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Abstract. We propose a novel approach to the semantics of quantified
µ-calculi, considering models where states are algebras; the evolution
relation is given by a counterpart relation (a family of partial homomor-
phisms), allowing for the creation, deletion, and merging of components;
and formulas are interpreted over sets of state assignments (families of
substitutions, associating formula variables to state components). Our
proposal avoids the limitations of existing approaches, usually enforcing
restrictions of the evolution relation: the resulting semantics is a stream-
lined and intuitively appealing one, yet it is general enough to cover most
of the alternative proposals we are aware of.

Keywords: Quantified µ-calculi, counterpart semantics, graph transformation

1 Introduction

Any assessment on the usability of a visual specification formalism should rely
on the existence of languages for expressing properties, as well as on the avail-
ability of tools for their verification. As far as graph transformation systems are
concerned, after the seminal work of Courcelle [8], suitable variants/fragments of
graph logics have been proposed and their connection with topological properties
of graphs thoroughly investigated [9].

The need to reason about the possible transformations in a graph topology
led more recently to the idea of combining temporal and graph logics. Before
that, many authors studied decidability and complexity of temporal first-order
logics, developed for reasoning about the evolution of individual components
within a software system. Unfortunately, such logics are in general not decidable
(see e.g. [12, 16] and the references therein). As a consequence, many efforts
have been invested on defining logics (or identifying fragments) that sacrifice
expressiveness in favour of efficient computability, thus providing verification
tools where logics become effective specification mechanisms (see § 6).

Recent approaches [1] propose variants of quantified µ-calculi, a combination
of the fix-point and modal operators of temporal logics with monadic second-
order logic for graphs [8]. Albeit less expressive than full second-order proposals,
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since the class of admissible predicates is restricted to first-order equality, these
logics fit at the right level of abstraction for graph transformation systems: if
state systems are graphs, and state components are thus graph items, one is
not only interested in the topological structure of each reachable graph alone,
but on its evolution as well. As a concrete example, consider graphs that repre-
sent the communication topology of a distributed leader election algorithm on
a ring network that proceeds by iteratively discarding processes (edges) for the
leadership. On the one hand, one would like to claim that eventually a leader
will be found (the only self-closed remaining edge). This can be achieved with a
formula like µZ.[∃edge.source(edge) = target(edge) ∨ ♦Z]. Note that the formula
is fundamentally propositional in its temporal dimension: it asserts that at some
reachable graph there will be a self-closed edge (the leader). Instead, we might be
interested in expressing the eventual existence a process (an edge) which will be
become the leader (self-closed). This is obtained moving to a purely first-order
µ-calculus formula such as µZ.∃edge.[source(edge) = target(edge) ∨ ♦Z].

The situation concerning the semantical models for such logics is less clearly
cut. While it is obvious that a closed formula should be valued as the set of states
where it holds, consider instead the open formula source(edge) = target(edge) ∨
♦Z: once the value of edge is chosen in the current state, how is such value
passed to the states denoted by the fix-point variable Z? The issue is denoted
in the quantified temporal logic literature as the trans-world identity problem
(see [15] as well as [2] for a survey of the related philosophical issues). From
a practitioner point of view, a typical solution follows the so-called “Kripke
semantics” approach: roughly, a set of universal (graph) items is chosen, and
its elements are used to form each state. Another solution exploits counterpart
relations, i.e. (partial) functions among states, explicitly relating elements of
different states. The first solution is the most widely adopted, and it underlines
all the proposals we are aware of (as they are briefly surveyed in § 6 of the paper):
it is e.g. implicitly used also in the approach discussed in [1] (admittedly the most
similar in the chosen syntax/semantics to the one that we are going to introduce),
since the counterpart relations used there for modelling the association of items
belonging to different graphs are actually partial inclusions.

However, Kripke-like solutions do not fit too well with the possibility that
items might be merged or that the evolution relation might form cycles: if the
value of an open formula is a set of states, how to account for an item of a state
that is first deleted and then added again? The latter problem is often solved
by restricting the class of admissible evolution relations among states: this may
force to reformulate the state transition relation modelling the system evolution,
though such solutions tend to hamper the intuitive meaning of the logic.

In this paper we introduce a novel, purely counterpart-like semantics for
quantified µ-calculi. We instantiate our proposal by considering a simple second-
order syntax, and considering models where states are algebras and the evolution
relation is given by a family of partial homomorphisms. Most importantly, open
formulas are interpreted over sets of pairs (σ,w), for w a state and σ an assign-
ment over w (that is, a substitution associating formula variables to components
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of the state w): the resulting model thus faithfully represents also the presence
of cycles in the evolution relation. Our proposal avoids the limitations of existing
approaches, since it dispenses with the reformulation of the transition relation:
the resulting semantics is a streamlined and intuitively appealing one, yet it is
general enough to cover most of the alternatives we are aware of.

Synopsis. The opening § 2 presents our counterpart model, roughly based on
[15], yet considering suitable algebras as states. Then, § 3 presents the syntax of
our logic, a second-order µ-calculus that is reminiscent of the one proposed in [1].
Finally, § 4 presents the core contribution of the paper: the semantics for our
logic, based on sets of assignments. The proposal is put at work with a series of
simple examples in § 5. And while § 6 discusses related works, focusing on those
logics applied to the verification of visual formalisms, the closing § 7 concludes
the paper and outlines future research avenues.

