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Probabilistic Thread Algebra

J.A. Bergstra1, C.A. Middelburg1

Abstract

We add probabilistic features to basic thread algebra and its exten-
sions with thread-service interaction and strategic interleaving. Here,
threads represent the behaviours produced by instruction sequences
under execution and services represent the behaviours exhibited by the
components of execution environments of instruction sequences. In a
paper concerned with probabilistic instruction sequences, we proposed
several kinds of probabilistic instructions and gave an informal explana-
tion for each of them. The probabilistic features added to the extension
of basic thread algebra with thread-service interaction make it possible
to give a formal explanation in terms of non-probabilistic instructions
and probabilistic services. The probabilistic features added to the
extensions of basic thread algebra with strategic interleaving make it
possible to cover strategies corresponding to probabilistic scheduling
algorithms.

Keywords: basic thread algebra, probabilistic thread, probabilistic
service, probabilistic interleaving strategy, probabilistic instruction.

1 Introduction

In [6], an approach to the semantics of programming languages was presented
which is based on the perspective that a program is in essence an instruction
sequence. The groundwork for the approach is formed by PGA (ProGram
Algebra), an algebraic theory of single-pass instruction sequences, and BTA
(Basic Thread Algebra), an algebraic theory of mathematical objects that
represent the behaviours produced by instruction sequences under execution
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(for a comprehensive introduction to these algebraic theories, see [15]). To
increase the applicability of the approach, BTA was extended with thread-
service interaction in [16]. In the setting of BTA and its extension with
thread-service interaction, threads are mathematical objects that represent
the behaviours produced by instruction sequences under execution and
services are mathematical objects that represent the behaviours exhibited
by components of execution environments of instruction sequences.

As a continuation of the work presented in [6, 16], (a) the notion of
an instruction sequence was subjected to systematic and precise analysis
using the groundwork laid earlier, (b) various issues, including issues relating
to computability and complexity of computational problems, efficiency of
algorithms, and verification of programs, were rigorously investigated think-
ing in terms of instruction sequences (for a comprehensive survey of a large
part of the work referred to under (a) and (b), see [15]), and (c) the form of
interleaving concurrency that is relevant to the behaviours of multi-threaded
programs under execution, called strategic interleaving in the setting of BTA,
was rigorously investigated by means of extensions of BTA (see e.g. [8, 9, 10]).

In the course of the work referred to above under (b), we ran into the
problem that BTA and its extension with thread-service interaction do not
allow issues relating to probabilistic computation to be investigated thinking
in terms of instruction sequences. In the course of the work referred to
above under (c), we ran into the problem that BTA also does not allow
probabilistic strategic interleaving to be investigated by means of extensions
of BTA. This paper concerns the addition of features to BTA and its
extensions with thread-service interaction and strategic interleaving that
will take away these limitations.

We consider it important to take probabilistic computation into account
in future investigations. The primary reasons for this are the following:
(a) the existence of probabilistic algorithms that are highly efficient, possibly
at the cost of a probability of correctness less than one (e.g. primality
testing, see [28]); (b) the existence of probabilistic algorithms for which no
deterministic counterparts exist (e.g. symmetry breaking, see [25]); (c) the
gradually created evidence for the hypothesis that it is relevant for a diversity
of issues in computer science and engineering to think in terms of instruction
sequences. This constitutes the basis of our motivation for the work presented
in this paper.

In [12], we gave an enumeration of kinds of probabilistic instructions
that were chosen on the basis of direct intuitions and therefore not necessarily
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the best kinds in any sense. We only gave an informal explanation for each
of the enumerated kinds because we considered it premature at the time
to add probabilistic features to BTA that would make it possible to give
a formal explanation. We were doubtful whether the ad hoc addition of
features to BTA was the right way to go.

Later, we have found that the ramification of semantic options with the
addition of probabilistic features to BTA is well surveyable because of (a) the
limitation of the scope to behaviours produced by instruction sequences
under execution and (b) the semantic constraints brought about by the
informal explanations of the kinds of probabilistic instructions enumerated
in [12] and the desired elimination property of all but one kind. In the case
of a general process algebra, such as ACP [3], CCS [26] or CSP [23], the
ramification becomes much more complex, particularly because a limitation
of the scope to behaviours of a special kind is lacking. In this paper, we add
probabilistic features to BTA and an extension of BTA with thread-service
interaction.

The probabilistic features added to the extension of BTA with thread-
service interaction make it possible to give a formal explanation for each
of the kinds of probabilistic instructions enumerated in [12] in terms of
non-probabilistic instructions and probabilistic services. To demonstrate
this, we add the kind of probabilistic instructions that cannot be eliminated
to PGLB (ProGramming Language B), a program notation rooted in PGA
and close to existing assembly languages, and give a formal definition of
the behaviours produced by the instruction sequences from the resulting
program notation. We opted for PGLB because in the past it has proved
itself suitable for the investigation of various issues. The added kind of
probabilistic instructions allow probabilistic choices to be made during the
execution of instruction sequences.

In [8] and subsequent papers, we extended BTA with kinds of in-
terleaving where interleaving takes place according to some deterministic
interleaving strategy. Interleaving strategies are abstractions of schedul-
ing algorithms. Interleaving according to an interleaving strategy differs
from arbitrary interleaving, but it is what really happens in the case of
multi-threading as found in programming languages such as Java [20] and
C# [22]. The extension of BTA with a probabilistic feature does not only
allow of probabilistic services, but also allows of probabilistic interleaving
strategies. In this paper, we also generalize the extensions of BTA with
specific kinds of deterministic strategic interleaving to an extension for a
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large class of kinds of deterministic and probabilistic strategic interleaving.
Thus, strategies corresponding to probabilistic scheduling algorithms such
as the lottery scheduling algorithm [33] are covered.

The main results of this paper are probabilistic versions of BTA and
its extensions with thread-service interaction and strategic interleaving
which pave the way for (a) investigation of issues related to probabilistic
computation thinking in terms of instruction sequences and (b) investigation
of probabilistic interleaving strategies.

In this paper, we take functions whose range is the carrier of a signed
cancellation meadow as probability measures. In [18], meadows are proposed
as alternatives for fields with a purely equational axiomatization. A meadow
is a commutative ring with a multiplicative identity element and a total
multiplicative inverse operation satisfying two equations which imply that
the multiplicative inverse of zero is zero. A cancellation meadow is a field
whose multiplicative inverse operation is made total by imposing that the
multiplicative inverse of zero is zero, and a signed cancellation meadow is
a cancellation meadow expanded with a signum operation. In [17], Kol-
mogorov’s probability axioms for finitely additive probability spaces are
rephrased for the case where probability measures are functions whose range
is the carrier of a signed cancellation meadow.

This paper is organized as follows. First, we review signed cancellation
meadows (Section 2). Next, we add probabilistic features to BTA and
an extension of BTA with thread-service interaction (Sections 3 and 4).
Then, we add a kind of probabilistic instructions to PGLB (Section 5).
Following this, we add probabilistic features to the extensions of BTA with
strategic interleaving (Section 6). Finally, we make some concluding remarks
(Section 7).

It should be mentioned that BTA is introduced in [6] under the name
BPPA (Basic Polarized Process Algebra) and services are called state ma-
chines in [16].

2 Signed Cancellation Meadows

We will take functions whose range is the carrier of a signed cancellation
meadow as probability measures. Therefore, we review signed cancellation
meadows in this section.

