

Edinburgh Research Explorer

Symbolic Logic meets Machine Learning: A Brief Survey in
Infinite Domains

Citation for published version:
Belle, V 2020, Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains. in J Davis & K
Tabia (eds), Scalable Uncertainty Management. SUM 2020. Lecture Notes in Computer Science, vol.
12322, Springer, Cham, pp. 3-16, The 14th International Conference on Scalable Uncertainty Management,
Bozen-Bolzano, Italy, 23/09/20. https://doi.org/10.1007/978-3-030-58449-8_1

Digital Object Identifier (DOI):
10.1007/978-3-030-58449-8_1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Scalable Uncertainty Management. SUM 2020

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Jan. 2021

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/363992438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/vaishak-belle(bd14c9d9-1e8b-4816-b547-d3727e0d8537).html
https://www.research.ed.ac.uk/portal/en/publications/symbolic-logic-meets-machine-learning-a-brief-survey-in-infinite-domains(a60fe899-f168-4642-996e-7b6b40944bbf).html
https://doi.org/10.1007/978-3-030-58449-8_1
https://doi.org/10.1007/978-3-030-58449-8_1
https://www.research.ed.ac.uk/portal/en/publications/symbolic-logic-meets-machine-learning-a-brief-survey-in-infinite-domains(a60fe899-f168-4642-996e-7b6b40944bbf).html

Symbolic Logic meets Machine Learning:
A Brief Survey in Infinite Domains?

Vaishak Belle

University of Edinburgh & Alan Turing Institute, UK
vaishak@ed.ac.uk

Abstract. The tension between deduction and induction is perhaps the most fun-
damental issue in areas such as philosophy, cognition and artificial intelligence
(AI). The deduction camp concerns itself with questions about the expressiveness
of formal languages for capturing knowledge about the world, together with proof
systems for reasoning from such knowledge bases. The learning camp attempts to
generalize from examples about partial descriptions about the world. In AI, his-
torically, these camps have loosely divided the development of the field, but ad-
vances in cross-over areas such as statistical relational learning, neuro-symbolic
systems, and high-level control have illustrated that the dichotomy is not very
constructive, and perhaps even ill-formed.
In this article, we survey work that provides further evidence for the connections
between logic and learning. Our narrative is structured in terms of three strands:
logic versus learning, machine learning for logic, and logic for machine learning,
but naturally, there is considerable overlap. We place an emphasis on the fol-
lowing “sore” point: there is a common misconception that logic is for discrete
properties, whereas probability theory and machine learning, more generally, is
for continuous properties. We report on results that challenge this view on the
limitations of logic, and expose the role that logic can play for learning in infinite
domains.

1 Introduction

The tension between deduction and induction is perhaps the most fundamental issue in
areas such as philosophy, cognition and artificial intelligence (AI). The deduction camp
concerns itself with questions about the expressiveness of formal languages for captur-
ing knowledge about the world, together with proof systems for reasoning from such
knowledge bases. The learning camp attempts to generalize from examples about partial
descriptions about the world. In AI, historically, these camps have loosely divided the
development of the field, but advances in cross-over areas such as statistical relational
learning [83, 38], neuro-symbolic systems [37, 28, 60], and high-level control [59, 50]
have illustrated that the dichotomy is not very constructive, and perhaps even ill-formed.
Indeed, logic emphasizes high-level reasoning, and encourages structuring the world in
terms of objects, properties, and relations. In contrast, much of the inductive machinery
assume random variables to be independent and identically distributed, which can be

? The author was supported by a Royal Society University Research Fellowship. He is grateful
to Ionela G. Mocanu, Paulius Dilkas and Kwabena Nuamah for their feedback.

2 V. Belle

problematic when attempting to exploit symmetries and causal dependencies between
groups of objects. But the threads connecting logic and learning go deeper, far beyond
the apparent flexibility that logic offers for modeling relations and hierarchies in noisy
domains. At a conceptual level, for example, although there is much debate about what
precisely commonsense knowledge might look like, it is widely acknowledged that con-
cepts such as time, space, abstraction and causality are essential [68, 98]. In that regard,
(classical, or perhaps non-classical) logic can provide the formal machinery to reason
about such concepts in a rigorous way. At a pragmatic level, despite the success of
methods such as deep learning, it is now increasingly recognized that owing to a num-
ber of reasons, including model re-use, transferability, causal understanding, relational
abstraction, explainability and data efficiency, those methods need to be further aug-
mented with logical, symbolic and/or programmatic artifacts [17, 97, 35]. Finally, for
building intelligent agents, it is recognized that low-level, data-intensive, reactive com-
putations needs to be tightly integrated with high-level, deliberative computations [59,
50, 67], the latter possibly also engaging in hypothetical and counterfactual reasoning.
Here, a parallel is often drawn to Kahneman’s so-called System 1 versus System 2 pro-
cessing in human cognition [51], in the sense that experiential and reactive processing
(learned behavior) needs to be coupled with cogitative processing (reasoning, delibera-
tion and introspection) for sophisticated machine intelligence.