2 Counterpart model

In this section we define the class of models over which our logic is interpreted.
We begin recalling the definition of multi-sorted algebras and their homomor-
phisms, which lies at the basis of the structure of our worlds.

Definition 1 (Multi-sorted algebra). A (multi-sorted) signature Σ is a pair
(SΣ , FΣ) composed by a set of sorts SΣ = {τ1, · · · , τm} and by a set of function
symbols FΣ = {fΣ : τ1 × . . . × τn → τ | τi, τ ∈ SΣ} typed over SΣ. A (multi-
sorted) algebra A with signature Σ (a Σ-algebra) is a pair (A,FA

Σ ) such that

– the carrier A = {Aτ | τ ∈ SΣ} is a set of elements typed over SΣ;
– FA

Σ = {fAΣ : Aτ1 × . . .×Aτn → Aτ | fΣ : τ1 × . . .× τn → τ ∈ FΣ} is a family
of functions on A typed over S∗

Σ.

Given two Σ-algebras A and B, a (partial) homomorphism ̺ is a family of
possibly partial functions {̺τ | τ ∈ SΣ} typed over SΣ, such that for each typed
function symbol fΣ : τ1 × . . . × τn → τ ∈ FΣ and list of elements a1, . . . , an, if
each function ̺τi is defined for the element ai of type τi, then ̺τ is defined for the
element fAΣ (a1, . . . , an) of type τ and moreover the elements ̺τ (f

A

Σ (a1, . . . , an))
and fBΣ(̺τ1(a1), . . . , ̺τn(an)) coincide.

Each typed function symbol fΣ ∈ FΣ corresponds to a function fAΣ in FA

Σ :
the functions in FA

Σ are called fundamental operations of A. Note that our ho-
momorphisms can be partial, possibly decreasing the domain of definition of a
function and thus modelling the removal of world elements.

Example 1 (Graph algebra). As a running example we adopt a very simple unary
algebra, the one for ordinary directed graphs. More precisely, the signature for
directed graphs is (Sgraph, Fgraph). The set Sgraph of sorts is composed by the
sort of nodes τN and the sort of edges τE , while the set Fgraph is composed by the
function symbols s : τE → τN and t : τE → τN which determine respectively the
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Fig. 1. Three graphs: G0 (left), G1 (middle) and G2 (right)

source and the target node of an edge. In Fig. 1 we find the visual representations
for three graphs: G0,G1,G2. The first of these graph algebras is given by G0 =
(N0 ⊎ E0, {s

G0 , tG0}), where N0 = {n0, n1, n2}, E0 = {e0, e1, e2}, s
G0 = {e0 7→

n0, e1 7→ n2, e2 7→ n1} and tG0 = {e0 7→ n1, e1 7→ n0, e2 7→ n2}. Each graph
can be understood as the state of the communication topology in a distributed
algorithm: edges represent processes, source and target functions denote the
ports of the processes and nodes are the communication channels.

We are interested in open terms, i.e. terms with variables. For this purpose
we consider signatures ΣX obtained by extending a multi-sorted signature Σ
with a denumerable set X of variables typed over SΣ : we let Xτ denote the
τ -typed subset of variables and with xτ or x : τ a variable with sort τ . Similarly,
we let ǫτ or ǫ : τ indicate a τ -sorted term.

Definition 2 (Terms). Let Σ be a signature, let X be a (denumerable) set of
individual variables typed over SΣ, and let ΣX denote the signature obtained
extending Σ with X. The (multi-sorted) set T (ΣX) of terms obtained from ΣX

is the smallest set such that

X ⊆ T (ΣX)

ǫi : τi ∈ T (ΣX), f : τ1 × . . .× τn → τ ∈ FΣ

f(ǫ1, . . . , ǫn) : τ ∈ T (ΣX)

We omit the sort when it is clear from the context or when it is not necessary.
Moreover, for an algebra A, we let ǫA denote the function associated to a term
ǫ. We remark that the derived signature ΣX does not allow to denote an indi-
vidual element of the carrier directly, but only indirectly via constant symbols
or variables and the well known concepts of variable assignment σ.

Example 2 (Terms). Consider the algebra of G0 and let {xN , xE} ⊆ X be typed
variables. Then, xN , xE , s(xE), and t(xE) are valid terms, while n2 and e1 are
not. Intuitively, terms are supposed to denote either a node or an edge of the
graph, but they are undefined until evaluated with respect to a chosen variable
assignment. For instance, given the assignment σ = {xE 7→ e1} process (edge)
e1 and its source and target channels (nodes) n2, n0 are respectively denoted by
σ(xE), σ(s(xE)), and σ(t(xE)).

We can now introduce the notion of counterpart model.
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Fig. 2. A counterpart model with three sequential worlds (w0, w1, w2)

Definition 3 (Counterpart model). Let Σ be a signature, X a denumerable
set of variables typed over SΣ, and A the set of algebras over ΣX . A counterpart
model M is a tuple (W, , d, C) such that

– W is a non-empty set of worlds of the model;

–  ⊆ (W ×W ) is a binary relation, called accessibility relation over W ;

– d :W → A is a function assigning an algebra Ad(w) to each world;

– C : → (A⇀ A) is a function assigning to every pair of worlds (w,w′) ∈ 
a homomorphism (its counterpart function Cw,w′) from Ad(w) to Ad(w′).