In [18], meadows are proposed as alternatives for fields with a purely
equational axiomatization. A meadow is a commutative ring with a mul-
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tiplicative identity element and a total multiplicative inverse operation
satisfying two equations which imply that the multiplicative inverse of zero is
zero. Thus, all meadows are total algebras and the class of all meadows is a
variety. At the basis of meadows lies the decision to make the multiplicative
inverse operation total by imposing that the multiplicative inverse of zero
is zero. All fields in which the multiplicative inverse of zero is zero, called
zero-totalized fields, are meadows, but not conversely.

A cancellation meadow is a meadow that satisfies the cancellation axiom
x 6= 0 ∧ x · y = x · z ⇒ y = z. The zero-totalized fields are exactly the
cancellation meadows that satisfy in addition the separation axiom 0 6= 1.
A paradigmatic example of cancellation meadows is the field of rational
numbers with the multiplicative inverse operation made total by imposing
that the multiplicative inverse of zero is zero (see e.g. [18]). An example
of a meadow that is not a zero-totalized field is the initial algebra of the
equational axiomatization of meadows (see e.g. [5]).

A signed cancellation meadow is a cancellation meadow expanded with
a signum operation. The usefulness of the signum operation lies in the fact
that the predicates < and ≤ can be defined using this operation (see below).

The signature of signed cancellation meadows consists of the following
constants and operators: the constants 0 and 1, the binary addition operator
+ , the binary multiplication operator · , the unary additive inverse operator
−, the unary multiplicative inverse operator −1, and the unary signum
operator s.

Terms are built as usual. We use infix notation for the binary operators
+ and · , prefix notation for the unary operator −, and postfix notation for
the unary operator −1. We use the usual precedence convention to reduce the
need for parentheses. We introduce subtraction and division as abbreviations:
t− t′ abbreviates t+ (−t′) and t/t′ abbreviates t · (t′−1).

The constants and operators from the signature of signed cancellation
meadows are adopted from rational arithmetic, which gives an appropriate
intuition about these constants and operators.

Signed cancellation meadows are axiomatized by the equations in Ta-
bles 1 and 2 and the above-mentioned cancellation axiom. The axioms for
the signum operator stem from [4].

The predicates < and ≤ are defined in signed cancellation meadows as
follows: x < y ⇔ s(y − x) = 1 and x ≤ y ⇔ s(s(y − x) + 1) = 1. Because
s(s(y − x) + 1) 6= −1, we have 0 ≤ x ≤ 1 ⇔ s(s(x) + 1) · s(s(1− x) + 1) = 1.
We will use this equivalence below to describe the set of probabilities.
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Table 1: Axioms of a meadow
(x+ y) + z = x+ (y + z)

x+ y = y + x

x+ 0 = x

x+ (−x) = 0

(x · y) · z = x · (y · z)
x · y = y · x
x · 1 = x

x · (y + z) = x · y + x · z

(x−1)−1 = x

x · (x · x−1) = x

Table 2: Additional axioms for the signum operator

s(x/x) = x/x

s(1− x/x) = 1− x/x
s(−1) = −1

s(x−1) = s(x)

s(x · y) = s(x) · s(y)

(1− s(x)−s(y)
s(x)−s(y) ) · (s(x+ y)− s(x)) = 0

3 Probabilistic Basic Thread Algebra

In this section, we introduce prBTA (probabilistic Basic Thread Algebra),
a probabilistic version of BTA. The objects considered in BTA are called
threads. In BTA, a thread represents a behaviour which consists of perform-
ing actions in a deterministic sequential fashion. Upon each action performed,
a reply from an execution environment determines how the thread proceeds.
The possible replies are the values t and f. In prBTA, a thread represents a
behaviour which consists of performing actions in a probabilistic sequential
fashion. That is, performing actions may alternate with making internal
choices according to discrete probability distributions.

In the sequel, it is assumed that a fixed but arbitrary signed cancellation
meadow M has been given. We denote the carrier of M by M as well, and
we denote the interpretations of the constants and operators in M by the
constants and operators themselves. We write P for the set {π ∈ M |
s(s(π) + 1) · s(s(1− π) + 1) = 1} of probabilities.

In prBTA, it is moreover assumed that a fixed but arbitrary set A of
basic actions, with tau 6∈ A, has been given. In addition, there is the special
action tau. Performing tau, which is considered performing an internal action,
will always lead to the reply t. We write Atau for A∪ {tau} and refer to the
members of Atau as basic actions.

The algebraic theory prBTA has one sort: the sort T of threads. We
make this sort explicit to anticipate the need for many-sortedness later on.
To build terms of sort T, prBTA has the following constants and operators:
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• the inaction constant D :→T;2

• the termination constant S :→T;

• for each a ∈ Atau, the binary postconditional composition operator
�a� : T×T→ T;

• for each π ∈ P, the binary probabilistic composition operator +π :
T×T→ T.

Terms of sort T are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort T, including x, y, z. We use infix
notation for postconditional composition and probabilistic composition. We
introduce basic action prefixing as an abbreviation: a ◦ t, where t is a prBTA
term, abbreviates t�a� t. We identify expressions of the form a ◦ t with
the prBTA terms they stand for.

The thread denoted by a closed term of the form t �a� t′ will first
perform a, and then proceed as the thread denoted by t if the reply from
the execution environment is t and proceed as the thread denoted by t′ if
the reply from the execution environment is f. The thread denoted by a
closed term of the form t +π t

′ will behave like the thread denoted by t
with probability π and like the thread denoted by t′ with probability 1− π.
The thread denoted by S will do no more than terminate and the thread
denoted by D will become inactive. A thread becomes inactive if no more
basic actions are performed, but it does not terminate.

The inaction constant, the termination constant and the postcondi-
tional composition operators are adopted from BTA. Counterparts of the
probabilistic composition operators are found in most probabilistic process
algebras that offer probabilistic choices of the generative variety (see e.g. [2]).

The axioms of prBTA are given in Table 3. In this table, π and ρ
stand for arbitrary probabilities from P . Axiom T1 reflects that performing
tau will always lead to the reply t and axioms prA1–prA4 express that
probabilistic composition provides probabilistic choices of the generative
variety (see [32]). From prA1 and prA4, we can derive both x+0 (y+0 z) = z
and (x+0 y) +0 z = z, and hence also x+0 (y+0 z) = (x+0 y) +0 z. This last
equation can be immediately derived from prA2 as well because in meadows
0/0 = 0.

Axiom T1 is adopted from BTA. Counterparts of axioms prA1–prA3 are
found in most probabilistic process algebras that offer probabilistic choices

2In earlier work, the inaction constant is sometimes called the deadlock constant.
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Table 3: Axioms of prBTA

x� tau� y = x� tau� x T1

x+π y = y +1−π x prA1

x+π (y +ρ z) = (x+ π
π+ρ−π·ρ

y) +π+ρ−π·ρ z prA2

x+π x = x prA3

x+1 y = x prA4

of the generative variety (see e.g. [2]). However, in the process algebras
concerned the probabilities 0 and 1 are excluded in probabilistic choices to
prevent division by zero. Owing to this exclusion, axiom prA4 is lacking in
these process algebras.

Each closed prBTA term denotes a finite thread, i.e. a thread with
a finite upper bound to the number of basic actions that it can perform.
Infinite threads, i.e. threads without a finite upper bound to the number of
basic actions that it can perform, can be described by guarded recursion. A
guarded recursive specification over prBTA is a set of recursion equations
E = {X = tX | X ∈ V }, where V is a set of variables of sort T and each tX
is a prBTA term in which only variables from V occur and each occurrence
of a variable in tX is in a subterm of the form t�a� t′. We write V(E) for
the set of all variables that occur on the left-hand side of an equation in E.

