probabilistic features added to the extension of basic thread algebra with thread-service interaction make it possible to give a formal explanation in terms of non-probabilistic instructions and probabilistic services. The probabilistic features added to the extensions of basic thread algebra with strategic interleaving make it possible to cover strategies corresponding to probabilistic scheduling algorithms.Comment: 25 pages (arXiv admin note: text overlap with arXiv:1408.2955, arXiv:1402.4950); some simplifications made; substantially revise

    A Defense of Pure Connectionism

    Full text link
    Connectionism is an approach to neural-networks-based cognitive modeling that encompasses the recent deep learning movement in artificial intelligence. It came of age in the 1980s, with its roots in cybernetics and earlier attempts to model the brain as a system of simple parallel processors. Connectionist models center on statistical inference within neural networks with empirically learnable parameters, which can be represented as graphical models. More recent approaches focus on learning and inference within hierarchical generative models. Contra influential and ongoing critiques, I argue in this dissertation that the connectionist approach to cognitive science possesses in principle (and, as is becoming increasingly clear, in practice) the resources to model even the most rich and distinctly human cognitive capacities, such as abstract, conceptual thought and natural language comprehension and production. Consonant with much previous philosophical work on connectionism, I argue that a core principle—that proximal representations in a vector space have similar semantic values—is the key to a successful connectionist account of the systematicity and productivity of thought, language, and other core cognitive phenomena. My work here differs from preceding work in philosophy in several respects: (1) I compare a wide variety of connectionist responses to the systematicity challenge and isolate two main strands that are both historically important and reflected in ongoing work today: (a) vector symbolic architectures and (b) (compositional) vector space semantic models; (2) I consider very recent applications of these approaches, including their deployment on large-scale machine learning tasks such as machine translation; (3) I argue, again on the basis mostly of recent developments, for a continuity in representation and processing across natural language, image processing and other domains; (4) I explicitly link broad, abstract features of connectionist representation to recent proposals in cognitive science similar in spirit, such as hierarchical Bayesian and free energy minimization approaches, and offer a single rebuttal of criticisms of these related paradigms; (5) I critique recent alternative proposals that argue for a hybrid Classical (i.e. serial symbolic)/statistical model of mind; (6) I argue that defending the most plausible form of a connectionist cognitive architecture requires rethinking certain distinctions that have figured prominently in the history of the philosophy of mind and language, such as that between word- and phrase-level semantic content, and between inference and association

    Stochastic model checking for predicting component failures and service availability

    Get PDF
    When a component fails in a critical communications service, how urgent is a repair? If we repair within 1 hour, 2 hours, or n hours, how does this affect the likelihood of service failure? Can a formal model support assessing the impact, prioritisation, and scheduling of repairs in the event of component failures, and forecasting of maintenance costs? These are some of the questions posed to us by a large organisation and here we report on our experience of developing a stochastic framework based on a discrete space model and temporal logic to answer them. We define and explore both standard steady-state and transient temporal logic properties concerning the likelihood of service failure within certain time bounds, forecasting maintenance costs, and we introduce a new concept of envelopes of behaviour that quantify the effect of the status of lower level components on service availability. The resulting model is highly parameterised and user interaction for experimentation is supported by a lightweight, web-based interface

    On static execution-time analysis

    Get PDF
    Proving timeliness is an integral part of the verification of safety-critical real-time systems. To this end, timing analysis computes upper bounds on the execution times of programs that execute on a given hardware platform. Modern hardware platforms commonly exhibit counter-intuitive timing behaviour: a locally slower execution can lead to a faster overall execution. Such behaviour challenges efficient timing analysis. In this work, we present and discuss a hardware design, the strictly in-order pipeline, that behaves monotonically w.r.t. the progress of a program's execution. Based on monotonicity, we prove the absence of the aforementioned counter-intuitive behaviour. At least since multi-core processors have emerged, timing analysis separates concerns by analysing different aspects of the system's timing behaviour individually. In this work, we validate the underlying assumption that a timing bound can be soundly composed from individual contributions. We show that even simple processors exhibit counter-intuitive behaviour - a locally slow execution can lead to an even slower overall execution - that impedes the soundness of the composition. We present the compositional base bound analysis that accounts for any such amplifying effects within its timing contribution. This enables a sound compositional analysis even for complex processors. Furthermore, we discuss hardware modifications that enable efficient compositional analyses.Echtzeitsysteme müssen unter allen Umständen beweisbar pünktlich arbeiten. Zum Beweis errechnet die Zeitanalyse obere Schranken der für die Ausführung von Programmen auf einer Hardware-Plattform benötigten Zeit. Moderne Hardware-Plattformen sind bekannt für unerwartetes Zeitverhalten bei dem eine lokale Verzögerung in einer global schnelleren Ausführung resultiert. Solches Zeitverhalten erschwert eine effiziente Analyse. Im Rahmen dieser Arbeit diskutieren wir das Design eines Prozessors mit eingeschränkter Fließbandverarbeitung (strictly in-order pipeline), der sich bzgl. des Fortschritts einer Programmausführung monoton verhält. Wir beweisen, dass Monotonie das oben genannte unerwartete Zeitverhalten verhindert. Spätestens seit dem Einsatz von Mehrkernprozessoren besteht die Zeitanalyse aus einzelnen Teilanalysen welche nur bestimmte Aspekte des Zeitverhaltens betrachten. Eine zentrale Annahme ist hierbei, dass sich die Teilergebnisse zu einer korrekten Zeitschranke zusammensetzen lassen. Im Rahmen dieser Arbeit zeigen wir, dass diese Annahme selbst für einfache Prozessoren ungültig ist, da eine lokale Verzögerung zu einer noch größeren globalen Verzögerung führen kann. Für bestehende Prozessoren entwickeln wir eine neuartige Teilanalyse, die solche verstärkenden Effekte berücksichtigt und somit eine korrekte Komposition von Teilergebnissen erlaubt. Für zukünftige Prozessoren beschreiben wir Modifikationen, die eine deutlich effizientere Zeitanalyse ermöglichen
    corecore