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Abstract

Our aim is to investigate ontology-based data ac-
cess over temporal data with validity time and
ontologies capable of temporal conceptual mod-
elling. To this end, we design a temporal descrip-
tion logic, TQL, that extends the standard ontol-
ogy language OWL 2 QL, provides basic means for
temporal conceptual modelling and ensures first-
order rewritability of conjunctive queries for suit-
ably defined data instances with validity time.

1 Introduction
One of the most promising and exciting applications of de-
scription logics (DLs) is to supply ontology languages and
query answering technologies for ontology-based data ac-
cess (OBDA), a way of querying incomplete data sources
that uses ontologies to provide additional conceptual infor-
mation about the domains of interest and enrich the query
vocabulary. The current W3C standard language for OBDA
is OWL 2 QL , which was built on the DL-Lite family of
DLs [Calvanese et al., 2006; 2007]. To answer a con-
junctive query q over an OWL 2 QL ontology T and in-
stance data A, an OBDA system first ‘rewrites’ q and T
into a new first-order query q′ and then evaluates q′ over
A (without using the ontology). The evaluation task is per-
formed by a conventional relational database management
system. Finding efficient and practical rewritings has been
the subject of extensive research [Pérez-Urbina et al., 2009;
Rosati and Almatelli, 2010; Kontchakov et al., 2010; Chor-
taras et al., 2011; Gottlob et al., 2011; König et al., 2012].
Another fundamental feature of OWL 2 QL, supplementing
its first-order rewritability, is the ability to capture basic
conceptual data modelling constructs [Berardi et al., 2005;
Artale et al., 2007].

In applications, instance data is often time-dependent: em-
ployment contracts come to an end, parliaments are elected,
children are born. Temporal data can be modelled by pairs
consisting of facts and their validity time; for example,
givesBirth(diana,william, 1982). To query data with validity
time, it would be useful to employ an ontology that provides
a conceptual model for both static and temporal aspects of
the domain of interest. Thus, when querying the fact above,

one could use the knowledge that, if x gives birth to y, then x
becomes a mother of y from that moment on:

♦P givesBirth v motherOf, (1)
where ♦P reads ‘sometime in the past.’ OWL 2 QL does not
support temporal conceptual modelling and, rather surpris-
ingly, no attempt has yet been made to lift the OBDA frame-
work to temporal ontologies and data.

Temporal extensions of DLs have been investigated since
1993; see [Gabbay et al., 2003; Lutz et al., 2008; Artale and
Franconi, 2005] for surveys and [Franconi and Toman, 2011;
Gutiérrez-Basulto and Klarman, 2012; Baader et al., 2012]
for more recent developments. Temporalised DL-Lite log-
ics have been constructed for temporal conceptual data mod-
elling [Artale et al., 2010]. But unfortunately, none of the
existing temporal DLs supports first-order rewritability.

The aim of this paper is to design a temporal DL that
contains OWL 2 QL, provides basic means for temporal con-
ceptual modelling and, at the same time, ensures first-order
rewritability of conjunctive queries (for suitably defined data
instances with validity time).

The temporal extension TQL of OWL 2 QL we present
here is interpreted over sequences I(n), n ∈ Z, of standard
DL structures reflecting possible evolutions of data. TBox
axioms are interpreted globally, that is, are assumed to hold
in all of the I(n), but the concepts and roles they contain
can vary in time. ABox assertions (temporal data) are time-
stamped unary (for concepts) and binary (for roles) predicates
that hold at the specified moments of time. Concept (role)
inclusions of TQL generalise OWL 2 QL inclusions by al-
lowing intersections of basic concepts (roles) in the left-hand
side, possibly prefixed with temporal operators ♦P (sometime
in the past) or ♦F (sometime in the future). Among other
things, one can express in TQL that a concept/role name is
rigid (or time-independent), persistent in the past/future or
instantaneous. For example, ♦F♦P Person v Person states
that the concept Person is rigid, ♦P hasName v hasName
says that the role hasName is persistent in the future, while
givesBirth u ♦P givesBirth v ⊥ implies that givesBirth is in-
stantaneous. Inclusions such as♦P Startu♦F End v Employed
represent convexity (or existential rigidity) of concepts or
roles. However, in contrast to most existing temporal DLs, we
cannot use temporal operators in the right-hand side of inclu-
sions (e.g., to say that every student will eventually graduate:
Student v ♦F Graduate).

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

711

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/20664964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In conjunctive queries (CQs) over TQL knowledge bases,
we allow time-stamped predicates together with atoms of the
form (τ < τ ′) or (τ = τ ′), where τ, τ ′ are temporal constants
denoting integers or variables ranging over integers.