The purpose of this article is not to resolve this debate, but rather provide further
evidence for the connections between logic and learning. In particular, our narrative is
inspired by a recent symposium on logic and learning [13], where the landscape was
structured in terms of three strands:

1. Logic vs. Machine Learning, including the study of problems that can be solved
using either logic-based techniques or via machine learning, . . .;

2. Machine Learning for Logic, including the learning of logical artifacts, such as
formulas, logic programs, . . .; and

3. Logic for Machine Learning, including the role of logics in delineating the bound-
ary between tractable and intractable learning problems, . . . , and the use of logic
as a declarative framework for expressing machine learning constructs.

In this article, we particularly focus on the following “sore” point: there is a com-
mon misconception that logic is for discrete properties, whereas probability theory and
machine learning, more generally, is for continuous properties. It is true that logical
formulas are discrete structures, but they can very easily also express properties about
countably infinite or even uncountably many objects. Consequently, in this article we
survey some recent results that tackle the integration of logic and learning in infinite do-
mains. In particular, in the context of the above three strands, we report on the following
developments. On (1), we discuss approaches for logic-based probabilistic inference in
continuous domains. On (2), we cover approaches for learning logic programs in con-
tinuous domains, as well as learning formulas that represent countably infinite sets of
objects. Finally, on (3), we discuss attempts to use logic as a declarative framework for
common tasks in machine learning over discrete and continuous features, as well as us-
ing logic as a meta-theory to consider notions such as the abstraction of a probabilistic
model.

Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains 3

We remark that this survey is undoubtedly a biased view, as the area of research is
large, but we do attempt to briefly cover the major threads. Readers are encouraged to
refer to discussions in [13, 38, 83], among others, to get a sense of the breadth of the
area.

2 Logic vs. Machine Learning

To appreciate the role and impact of logic-based solvers for machine learning systems, it
is perhaps useful to consider the core computational problem underlying (probabilistic)
machine learning: the problem of inference, including evaluating the partition function
(or conditional probabilities) of a probabilistic graphical model such as a Bayesian net-
work.

When leveraging Bayesian networks for machine learning tasks [56], the networks
are often learned using local search to maximize a likelihood or a Bayesian quantity. For
example, given dataD and the current guess for the network N , we might estimate the
“goodness” of the guess by means of a score: score(N ,D) ∝ log Pr(D | N) − size(N).
That is, we want to maximize the fit of the data wrt the current guess, but we would
like to penalize the model complexity, to avoid overfitting. Then, we would opt for a
second guess N ′ only if score(N ′,D) > score(N ,D). Needless to say, even with a
reasonable local search procedure, the most significant computational effort here is that
of probabilistic inference.

Reasoning in such networks becomes especially challenging with logical syntax.
The prevalence of large-scale social networks, machine reading domains, and other
types of relational knowledge bases has led to numerous formalisms that borrow the
syntax of predicate logic for probabilistic modeling [78, 85, 81, 93]. This has led to a
large family of solvers for the weighted model counting (WMC) problem [39, 20]. The
idea is this: given a Bayesian network, a relational Bayesian network, a factor graph, or
a probabilistic program [84], one considers an encoding of the formalism as a weighted
propositional theory, consisting of a propositional theory ∆ and a weight function w
that maps atoms in ∆ to R+. Recall that SAT is the problem of finding an assignment to
such a ∆, whereas #SAT counts the number of assignments for ∆. WMC extends #SAT
by computing the sum of the weights of all assignments: that is, given a set of models
M(∆) = {M | M |= ∆}, we evaluate the quantity W(∆) =

∑
M∈M(∆) w(M) where w(M)

is factorized in terms of the atoms true at M. To obtain the conditional probability of a
query q against evidence e (wrt the theory ∆), we define Pr(q | e) = W(∆∧q∧e)/W(∆∧e).

The popularity of WMC can be explained as follows. Its formulation elegantly de-
couples the logical or symbolic representation from the numeric representation, which
is encapsulated in the weight function. When building solvers, this allows us to rea-
son about logical equivalence and reuse SAT solving technology (such as constraint
propagation and clause learning). WMC also makes it more natural to reason about de-
terministic, hard constraints in a probabilistic context [20]. Both exact solvers, based
on knowledge compilation [23], as well as approximate solvers [19] have emerged in
the recent years, as have lifted techniques [95] that exploit the relational syntax during
inference (but in a finite domain setting). For ideas on generating such representations
randomly to assess scalability and compare inference algorithms, see [29], for example.

4 V. Belle

On the point of modelling finite vs infinite properties, note that owing to the under-
lying propositional language, the formulation is limited to discrete random variables. A
similar observation can be made for SAT, which for the longest time could only be ap-
plied in discrete domains. This changed with the increasing popularity of satisfiability
modulo theories (SMT) [4], which enable us to, for example, reason about the satisfi-
ability of linear constraints over the rationals. Extending earlier insights on piecewise-
polynomial weight functions [89, 88], the formulation of weighted model integration
(WMI) was proposed in [12]. WMI extends WMC by leveraging the idea that SMT
theories can represent mixtures of Boolean and continuous variables: for example, a
formula such as p ∧ (x > 5) denotes the logical conjunction of a Boolean variable p
and a real-valued variable x taking values greater than 5. For every assignment to the
Boolean and continuous variables, the WMI problem defines a weight. The total WMI
is computed by integrating these weights over the domain of solutions to ∆, which is
a mixed discrete-continuous (or simply hybrid) space. Consider, for example, the spe-
cial case when ∆ has no Boolean variables, and the weight of every model is 1. Then,
the WMI simplifies to computing the volume of the polytope encoded in ∆. When we
additionally allow for Boolean variables in ∆, this special case becomes the hybrid ver-
sion of #SAT, known as #SMT [21]. Since that proposal, numerous advances have been
made on building efficient WMI solvers (e.g., [74, 69, 99]) including the development
of compilation targets [53, 54, 100].