We are only interested in models of prBTA in which guarded recursive
specifications have unique solutions. A model of prBTA in which guarded
recursive specifications have unique solutions is the projective limit model of
prBTA. This model is constructed along the same line as the projective limit
model of BTA presented in [15]. It is based on the view that two threads are
identical if their approximations up to any finite depth are identical. The
approximation up to depth n of a thread is obtained by cutting it off after
it has performed n actions if it has not yet terminated or become inactive.

We confine ourselves to the projective limit model of prBTA, which has
an initial model of prBTA as a submodel, for the interpretation of prBTA
terms. An outline of this model is given in Appendix A.1. In the sequel,
we use the term probabilistic thread or simply thread for the elements of
the carrier of the model. Regular threads, i.e. finite or infinite threads that
can only be in a finite number of states, can be defined by means of a finite
guarded recursive specification.

We extend prBTA with guarded recursion by adding constants for
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Table 4: Axioms for the guarded recursion constants

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

solutions of guarded recursive specifications and axioms concerning these
additional constants. For each guarded recursive specification E and each
X ∈ V(E), we add a constant standing for the unique solution of E for X
to the constants of prBTA. The constant standing for the unique solution
of E for X is denoted by 〈X|E〉. Moreover, we use the following notation.
Let t be a prBTA term and E be a guarded recursive specification. Then we
write 〈t|E〉 for t with, for all X ∈ V(E), all occurrences of X in t replaced
by 〈X|E〉. We add the axioms for guarded recursion given in Table 4 to the
axioms of prBTA. In this table, X, tX and E stand for an arbitrary variable
of sort T, an arbitrary prBTA term and an arbitrary guarded recursive
specification, respectively. Side conditions are added to restrict the variables,
terms and guarded recursive specifications for which X, tX and E stand.

The additional axioms for guarded recursion are known as the recursive
definition principle (RDP) and the recursive specification principle (RSP).
The equations 〈X|E〉 = 〈tX |E〉 for a fixed E express that the constants
〈X|E〉 make up a solution of E. The conditional equations E ⇒ X = 〈X|E〉
express that this solution is the only one.

In Section 6, we will use the notation
∑n

i=k[πi]ti with 1 ≤ k ≤ n and∑n
i=k πi = 1 for right-nested probabilistic composition. The term

∑n
i=k[πi]ti

with 1 ≤ k ≤ n is defined by induction on n− k as follows:∑n
i=k[πi]ti = tk if k = n ,∑n
i=k[πi]ti = tk +πk (

∑n
i=k+1[

πi
1−πk ]ti) if k < n .

The thread denoted by
∑n

i=k[πi]ti will behave like the thread denoted by tk
with probability πk and . . . and like the thread denoted by tn with proba-
bility πn.

4 Interaction of Threads with Services

Services are objects that represent the behaviours exhibited by components of
execution environments of instruction sequences at a high level of abstraction.
A service is able to process certain methods. The processing of a method
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may involve a change of the service. At completion of the processing of a
method, the service produces a reply value. Execution environments are
considered to provide a family of uniquely-named services. A thread may
interact with the named services from the service family provided by an
execution environment. That is, a thread may perform a basic action for the
purpose of requesting a named service to process a method and to return a
reply value at completion of the processing of the method. In this section,
we extend prBTA with services, service families, a composition operator for
service families, an operator that is concerned with this kind of interaction,
and a general operator for abstraction from the internal action tau.

In SFA, the algebraic theory of service families introduced below, it
is assumed that a fixed but arbitrary set M of methods has been given.
Moreover, the following is assumed with respect to services:

• a signature ΣS has been given that includes the following sorts:

– the sort S of services;

– the sort B of Boolean values;

and the following constants and operators:

– the empty service constant δ :→ S;

– the reply constants t, f :→B;

– for each m ∈M, the derived service operator ∂
∂m : S→ S;

– for each m ∈M and π ∈ P , the service reply operator %πm :S→ B;

• a minimal ΣS-algebra S has been given in which the following holds:

– t 6= f;

–
∧
m∈M ( ∂

∂m(s) = δ ⇔
∧
π∈P %

π
m(s) = f);

–
∧
m∈M

∧
π,ρ∈P (%πm(s) = t ∧ %ρm(s) = t ⇒ π = ρ).

The intuition concerning ∂
∂m and %πm is that on a request to service s

to process method m:

• if %πm(s) = t, s processes m, produces the reply t with probability π
and the reply f with probability 1− π, and then proceeds as ∂

∂m(s);

• if %πm(s) = f for each π ∈ P, s is not able to process method m and
proceeds as δ.
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The empty service δ itself is unable to process any method. A service is fully
deterministic if, for all m, for all s, %πm(s) = t only if π ∈ {0, 1}.

The assumptions with respect to services made above are the ones made
before for the non-probabilistic case in e.g. [15] adapted to the probabilistic
case.

It is also assumed that a fixed but arbitrary set F of foci has been
given. Foci play the role of names of services in a service family.

SFA has the sorts, constants and operators from ΣS and in addition
the sort SF of service families and the following constant and operators:

• the empty service family constant ∅ :→ SF;

• for each f ∈ F , the unary singleton service family operator f. : S→
SF;

• the binary service family composition operator ⊕ : SF× SF→ SF;

• for each F ⊆ F , the unary encapsulation operator ∂F : SF→ SF.

We assume that there are infinitely many variables of sort S, including s,
and infinitely many variables of sort SF, including u, v, w. Terms are built
as usual in the many-sorted case (see e.g. [30, 34]). We use prefix notation
for the singleton service family operators and infix notation for the service
family composition operator.

The service family denoted by ∅ is the empty service family. The service
family denoted by a closed term of the form f.t consists of one named service
only, the service concerned is the service denoted by t, and the name of
this service is f . The service family denoted by a closed term of the form
t⊕ t′ consists of all named services that belong to either the service family
denoted by t or the service family denoted by t′. In the case where a named
service from the service family denoted by t and a named service from the
service family denoted by t′ have the same name, they collapse to an empty
service with the name concerned. The service family denoted by a closed
term of the form ∂F (t) consists of all named services with a name not in F
that belong to the service family denoted by t.

The axioms of SFA are given in Table 5. In this table, f stands for an
arbitrary focus from F and F stands for an arbitrary subset of F . These
axioms simply formalize the informal explanation given above.

The constants, operators, and axioms of SFA were presented for the
first time in [14].
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Table 5: Axioms of SFA
u⊕ ∅ = u SFC1

u⊕ v = v ⊕ u SFC2

(u⊕ v)⊕ w = u⊕ (v ⊕ w) SFC3

f.s⊕ f.s′ = f.δ SFC4

∂F (∅) = ∅ SFE1

∂F (f.s) = ∅ if f ∈ F SFE2

∂F (f.s) = f.s if f /∈ F SFE3

∂F (u⊕ v) = ∂F (u)⊕ ∂F (v) SFE4

Table 6: Axioms for the use operator

D / u = D prU1

S / u = S prU2

(tau ◦ x) / u = tau ◦ (x / u) prU3

(x� f.m� y) / ∂{f}(u) = (x / ∂{f}(u)) � f.m� (y / ∂{f}(u)) prU4

(x� f.m� y) / (f.t⊕ ∂{f}(u)) = tau ◦ ((x+π y) / (f. ∂∂m t⊕ ∂{f}(u)))

if %πm(t) = t prU5

(x� f.m� y) / (f.t⊕ ∂{f}(u)) = tau ◦ D if
∧
π∈P %

π
m(t) = f prU6

(x+π y) / u = (x / u) +π (y / u) prU7

Table 7: Axioms for the abstraction operator

τtau(S) = S TA1

τtau(D) = D TA2

τtau(tau ◦ x) = τtau(x) TA3

τtau(x� f.m� y) = τtau(x) � f.m� τtau(y) TA4

τtau(x+π y) = τtau(x) +π τtau(y) TA5

For the set A of basic actions, we now take {f.m | f ∈ F ,m ∈ M}.
Performing a basic action f.m is taken as making a request to the service
named f to process method m.