Our main result is that, given a TQL TBox T and a CQ
q, one can construct a union q′ of CQs such that the answers
to q over T and any temporal ABox A can be computed by
evaluating q′ over A extended with the temporal precedence
relation < between the moments of time in A. For example,
the query motherOf(x, y, t) over (1) can be rewritten as

motherOf(x, y, t) ∨ ∃t′
(
(t′ < t) ∧ givesBirth(x, y, t′)

)
.

Note that the addition of the transitive relation< to the ABox
is unavoidable: without it, there exists no first-order rewriting
even for the simple example above [Libkin, 2004, Cor. 4.13].

From a technical viewpoint, one of the challenges we are
facing is that, in contrast to known OBDA languages with
CQ rewritability (including fragments of datalog± [Calı̀ et
al., 2012]), witnesses for existential quantifiers outside the
ABox are not independent from each other but interact via
the temporal precedence relation. For this reason, a reduction
to known languages appears to be impossible and a novel ap-
proach to rewriting has to be found. We also observe that
straightforward temporal extensions of TQL lose first-order
rewritability. For example, query answering over the ontol-
ogy {Student v ♦F Graduate} is shown to be non-tractable.

All omitted proofs can be found in [Artale et al., 2013].

2 TQL: a Temporal Extension of OWL 2 QL
Concepts C and roles S of TQL are defined by the grammar:

R ::= ⊥ | Pi | P−i ,

B ::= ⊥ | Ai | ∃R,
C ::= B | C1 u C2 | ♦PC | ♦FC,

S ::= R | S1 u S2 | ♦PS | ♦FS,

where Ai is a concept name, Pi a role name (i ≥ 0), and
♦P and ♦F are temporal operators ‘sometime in the past’ and
‘sometime in the future,’ respectively. We call concepts and
roles of the form B and R basic. A TQL TBox, T , is a finite
set of concept and role inclusions of the form

C v B, S v R,

which are assumed to hold globally (over the whole timeline).
Note that the ♦F/P -free fragment of TQL is an extension of
the description logic DL-LiteHhorn [Artale et al., 2009] with
role inclusions of the form R1 u · · · u Rn v R; it prop-
erly contains OWL 2 QL (the missing role constraints can be
safely added to the language).

A TQL ABox, A, is a (finite) set of atoms Pi(a, b, n) and
Ai(a, n), where a, b are individual constants and n ∈ Z
a temporal constant. The set of individual constants in A
is denoted by ind(A), and the set of temporal constants by
tem(A). A TQL knowledge base (KB) is a pair K = (T ,A),
where T is a TBox and A an ABox.

A temporal interpretation, I, is given by the ordered set
(Z, <) of time points and standard (atemporal) interpretations
I(n) = (∆I , ·I(n)), for each n ∈ Z. Thus, ∆I 6= ∅ is the

common domain of all I(n), aI(n)i ∈ ∆I , AI(n)i ⊆ ∆I and
P
I(n)
i ⊆ ∆I × ∆I . We assume that aI(n)i = a

I(0)
i , for

all n ∈ Z. To simplify presentation, we adopt the unique
name assumption, that is, aI(n)i 6= a

I(n)
j for i 6= j (although

the obtained results hold without it). The role and concept
constructs are interpreted in I as follows, where n ∈ Z:

⊥I(n) = ∅ (for both concepts and roles),

(P−i )I(n) = {(x, y) | (y, x) ∈ P I(n)i },
(∃R)I(n) = {x | (x, y) ∈ RI(n), for some y},

(C1 u C2)I(n) = C
I(n)
1 ∩ CI(n)2 ,

(♦PC)I(n) = {x | x ∈ CI(m), for some m < n},
(♦FC)I(n) = {x | x ∈ CI(m), for some m > n},

(S1 u S2)I(n) = S
I(n)
1 ∩ SI(n)2 ,

(♦PS)I(n) = {(x, y) | (x, y) ∈ SI(m), for some m < n},
(♦FS)I(n) = {(x, y) | (x, y) ∈ SI(m), for some m > n}.

The satisfaction relation |= is defined by taking

I |= Ai(a, n) iff aI(n) ∈ AI(n)i ,

I |= Pi(a, b, n) iff (aI(n), bI(n)) ∈ P I(n)i ,

I |= C v B iff CI(n) ⊆ BI(n), for all n ∈ Z,
I |= S v R iff SI(n) ⊆ RI(n), for all n ∈ Z.

If all inclusions in T and atoms in A are satisfied in I, we
call I a model of K = (T ,A) and write I |= K.

A conjunctive query (CQ) is a (two-sorted) first-order for-
mula q(~x,~s) = ∃~y,~t ϕ(~x, ~y,~s,~t), where ϕ(~x, ~y,~s,~t) is a con-
junction of atoms of the form Ai(ξ, τ), Pi(ξ, ζ, τ), (τ = σ)
and (τ < σ), with ξ, ζ being individual terms—individual
constants or variables in ~x, ~y—and τ , σ temporal terms—
temporal constants or variables in~t, ~s. In a positive existential
query (PEQ) q, the formula ϕ can also contain ∨. A union of
CQs (UCQ) is a disjunction of CQs (so every PEQ is equiva-
lent to an exponentially larger UCQ).