Note that WMI proposes an extension of WMC for uncountably infinite (i.e., con-
tinuous) domains. What about countably infinite domains? The latter type is particularly
useful for reasoning in (general) first-order settings, where we may say that a property
such as ∀x, y, z(parent(x, y) ∧ parent(y, z) ⊃ grandparent(x, z)) applies to every possi-
ble x, y and z. Of course, in the absence of the finite domain assumption, reasoning in
the first-order setting suffers from undecidability properties, and so various strategies
have emerged for reasoning about an open universe [87]. One popular approach is to
perform forward reasoning, where samples needed for probability estimation are ob-
tained from the facts and declarations in the probabilistic model [87, 45]. Each such
sample corresponds to a possible world. But there may be (countably or uncountably)
infinitely many worlds, and so exact inference is usually sacrificed. A second approach
is to restrict the model wrt the query and evidence atoms and define estimation from
the resulting finite sub-model [70, 90, 41], which may also be substantiated with exact
inference in special cases [6, 7].

Given the successes of logic-based solvers for inference and probability estimation,
one might wonder whether such solvers would also be applicable to learning tasks in
models with relational features and hard, deterministic constraints? These, in addition
to other topics, are considered in the next section.

3 Machine Learning for Logic

At least since the time of Socrates, inductive reasoning has been a core issue for the
logical worldview, as we need a mechanism for obtaining axiomatic knowledge. In that
regard, the learning of logical and symbolic artifacts is an important issue in AI, and
computer science more generally [43]. There is a considerable body of work on learning

Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains 5

propositional and relational formulas, and in context of probabilistic information, learn-
ing weighted formulas [13, 75, 26, 83]. Approaches can be broadly lumped together as
follows.

1. Entailment-based scoring: Given a logical languageL, background knowledgeB ⊂
L, examples D (usually a set of L-atoms), find a hypothesis H ∈ H ,H ⊂ L such
that B ∪ H entail the instances in D. Here, the set H places restrictions of the
syntax of H so as to control model complexity and generalization. (For example,
H = D is a trivial hypothesis that satisfies the entailment stipulation.)

2. Likelihood-based scoring: Given L,B and D as defined above, find H ⊂ L such
that score(H ,D) > score(H ′,D) for every H ′ , H . As discussed before, we
might define score(H ,D) ∝ log Pr(D | H)− size(H). Here, likeH above, size(H)
attempts to the control model complexity and generalization.

Many recipes based on these schemes are possible. For example, we may use entailment-
based inductive synthesis for an initial estimate of the hypothesis, and then resort to
Bayesian scoring models [85]. The synthesis step might invoke neural machinery [35].
We might not require that the hypothesis entails every example inD but only the largest
consistent subset, which is sensible when we expect the examples to be noisy [26]. We
might compile B to an efficient data structure, and perform likelihood-based scoring on
that structure [63], and so B could be seen as deterministic domain-specific constraints.
Finally, we might stipulate the conditions under which a “correct” hypothesis may be
inferred wrt unknown ground truth, only a subset of which is provided in D. This is
perhaps best represented by the (probably approximately correct) PAC-semantics that
captures the quality possessed by the output of learning algorithm whilst costing for the
number of examples that need to be observed [94, 22]. (But other formulations are also
possible, e.g., [42].)

This discussion pertained to finite domains. What about continuous spaces? By
means of arithmetic fragments and formulations like WMI, it should be clear that it
now becomes possible to extend the above schemes to learn continuous properties. For
example, one could learn linear expressions from data [55]. For an account that also
tries to evaluate a hypothesis that is correct wrt unknown ground truth, see [72]. If the
overall objective is to obtain a distribution of the data, other possibilities present them-
selves. In [77], for example, real-valued data points are first lumped together to obtain
atomic continuous random variables. From these, relational formulas are constructed so
as to yield hybrid probabilistic programs. The learning is based on likelihood scoring.
In [91], the real-valued data points are first intervalized, and polynomials are learned
for those intervals based on likelihood scoring. These weighted atoms are then used for
learning clauses by entailment judgements [26].

Such ideas can also be extended to data structures inspired by knowledge compila-
tion, often referred to as circuits [20, 82]. Knowledge compilation [25] arose as a way
to represent logical theories in a manner where certain kinds of computations (e.g.,
checking satisfiability) is significantly more effective, often polynomial in the size of
the circuit. In the context of probabilistic inference, the idea was to then position proba-
bility estimation to also be computable in time polynomial in the size of the circuit [20,
82]. Consequently, (say) by means of likelihood-based scoring, the learning of circuits

6 V. Belle

is particularly attractive because once learned, the bottleneck of inference is alleviated
[66, 63]. In [73, 15], along the lines of the work above on learning logical formulas in
continuous domains, it is shown that the learning of circuits can also be coupled with
WMI.