Intuitively, the counterpart relations allow for creation, deletion, renaming
and merging of elements in a type-respecting way, while forbidding duplication,
i.e. it is not possible to associate an element of Ad(w) to more than one element
of Ad(w′). In the following we shall also use counterpart functions to sets of
elements (with the obvious meaning of lifting the functions to sets).

Example 3 (Counterpart model). The example of Fig. 2 illustrates a model made
of three worlds, namely w0, w1, and w2, that are mapped into the graph alge-
bras G0, G1, and G2 of Fig. 1, respectively. The transition relation is a simple
sequence w0  w1  w2 which can be understood as a sequential execution
of the distributed leader election algorithm. The counterpart relations (drawn
with dotted lines) reflect the fact that at each transition one process (edge) is
discarded and its source and target channels (nodes) are merged: e1 at the first
transition and e4 at the second one.

3 Syntax

Before presenting the syntax of our logic, we introduce the notion of second-
order variables χ ∈ X . Intuitively, a variable of the second order χτ with sort
τ ∈ SΣ is evaluated in a set of elements of sort τ . An assignment σ associates the
variables of first- (second-) order to the elements (set of elements, respectively)
of the algebra Ad(w) underlying a world w. Hence, fix-point variables Z ∈ Z
range over the set of pairs (σw, w) relative to a counterpart model M , where w
is a world of M , and σw an assignment for w.
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Definition 4 (Quantified modal formulas). Let Σ be a signature, Z a set
of fix-point variables, and X, X (denumerable) sets of first- and second-order
variables typed over SΣ, respectively. The set FΣ of formulas of our logic is
inductively generated by the following rules

ψ ::= tt | ǫ : τ ∈τ χτ | ¬ψ | ψ ∨ ψ | ∃xτ .ψ | ∃χτ .ψ | ♦ψ | Z | µZ.ψ

where ǫ : τ is a term over ΣX of type τ , ∈τ is a family of membership predicates
typed over SΣ indicating that (the evaluation of) a term with sort τ belongs to
(the evaluation of) a second-order variable with the same sort τ , and µ denotes
the least fixed point operator.

Whenever clear from the context, in the following subscripts and types will
usually be omitted. We shall also use the derived symbols ∧ , → , ↔ , ∀, as
well as the modal operator �, defined as usual as �ψ ≡ ¬♦¬ψ. Moreover, as
it is standard, we restrict to monotonic formulas, i.e., such that each fix-point
variable Z occurs under the scope of an even number of negations. This is a
sufficient condition for the fixed points to be well-defined.

Note that the logic is simple, yet reasonably expressive. For instance, binary
equivalence can also be defined as a derived operator, namely, ǫ1 : τ =τ ǫ2 : τ is
defined as ∀χτ . (ǫ1 : τ ∈τ χτ ↔ ǫ2 : τ ∈τ χτ ).

Example 4 (Formula). Consider again the graph signature and our running ex-
ample. The following are examples of formulas expressing different liveness prop-
erties of the distributed leader election algorithm: ψ1 ≡ µZ.(∃x.s(x) = t(x))∨♦Z
(eventually there will be a leader) and ψ2 ≡ µZ.∃x.(s(x) = t(x) ∨ ♦Z) (there is
a process that eventually will become the leader). Intuitively, ψ2 is satisfied by
those worlds w that can reach a world where a leader (self-closed edge) is present.
Instead, ψ1 is satisfied by those worlds w which contain a process (edge) that
is a leader (i.e. its source and target ports coincide) or if this process (edge)
will become a leader (self-closed) in a world reachable after some finite num-
ber of steps. Formula ψ2 has thus quite a different meaning than ψ1: in ψ1 the
sub-formula ♦Z is inside the scope of the existential quantifier which fixes the
element associated to x (the potential leader) in the source world to keep track
of its evolution.

We now introduce the notion of context that is used for decorating terms and
formulas with relevant variable-related information. For the sake of simplicity,
in the rest of the paper we fix a signature Σ and denumerable sets X,X ,Z of
first-order, second-order, and fix-point variables, respectively.

Definition 5 (First-order context). A first-order context Γ over X is a sub-
set of X. We write Γ, x to indicate Γ ∪ {x} and Γ \ x to indicate Γ \ {x}.

We indicate with C1 the set of all the first-order contexts. Now, we define
how terms are decorated with such contexts.
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Definition 6 (Term-in-context). A term-in-context takes the form ǫ : τ [Γ ]
where ǫ is a term of type τ over ΣX , and Γ is a first-order context over X. The
set of well-formed terms-in-context TC(ΣX) over T (ΣX) is defined as

x ∈ Xτ , Γ ∈ C1
x[Γ, x] ∈ TC(ΣX)

ǫi : τi[Γ ] ∈ TC(ΣX) , fΣ : τ1 × . . . τn → τ ∈ FΣ

fΣ(ǫ1, . . . , ǫn) : τ [Γ ] ∈ TC(ΣX)

Example 5 (Term-in-context). Instantiating Σ with the graph signature of our
running example, and considering the variables x, y ∈ XτE , then s(x)[{x}] and
s(x)[{x, y}] are terms-in-context, while s(x)[{y}] is not.