We combine prBTA with SFA and extend the combination with the
following operators:

• the binary use operator / : T× SF→ T;

• the unary abstraction operator τtau : T→ T;

and the axioms given in Tables 6 and 7, and call the resulting theory prTAtsi.
In these tables, f stands for an arbitrary focus from F , m stands for an
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arbitrary method fromM, π stands for an arbitrary probability from P , and
t stands for an arbitrary term of sort S. The axioms formalize the informal
explanation given below. We use infix notation for the use operator.

The thread denoted by a closed term of the form t / t′ is the thread
that results from processing the method of each basic action performed by
the thread denoted by t by the service with the focus of the basic action as
its name in the service family denoted by t′ each time that a service with
the name in question really exists and as long as the method concerned can
be processed. In the case that a service with the name in question does
not really exist, the processing of a method is simply skipped (axiom prU4).
When the method of a basic action performed by the thread can be processed
by the named service, that service changes in accordance with the method
and the thread is affected as follows: the basic action is turned into the
internal action tau and then an internal choice is made between the two ways
to proceed according to the probabilities of the two possible reply values
in the case of the method concerned (axiom prU5). When the method of
a basic action performed by the thread cannot be processed by the named
service, inaction occurs after the basic action is turned into the internal
action tau (axiom prU6).

The thread denoted by a closed term of the form τtau(t) is the thread
that results from concealing the presence of the internal action tau in the
thread denoted by t.

The use operator and the abstraction operator are adopted from the
extension of BTA with thread-service interaction presented before in [15].
With the exception of axiom prU7, the axioms for the use operator are
the ones given before for the non-probabilistic case in [15] adapted to the
probabilistic case. With the exception of axiom TA5, the axioms for the
abstraction operator are adopted from the extension of BTA with thread-
service interaction presented in [15]. Axiom prU7 and TA5 are new.

The following theorem concerns the question whether the operators
added to prBTA in prTAtsi are well axiomatized by the equations given in
Tables 6 and 7 in the sense that these equations allow the projective limit
model of prBTA to be expanded to a projective limit model of prTAtsi.

Theorem 1 The operators added to prBTA are well axiomatized, i.e.:

(a) for all closed prTAtsi terms t of sort T, there exists a closed prBTA
term t′ such that t = t′ is derivable from the axioms of prTAtsi;

(b) for all closed prBTA terms t and t′, t = t′ is derivable from the axioms
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of prBTA iff t = t′ is derivable from the axioms of prTAtsi;

(c) for all closed prTAtsi terms t of sort T, closed prTAtsi terms t′ of sort
SF and n ∈ N, πn(t / t′) = πn(πn(t) / t′) is derivable from the axioms
of prTAtsi and the following axioms for the unary operators πn (which
are explained below):3

π0(x) = D ,

πn+1(D) = D ,

πn+1(S) = S ,

πn+1(x�a� y) = πn(x) �a� πn(y) ,

πn+1(x+π y) = πn+1(x) +π πn+1(y) .

where n stands for an arbitrary natural number from N, a stands for
an arbitrary basic action from Atau, and π is an arbitrary probability
from P;

(d) for all closed prTAtsi terms t of sort T and n ∈ N, there exists a k ∈ N
such that, for all m ∈ N with m ≥ k, πn(τtau(t)) = πn(τtau(πm(t))) is
derivable from the axioms of prTAtsi and the axioms for the operators
πn introduced in part (c).

Proof: Part (a) is easily proved by induction on the structure of t, and
in the case where t is of the form t1 / t2 and the case where t is of the form
τtau(t1) by induction on the structure of t1. In the subcase where t is of the
form t′1 �a� t′1 / t2, we need the easy to prove fact that, for each f ∈ F and
closed term t of sort SF, either t = ∂f (t) is derivable or there exists a closed
term t′ of sort S such that t = f.t′ ⊕ ∂f (t) is derivable.

In the case of part (b), the implication from left to right follows imme-
diately from the fact that the axioms of prBTA are included in the axioms
of prTAtsi. The implication from right to left is not difficult to see either.
From the axioms of prTAtsi that are not axioms of prBTA, only axioms
prU1, prU2, prU6, TA1, and TA2 may be applicable to a closed prBTA
term t. If one of them is applicable, then the application yields an equation
t = t′ in which t′ is not a closed prBTA term. Moreover, only the axiom
whose application yielded t = t′ is applicable to t′, but now in the opposite
direction. Hence, applications of axioms of prTAtsi that are not axioms of
prBTA do not yield additional equations.

3Holding on to the usual conventions leads to the double use of the symbol π: without
subscript it stands for a probability value and with subscript it stands for a projection
operator.
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By part (a), it is sufficient to prove parts (c) and (d) for all closed
prBTA terms t. Parts (c) and (d) are easily proved by induction on the
structure of t, and in each case by case distinction between n = 0 and n > 0.
In the proof of both parts, we repeatedly need the easy to prove fact that,
for all closed prBTA terms t and n ∈ N, πn(t) = πn(πn(t)) is derivable. In
the proof of part (c), in the case where t is of the form t1 �a� t2, we need
again the fact mentioned at the end of the proof outline of part (a). 2

The unary operators πn are called projection operators. The thread denoted
by a closed term of the form πn(t) is the thread that differs from the thread
denoted by t in that it becomes inactive as soon as it has performed n
actions.

By parts (a) and (b) of Theorem 1, we know that the carrier of the
projective limit model of prBTA can serve as the carrier of a projective
limit model of prTAtsi if it is possible to define on this carrier operations
corresponding to the added operators such that the added equations are
satisfied. By parts (c) and (d) of Theorem 1, we know that it is possible
to do so. Thus, we know that the projective limit model of prBTA can be
expanded to a projective limit model of prTAtsi.

The actual expansion goes along the same lines as in the non-probabilistic
case (see [15]). An outline of this expansion is given in Appendix A.2. Because
the depth of the approximations of a thread may decrease by abstraction, we
do not have that, for all n and t, πn(τtau(t)) = πn(τtau(πn(t))) is derivable.
However, it is sufficient that there exists a k ∈ N such that, for all m ∈ N
with m ≥ k, πn(τtau(t)) = πn(τtau(πm(t))) is derivable (see also [15]).

5 A Probabilistic Program Notation

In this section, we introduce the probabilistic program notation prPGLB
(probabilistic PGLB). In [6], a hierarchy of program notations rooted in
program algebra is presented. One of the program notations that belong to
this hierarchy is PGLB (ProGramming Language B). This program notation
is close to existing assembly languages and has relative jump instructions.
The program notation prPGLB is PGLB extended with probabilistic instruc-
tions that allow probabilistic choices to be made during the execution of
instruction sequences.

In prPGLB, it is assumed that a fixed but arbitrary non-empty finite
set A of basic instructions has been given. The intuition is that the execution
of a basic instruction in most instances modifies a state and in all instances



226 J.A. Bergstra, C.A. Middelburg

produces a reply at its completion. The possible replies are the values t
and f, and the actual reply is in most instances state-dependent. Therefore,
successive executions of the same basic instruction may produce different
replies. The set A is the basis for the set of all instructions that may appear
in the instruction sequences considered in prPGLB. These instructions are
called primitive instructions.