What about countably infinite domains? In most pragmatic instances of learning
logical artifacts, the difference between the uncountable and countably infinite setting
is this: in the former, we see finitely many real-valued samples as being drawn from
an (unknown) interval, and we could inspect these samples to crudely infer a lower
and upper bound. In the latter, based on finitely many relational atoms, we would need
to infer a universally quantified clause, such as ∀x, y, z(parent(x, y) ∧ parent(y, z) ⊃
grandparent(x, z)). If we are after a hypothesis that is simply guaranteed to be consistent
wrt the observed examples, then standard rule induction strategies would suffice [75],
and we could interpret the rules as quantifying over a countably infinite domain. But this
is somewhat unsatisfactory, as there is no distinction between the rules learned in the
standard finite setting and its supposed applicability to the infinite setting. What is really
needed is an analysis of what rule learning would mean wrt the infinitely many exam-
ples that have not been observed. This was recently considered via the PAC-semantics
in [10], by appealing to ideas on reasoning with open universes discussed earlier [6].

Before concluding this section, it is worth noting that although the above discussion
is primarily related to the learning of logical artifacts, it can equivalently be seen as a
class of machine learning methods that leverage symbolic domain knowledge [30]. In-
deed, logic-based probabilistic inference over deterministic constraints, and entailment-
based induction augmented with background knowledge are instances of such a class.
Analogously, the automated construction of relational and statistical knowledge bases
[79, 18] by combining background knowledge with extracted tuples (obtained, for ex-
ample, by applying natural language processing techniques to large textual data) is an-
other instance of such a class.

In the next section, we will consider yet another way in which logical and symbolic
artifacts can influence learning: we will see how such artifacts are useful to enable
tractability, correctness, modularity and compositionality.

4 Logic for Machine Learning

There are two obvious ways in which a logical framework can provide insights on ma-
chine learning theory. First, consider that computational tractability is of central con-
cern when applying logic in computer science, knowledge representation, database the-
ory and search [65, 62, 71]. Thus, the natural question to wonder is whether these ideas
would carry over to probabilistic machine learning. On the one hand, probabilistic ex-
tensions to tractable knowledge representation frameworks could be considered [57].
But on the other, as discussed previously, ideas from knowledge compilation, and the
use of circuits, in particular, are proving very effective for designing tractable paradigms
for machine learning. While there has always been an interest in capturing tractable dis-
tributions by means of low tree-width models [2], knowledge compilation has provided
a way to also represent high tree-width models and enable exact inference for a range

Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains 7

of queries [82, 63]. See [24] for a comprehensive view on the use of knowledge compi-
lation for machine learning.

The other obvious way logic can provide insights on machine learning theory is
by offering a formal apparatus to reason about context. Machine learning problems are
often positioned as atomic tasks, such as a classification task where regions of images
need to be labeled as cats or dogs. However, even in that limited context, we imagine
the resulting classification system as being deployed as part of a larger system, which
includes various modules that communicate or interface with the classification system.
We imagine an implicit accountability to the labelling task in that the detected object is
either a cat or a dog, but not both. If there is information available that all the entities
surrounding the object of interest have been labelled as lions, we would want to accord a
high probability to the object being a cat, possibly a wild cat. There is a very low chance
of the object being a dog, then. If this is part of a vision system on a robot, we should
ensure that the robot never tramples on the object, regardless of whether it is a type of
cat or a dog. To inspect such patterns, and provide meta-theory for machine learning, it
can be shown that symbolic, programmatic and logical artifacts are enormously useful.
We will specifically consider correctness, modularity and compositionality to explore
the claim.

On the topic of correctness, the classical framework in computer science is verifi-
cation: can we provide a formal specification of what is desired, and can the system
be checked against that specification? In a machine learning context, we might ask
whether the system, during or after training, satisfies a specification. The specification
here might mean constraints about the physical laws of the domain, or notions of per-
turbation in the input space while ensuring that the labels do not change, or insisting
that the prediction does not label an object as being both a cat and a dog, or other-
wise ensuring that outcomes are not subject to, say, gender bias. Although there is a
broad body of work on such issues, touching more generally on trust [86], we discuss
approaches closer to the thrust of this article. For example, [49] show that a trained
neural network can be verified by means of an SMT encoding of the network. In re-
cent work, [96] show that the loss function of deep learning systems can be adjusted
to logical constraints by insisting that the distribution on the predictions is proportional
to the weighted model count of those constraints. In [63], prior (logical) constraints are
compiled to a circuit to be used for probability estimation. In [80], circuits are shown
to be amenable to training against probabilistic and causal prior constraints, including
assertions about fairness, for example.

In [32, 67], a somewhat different approach to respecting domain constraints is taken:
the low-level prediction is obtained as usual from a machine learning module, which is
then interfaced with a probabilistic relational language and its symbolic engine. That
is, the reasoning is positioned to be tackled directly by the symbolic engine. In a
sense, such approaches cut across the three strands: the symbolic engine uses weighted
model counting, the formulas in the language could be obtained by (say) entailment-
based scoring, and the resulting language supports modularity and compositionality
(discussed below).

While there is not much to be said about the distinction between finite vs infinite
wrt correctness, many of these ideas are likely amenable to extensions to an infinite

8 V. Belle

setting in the ways discussed in the previous sections (e.g., considering constraints of a
continuous or a countably infinite nature).