Given a KB K = (T ,A) and a CQ q(~x,~s), we call tuples
~a ⊆ ind(A) and ~n ⊆ tem(A) a certain answer to q(~x,~s) over
K and write K |= q(~a, ~n), if I |= q(~a, ~n) for every model I
of K (understood as a two-sorted first-order model).
Example 1 Suppose Bob was a lecturer at UCL between
times n1 and n2, after which he was appointed professor on
a permanent contract. To model this situation, we use indi-
vidual names, e1 and e2, to represent the two events of Bob’s
employment. The ABox will contain n1 < n2 and the atoms
lect(bob, e1, n1), lect(bob, e1, n2), prof(bob, e2, n2 + 1). In
the TBox, we make sure that everybody is holding the corre-
sponding post over the duration of the contract, and include
other knowledge about the university life:
♦P lect u ♦F lect v lect, ♦P prof v prof,
∃lect v Lecturer, ∃prof v Professor,
Professor v ∃supervisesPhD, Professor v Staff,
♦P supervisesPhD u ♦F supervisesPhD v supervisesPhD,

etc.
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We can now obtain staff who supervised PhDs between times
k1 and k2 by posing the following CQ:

∃y, t
(
(k1 < t < k2) ∧ Staff(x, t) ∧ supervisesPhD(x, y, t)

)
.

The key idea of OBDA is to reduce answering CQs over
KBs to evaluating FO-queries over relational databases. To
obtain such a reduction for TQL KBs, we employ a very basic
type of temporal databases. With every TQL ABox A, we
associate a data instance [A] which contains all atoms from
A as well as the atoms (n1 < n2) such that ni ∈ Z with
min tem(A) ≤ ni ≤ max tem(A) and n1 < n2. Thus,
in addition to A, we explicitly include in [A] the temporal
precedence relation over the convex closure of the time points
that occur in A. (Note that, in standard temporal databases,
the order over timestamps is built-in.) The main result of this
paper is the following:

Theorem 2 Let q(~x,~s) be a CQ and T a TQL TBox. Then
one can construct a UCQ q′(~x,~s) such that, for any con-
sistent KB (T ,A) such that A contains all temporal con-
stants from q, any ~a ⊆ ind(A) and ~n ⊆ tem(A), we have
(T ,A) |= q(~a, ~n) iff [A] |= q′(~a, ~n).

Such a UCQ q′(~x,~s) is called a rewriting for q and T . We
begin by showing how to compute rewritings for CQs over
KBs with empty TBoxes.

For an ABoxA, we denote byAZ the infinite data instance
which contains the atoms in A as well as all (n1 < n2) such
that n1, n2 ∈ Z and n1 < n2. It will be convenient to re-
gard CQs q(~x,~s) as sets of atoms, so that we can write, e.g.,
A(ξ, τ) ∈ q. We say that q is totally ordered if, for any tem-
poral terms τ, τ ′ in q, at least one of the constraints τ < τ ′,
τ = τ ′ or τ ′ < τ is in q and the set of such constraints is
consistent (in the sense that it can be satisfied in Z). Clearly,
every CQ is equivalent to a union of totally ordered CQs (note
that the empty union is ⊥).
Lemma 3 For every UCQ q(~x,~s), one can compute a UCQ
q′(~x,~s) such that, for any ABox A containing all temporal
constants from q and any ~a ⊆ ind(A), ~n ⊆ tem(A), we have

AZ |= q(~a, ~n) iff [A] |= q′(~a, ~n).

Proof. We assume that every CQ q0 in q is totally ordered. In
each such q0, we remove a bound temporal variable t together
with the atoms containing t if at least one of the following two
conditions holds:

– there is no temporal constant or free temporal variable
τ with (τ < t) ∈ q0, and for no temporal term τ ′ and
atom of the formA(ξ, τ ′) or P (ξ, ζ, τ ′) in q0 do we have
(τ ′ < t) or (τ ′ = t) in q0;

– the same as above but with < replaced by >.
It is readily checked that the resulting UCQ is as required. q

Example 4 Suppose T = {♦FC v A, ♦PA v B} and
q(x, s) = B(x, s). Then, for any A, a ∈ ind(A), n ∈
tem(A), we have (T ,A) |= q(a, n) iffAZ |= q′(a, n), where

q′(x, s) = B(x, s) ∨ ∃t
(
(t < s) ∧A(x, t)

)
∨ ∃t, r

(
(t < s) ∧ (t < r) ∧ C(x, r)

)
.