Since our logic allows for second-order quantification, we have to extend the
concept of context to the second order.

Definition 7 (Second-order context). A second-order context ∆ over X is
a subset of X . The operations of addition and removal of a second-order variable
with respect to a second-order context are defined as for the first-order case.

As before, with C2 we indicate the set of all the second-order contexts. We
can finally define how formulas are to be decorated with information about the
variables involved. Their use is twofold: on the one-side, they allow for a smooth
definition of the semantics, as it is going to be shown in § 4. Furthermore, even if
it is not going to be further investigated here, contexts are needed to guarantee
the normality of the logic and, in particular, the so-called K-scheme (see the
remarks in the concluding section, as well as [2, 22] for further details).

Definition 8 (Context of a formula). We define the context of a formula as
a pair [Γ ;∆] where Γ is a first-order context, and ∆ is a second-order context.

Intuitively, the context of a formula has to contain at least the free vari-
ables that are actually appearing in the formula. Hence, a formula-in-context
is a formula decorated with such a context, recursively defined as follows. In
the definition we omit Σ from FΣ considering it fixed, and use ψ ∈ F [Γ ;∆] as

abbreviation for ψ[Γ ;∆] ∈ F
[Γ ;∆]
Σ .

Definition 9 (Formula-in-context). A formula-in-context is ψ[Γ ;∆] where

ψ is a formula in FΣ, and [Γ ;∆] is a context of ψ. The set of well formed

formulas-in-context F
[Γ ;∆]
Σ over FΣ is defined as

tt ∈ F [Γ ;∆]

ǫ:τ [Γ ]∈T [Γ ;∆](ΣX)

(ǫ:τ∈τχτ ) ∈ F [Γ ;∆,χτ ]
ψ∈F [Γ ;∆]

(¬ψ) ∈ F [Γ ;∆]

{ψ1,ψ2}⊆F [Γ ;∆]

(ψ1∨ψ2) ∈ F [Γ ;∆]
ψ∈F [Γ,xτ ;∆]

(∃xτ .ψ) ∈ F [Γ ;∆]
ψ∈F [Γ ;∆,χτ ]

(∃χτ .ψ) ∈ F [Γ ;∆]

ψ∈F [Γ ;∆]

(♦ψ) ∈ F [Γ ;∆] Z ∈ F [Γ ;∆]
ψ∈F [Γ ;∆]

(µZ.ψ) ∈ F [Γ ;∆]

where Z ∈ Z, xτ ∈ X and χτ ∈ Xτ .
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Note that, by construction, a context cannot contain a variable quantified in
the formula, so that e.g. a formula like (∃xτ .ψ) ∨ (xτ =τ xτ ) has no associated
context. This property is ensured by the lack of a weakening axiom, replaced by
the rule introducing any term in context ǫ : τ [Γ ] inside a membership expression.
This solution is adopted since it simplifies the semantics for the quantifiers in
Definition 12, but it is not restrictive, since the actual identity of a bound variable
is immaterial. Moreover, our inference rules for formulas-in-context could anyhow
be easily generalised in order to allow at least a context for any formula.

Example 6 (Formula-in-context). Consider the formula µZ.∃x.(s(x) = t(x)∨♦Z)
proposed in Example 4. We see that it contains a quantified variable “x”, but no
free variables. The context of this formula can thus consist of any set of first-order
variables not containing x, and of any set of second-order variables. It can even
be the empty context [∅; ∅]. A more useful example comes from the examination
of the construction of the cited formula. Assume [{x}; ∅] as the context of the
formula s(x) = t(x). In order to apply the disjunction rule, ♦Z has to have
the same context [{x}; ∅]. We thus obtain (s(x) = t(x) ∨ ♦Z)[{x}; ∅]. Now it is
possible to apply the rule relative to the first-order quantifier, removing x from
the context, obtaining ∃x.(s(x) = t(x)∨♦Z)[∅; ∅]. Finally, applying the least fixed
point rule, we obtain the formula-in-context µZ.∃x.(s(x) = t(x) ∨ ♦Z)[∅; ∅].

4 Counterpart semantics

In this section we present the core contribution of the paper: we introduce the se-
mantical domain for our logic, and we provide the rules for evaluating a formula-
in-context as a set of assignments on a counterpart model. Once more for the
sake of simplicity, in the rest of the paper we fix a counterpart model M .

Definition 10 (Assignments). A (variable) assignment σ = (σ1, σ2) for a
world w ∈ M is a pair of partial functions typed over SΣ such that σ1 : X ⇀
Ad(w) and σ2 : X ⇀ 2Ad(w) .

Let Ω denote the set of pairs (σ,w), for σ an assignment over the world w.
A (fix-point variable) assignment is a partial function ρ : Z → 2Ω.

In the following, we denote by Ω[Γ ;∆] those pairs ((σ1, σ2), w) such that the
domain of definition of σ1 and σ2 is Γ and ∆, respectively. Moreover, Ωw ⊆ Ω
denotes the sub-set of assignments over a world w (i.e. those pairs whose second

component is the world w), and similarly for the sub-set Ω
[Γ ;∆]
w ⊆ Ω[Γ ;∆].