The program notation prPGLB has the following primitive instructions:

• for each a ∈ A, a plain basic instruction a;

• for each a ∈ A, a positive test instruction +a;

• for each a ∈ A, a negative test instruction −a;

• for each π ∈ P, a plain random choice instruction %(π);

• for each π ∈ P, a positive random choice instruction +%(π);

• for each π ∈ P, a negative random choice instruction −%(π);

• for each l ∈ N, a forward jump instruction #l;

• for each l ∈ N, a backward jump instruction \#l;

• a termination instruction !.

A prPGLB instruction sequence has the form u1 ; . . . ; uk, where u1, . . . , uk
are primitive instructions of prPGLB.

On execution of a prPGLB instruction sequence, these primitive in-
structions have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if
t is produced and otherwise the next primitive instruction is skipped
and execution proceeds with the primitive instruction following the
skipped one – if there is no primitive instruction to proceed with,
execution becomes inactive;

• the effect of a negative test instruction −a is the same as the effect of
+a, but with the role of the value produced reversed;

• the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if t is produced;
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• the effect of a positive random choice instruction +%(π) is that first t
is produced with probability π and f is produced with probability 1−π
and then execution proceeds with the next primitive instruction if t is
produced and otherwise the next primitive instruction is skipped and
execution proceeds with the primitive instruction following the skipped
one – if there is no primitive instruction to proceed with, execution
becomes inactive;

• the effect of a negative random choice instruction −%(π) is the same as
the effect of +%(π), but with the role of the value produced reversed;

• the effect of a plain random choice instruction %(π) is the same as the
effect of +%(π), but execution always proceeds as if t is produced;

• the effect of a forward jump instruction #l is that execution proceeds
with the lth next primitive instruction – if l equals 0 or there is no
primitive instruction to proceed with, execution becomes inactive;

• the effect of a backward jump instruction \#l is that execution proceeds
with the lth previous primitive instruction – if l equals 0 or there is no
primitive instruction to proceed with, execution becomes inactive;

• the effect of the termination instruction ! is that execution terminates.

With the exception of the random choice instructions, the primitive
instructions of prPGLB are adopted from PGLB. Counterparts of the
random choice instructions are especially found in probabilistic extensions
of Dijkstra’s guarded command language (see e.g. [21]).

In order to describe the behaviours produced by prPGLB instruction
sequences on execution, we need a service that behaves as a random Boolean
generator. This service is able to process the following methods:

• for each π ∈ P, a get random Boolean method get(π).

For each π ∈ P, the method get(π) can be explained as follows: the service
produces the reply t with probability π and the reply f with probability
1− π.

For the carrier of sort S, we take the set {RBG , δ}. For each m ∈M
and π ∈ P, we take the functions ∂

∂m and %πm such that:

∂
∂get(π)(RBG) = RBG ,

%πget(π)(RBG) = t ,

∂
∂m(RBG) = δ if m 6∈ {get(π) | π ∈ P} ,
%πm(RBG) = f if m 6= get(π) .
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Table 8: Defining equations for the thread extraction operation

|i, u1 ; . . . ; uk| = D if ¬ 1 ≤ i ≤ k
|i, u1 ; . . . ; uk| = a ◦ |i+ 1, u1 ; . . . ; uk| if ui = a

|i, u1 ; . . . ; uk| = |i+ 1, u1 ; . . . ; uk|�a� |i+ 2, u1 ; . . . ; uk| if ui = +a

|i, u1 ; . . . ; uk| = |i+ 2, u1 ; . . . ; uk|�a� |i+ 1, u1 ; . . . ; uk| if ui = −a
|i, u1 ; . . . ; uk| = rbg.get(π) ◦ |i+ 1, u1 ; . . . ; uk| if ui = %(π)

|i, u1 ; . . . ; uk| = |i+ 1, u1 ; . . . ; uk|� rbg.get(π)� |i+ 2, u1 ; . . . ; uk| if ui = +%(π)

|i, u1 ; . . . ; uk| = |i+ 2, u1 ; . . . ; uk|� rbg.get(π)� |i+ 1, u1 ; . . . ; uk| if ui = −%(π)

|i, u1 ; . . . ; uk| = |i+ l, u1 ; . . . ; uk| if ui = #l

|i, u1 ; . . . ; uk| = |i .− l, u1 ; . . . ; uk| if ui = \#l
|i, u1 ; . . . ; uk| = S if ui = !

Moreover, we take the name RBG used above to denote the element of the
carrier of sort S that differs from δ for a constant of sort S. It is assumed
that get(π) ∈M for each π ∈ P. It is also assumed that rbg ∈ F .

The behaviours produced by prPGLB instruction sequences on execution
are considered to be probabilistic threads, with the basic instructions taken as
basic actions. The thread extraction operation | | defines, for each prPGLB
instruction sequence, the behaviour produced on its execution. The thread
extraction operation is defined by

|u1 ; . . . ; uk| = τtau(|1, u1 ; . . . ; uk| / rbg.RBG) ,

where | , | is defined by the equations given in Table 8 (for a ∈ A, π ∈ P,
and l, i ∈ N)4 and the rule that |i, u1 ; . . . ; uk| = D if ui is the beginning of
an infinite jump chain.5

If 1 ≤ i ≤ k, τtau(|i, u1 ; . . . ;uk|/ rbg.RBG) can be read as the behaviour
produced by u1 ; . . . ; uk on execution if execution starts at the ith primitive
instruction. By default, execution starts at the first primitive instruction.

In [12], we proposed several kinds of probabilistic jump instructions
(bounded and unbounded, according to uniform probability distributions and
geometric probability distributions). The meaning of instruction sequences
from extensions of prPGLB with these kinds of probabilistic instructions
can be given by a translation to instruction sequences from prPGLB.

4We write i .− j for the monus of i and j, i.e. i .− j = i − j if i ≥ j and i .− j = 0
otherwise.

5This rule can be formalized, cf. [11].
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6 Probabilistic Strategic Interleaving of Threads

Multi-threading refers to the concurrent existence of several threads in a
program under execution. It is the dominant form of concurrency provided
by contemporary programming languages such as Java [20] and C# [22].
Theories of concurrent processes such as ACP [3], CCS [26], and CSP [23]
are based on arbitrary interleaving. In the case of multi-threading, more
often than not some interleaving strategy is used. We abandon the point of
view that arbitrary interleaving is the most appropriate abstraction when
dealing with multi-threading. The following points illustrate why we find
difficulty in taking that point of view: (a) whether the interleaving of certain
threads leads to inactiveness depends on the interleaving strategy used;
(b) sometimes inactiveness occurs with a particular interleaving strategy
whereas arbitrary interleaving would not lead to inactiveness, and vice versa.
Demonstrations of (a) and (b) are given in [8] and [7], respectively.

The probabilistic features of prBTA allow it to be extended with inter-
leaving strategies that correspond to probabilistic scheduling algorithms. In
this section, we take up the extension of prBTA with such probabilistic inter-
leaving strategies. The presented extension covers an arbitrary probabilistic
interleaving strategy that can be represented in the way that is explained
below.

We write A′tau for Atau ∪ {nt,S,D} and we write H for (N1 × N1)
∗.6

The elements of H are called interleaving histories. The intuition concerning
interleaving histories is as follows: if the jth pair of an interleaving history
is (i, n), then the ith thread got a turn in the jth interleaving step and after
its turn there were n threads to be interleaved.