Note, however, that q′ is not a rewriting for q and T . Take,
for example, A = {C(a, 0)}. Then (T ,A) |= B(a, 0) but
[A] 6|= q′(a, 0). A correct rewriting is obtained by replacing
the last disjunct in q′ with ∃r C(x, r); it can be computed by
applying Lemma 3 to q′ and slightly simplifying the result.

In view of Lemma 3, from now on we will only focus on
rewritings over AZ.

The problem of finding rewritings for CQs and TQL
TBoxes can be reduced to the case where the TBoxes only
contain inclusions of the form

B1 uB2 v B, ♦FB1 v B2, ♦PB1 v B2,

R1 uR2 v R, ♦FR1 v R2, ♦PR1 v R2.

We say that such TBoxes are in normal form.

Theorem 5 For every TQL TBox T , one can construct in
polynomial time a TQL TBox T ′ in normal form (possi-
bly containing additional concept and role names) such that
T ′ |= T and, for every model I of T , there exists a model of
T ′ that coincides with I on all concept and role names in T .

Suppose now that we have a UCQ rewriting q′ for a CQ
q and the TBox T ′ in Theorem 5. We obtain a rewriting for
q and T simply by removing from q′ those CQs that contain
symbols occurring in T ′ but not in T . From now on, we
assume that all TQL TBoxes are in normal form. The set of
role names in T and with their inverses is denoted by RT ,
while |T | is the number of concept and role names in T .

We begin the construction of rewritings by considering the
case when all concept inclusions are of the form C v Ai, so
existential quantification ∃R does not occur in the right-hand
side. TQL TBoxes of this form will be called flat. Note that
RDFS statements can be expressed by means of flat TBoxes.

3 UCQ Rewriting for Flat TBoxes
Let K = (T ,A) be a KB with a flat TBox T (in normal
form). Our first aim is to construct a model CK of K, called
the canonical model, for which the following theorem holds:
Theorem 6 For any consistent KB K = (T ,A) with flat T
and any CQ q(~x,~s), we have K |= q(~a, ~n) iff CK |= q(~a, ~n),
for all tuples ~a ⊆ ind(A) and ~n ⊆ Z.

The construction uses a closure operator, cl, which applies
the rules (ex), (c1)–(c3), (r1)–(r3) below to a set, S, of atoms
of the form R(u, v, n), A(u, n), ∃R(u, n) or (n < n′); cl(S)
is the result of (non-recursively) applying those rules to S,

cl0(S) = S, cli+1(S) = cl(cli(S)), cl∞(S) =
⋃
i≥0

cli(S).

(ex) If R(u, v, n) ∈ S then add ∃R(u, n), ∃R−(v, n) to S;
(c1) if (B1 u B2 v B) ∈ T and B1(u, n), B2(u, n) ∈ S,

then add B(u, n) to S;
(c2) if (♦PB v B′) ∈ T , B(u,m) ∈ S for somem < n and

n occurs in S, then add B′(u, n) to S;
(c3) if (♦FB v B′) ∈ T , B(u,m) ∈ S for somem > n and

n occurs in S, then add B′(u, n) to S;
(r1) if (R1 uR2 v R) ∈ T and R1(u, v, n), R2(u, v, n) are

in S, then add R(u, v, n) to S;
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(r2) if (♦PR v R′) ∈ T , R(u, v,m) ∈ S for some m < n
and n occurs in S, then add R′(u, v, n) to S;

(r3) if (♦FR v R′) ∈ T , R(u, v,m) ∈ S for some m > n
and n occurs in S, then add R′(u, v, n) to S.

Note first that K = (T ,A) is inconsistent iff ⊥ ∈ cl∞(AZ).
If K is consistent, we define the canonical model CK of K by
taking ∆CK = ind(A), a ∈ ACK(n) iff A(a, n) ∈ cl∞(AZ),
and (a, b) ∈ P CK(n) iff P (a, b, n) ∈ cl∞(AZ), for n ∈ Z.
(As T is flat, atoms of the form ∃R(u, n) can only be added
by (ex).) This gives us Theorem 6. The following lemma
shows that to construct CK we actually need only a bounded
number of applications of cl which does not depend on A:
Lemma 7 Suppose T is a flat TBox, let nT = (4 · |T |)4.
Then cl∞(AZ) = clnT (AZ), for any ABox A.
Proof. It is not hard to see that cl∞(S) can be obtained by
first exhaustively applying (r1)–(r3), then (ex), and after that
(c1)–(c3). Since no recursion of (ex) is needed, it is sufficient
to bound the recursion depth for applications of (r1)–(r3) and
(c1)–(c3) separately. As both behave similarly, we focus on
(r1)–(r3). One can show that it is enough to consider ABoxes
with two individuals, say a and b, and it is not difficult to
find a bound for the recursion depth of the separated rule sets
(r1), (r2) and, respectively, (r1), (r3); the interesting part of
the analysis is how often one has to alternate between appli-
cations of (r1), (r2) and applications of (r1), (r3). The key
observation here is that each alternation introduces a fresh
cross over (i.e., a pair (R1, R2) of roles such that there are
m1,m2 ∈ Z with m1 + 1 ≥ m2, R1(a, b, n) ∈ S for all
n ≤ m1, and R2(a, b, n) ∈ S for all n ≥ m2). The number
of such cross overs is bounded by |T |2, and so the number
of required alternations between exhaustively applying (r1),
(r2) and (r1), (r3) is bounded by |T |2. q