Another definition regards the notions of assignment extension and restric-
tion.

Definition 11 (Extensions and restrictions). Let [Γ ;∆] be a context and
x 6∈ Γ a variable. Given an assignment σ = (σ1, σ2) ∈ Ω[Γ,x;∆], its restriction
σ ↓x∈ Ω[Γ ;∆] is the assignment (σ1 ↓x, σ2) obtained by restricting the domain of
definition of σ1 to Γ . Vice versa, let a ∈ Ad(w) be an element of the world w.
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Given an assignment σ ∈ Ω
[Γ ;∆]
w , its extension σ[a/x] ∈ Ω

[Γ,x;∆]
w is the assign-

ment (σ1[
a/x], σ2) obtained by extending the domain of definition of σ1 to Γ, x

by assigning the element a to the variable x.

Given a context [Γ ;∆] and a variable x 6∈ Γ , the function 2↓x : 2Ω
[Γ,x;∆]

→

2Ω
[Γ ;∆]

lifts ↓x to sets. Vice versa, the function ↑x: Ω
[Γ ;∆] → 2Ω

[Γ,x;∆]

maps each

assignment σ ∈ Ω
[Γ ;∆]
w to the set {σ[a/x] | a ∈ Ad(w)} ⊆ Ω

[Γ,x;∆]
w , for any world

w ∈M , and 2↑x : 2Ω
[Γ ;∆]

→ 2Ω
[Γ,x;∆]

denotes the lifting of ↑x to sets.
The corresponding functions ↓χ, 2

↓χ , ↑χ, and 2↑χ , with respect to a second-
order variable χ 6∈ ∆, are defined in the same way.

Example 7 (Assignments). Let us consider the counterpart model of Fig. 2, and
let us denote λ = (λ1, λ2) the empty assignment, regardless of the world. Then,

each set Ω
[∅;∅]
wi simply corresponds to {(λ,wi)}, and consequently Ω[∅;∅] corre-

sponds to
{

(λ,w0), (λ,w1), (λ,w2)
}

. If we extend Ω
[∅;∅]
w1 including the first-order

variable x with sort τE , we obtain

2↑x(Ω[∅;∅]
w1

) =
{(

(λ1[
e3/x], λ2), w1

)

,
(

(λ1[
e4/x]λ2), w1

)}

which is in turn equivalent to
{(

({x 7→ e3}, λ2), w1

)

,
{(

({x 7→ e4}, λ2), w1

)}

.

As a final step, we have to define when a given pair of assignments is com-
patible with the counterpart relations.

Definition 12 (Assignment counterpart). Let σw ∈ Ωw, σw′ ∈ Ωw′ be two
assignments. We say that σw′ is a counterpart of σw relative to [Γ ;∆], denoted

as σw
[Γ ;∆]
 σw′ , if

1. for each first-order variable x ∈ Γ , the elements assigned to x by σw and by
σw′ are in counterpart relation, i.e. Cw,w′(σw(x)) = σw′(x)

2. for each second-order variable χ in ∆, the sets assigned to χ by σw and by
σw′ are in counterpart relation, i.e. 2Cw,w′ (σw(χ)) = σ′

w(χ)

Lifting Cw,w′ to the second-order case means that for each variable χ the
set denoted by its interpretation σw(χ) is precisely mapped by the counterpart
relation to the set σ′

w(χ).

It should be noticed that we do not accept as a valid counterpart relation one
where an already assigned element is canceled. Indeed, restricting the domain of
discourse to existing entities is the main characterising feature of the counterpart
solutions: this aspect of our proposal is going to be illustrated by examples in
§ 5, while it is discussed in some detail in [2, 22].

We are now ready to introduce the semantical evaluation for our logic in a
model M . It associates to a formula-in-context ψ[Γ ;∆] a set of assignments over
the worlds of M contained in Ω[Γ ;∆]. Hence, the domain os these assignments is
exactly 〈Γ ;∆〉, and thus our proposal is reminiscent of the semantics of temporal
formulas over sets of constraints introduced in [13].
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Definition 13 (Semantics). Let ψ[Γ ;∆] be a formula-in-context. The evalu-

ation of ψ[Γ ;∆] in M under the assignment ρ : Z → 2Ω
[Γ ;∆]

is given by the
function J·Kρ : F [Γ ;∆] → Ω[Γ ;∆] defined as

Jtt[Γ ;∆]Kρ = Ω[Γ ;∆]

J(ǫ : τ ∈τ χτ )[Γ ;∆]Kρ = {(σ,w) ∈ Ω[Γ ;∆] | σ(ǫ) ∈ σ(χτ )}

J¬ψ[Γ ;∆]Kρ = Ω[Γ ;∆] \ Jψ[Γ ;∆]Kρ
Jψ1 ∨ ψ2[Γ ;∆]Kρ = Jψ1[Γ ;∆]Kρ ∪ Jψ2[Γ ;∆]Kρ
J∃xτ . ψ[Γ ;∆]Kρ = 2↓xτ (Jψ[Γ, xτ ;∆]K(2↑x◦ρ))

J∃χτ . ψ[Γ ;∆]Kρ = 2↓χτ (Jψ[Γ ;∆,χτ ]K(2↑χ◦ρ))

J♦ψ[Γ ;∆]Kρ = {(σ,w) ∈ Ω[Γ ;∆] | ∃(σ′, w′) ∈ Jψ[Γ ;∆]Kρ . σ
[Γ ;∆]
 σ′}

JZ[Γ ;∆]Kρ = ρ(Z)
JµZ.ψ[Γ ;∆]Kρ = lfp(λY.Jψ[Γ ;∆]Kρ[

Y /Z ])

Note that in the evaluation of the membership predicate, σ(ǫ) denotes the
lifting of the substitution σ1 to the set of terms over ΣX .