With regard to interleaving of threads, it is assumed that the following
has been given:

• a set S;

• an indexed family of functions 〈σn〉n∈N1
where, for each n ∈ N1,

σn :H× S → ({1, . . . , n} → P);

• an indexed family of functions 〈ϑn〉n∈N1
where, for each n ∈ N1,

ϑn :H× S × {1, . . . , n} × A′tau → S.

The elements of S are called control states, σn is called an abstract scheduler
(for n threads), and ϑn is called a control state transformer (for n threads).
The intuition concerning S, 〈σn〉n∈N1

, and 〈ϑn〉n∈N1
is as follows:

6We write N1 for the set {n ∈ N | n ≥ 1} of positive natural numbers.
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• the control states from S encode data relevant to the interleaving
strategy (e.g., for each of the threads being interleaved, the set of all
foci naming services on which it currently keeps a lock);

• for each h ∈ H and s ∈ S, σn(h, s) is the probability distribution on n
threads that assigns to each of the threads the probability that it gets
the next turn after history h in state s;

• for each h ∈ H, s ∈ S, i ∈ {1, . . . , n}, and a ∈ A′tau, ϑn(h, s, i, a) is the
control state that arises after history h in state s on the ith thread
doing a.

Thus, S, 〈σn〉n∈N1
, and 〈ϑn〉n∈N1

provide a way to represent a probabilistic
interleaving strategy. The abstraction of a scheduler used here is essentially
the notion of a scheduler defined in [29].

We extend prBTA with the following operators:

• the ternary forking postconditional composition operator �nt( )� :
T×T×T→ T;

• for each n ∈ N1, h ∈ H, and s ∈ S, the n-ary strategic interleaving
operator ‖nh,s :T× · · · ×T→ T;

• for each n, i ∈ N1 with i ≤ n, h ∈ H, and s ∈ S, the n-ary positional
strategic interleaving operator cbn,ih,s :T× · · · ×T→ T;

• the unary deadlock at termination operator SD : T→ T;

and the axioms given in Table 9,7 and call the resulting theory prTAsi. In
this table, n and i stand for arbitrary numbers from N1 with i ≤ n, h stands
for an arbitrary interleaving history from H, s stands for an arbitrary control
state from S, a stands for an arbitrary basic action from Atau, and π stands
for an arbitrary probability from P.

The forking postconditional composition operator has the same shape as
the postconditional composition operators introduced in Section 3. Formally,
no basic action is involved in forking postconditional composition. However,
for an operational intuition, in t �nt(t′′)� t′, nt(t′′) can be considered a
thread forking action. It represents the act of forking off thread t′′. Like

7We write 〈 〉 for the empty sequence, d for the sequence having d as sole element, and
α y α′ for the concatenation of sequences α and α′. We assume that the usual identities,
such as 〈 〉 y α = α and (α y α′) y α′′ = α y (α′ y α′′), hold.
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Table 9: Axioms for strategic interleaving

‖nh,s(x1, . . . , xn) =
∑n
i=1[σn(h, s)(i)] cbn,ih,s(x1, . . . , xn) prSI1

cb1,ih,s(D) = D prSI2

cbn+1,i
h,s (x1, . . . , xi−1,D, xi+1, . . . , xn+1) =

SD(‖nhy(i,n),ϑn+1(h,s,i,D)(x1, . . . , xi−1, xi+1, . . . , xn+1)) prSI3

cb1,ih,s(S) = S prSI4

cbn+1,i
h,s (x1, . . . , xi−1,S, xi+1, . . . , xn+1) =

‖nhy(i,n),ϑn+1(h,s,i,S)
(x1, . . . , xi−1, xi+1, . . . , xn+1) prSI5

cbn,ih,s(x1, . . . , xi−1, x′i �nt(x)� x′′i , xi+1, . . . , xn) =

tau ◦ ‖n+1
hy(i,n+1),ϑn(h,s,i,nt)

(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn, x) prSI6

cbn,ih,s(x1, . . . , xi−1, x′i �a� x′′i , xi+1, . . . , xn) =

‖nhy(i,n),ϑn(h,s,i,a)
(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

�a�

‖nhy(i,n),ϑn(h,s,i,a)
(x1, . . . , xi−1, x

′′
i , xi+1, . . . , xn) prSI7

cbn,ih,s(x1, . . . , xi−1, x′i +π x
′′
i , xi+1, . . . , xn) =

cbn,ih,s(x1, . . . , xi−1, x′i, xi+1, . . . , xn)

+π

cbn,ih,s(x1, . . . , xi−1, x′′i , xi+1, . . . , xn) prSI8

SD(D) = D DT1

SD(S) = D DT2

SD(x�nt(z)� y) = SD(x) �nt(SD(z))� SD(y) DT3

SD(x�a� y) = SD(x) �a� SD(y) DT4

SD(x+π y) = SD(x) +π SD(y) DT5

with real basic actions, a reply is produced upon performing a thread forking
action.

The thread denoted by a closed term of the form ‖nh,s(t1, . . . , tn) is the
thread that results from interleaving of the n threads denoted by t1, . . . , tn
after history h in state s, according to the interleaving strategy represented
by S, 〈σn〉n∈N1

, and 〈ϑn〉n∈N1
. By the interleaving, a number of threads is

turned into a single thread. In this single thread, the internal action tau
arises as a residue of each thread forking action encountered. Moreover, the
possibility that f is produced as a reply upon performing a thread forking
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action is ignored. This reflects our focus on the case where capacity problems
with respect to thread forking never arise.

The positional strategic interleaving operators are auxiliary operators
used to axiomatize the strategic interleaving operators. The role of the
positional strategic interleaving operators in the axiomatization is similar to
the role of the left merge operator found in process algebra (see e.g. [3]). The
deadlock at termination operator is an auxiliary operator as well. It is used
in axiom prSI3 to express that in the event of inactiveness of one thread,
the whole become inactive only after all other threads have terminated or
become inactive. The thread denoted by a closed term of the form SD(t)
is the thread that results from turning termination into inactiveness in the
thread denoted by t.

The forking postconditional composition operator and the deadlock
at termination operator are adopted from earlier extensions of BTA with
strategic interleaving. The strategic interleaving operators and the positional
strategic interleaving operators are not adopted from earlier extensions of
BTA with strategic interleaving. To our knowledge, no probabilistic process
algebras with counterparts of these operators has been proposed until now.
Axioms prSI1–prSI8 and DT5 are new. Axioms DT1–DT4 are adopted
from the extension of BTA with strategic interleaving and thread forking
presented in [13].

Consider the case where S is a singleton set, for each n ∈ N1, σn is
defined by

σn(〈 〉, s)(i) = 1 if i = 1 ,

σn(〈 〉, s)(i) = 0 if i 6= 1 ,

σn(h y (j, n) , s)(i) = 1 if i = (j + 1) mod n ,

σn(h y (i, n) , s)(i) = 0 if i 6= (j + 1) mod n

and, ϑn is defined by

ϑn(h, s, i, a) = s .

In this case, the interleaving strategy corresponds to the round-robin schedul-
ing algorithm. This deterministic interleaving strategy is called cyclic inter-
leaving in our earlier work on interleaving strategies (see e.g. [8]). In the
current setting, an interleaving strategy is deterministic if, for all n, for all
h, s, and i, σn(h, s)(i) ∈ {0, 1}. In the case that S and ϑn are as above, but
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σn is defined by

σn(〈 〉, s)(i) = 1 if i = 1 ,

σn(〈 〉, s)(i) = 0 if i 6= 1 ,

σn(h y (j, n) , s)(i) = 1/n if i ≤ n ,
σn(h y (i, n) , s)(i) = 0 if i > n ,

the interleaving strategy is a purely probabilistic one. The probability
distribution used is a uniform distribution.