On the topic of modularity, recall that the general idea is to reduce, simplify or
otherwise abstract a (probabilistic) computation as an atomic entity, which is then to
be referenced in another, possibly more complex, entity. In standard programming lan-
guages, this might mean the compartmentalization and interrelation of computational
entities. For machine learning, approaches such as probabilistic programming [40, 27]
support probabilistic primitives in the language, with the intention of making learning
modules re-usable and modular. It can be shown, for example, that the computational
semantics of some of these languages reduce to WMC [36, 48]. Thus, in the infinite
case, a corresponding reduction to WMI follows [31, 91, 1].

A second dimension to modularity is the notion of abstraction. Here, we seek to
model, reason and explain the behavior of systems in a more tractable search space, by
omitting irrelevant details. The idea is widely used in natural and social sciences. Think
of understanding the political dynamics of elections by studying micro level phenomena
(say, voter grievances in counties) versus macro level events (e.g., television advertise-
ments, gerrymandering). In particular, in computer science, it is often understood as the
process of mapping one representation onto a simpler representation by suppressing ir-
relevant information. In fact, integrating low-level behavior with high-level reasoning,
exploiting relational representations to reduce the number of inference computations,
and many other search space reduction techniques can all loosely be seen as instances
of abstraction [8].

While there has been significant work on abstraction in deterministic systems [3],
for machine learning, however, a probabilistic variant is clearly needed. In [47], an
account of abstraction for loop-free propositional probabilistic programs is provided,
where certain parts of the program (possibly involving continuous properties) can be
reduced to a Bernoulli random variable. For example, suppose every occurrence of the
continuous random variable x, drawn uniformly on the interval [0,1], in a program is
either of the form x ≤ 7 or of the form x > 7. Then, we could use a discrete random
variable b with a 0.7 probability of being true to capture x ≤ 7; and analogously, ¬b
to capture x > 7. The resulting program is likely to be simpler. In [8], an account of
abstraction for probabilistic relational models is considered, where the notion of ab-
straction also extends to deterministic constraints and complex formulas. For example,
a single probabilistic variable in the abstracted model could denote a complex logical
formula in the original model. Moreover, the logical properties that enable verifying
and inducing abstractions are also considered, and it is shown how WMC is sufficient
for the computability of these properties (also see [48]).

Incidentally, abstraction brings to light a reduction between finite vs infinite: it is
shown in [8] that the modelling of piecewise densities as weighted propositions, which
is leveraged in WMI [12, 31], is a simple case of the more general account. Therefore, it
is worthwhile to investigate whether this or other accounts of abstraction could emerge
as general-purpose tools that allow us to inspect the conditions under which infinitary
statements reduce to finite computations.

A broader point here is the role abstraction might play in generating explanations
[44]. For example, a user’s understanding of the domain is likely to be different from the

Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains 9

low-level data that a machine learning system interfaces with [92], and so, abstractions
can capture these two levels in a formal way.

Finally, we turn to the topic of compositionality, which, of course, is closely related
to modularity in that we want to distinct modules to come together to form a complex
composition. Not surprisingly, this is of great concern in AI, as it is widely acknowl-
edged that most AI systems will involve heterogeneous components, some of which
may involve learning from data, and others reasoning, search and symbol manipula-
tion [68]. In continuation with the above discussion, probabilistic programming is one
such endeavor that purports to tackle this challenge by allowing modular components
to be composed over programming and/or logical connectives [40, 27, 85, 67, 32, 76, 16,
11, 46, 5]. (See [71, 34, 64] for ideas in deterministic systems.) However, probabilistic
programming only composes probabilistic computations, but does not offer an obvious
means to capture other types of search-based computations, such as SAT, and integer
and convex programming.

Recall that the computational semantics of probabilistic programs reduces to WMC
[36, 48]. Following works such as [14, 33], an interesting observation made in [52] is
that by appealing to a sum of products computation over different semiring structures,
we can realize a large number of tasks such as satisfiability, unweighted model counting,
sensitivity analysis, gradient computations, in addition to WMC. It was then shown
in [9] that the idea could be generalized further for infinite domains: by defining a
measure on first-order models, WMI and convex optimization can also be captured.
As the underlying language is a logical one, composition can already be defined using
logical connectives. But an additional, more involved, notion of composition is also
proposed, where a sum of products over different semirings can be concatenated. To
reiterate, the general idea behind these proposals [33, 52, 9] is to arrive at a principled
paradigm that allows us to interface learned modules with other types of search and
optimization computations for the compositional building of AI systems. See also [58]
for analogous discussions, but where a different type of coupling for the underlying
computations is suggested. Overall, we observed that a formal apparatus (symbolic,
programmatic and logical artifacts) help us define such compositional constructions by
providing a meta-theory.

5 Conclusions

In this article, we surveyed work that provides further evidence for the connections be-
tween logic and learning. Our narrative was structured in terms of three strands: logic
versus learning, machine learning for logic, and logic for machine learning, but natu-
rally, there was considerable overlap.

We covered a large body of work on what these connections look like, including,
for example, pragmatic concerns such as the use of hard, domain-specific constraints
and background knowledge, all of which considerably eases the requirement that all of
the agent’s knowledge should be derived from observations alone. (See discussions in
[61] on the limitations of learned behavior, for example.) Where applicable, we placed
an emphasis on how extensions to infinite domains are possible. In the very least, log-
ical artifacts can help in constraining, simplifying and/or composing machine learning

10 V. Belle

entities, and in providing a principled way to study the underlying representational and
computational issues.