We now use Lemma 7 to construct a rewriting for any flat
TBox T and CQ q(~x,~s). For a conceptC and a role S, denote
by C] and S] their standard FO-translations; for example,
(♦FA)](ξ, τ) = ∃t ((τ < t) ∧ A(ξ, t)) and (∃R)](ξ, τ) =
∃y R(ξ, y, τ). Now, given a PEQ ϕ, we set ϕ0↓ = ϕ and
define, inductively, ϕ(n+1)↓ as the result of replacing every

– A(ξ, τ) with A(ξ, τ) ∨
∨

(CvA)∈T (C](ξ, τ))n↓,

– P (ξ, ζ, τ) with P (ξ, ζ, τ) ∨
∨

(SvP )∈T (S](ξ, ζ, τ))n↓.
Finally, we set

extTq (~x,~s) = (q(~x,~s))nT ↓.

Clearly, extTq (~x,~s) is a PEQ, and so can be equivalently trans-
formed into a UCQ. Denote by T ⊥ the result of replacing
⊥ with a fresh concept name, say F , in all concept inclu-
sions and with a fresh role name, say Q, in all role inclusions
of T . Clearly (T ⊥,A) is consistent for any ABox A. Let
q⊥ = (∃x, t F (x, t)) ∨ (∃x, y, tQ(x, y, t)). By Theorem 6
and Lemma 7, we obtain:
Theorem 8 Let T be a flat TBox and q(~x,~s) a CQ. Then, for
any consistent KB (T ,A), any ~a ⊆ ind(A) and ~n ⊆ Z,

(T ,A) |= q(~a, ~n) iff AZ |= extTq (~a, ~n).

(T ,A) is inconsistent iff (T ⊥,A) |= q⊥.
Thus, we obtain a rewriting for q and T using Lemma 3.

4 Canonical Models for Arbitrary TBoxes
Canonical models for consistent KBs K = (T ,A) with
not necessarily flat TBoxes T (in normal form) can be con-
structed starting fromAZ and using the rules given in the pre-
vious section together with the following one:
( ) if ∃R(u, n) ∈ S and R(u, v, n) /∈ S for any v, then

add R(u, v, n) to S, for some fresh individual name v;
in this case we write u n

R v.
Denote by cl1 the closure operator under the resulting 8 rules.
Again, K is inconsistent iff ⊥ ∈ cl∞1 (AZ). If K is consistent,
we define the canonical model CK for K by the set cl∞1 (AZ)
in the same way as in Section 3 but taking the domain ∆CK

to contain all the individual names in cl∞1 (AZ).
Theorem 9 For every consistent K = (T ,A) and every CQ
q(~x,~s), we have K |= q(~a, ~n) iff CK |= q(~a, ~n), for any
tuples ~a ⊆ ind(A) and ~n ⊆ Z.
Example 10 Let K = (T ,A) with A = {A(a, 0)} and T =

{A v ∃R, ♦PR v Q, ∃Q− v ∃S, ♦PQ v P, ♦PS v S′}.
A fragment of the model CK is shown in the picture below:

a
0

A

1 2

v

u1

u2

R Q Q P

S S′
S

We say that the individuals a ∈ ind(A) are of depth 0 in
CK; now, if u is of depth d in CK and u  n

R v, for some
n ∈ Z and R, then v is of depth d + 1 in CK. Thus, both u1
and u2 in Example 10 are of depth 2 and v is of depth 1. The
restriction of CK, treated as a set of atoms, to the individual
names of depth≤ d is denoted by CdK. Note that this set is not
necessarily closed under the rule ( ).

In the remainder of this section, we describe the structure
of CK, which is required for the rewriting in the next section.
We split CK into two parts: one consists of the elements in
ind(A), while the other contains the fresh individuals intro-
duced by ( ). As this rule always uses fresh individuals, to
understand the structure of the latter part it is enough to con-
sider KBs of the form KT ,R = (T ∪ {A v ∃R}, {A(a, 0)})
with fresh A. We begin by analysing the behaviour of the
atoms R′(a, u, n) entailed by R(a, u, 0), where a 0

R u.
Lemma 11 (monotonicity) Let a  0

R u in CKT ,R
. If either

m < n < 0 or 0 < n < m, then R′(a, u, n) ∈ CKT ,R

implies R′(a, u,m) ∈ CKT ,R
; moreover, if n < m = −|RT |

or |RT | = m < n, then R′(a, u, n) ∈ CKT ,R
iff

R′(a, u,m) ∈ CKT ,R
.