More advanced strategies can be obtained if the scheduling makes use
of the whole interleaving history and/or the control state. For example,
the individual lifetimes of the threads to be interleaved and their creation
hierarchy can be taken into account by making use of the whole interleaving
history. Individual properties of the threads to be interleaved that depend
on the actions performed by them can be taken into account by making use
of the control state. By doing so, interleaving strategies are obtained which,
to a certain extent, can be affected by the threads to be interleaved.

Henceforth, we will write prBTAnt for prBTA extended with the forking
postconditional composition operator. The projective limit model of prBTAnt

is constructed like the projective limit model of prBTA. An outline of the
projective limit model of prBTAnt is given in Appendix A.3.

The following theorem concerns the question whether the operators
added to prBTAnt are well axiomatized by the equations given in Table 9 in
the sense that these equations allow the projective limit model of prBTAnt

to be expanded to a projective limit model of prTAsi.

Theorem 2 The operators added to prBTAnt are well axiomatized, i.e.:

(a) for all closed prTAsi terms t, there exists a closed prBTAnt term t′

such that t = t′ is derivable from the axioms of prTAsi;

(b) for all closed prBTAnt terms t and t′, t = t′ is derivable from the
axioms of prBTAnt iff t = t′ is derivable from the axioms of prTAsi;

(c) for all m, i ∈ N1 with i ≤ m, h ∈ H, s ∈ S, closed prTAsi terms t1,
. . . , tm and n ∈ N, πn(‖mh,s(t1, . . . , tm)) = πn(‖mh,s(πn(t1), . . . , πn(tm)))

and πn(cbm,ih,s (t1, . . . , tm)) = πn(cbm,ih,s (πn(t1), . . . , πn(tm))) are derivable
from the axioms of prTAsi, the axioms for the operators πn introduced
in Theorem 1, and the following axiom:

πn+1(x�nt(z)� y) = πn+1(x) �nt(πn+1(z))� πn+1(y) ,
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where n stands for an arbitrary natural number from N;

(d) for all closed prTAsi terms t and n ∈ N, πn(SD(t)) = πn(SD(πn(t))) is
derivable from the axioms of prTAsi, the axioms for the operators πn
introduced in Theorem 1, and the axiom introduced in part (c).

Proof: Part (a) is straightforwardly proved by induction on the structure
of t, and then in the case where t is of the form cbn,ih,s(t1, . . . , tn) by induction
on the sum of the lengths of t1, . . . , tn and case distinction on the structure of
ti and in the case where t is of the form SD(t1) by induction on the structure
of t1. The proof of the case where t is of the form cbn,ih,s(t1, . . . , tn) reveals
that occurrences of the forking postconditional composition operator get
eliminated if t is of that form.

In the case of part (b), the implication from left to right follows im-
mediately from the fact that the axioms of prBTAnt are included in the
axioms of prTAsi. The implication from right to left is not difficult to see
either. From the axioms of prTAsi that are not axioms of prBTAnt, only
axioms prSI2, prSI4, DT1, and DT2 may be applicable to a closed prBTAnt

term t. If one of them is applicable, then the application yields an equation
t = t′ in which t′ is not a closed prBTAnt term. Moreover, only the axiom
whose application yielded t = t′ is applicable to t′, but now in the opposite
direction. Hence, applications of axioms of prTAsi that are not axioms of
prBTAnt do not yield additional equations.

By part (a), it is sufficient to prove part (c) for all closed prBTAnt terms
t1, . . . , tm. The derivability of the second equation is straightforwardly proved
by induction on the sum of the lengths of t1, . . . , tn and case distinction on
the structure of ti, and in each case by case distinction between n = 0 and
n > 0. The derivability of the first equation now follows immediately using
the axioms of the operators πn. In the proofs, we repeatedly need the easy to
prove fact that, for all closed prBTAnt terms t and n ∈ N, πn(t) = πn(πn(t))
is derivable.

By part (a), it is sufficient to prove part (d) for all closed prBTAnt

terms t. Part (d) is easily proved by induction on the structure of t, and
in each case by case distinction between n = 0 and n > 0. In the proof, we
need again the fact mentioned at the end of the proof outline of part (c).
2

By Theorem 2, we know that the projective limit model of prBTAnt

can be expanded to a projective limit model of prTAsi. An outline of this
expansion is given in Appendix A.3.
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7 Concluding Remarks

We have added probabilistic features to BTA and its extensions with thread-
service interaction and strategic interleaving. Thus, we have paved the
way for rigorous investigation of issues related to probabilistic computation
thinking in terms of instruction sequences and rigorous investigation of
probabilistic interleaving strategies. As an example of the use of prTAtsi, the
probabilistic version of the extension of BTA with thread-service interaction,
we have added the most basic kind of probabilistic instructions proposed
in [12] to a program notation rooted in PGA and have given a formal
definition of the behaviours produced by the instruction sequences from the
resulting program notation under execution with the help of prTAtsi.

We enumerate neither the numerous issues relating to probabilistic
computation in areas such as computability and complexity of computational
problems, efficiency of algorithms, and verification of programs that could
be investigated thinking in terms of instruction sequences nor the numerous
probabilistic scheduling algorithms that could be investigated in prTAsi,
the probabilistic generalization of the extensions of BTA with strategic
interleaving.

However, we mention interesting options for future work that are of a
different kind: (a) clarifying analyses of relevant probabilistic algorithms,
such as the Miller-Rabin probabilistic primality test [27], using probabilistic
instruction sequences or non-probabilistic instruction sequences and proba-
bilistic services and (b) explanations of relevant quantum algorithms, such
as Shor’s integer factorization algorithm [31], by first giving a clarifying
analysis using probabilistic instruction sequences or non-probabilistic in-
struction sequences and probabilistic services and then showing how certain
services involved in principle can be realized very efficiently with quantum
computing.

Moreover, we believe that the development of program notations for
probabilistic computation is a useful preparation for the development of
program notations for quantum computation later on. The development
of program notations for quantum computation that have their origins
in instruction sequences could constitute a valuable complement to other
developments with respect to quantum computation, which for the greater
part boil down to mere adaptation of earlier developments with respect to
classical computation to the potentialities of quantum physics (see e.g. [19]).

In fact, prBTA is a process algebra tailored to the behaviours produced
by probabilistic instruction sequences under execution. Because prBTA
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offers probabilistic choices of the generative variety (see [32]) and no non-
deterministic choices, it is most closely related to the probabilistic process
algebra prBPA presented in [2]. To our knowledge, thread-service interaction
and strategic interleaving as found in prTAtsi and prTAsi are mechanisms
for interaction and concurrency that are quite different from those found
in any theory or model of processes. This leaves almost nothing to be said
about related work.

The very limited extent of related work is due to two conscious choices:
(a) the limitation of the scope to behaviours produced by programs under
execution and (b) the limitation of the scope to the form of interleaving
concurrency that is relevant to the behaviours of multi-threaded programs
under execution. However, something unexpected remains to be mentioned
as related work, to wit the work on security of multi-threaded programs
presented in [29]. Probabilistic strategic interleaving as found in prTAsi

is strongly inspired by the scheduler-dependent semantics of a simple pro-
gramming language with support for multi-threading that we found in that
paper.