In general, this type of work could help us move beyond the narrow focus of the
current learning literature so as to deal with time, space, abstraction, causality, quan-
tified generalizations, relational abstractions, unknown domains, unforeseen examples,
among other things, in a principled fashion. In fact, what is being advocated is the tack-
ling of problems that symbolic logic and machine learning might struggle to address
individually. One could even think of the need for a recursive combination of strands
2 and 3: purely reactive components interact with purely cogitative elements, but then
those reactive components are learned against domain constraints, and the cogitative
elements are induced from data, and so on. More broadly, making progress towards
a formal realization of System 1 versus System 2 processing might also contribute to
our understanding of human intelligence, or at least capture human-like intelligence in
automated systems.

References

1. A. Albarghouthi, L. D’Antoni, S. Drews, and A. V. Nori. Quantifying program bias. CoRR,
abs/1702.05437, 2017.

2. F. R. Bach and M. I. Jordan. Thin junction trees. In Advances in Neural Information
Processing Systems, pages 569–576, 2002.

3. B. Banihashemi, G. De Giacomo, and Y. Lespérance. Abstraction in situation calculus
action theories. In AAAI, pages 1048–1055, 2017.

4. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In
Handbook of Satisfiability, chapter 26, pages 825–885. IOS Press, 2009.

5. V. Belle. Logic meets probability: Towards explainable AI systems for uncertain worlds.
In IJCAI, 2017.

6. V. Belle. Open-universe weighted model counting. In AAAI, pages 3701–3708, 2017.
7. V. Belle. Weighted model counting with function symbols. In UAI, 2017.
8. V. Belle. Abstracting probabilistic models: Relations, constraints and beyond. Knowledge-

Based Systems, page 105976, 2020.
9. V. Belle and L. De Raedt. Semiring programming: A declarative framework for generalized

sum product problems. AAAI Workshop: Statistical Relational Artificial Intelligence, 2020.
10. V. Belle and B. Juba. Implicitly learning to reason in first-order logic. In Advances in

Neural Information Processing Systems, pages 3376–3386, 2019.
11. V. Belle and H. J. Levesque. Allegro: Belief-based programming in stochastic dynamical

domains. In IJCAI, 2015.
12. V. Belle, A. Passerini, and G. Van den Broeck. Probabilistic inference in hybrid domains

by weighted model integration. In IJCAI, pages 2770–2776, 2015.
13. M. Benedikt, K. Kersting, P. G. Kolaitis, and D. Neider. Logic and learning (dagstuhl

seminar 19361). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2020.
14. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint logic programming:

syntax and semantics. TOPLAS, 23(1):1–29, 2001.
15. A. Bueff, S. Speichert, and V. Belle. Tractable querying and learning in hybrid domains via

sum-product networks. KR Workshop on Hybrid Reasoning, 2018.
16. A. Bundy, K. Nuamah, and C. Lucas. Automated reasoning in the age of the internet. In

International Conference on Artificial Intelligence and Symbolic Computation, pages 3–18.
Springer, 2018.

Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains 11

17. R. Bunel, M. Hausknecht, J. Devlin, R. Singh, and P. Kohli. Leveraging grammar and
reinforcement learning for neural program synthesis. arXiv preprint arXiv:1805.04276,
2018.

18. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M. Mitchell.
Toward an architecture for never-ending language learning. In AAAI, pages 1306–1313,
2010.

19. S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi. Distribution-
aware sampling and weighted model counting for SAT. In AAAI, pages 1722–1730, 2014.

20. M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7):772–799, 2008.

21. D. Chistikov, R. Dimitrova, and R. Majumdar. Approximate counting in SMT and value
estimation for probabilistic programs. In TACAS, volume 9035, pages 320–334. 2015.

22. W. W. Cohen. PAC-learning nondeterminate clauses. In AAAI, pages 676–681, 1994.
23. A. Darwiche. New advances in compiling CNF to decomposable negation normal form. In

ECAI, pages 328–332, 2004.
24. A. Darwiche. Three modern roles for logic in ai. In Proceedings of the 39th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, pages 229–243, 2020.
25. A. Darwiche and P. Marquis. A knowledge compilation map. J. Artif. Intell. Res., 17:229–

264, 2002.
26. L. De Raedt, A. Dries, I. Thon, G. Van den Broeck, and M. Verbeke. Inducing proba-

bilistic relational rules from probabilistic examples. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

27. L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts. Machine Learn-
ing, 100(1):5–47, 2015.

28. L. De Raedt, R. Manhaeve, S. Dumancic, T. Demeester, and A. Kimmig. Neuro-symbolic=

neural+ logical+ probabilistic. In NeSy’19@ IJCAI, the 14th International Workshop on
Neural-Symbolic Learning and Reasoning, pages 1–4, 2019.

29. P. Dilkas and V. Belle. Generating random logic programs using constraint programming.
CoRR, abs/2006.01889, 2020.

30. P. Domingos. The master algorithm: How the quest for the ultimate learning machine will
remake our world. Basic Books, 2015.

31. P. Z. Dos Martires, A. Dries, and L. De Raedt. Exact and approximate weighted model
integration with probability density functions using knowledge compilation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 7825–7833, 2019.