The atoms R′(a, u, n) entailed by R(a, u, 0) in CKT ,R
via

(r1)–(r3), also have an impact, via (ex), on the atoms of the
form B(a, n) and B(u, n) in CKT ,R

. Thus, in Example 10,
R(a, v, 0) entails ∃Q(a, n), for n > 0. To analyse the be-
haviour of such atoms, it is helpful to assume that T is in
concept normal form (CoNF) in the following sense: for ev-
ery role R ∈ RT , the TBox T contains
∃R v A0

R, ♦F∃R v A−1R , ♦FA
−m
R v A−m−1R ,

♦P∃R v A1
R, ♦PA

m
R v Am+1

R ,
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for 0 ≤ m ≤ |RT | and some concepts AiR, and

AmR v ∃R′, for |m| ≤ |RT | and R′(a, v,m) ∈ CKT ,R
.

∃R

A0
RA−1

RA−2
RA−3

R A1
R A2

R A3
R

(In Example 10, CK will contain the atoms A1
R(a, n) and

A2
R(a, n + 1), for n ≥ 1.) By Lemma 11, if T is in CoNF,

then we can compute the atomsB(a, n) andB(u, n) in CKT ,R

without using the rules (r1)–(r3). Lemma 11 also implies that
we can add the inclusions above (with fresh AiR) to T if re-
quired, thereby obtaining a conservative extension of T ; so
from now on we always assume T to be in CoNF. These ob-
servations enable the proof of the following two lemmas. The
first one characterises the atoms B(u, n) in CKT ,R

:

Lemma 12 (monotonicity) Let a  0
R u in CKT ,R

. If either
m < n < 0 or 0 < n < m, then B(u, n) ∈ CKT ,R

implies
B(u,m) ∈ CKT ,R

; moreover, if either n < m = −|T | or
|T | = m < n, then B(u, n) ∈ CKT ,R

iff B(u,m) ∈ CKT ,R
.

The second lemma characterises the ABox part of CK and
is a straightforward generalisation of Lemma 7:

Lemma 13 For any KB K = (T ,A) and any atom α of the
form A(a, n), ∃R(a, n) or R(a, b, n), where a, b ∈ ind(A)
and n ∈ Z, we have α ∈ CK iff α ∈ clnT (AZ).

An obvious extension of the rewriting of Theorem 8 pro-
vides, for every CQ q(~x,~s), a UCQ extTq (~x,~s) such that for
all ~a ⊆ ind(A) and ~n ⊆ Z of the appropriate length,

C0K |= q(~a, ~n) iff AZ |= extTq (~a, ~n). (2)

Moreover, for a basic concept ∃R, we find a UCQ extT∃R(ξ, τ)
such that, for any a ∈ ind(A) and n ∈ Z, ∃R(a, n) ∈ CK iff
AZ |= extT∃R(a, n).

We now use the obtained results to show that one can find
all answers to a CQ q over a TQL KB K by only consider-
ing a fragment of CK whose size is polynomial in |T | and |q|.
This property is called the polynomial witness property [Got-
tlob and Schwentick, 2011]. Denote by Cd,`K , for d, ` ≥ 0,
the restriction of CdK to the moments of time in the interval
[min tem(A)− `,max tem(A) + `].

Let q(~x,~s) be a CQ. Tuples ~a ⊆ ind(A) and ~n ⊆ tem(A)
give a certain answer to q(~x,~s) over K = (T ,A) iff there
is a homomorphism h from q to CK, which maps individual
(temporal) terms of q to individual (respectively, temporal)
terms of CK in such a way that the following conditions hold:

– h(~x) = ~a and h(b) = b, for all b ∈ ind(A);

– h(~s) = ~n and h(m) = m, for all m ∈ tem(A);

– h(q) ⊆ CK,

where h(q) denotes the set of atoms obtained by replac-
ing every term in q with its h-image, e.g., P (ξ, ζ, τ) with
P (h(ξ), h(ζ), h(τ)), (τ1 < τ2) with h(τ1) < h(τ2), etc.

Now, using the monotonicity lemmas for the temporal di-
mension and the fact that atoms of depth> |RT | in the canon-
ical models duplicate atoms of smaller depth, we obtain

Theorem 14 There are polynomials f1 and f2 such that, for
any consistent TQL KBK = (T ,A), any CQ q(~x,~s) and any
~a ⊆ ind(A) and ~n ⊆ tem(A), we have K |= q(~a, ~n) iff there
is a homomorphism h : q → CK such that h(q) ⊆ Cd,`K , where
d = f1(|T |, |q|) and ` = f2(|T |, |q|).