In the evaluation of the quantifiers, it is pivotal to require that the assignment
ρ for fix-point variables is modified, in order to account for the extensions to the
newly introduced variables: it allows for a proper sorting of ρ(Z), since it must
now belong to the subsets of Ω[Γ,x;∆] (Ω[Γ ;∆,χ] in the second-order case).

Finally, in the evaluation of the modal operator the “renaming” of values
across worlds is ensured by requiring that the assignments σ and σ′ are in coun-
terpart relation. Thus, our semantics discards those worlds that are reachable
but are not in counterpart with respect to the current context. The rationale
behind this is that it makes no sense to make claims about about non-existence
(see [22, 2]). We shall illustrate this issue with some examples in § 5.

The semantics of our logic is well-defined. In particular, the restriction to
formulas where all occurrences of fix-point variables are positive guarantees that
any function λY.Jψ[Γ ;∆]Kρ[

Y /Z ] is monotonic. Therefore, by Knaster-Tarski the-
orem, fixed points are well-defined.

The evaluation of a closed formula, i.e. of a formula ψ[∅; ∅] with an empty
context, is just a set of pairs

{

(λ,w)
}

, for λ the empty assignment over the world
w. Hence, such an evaluation characterises a set of worlds: this ensures that our
proposal properly extends the standard semantics for propositional modal logics.

Example 8 (Evaluation of a formula-in-context). We have now the means for
showing the evaluation of the formula-in-context µZ.∃x.(s(x) = t(x) ∨ ♦Z)[∅; ∅]
proposed in Example 6 in the model presented in Example 3. Recall that the
formula states that some process (edge) will eventually become the unique leader
(self-closed). According to the rule semantics we have to obtain the least fixed
point of J∃x.(s(x) = t(x) ∨ ♦Z)[∅; ∅]Kρ. Intuitively we expect that the formula
holds for all worlds with the empty assignment, i.e. {(λ,w0), (λ,w1), (λ,w2)},
because w2 contains the process (edge) e5 which is a leader (self-closed), w1 con-
tains process (edge) e3 which has counterpart e5, and w0 has the process (edge) e0
which has counterpart e3. Consider the assignment ρ = (Z, {(λ,w0), (λ,w1), (λ,w2)}).

If we apply the semantics of the existential quantifier ρ(Z) becomes
{

({x 7→

e0}, w0), ({x 7→ e1}, w0), ({x 7→ e2}, w0)
}

∪
{

({x 7→ e3}, w1), ({x 7→ e4}, w1)
}

∪



Counterpart semantics for a second-order µ-calculus 11

{

({x 7→ e5}, w2)
}

. The assignment ({x 7→ e5}, w2) clearly verifies the formula
ψx ≡ (s(x) = t(x)), so (λ,w2) verifies the entire formula-in-context. Considering

(λ,w1), neither {x 7→ e3} nor {x 7→ e4} verify ψx, but {x 7→ e3}
[x,∅]
 {x 7→

e5} holds, and ({x 7→ e5}, w2) ∈ ρ(Z). So {λ,w1} verifies the entire formula.

Lastly, considering {λ,w0}, as for w1 ψx is not verified in w0, but {x 7→ e0}
[x,∅]
 

{x 7→ e3} holds, and ({x 7→ e3}, w1) ∈ ρ(Z). So also {λ,w0} verifies the entire
formula. Thus {(λ,w0), (λ,w1), (λ,w2)} is a fix-point and indeed the smallest one.
Therefore, the semantics of our formula is the set of all worlds, as we intuitively
expected.

5 Examples

The aim of this section is to illustrate the use of the logic to express properties of
the evolution of systems and their components. Most of the examples are drawn
from the literature reviewed in § 6. In order to make the syntax lighter, we do
not indicate the contexts of the formulas and the types of the variables.

Death. The creation and destruction of entities has attracted the interest of
various authors (e.g. [11, 23]) as a mean for reasoning about the allocation and
deallocation of resources or processes. It is important to understand that our
logic has no built-in mechanism for that purpose, hence it allows for various
interpretations of what it means for an entity to be deleted. In our setting, an
entity that has no counterpart in a certain world w′ is an entity that simply
does not exist in w′, which is different from an entity that is deallocated (whose
existence we might want to remember).