32. A. Dries, A. Kimmig, J. Davis, V. Belle, and L. De Raedt. Solving probability problems in
natural language. In IJCAI, 2017.

33. J. Eisner and N. W. Filardo. Dyna: Extending Datalog for modern AI. In Datalog Reloaded,
volume 6702 of LNCS, pages 181–220. Springer, 2011.

34. A. Ensan and E. Ternovska. Modular systems with preferences. In IJCAI, pages 2940–
2947, 2015.

35. R. Evans and E. Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

36. D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De Raedt. Inference in proba-
bilistic logic programs using weighted CNF’s. In UAI, pages 211–220, 2011.

37. A. d. Garcez, M. Gori, L. C. Lamb, L. Serafini, M. Spranger, and S. N. Tran. Neural-
symbolic computing: An effective methodology for principled integration of machine learn-
ing and reasoning. arXiv preprint arXiv:1905.06088, 2019.

38. L. Getoor and B. Taskar, editors. An Introduction to Statistical Relational Learning. MIT
Press, 2007.

39. C. P. Gomes, A. Sabharwal, and B. Selman. Model counting. In Handbook of Satisfiability.
IOS Press, 2009.

12 V. Belle

40. N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church:
A language for generative models. In Proceedings of UAI, pages 220–229, 2008.

41. M. Grohe and P. Lindner. Probabilistic databases with an infinite open-world assumption.
In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 17–31, 2019.

42. M. Grohe and M. Ritzert. Learning first-order definable concepts over structures of small
degree. In 2017 32nd annual ACM/IEEE symposium on logic in computer science (LICS),
pages 1–12. IEEE, 2017.

43. S. Gulwani. Dimensions in program synthesis. In PPDP, pages 13–24. ACM, 2010.
44. D. Gunning. Explainable artificial intelligence (xai). Technical report, DARPA/I20, 2016.
45. B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt. The magic of logical

inference in probabilistic programming. Theory and Practice of Logic Programming, 11(4-
5):663–680, 2011.

46. J. Y. Halpern. Reasoning about Uncertainty. MIT Press, 2003.
47. S. Holtzen, T. Millstein, and G. Van den Broeck. Probabilistic program abstractions. In

UAI, 2017.
48. S. Holtzen, G. Van den Broeck, and T. Millstein. Dice: Compiling discrete probabilistic

programs for scalable inference. arXiv preprint arXiv:2005.09089, 2020.
49. X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural net-

works. In International Conference on Computer Aided Verification, pages 3–29. Springer,
2017.

50. L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space.
I. J. Robotic Res., 32(9-10):1194–1227, 2013.

51. D. Kahneman. Thinking, fast and slow. Macmillan, 2011.
52. A. Kimmig, G. Van den Broeck, and L. De Raedt. Algebraic model counting. J. Appl. Log.,

22:46–62, 2017.
53. S. Kolb, M. Mladenov, S. Sanner, V. Belle, and K. Kersting. Efficient symbolic integration

for probabilistic inference. In IJCAI, 2018.
54. S. Kolb, P. Morettin, P. Zuidberg Dos Martires, F. Sommavilla, A. Passerini, R. Sebastiani,

and L. De Raedt. The pywmi framework and toolbox for probabilistic inference using
weighted model integration. https://www. ijcai. org/proceedings/2019/, 2019.

55. S. Kolb, S. Teso, A. Passerini, and L. De Raedt. Learning smt (lra) constraints using smt
solvers. In IJCAI, pages 2333–2340, 2018.

56. D. Koller and N. Friedman. Probabilistic Graphical Models - Principles and Techniques.
MIT Press, 2009.

57. D. Koller, A. Levy, and A. Pfeffer. P-classic: a tractable probablistic description logic. In
Proc. AAAI / IAAI, pages 390–397, 1997.

58. P. Kordjamshidi, D. Roth, and K. Kersting. Systems ai: A declarative learning based pro-
gramming perspective. In IJCAI, pages 5464–5471, 2018.

59. G. Lakemeyer and H. J. Levesque. Cognitive robotics. In Handbook of Knowledge Repre-
sentation, pages 869–886. Elsevier, 2007.

60. L. Lamb, A. Garcez, M. Gori, M. Prates, P. Avelar, and M. Vardi. Graph neural
networks meet neural-symbolic computing: A survey and perspective. arXiv preprint
arXiv:2003.00330, 2020.

61. H. J. Levesque. Common sense, the Turing test, and the quest for real AI. MIT Press, 2017.
62. H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowledge represen-

tation and reasoning. Computational Intelligence, 3:78–93, 1987.
63. Y. Liang, J. Bekker, and G. Van den Broeck. Learning the structure of probabilistic senten-

tial decision diagrams. In Proceedings of the 33rd Conference on Uncertainty in Artificial
Intelligence (UAI), 2017.

Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains 13

64. Y. Lierler and M. Truszczynski. An abstract view on modularity in knowledge representa-
tion. In AAAI, pages 1532–1538, 2015.

65. Y. Liu and H. Levesque. Tractable reasoning with incomplete first-order knowledge in
dynamic systems with context-dependent actions. In Proc. IJCAI, pages 522–527, 2005.

66. D. Lowd and P. Domingos. Learning arithmetic circuits. In Proceedings of the 24th Con-
ference in Uncertainty in Artificial Intelligence (UAI), pages 383–392, 2008.