We are now in a position to define a rewriting for any given
CQ and TQL TBox.

5 UCQ Rewriting
Suppose q(~x,~s) is a CQ and T a TQL TBox (in CoNF).
Without loss of generality we assume q to be totally ordered.
By a sub-query of q we understand any subset q′ ⊆ q con-
taining all temporal constraints (τ < τ ′) and (τ = τ ′) that
occur in q. In the rewriting for q and T given below, we con-
sider all possible splittings of q into two sub-queries (sharing
the same temporal terms). One is to be mapped to the ABox
part of the canonical model C(T ,A), and so we can rewrite it
using (2). The other sub-query is to be mapped to the non-
ABox part of C(T ,A) and requires a different rewriting.

For every R ∈ RT , we construct the set Cd,`KT ,R
, where d

and ` are provided by Theorem 14. Let h be a map from a sub-
query qh ⊆ q to Cd,`KT ,R

such that h(qh) ⊆ Cd,`KT ,R
. Denote by

Xh the set of individual terms ξ in qh with h(ξ) = a, and let
Yh be the remaining set of individual terms in qh. We call h
a witness for R if

– Xh contains at most one individual constant;
– every term in Yh is a quantified variable in q;
– qh contains all atoms in q with a variable from Yh.
Let h be a witness for R. Denote by  the union of all

 n
R′ in Cd,`KT ,R

. Clearly,  is a tree order on the individuals
in Cd,`KT ,R

, with root a. Let Th be its minimal sub-tree con-
taining a and the h-images of all the individual terms in qh.
For each v ∈ Th \ {a}, we take the (unique) moment g(v)

with u  g(v)
R v, for some u and R, and set g(a) = 0. For

A(y, τ) ∈ qh, we say that h(y) realises A(y, τ). For any
P (ξ, ξ′, τ) ∈ qh, there are u, u′ ∈ Th with u  u′ and
{u, u′} = {h(ξ), h(ξ′)}; we say that u′ realises P (ξ, ξ′, τ).
Let ~r be a list of fresh temporal variables ru, for u ∈ Th\{a}.
Consider the following formula, whose free variables are ra
and the temporal variables of qh:

th = ∃~r
( ∧
u v

δg(v)−g(u)(ru, rv) ∧
∧

u realises α(~ξ,τ)

δh(τ)−g(u)(ru, τ)
)
,

where the formulas δn(t, s) say that t is at least n moments
before s: that is, δ0(t, s) is (t = s) and δn(t, s) is

∃s1, . . . , sn−1(t < s1 < · · · < sn−1 < s), if n > 0,

∃s1, . . . , s|n|−1(t > s1 > · · · > s|n|−1 > s), if n < 0.

Take a fresh variable xh and associate with h the formula

wh = ∃ra∃xh
[
extT∃R(xh, ra) ∧

∧
h(ξ)=a

(ξ = xh) ∧ th
]
.

To give the intuition behind wh, suppose that C(T ,A) |=g wh,
for some assignment g. Then g maps all terms in Xh to
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g(xh) ∈ ind(A) such that ∃R(g(xh), g(ra)) ∈ C(T ,A), so
(g(xh), g(ra)) is the root of a substructure of C(T ,A) isomor-
phic to CKT ,R

in which the variables from Yh can be mapped
according to h. For temporal terms, the formula th cannot
specify the values prescribed by h: without ¬ in UCQs, we
can only say that τ is at least (not exactly) n moments before
τ ′. However, by Lemmas 11 and 12, this is still enough to
ensure that g and h give a homomorphism from qh to C(T ,A).
Example 15 Let T be the same as in Example 10 and let

q(x, t) = ∃y, z, t′
(
(t < t′) ∧Q(x, y, t) ∧ S′(y, z, t′)

)
.

The map h = {x 7→ a, y 7→ v, z 7→ u1, t 7→ 1, t′ 7→ 2} is a
witness for R, with qh = q and wh is the following formula

∃ra∃xh
(
extT∃R(xh, ra) ∧ (xh = x) ∧

∃rv∃ru1

(
δ0(ra, rv) ∧ δ1(rv, ru1) ∧ δ1(rv, t) ∧ δ1(ru1 , t

′)
))
.

We can now define a rewriting for q(~x,~s) and T . Let T
be the set of all witnesses for q and T . We call a subset
S ⊆ T consistent if (Xh1

∪Yh1
)∩(Xh1

∪Yh2
) ⊆ Xh1

∩Xh2
,

for any distinct h1, h2 ∈ S. Assuming that ~y contains all
the quantified variables in q and q \ S is the sub-query of
q obtained by removing the atoms in qh, h ∈ S, other than
(τ < τ ′) and (τ = τ ′), we set:

q∗(~x,~s) = ∃~y
∨

S⊆T
S consistent

( ∧
h∈S

wh ∧ extTq\S
)
.