To illustrate the difference between absence and deallocation, we consider
absence first and then some particular flavours of deallocation. Recall that our
logic mainly regards the evolution of existing entities, thus disregarding of their
absence from the system. Therefore, while predicates regarding the presence and
absence of entities can be defined (e.g. present(x) ≡ ∃y.x = y, absent(x) ≡
¬present(x)) their semantics in our logic might not be meaningful. For instance,
under the scope of the next-time modality, predicates over x should be intended
as “as long as x is present”, so that formulas like �present(x) might accept
assignments for x in worlds that can evolve by deleting x. The key point is that
our logic should be used to reason about living entities.

Now, when one is interested in reasoning about deallocated entities, one
possible solution is to introduce a particular value ⊥ in all domains and map
deallocated entities (and the functions over them) onto that value (morphisms
become total). This is essentially the underlying idea of [11]. Then, a deallocated
entity can be characterised with predicate dead(x) ≡ x = ⊥. Several issues arise
when reasoning about deallocated entities. For instance, the choice of [11] is for
all predicates over deallocated entities to be false, even the trivial self equality
x = x, which is a tautology for living entities.

Our logic is flexible enough to adopt that strategy, by e.g. redefining the
abbreviation ǫ1 =τ ǫ2 for binary equality as follows ∀χτ .

(

(ǫ1 ∈τ χτ ↔ ǫ2 ∈τ
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χτ ) ∧ (⊥ 6∈ χτ )
)

. Other choices are also possible, like the one in [1] where the
identity of deallocated entities is kept but quantification restricts to living enti-
ties.

Birth. When reasoning about entity creation, it is interesting to distinguish new
from old entities. Our logic has no built-in mechanism (like e.g. in [11]) for this
purpose, yet one can assume that this information is provided by the model (by
using new and old values and a function from entities into those values).

Still, it is possible in general to define a modal predicate to capture the
creation of a new entity x as follows: 〈new(x)〉(ψ) ≡ ∃χ.∀y.y ∈ χ∧♦∃x.x 6∈ χ∧ψ.
Note that the defined modality is existential and restricts to non-deleting steps
only, but other choices are of course possible.

Growth. Our logic is suited for expressing properties about the growth of a sys-
tem. For instance, a growth bound of 3 is stated with at-most-2 ≡ ∀x.∀y.∀z.x =
y∨y = z∨z = x as in [11] and is required as an invariant with νZ.at-most-2∧�Z,
for νZ.− the (informally defined) operator for greatest fixed point.

More interestingly, we can express properties along entity preserving be-
haviours. For instance, an all-preserved modality focussing on system evolu-
tions where no entity is deleted is 〈all-preserved〉(ψ) ≡ ∃χ.∀y.y ∈ χ ∧ ♦ψ.

Similarly, an abbreviation for system steps creating at least one element but
preserving the rest is 〈one-more〉(ψ) ≡ ∃χ.∀y.y ∈ χ ∧ ♦∃x.x 6∈ χ ∧ ψ.

Finally, we can then state the possibility of unbounded growth with the fol-
lowing formula: νZ.µZ ′.〈one-more〉(Z ′)∧〈all-preserved〉(Z). Instead, the ne-
cessity of unbounded growth (see e.g. [11]) would require a model with explicit
deallocation as suggested above in order to be able to require absence of dele-
tions.

Life. Apart from the growth in the number of entities, our logic regards the
evolution of those entities. A typical example is the mobility of objects (like
the message propagation in the example of [1]). Assuming an algebra of objects
and locations with a function loc for denoting the location of an object, we can
express location change for an object x with predicate moves(x, ψ) ≡ ∃y.y =
loc(x) ∧ �(loc(x) 6= y ∧ ψ). Then we can express that x never remains in the
same location with νZ.moves(x, Z).

Along the same lines, we can define other typical individual safety and live-
ness properties. For instance, individual mutual exclusion (used e.g. in [23]) can
be stated with formula like νZ.loc(x) 6= loc(y) ∧ �Z which requires x and y
never to be in the same location. Another example are individual responsiveness
properties, like requiring two entities to eventually meet whenever they are in
separate locations: νZ.loc(x) 6= loc(y) → (µZ ′.loc(x) = loc(y) ∨ ♦Z ′) ∧ Z.
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6 Related works

As we mentioned in the introduction, many authors addressed decidability and
complexity issues concerning quantified modal logics, and many efforts have been
focused on defining logics (or identifying fragments) that sacrifice expressivity
in favour of efficient computability. The aim of our work is not concerned with
such aspects yet, since we are interested in defining fist a generic, natural and
intuitive semantics that overcomes some of the drawbacks of traditional Kripke-
like semantics and follows the spirit of counterpart semantics. Thus, this section
reviews some current proposals for quantified modal logics, trying to sum up
the differences with the present paper, with a specific interest towards those
approaches developed for the verification of visual specification formalisms.

Logics for reasoning about knowledge change (e.g. temporal description log-
ics) have been proposed by various authors (see e.g. [12, 16]), either as first-order
extensions of classical linear- and branching-time temporal logics such as LTL
and CTL [16], or as extensions of the modal µ-calculus [12]. The semantics is
typically given in Kripke-style with a unique domain of interpretation that does
not allow for merging or renaming of elements. Decidability results are given
for some fragments, e.g. the monodic ones, roughly consisting of equality-free
formulas with a restricted number of free variables under temporal operators.