67. R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt. Deepproblog:
Neural probabilistic logic programming. In Advances in Neural Information Processing
Systems, pages 3749–3759, 2018.

68. G. Marcus and E. Davis. Rebooting AI: Building artificial intelligence we can trust. Pan-
theon, 2019.

69. D. Merrell, A. Albarghouthi, and L. D’Antoni. Weighted model integration with orthogonal
transformations. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2017.

70. B. Milch, B. Marthi, D. Sontag, S. J. Russell, D. L. Ong, and A. Kolobov. Approximate
inference for infinite contingent bayesian networks. In AISTATS, pages 238–245, 2005.

71. D. G. Mitchell and E. Ternovska. A framework for representing and solving NP search
problems. In AAAI, pages 430–435, 2005.

72. I. G. Mocanu, V. Belle, and B. Juba. Polynomial-time implicit learnability in smt. In ECAI,
2020.

73. A. Molina, A. Vergari, N. Di Mauro, S. Natarajan, F. Esposito, and K. Kersting. Mixed
sum-product networks: A deep architecture for hybrid domains. In Thirty-second AAAI
conference on artificial intelligence, 2018.

74. P. Morettin, A. Passerini, and R. Sebastiani. Advanced smt techniques for weighted model
integration. Artificial Intelligence, 275:1–27, 2019.

75. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19:629–679, 1994.

76. D. Nitti, V. Belle, T. De Laet, and L. De Raedt. Planning in hybrid relational mdps. Machine
Learning, 106(12):1905–1932, 2017.

77. D. Nitti, I. Ravkic, J. Davis, and L. D. Raedt. Learning the structure of dynamic hybrid
relational models. In Proceedings of the Twenty-second European Conference on Artificial
Intelligence, pages 1283–1290. IOS Press, 2016.

78. F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling up statistical inference in markov
logic networks using an rdbms. Proceedings of the VLDB Endowment, 4(6):373–384, 2011.

79. F. Niu, C. Zhang, C. Ré, and J. W. Shavlik. Deepdive: Web-scale knowledge-base construc-
tion using statistical learning and inference. VLDS, 12:25–28, 2012.

80. I. Papantonis and V. Belle. On constraint definability in tractable probabilistic models.
arXiv preprint arXiv:2001.11349, 2020.

81. D. Poole. First-order probabilistic inference. In Proc. IJCAI, pages 985–991, 2003.
82. H. Poon and P. Domingos. Sum-product networks: A new deep architecture. UAI, pages

337–346, 2011.
83. L. D. Raedt, K. Kersting, S. Natarajan, and D. Poole. Statistical relational artificial intel-

ligence: Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 10(2):1–189, 2016.

84. J. Renkens, D. Shterionov, G. Van den Broeck, J. Vlasselaer, D. Fierens, W. Meert,
G. Janssens, and L. De Raedt. ProbLog2: From probabilistic programming to statistical
relational learning. In D. Roy, V. Mansinghka, and N. Goodman, editors, Proceedings of
the NIPS Probabilistic Programming Workshop,, Dec. 2012. Accepted.

85. M. Richardson and P. Domingos. Markov logic networks. Machine learning, 62(1):107–
136, 2006.

14 V. Belle

86. C. Rudin and B. Ustun. Optimized scoring systems: Toward trust in machine learning for
healthcare and criminal justice. Interfaces, 48(5):449–466, 2018.

87. S. J. Russell. Unifying logic and probability. Commun. ACM, 58(7):88–97, 2015.
88. S. Sanner and E. Abbasnejad. Symbolic variable elimination for discrete and continuous

graphical models. In AAAI, 2012.
89. P. Shenoy and J. West. Inference in hybrid Bayesian networks using mixtures of polynomi-

als. International Journal of Approximate Reasoning, 52(5):641–657, 2011.
90. P. Singla and P. M. Domingos. Markov logic in infinite domains. In UAI, pages 368–375,

2007.
91. S. Speichert and V. Belle. Learning probabilistic logic programs in continuous domains. In

ILP, 2019.
92. S. Sreedharan, S. Srivastava, and S. Kambhampati. Hierarchical expertise level modeling

for user specific contrastive explanations. In IJCAI, pages 4829–4836, 2018.
93. D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic databases. Synthesis Lectures on

Data Management, 3(2):1–180, 2011.
94. L. G. Valiant. Robust logics. Artificial Intelligence, 117(2):231–253, 2000.
95. G. Van den Broeck. Lifted Inference and Learning in Statistical Relational Models. PhD

thesis, KU Leuven, 2013.
96. J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Van den Broeck. A semantic loss function for

deep learning with symbolic knowledge. In International Conference on Machine Learning,
pages 5502–5511, 2018.

97. K. Xu, J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka. What can neural
networks reason about? arXiv preprint arXiv:1905.13211, 2019.

98. R. Zellers, Y. Bisk, R. Schwartz, and Y. Choi. Swag: A large-scale adversarial dataset for
grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

99. Z. Zeng and G. Van den Broeck. Efficient search-based weighted model integration. arXiv
preprint arXiv:1903.05334, 2019.

100. P. Zuidberg Dos Martires, A. Dries, and L. De Raedt. Knowledge compilation with contin-
uous random variables and its application in hybrid probabilistic logic programming. arXiv
preprint arXiv:1807.00614, 2018.

