195 research outputs found

    Temporalising OWL 2 QL

    Get PDF
    We design a temporal description logic, TQL, that extends the standard ontology language OWL2QL, provides basic means for temporal conceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data instances with validity time

    Temporal description logic for ontology-based data access

    Get PDF
    Our aim is to investigate ontology-based data access over temporal data with validity time and ontologies capable of temporal conceptual modelling. To this end, we design a temporal description logic, TQL, that extends the standard ontology language OWL2QL, provides basic means for temporal conceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data instances with validity time

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Projector - a partially typed language for querying XML

    Get PDF
    We describe Projector, a language that can be used to perform a mixture of typed and untyped computation against data represented in XML. For some problems, notably when the data is unstructured or semistructured, the most desirable programming model is against the tree structure underlying the document. When this tree structure has been used to model regular data structures, then these regular structures themselves are a more desirable programming model. The language Projector, described here in outline, gives both models within a single partially typed algebra and is well suited for hybrid applications, for example when fragments of a known structure are embedded in a document whose overall structure is unknown. Projector is an extension of ECMA-262 (aka JavaScript), and therefore inherits an untyped DOM interface. To this has been added some static typing and a dynamic projection primitive, which can be used to assert the presence of a regular structure modelled within the XML. If this structure does exist, the data is extracted and presented as a typed value within the programming language

    Counterpart semantics for a second-order mu-calculus

    Get PDF
    We propose a novel approach to the semantics of quantified μ-calculi, considering models where states are algebras; the evolution relation is given by a counterpart relation (a family of partial homomorphisms), allowing for the creation, deletion, and merging of components; and formulas are interpreted over sets of state assignments (families of substitutions, associating formula variables to state components). Our proposal avoids the limitations of existing approaches, usually enforcing restrictions of the evolution relation: the resulting semantics is a streamlined and intuitively appealing one, yet it is general enough to cover most of the alternative proposals we are aware of

    STRUCTURED DOCUMENT LOGIC

    Get PDF
    This paper describes some practical and theoretical foundations of Structured Document Logic (SDL), which is a logical methodology for analyzing properties of Web documents, like XML or HTML. SDL can make benefits in searching of HTML pages, or in defining filters for web documents. Both syntax and semantics of SDL are described, and an efficient evaluation algorithm is also introduced

    Expressiveness and complexity of graph logic

    Get PDF
    We investigate the complexity and expressive power of the spatial logic for querying graphs introduced by Cardelli, Gardner and Ghelli (ICALP 2002).We show that the model-checking complexity of versions of this logic with and without recursion is PSPACE-complete. In terms of expressive power, the version without recursion is a fragment of the monadic second-order logic of graphs and we show that it can express complete problems at every level of the polynomial hierarchy. We also show that it can define all regular languages, when interpretation is restricted to strings. The expressive power of the logic with recursion is much greater as it can express properties that are PSPACE-complete and therefore unlikely to be definable in second-order logic

    Axiomatizations for downward XPath on Data Trees

    Get PDF
    We give sound and complete axiomatizations for XPath with data tests by "equality" or "inequality", and containing the single "child" axis. This data-aware logic predicts over data trees, which are tree-like structures whose every node contains a label from a finite alphabet and a data value from an infinite domain. The language allows us to compare data values of two nodes but cannot access the data values themselves (i.e. there is no comparison by constants). Our axioms are in the style of equational logic, extending the axiomatization of data-oblivious XPath, by B. ten Cate, T. Litak and M. Marx. We axiomatize the full logic with tests by "equality" and "inequality", and also a simpler fragment with "equality" tests only. Our axiomatizations apply both to node expressions and path expressions. The proof of completeness relies on a novel normal form theorem for XPath with data tests

    Expressiveness of a spatial logic for trees

    Get PDF
    International audienceIn this paper we investigate the quantifier-free fragment of the TQL logic proposed by Cardelli and Ghelli. The TQL logic, inspired from the ambient logic, is the core of a query language for semistructured data represented as unranked and unordered trees. The fragment we consider here, named STL, contains as main features spatial composition and location as well as a fixed point construct. We prove that satisfiability for STL is undecidable.We show also that STL is strictly more expressive that the Presburger monadic second-order logic (PMSO) of Seidl, Schwentick and Muscholl when interpreted over unranked and unordered edge-labeled trees. We define a class of tree automata whose transitions are conditioned by arithmetical constraints; we show then how to compute from a closed STL formula a tree automaton accepting precisely the models of the formula. Finally, still using our tree automata framework, we exhibit some syntactic restrictions over STL formulae that allow us to capture precisely the logics MSO and PMSO
    corecore