It is noteworthy to mention something about the interpretation of
prBTA, prTAtsi, and prTAsi in a probabilistic version of a general process
algebra such as ACP, CCS or CSP. It is crucial that probabilistic choice
of the generative variety, non-deterministic choice, asynchronous parallel
composition, abstraction from internal actions, and recursion are covered by
the process algebra used for the purpose of interpretation. General process
algebras that cover all this are rare. To our knowledge, pACPτ [1] is the only
one that has been elaborated in sufficient depth. However, interpretation of
prBTA, prTAtsi, and prTAsi in pACPτ seems impossible to us. The presence
of asynchronous parallel composition based on arbitrary interleaving in
pACPτ precludes the proper form of abstraction from internal actions for
interpretation of prBTA, prTAtsi, and prTAsi.
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A Projective Limit Models

In this appendix, we outline the construction of projective limit models for
prBTA, prTAtsi, and prTAsi. In these model, which covers finite and infinite
threads, threads are represented by infinite sequences of finite approximations.
Guarded recursive specifications have unique solutions in these models. We
denote the interpretations of constants and operators in the models by the
constants and operators themselves.

A.1 Projective Limit Model of prBTA

We will write I(prBTA) for the initial model of prBTA and T (prBTA) for
the carrier of I(prBTA). T (prBTA) consists of the equivalence classes of
closed prBTA terms with respect to derivable equality. In other words,
modulo derivable equality, T (prBTA) is the set of all closed prBTA terms.
Henceforth, we will identify closed prBTA terms with their equivalence class
where elements of T (prBTA) are concerned.

Each element of T (prBTA) represents a finite thread, i.e. a thread with
a finite upper bound to the number of actions that it can perform. Below,
we will construct a model that covers infinite threads as well. In preparation
for that, we define for all n a function that cuts off threads from T (prBTA)
after n actions have been performed.

For each n ∈ N, we define the projection function πn : T (prBTA) →
T (prBTA), inductively as follows:

π0(t) = D ,

πn+1(S) = S ,

πn+1(D) = D ,

πn+1(t�a� t′) = πn(t) �a� πn(t′) ,

πn+1(t+π t
′) = πn+1(t) +π πn+1(t

′) .

For t ∈ T (prBTA), πn(t) is called the nth projection of t. It can be thought
of as an approximation of t. If πn(t) 6= t, then πn+1(t) can be thought of
as the closest better approximation of t. If πn(t) = t, then πn+1(t) = t as
well. For all n ∈ N, we will write Tn(prBTA) for {πn(t) | t ∈ T (prBTA)}.
Obviously, the projection functions defined above satisfy the axioms for the
projection operators introduced in Theorem 1.

In the projective limit model, which covers both finite and infinite
threads, threads are represented by projective sequences, i.e. infinite se-
quences (tn)n∈N of elements of T (prBTA) such that tn ∈ Tn(prBTA) and
tn = πn(tn+1) for all n ∈ N. In other words, a projective sequence is a
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sequence of which successive components are successive projections of the
same thread. The idea is that any infinite thread is fully characterized by the
infinite sequence of all its finite approximations. We will write T∞(prBTA)
for the set of all projective sequences over T (prBTA), i.e. the set

{(tn)n∈N |
∧
n∈N (tn ∈ Tn(prBTA) ∧ tn = πn(tn+1))} .

The projective limit model I∞(prBTA) of prBTA consists of the follow-
ing:

• the set T∞(prBTA), the carrier of the projective limit model;

• an element of T∞(prBTA) for each constant of prBTA;

• an operation on T∞(prBTA) for each operator of prBTA;

where those elements of T∞(prBTA) and operations on T∞(prBTA) are
defined as follows:

S = (πn(S))n∈N ,

D = (πn(D))n∈N ,

(tn)n∈N �a� (t′n)n∈N = (πn(tn �a� t′n))n∈N ,

(tn)n∈N +π (t′n)n∈N = (πn(tn +π t
′
n))n∈N .

It is straightforward to check that the constants are elements of
T∞(prBTA) and the operations always yield elements of T∞(prBTA). It
follows immediately from the construction of the projective limit model of
prBTA that the axiom of prBTA forms a complete axiomatization of this
model for equations between closed terms.

A.2 Projective Limit Model of prTAtsi

We will write I(SFA) for the free SFA-extension of S and I(prTAtsi) for
the free prTAtsi-extension of S.

From the fact that the signatures of I∞(prBTA) and I(SFA) are
disjoint, it follows, by the amalgamation result about expansions presented
as Theorem 6.1.1 in [24] (adapted to the many-sorted case), that there
exists a model of prBTA combined with SFA such that the restriction to the
signature of prBTA is I∞(prBTA) and the restriction to the signature of
SFA is I(SFA).
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Let I∞(prBTA+SFA) be the model of prBTA combined with SFA
referred to above. Then the projective limit model I∞(prTAtsi) of prTAtsi

is I∞(prBTA+SFA) expanded with the operations defined by

(tn)n∈N / S = (πn(tn / S))n∈N ,

τtau((tn)n∈N) = (limk→∞ πn(τtau(tk)))n∈N

as interpretations of the additional operators of prTAtsi. On the right-hand
side of these equations, the symbols / and τtau denote the interpretation of
the operators / and τtau in I(prTAtsi). In the second equation, the limit is
the limit with respect to the discrete topology on T (prBTA).

It is straightforward to check that the operations with which I∞(prBTA)
is expanded always yield elements of T∞(prBTA). It follows immediately
from the construction of I∞(prTAtsi) and Theorem 1 that I∞(prTAtsi) is
really a projective limit model of prTAtsi.

A.3 Projective Limit Model of prTAsi

We will write I(prBTAnt) for the initial model of prBTAnt and T (prBTAnt)
for the carrier of I(prBTAnt). Moreover, we will write I(prTAsi) for the
initial model of prTAsi.

With the projection functions πn extended from T (prBTA) to
T (prBTAnt) such that

πn+1(t�nt(t′′)� t′) = πn+1(t) �nt(πn+1(t
′′))� πn+1(t

′) ,

the projective limit model I∞(prBTAnt) of prBTAnt is constructed from
I(prBTAnt) like the projective limit model I∞(prBTA) of prBTA is con-
structed from I(prBTA). The interpretation of the additional operator is
the operation on T∞(prBTAnt) defined as follows:

(t1n)n∈N �nt((t2n)n∈N)� (t3n)n∈N = (πn(t1n �nt(t2n)� t3n))n∈N .

The projective limit model I∞(prTAsi) of prTAsi is I∞(prBTAnt) ex-
panded with the operations defined by

‖nh,s((t1n)n∈N, . . . , (tmn)n∈N) = (πn(‖nh,s(t1n, . . . , tmn)))
n∈N ,

cbn,ih,s((t1n)n∈N, . . . , (tmn)n∈N) = (πn(cbn,ih,s(t1n, . . . , tmn)))
n∈N

,

SD((tn)n∈N) = (πn(SD(tn)))n∈N
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as interpretations of the additional operators of prTAsi. On the right-hand
side of these equations, the symbols �nt( )�, ‖nh,s, cb

n,i
h,s, and SD denote the

interpretation of the operators �nt( )�, ‖nh,s, cb
n,i
h,s, and SD in I(prTAsi).

It is straightforward to check that the operations with which
I∞(prBTAnt) is expanded always yield elements of T∞(prBTAnt). It fol-
lows immediately from the construction of I∞(prTAsi) and Theorem 2 that
I∞(prTAsi) is really a projective limit model of prTAsi.
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