Another setting where quantified temporal logics have raised interest are
graph transformation systems, where software systems exhibiting features such
as component or resource allocation, de-allocation, re-allocation or fusion are
conveniently modelled using graph morphisms. For instance, the approach of [1]
aims at building a verification setting where graph transition systems are ab-
stracted into a sort of Petri nets. The specification mechanism is a logic that
mixes the modal µ-calculus with Courcelle’s Monadic Second-Order Logic for
graphs [8]. The graph transition systems considered are not allowed to introduce
merging or renaming of graph items, and the semantics is defined over the un-
ravelling of the graph transition system, i.e. a tree that represents the unfolded
state space and that guarantees some additional properties such as no-reuse of
item names. Another example can be found [14], where a graph logic was devel-
oped for encoding a spatial logic for the π-calculus [3] in a graph-based setting.
The logic extends the µ-calculus with a node-binding modal operator, quantifiers
and other ingredients along the ones in [8] to describe the graphical structure of
configurations. Merging and renaming is allowed for some restricted cases only.

Another graph-based approach is described in [19], focusing on finite-state
graph transition systems, and using a linear-time logic whose structural aspects
are expressed with regular expressions over paths. The same author investigated
first-order temporal logics for various structures. In [20] he proposes an exten-
sion of CTL with first- and (monadic) second-order quantification. The semantics
is interpreted over algebra automata, i.e. automata enriched with an algebraic
structure of states, and with a morphism-like transition relation that allows for
renaming elements. The model checking problem over finite automata is shown
reducible to the ordinary model checking of CTL formulas over Kripke struc-
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tures, while preserving the necessary structure to exploit name symmetries. A
similar approach is followed in [11] but based on LTL and including predicates
to reason about allocation, deallocation and reallocation of objects. The notion
of name-equipped automata allows for injective renaming, but forbids merging.
The semantics of the next time modality does not discard accessible worlds where
elements assigned to variables are deleted, but in this case the assignment be-
comes undefined so that the logic allows for expressing deallocation but equality
predicates over undefined variables become false (even the simple case x = x).
Instead, [10] is concerned with the approximation of special kinds of graphs
and the verification of a similar logic for verifying pointer structures on a heap.
Another logic to reason about the dynamics featured in object-oriented program-
ming languages is evolution logic [23], a first-order version of LTL. The model
checking approach focuses on abstract interpretation rather than symmetries.

Spatio-temporal logics form another track of formalisms for describing the
evolution of process and data structures. Early works aimed at reasoning about
networks of processes (e.g. the multiprocess network logic of [18]), and were based
on extensions of classical linear- and branching-time logics with first-order quan-
tifiers. In these works, the set of processes was considered to be fixed (i.e. no
dynamic creation or deletion was considered) so that the elimination of quan-
tifiers was possible. In the last years, spatial logics evolved and were mostly
defined for algebraically presented systems. We cite among others spatial logics
for process calculi like the π-calculus [3, 4] and mobile ambients [7], or for data
structures such as graphs [5], heaps [21], and trees [6]. The common idea in such
approaches is to mix temporal modalities with spatial operators that represent
the dual of the operators of the algebra, like parallel (de)composition of processes
or graphs, and various forms of (name) quantification. Renaming and merging of
elements is typically restricted to some special cases like α-renaming and name
extrusion.

7 Conclusions and further works

The present paper introduces a novel semantics for a second-order µ-calculus.
With respect to other approaches, including those sketched in § 6, our proposal
allows for a simple definition of the semantical universe by means of counterpart
models. The idea of associating to (open) formulas sets of assignments, instead
of just worlds, allows for a straightforward interpretation of fixed points and for
their smooth integration with the evaluation of quantifiers, which often asked
for a restriction of the class of admissible models.

The starting point for our proposal was the survey on quantified modal logic
proposed by Belardinelli [2], further instantiated to graph transformations in
the master’s thesis of the third author [22]. The present article is a revised and
extended version of the latter, taking into account also fix-point operators.

We foresee a few obvious directions for further research. As a start, we would
like to investigate if the correspondence results between quantified µ-calculi and
Petri nets logics proposed in [1] could be lifted to our framework, and its richer
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family of counterpart relations. We would also like to better understand the rela-
tionship with spatial logics, along the lines of [14], possibly adopting a family of
labelled counterpart relations, and the richer modal operators ♦〈p,Y 〉, basically
stating that the transition between worlds is caused by a specific rule p, that
may create a chosen set Y of new elements. Another interesting point is in under-
standing the tradeoff between expressivity and complexity regarding the choice
of information being discarded in the semantics of the modal operator. As we
already discussed, we ignore those reachable worlds that are not in counterpart
relation with respect to the current assignment, while other choices are possible
like accepting the worlds, but making assignments undefined when the assigned
element is deleted [11] or not discarding anything [1].

Also the development of adequate proof systems should be pursued. We did
not further investigate the topic here, yet the use of formulas-in-context guaran-
tees the so-called K-scheme, stating that if the formula �(ψ1 → ψ2)[Γ ;∆] holds,
then the � operator may distribute, i.e.. also the formula �(ψ1) → �(ψ2)[Γ ;∆]
holds. The use of contexts is pivotal here, since otherwise the axiom might not
always be satisfied. Instead, its validity tells us that the resulting logic is normal,
which is a property of all classical modal logics [17].
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