Theorem 16 Let T be a TQL TBox in CoNF and q(~x,~s) a
totally ordered CQ. Then, for any consistent KB (T ,A) and
any tuples ~a ⊆ ind(A) and ~n ⊆ Z,

(T ,A) |= q(~a, ~n) iff AZ |= q∗(~a, ~n).

(T ,A) is inconsistent iff (T ⊥,A) |= q⊥.
Theorem 2 now follows by Lemma 3.

6 Non-Rewritability
In this section, we show that the language TQL is nearly opti-
mal as far as rewritability of CQs and ontologies is concerned.

We note first, that the syntax of TQL allows concept inclu-
sions and role inclusions; ‘mixed’ axioms such as the datalog
rule A(x, t) ∧ R(x, y, t) → B(x, t) are not expressible. The
reason is that mixed rules often lead to non-rewritability, as
is well known from the DL EL. For example, there does not
exist an FO-query q(x, t) such that (T ,A) |= A(a, n) iff
AZ |= q(a, n) for T = {A(y, t) ∧ R(x, y, t) → A(x, t)}
since such a query has to express that at time-point t there is
an R-path from x to some y with A(y, t).

Second, it would seem to be natural to extend TQL with the
temporal next/previous-time operators as concept or role con-
structs. However, again this would lead to non-rewritability:
any FO-rewriting for A(x, t) and {©PA v B, ©PB v A}
has to express that there exists n ≥ 0 such that A(x, t − 2n)
or B(x, t− (2n+ 1)), which is impossible [Libkin, 2004].

Another natural extension would be inclusions of the form
A v ♦FB. (Note that inclusions of the form A v ∃R.B
are expressible in OWL 2 QL.) But again such an extension

would ruin rewritability. The reason is that temporal prece-
dence < is a total order, and so one can construct an ABox
A and a UCQ q(x) = q1 ∨ q2 such that (T ,A) |= q(a) but
(T ,A) 6|= qi(a), i = 1, 2, for T = {A v ♦FB}. Indeed, we
take A = {A(a, 0), C(a, 1)} and

q1(x) = ∃t (C(x, t) ∧B(x, t)),

q2(x) = ∃t, t′ ((t < t′) ∧ C(x, t) ∧B(x, t′)).

In fact, by reduction of 2+2-SAT [Schaerf, 1993], we prove
the following:
Theorem 17 Answering CQs over the TBox {A v ♦FB} is
CONP-hard for data complexity.

7 Related Work
The Semantic Web community has developed a variety of ex-
tensions of RDF/S and OWL with validity time [Motik, 2012;
Pugliese et al., 2008; Gutierrez et al., 2007]. The focus of this
line of research is on representing and querying time stamped
RDF triples or OWL axioms. In contrast, in our language
only instance data are time stamped , while the ontology for-
mulates time independent constraints that describe how the
extensions of concepts and roles can change over time. In
the temporal DL literature, a similar distinction has been dis-
cussed as the difference between temporalised axioms and
temporalised concepts/roles; the expressive power of the re-
spective languages is incomparable [Gabbay et al., 2003;
Baader et al., 2012].

In Theorem 8, we show rewritability using boundedness
of recursion. This connection between first-order definabil-
ity and boundedness is well known from the datalog and
logic literature where boundedness has been investigated ex-
tensively [Gaifman et al., 1987; van der Meyden, 2000;
Kreutzer et al., 2007]. Grohe and Schwandtner [2009] inves-
tigate boundedness for datalog programs on linear orders; the
results are different from ours since the linear order is the only
predicate symbol of the datalog programs considered and no
further restrictions (comparable to ours) are imposed.

8 Conclusion
In this paper, we have proved UCQ rewritability for conjunc-
tive queries and TQL ontologies over data instances with va-
lidity time. Our focus was solely on the existence of rewrit-
ings, and we did not consider efficiency issues such as finding
shortest rewritings, using temporal intervals in the data rep-
resentation or mappings between temporal databases and on-
tologies. We only note here that these issues are of practical
importance and will be addressed in future work. It would
also be of interest to investigate the possibilities to increase
the expressive power of both ontology and query language.
For example, we believe that the extension of TQL with the
next/previous time operators, which can only occur in TBox
axioms not involved in cycles, will still enjoy rewritability.
We can also increase the expressivity of conjunctive queries
by allowing the arithmetic operations + and × over tempo-
ral terms, which would make the CQ A(x, t) and the TBox
{©PA v B, ©PB v A} rewritable in the extended language.
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