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Abstract 

We describe Projector, a language that can be used to 
perform a mixture of typed and untyped computation 
against data represented in XML. For some problems, 
notably when the data is unstructured or 
semistructured, the most desirable programming 
model is against the tree structure underlying the 
document. When this tree structure has been used to 
model regular data structures, then these regular 
structures themselves are a more desirable 
programming model. The language Projector, 
described here in outline, gives both models within a 
single partially typed algebra and is well suited for 
hybrid applications, for example when fragments of a 
known structure are embedded in a document whose 
overall structure is unknown. 

Projector is an extension of ECMA-262 (aka 
JavaScript), and therefore inherits an untyped DOM 
interface. To this has been added some static typing 
and a dynamic projection primitive, which can be 
used to assert the presence of a regular structure 
modelled within the XML. If this structure does exist, 
the data is extracted and presented as a typed value 
within the programming language. 

1. Overview 

Our context is standard programming languages used 
to query data formatted in XML. We are interested in 
“typeful” programming, by which we mean 
programming with regular structures used to model 
categories in the real world. Such structures can be 
intuitively modelled in XML as labelled trees; 
however when these trees are presented to the 
programmer, as in various standards such as DOM 
[1], SAX [2], XSLT [3] and XQUERY [4], only the 
structure of the tree itself, rather than the real-world 
structure it is used to represent, is given as the data 
model. Any entity model in the mind of the 
programmer must be explicitly reconstructed through 
interpretation of the tree structure. 

This problem can be overcome by somehow 
presenting the programmer with a traditionally typed 
view of the data, which is mechanically reconstructed 
from the XML format based on metadata or type 
information. We know of two solutions in this 

category. JAXB [5] from Sun Microsystems takes a 
DTD and generates a set of Java classes, along with 
code to ‘marshal’ and ‘unmarshal’ data from the 
DOM model. SNAQue [6], our own prototype, takes 
a programming language type and projects it onto the 
XML data, extracting the largest subset which is 
correctly described by it. 

In this paper, we examine the use of a structural 
projection mechanism in combination with a tree-
based view of the XML data. This gives the effect of 
adding a structural equivalence type mechanism into 
the basic untyped framework. Through a scheme of 
dynamic type projection, we allow structural type 
assertions to be tested during program execution. 

This hybrid approach gives both the versatility of 
tree-based programming and, when desirable, the 
ability to switch to a structurally typed programming 
style. The structural typing can be used to guide the 
basic tree navigation, and also allows fragments of 
the code to be statically checked based on the type 
hypothesis coded in the projection. Our prototype 
language Projector is an extension of the ECMA-262 
(“JavaScript”) standard [7], and allows an interesting 
mix of typed and untyped code within a single 
context. 

2. Introduction 

XML is increasingly used to model data, rather than 
documents. Most programming interfaces incorporate 
a tree-structured view of the XML as an abstraction 
for the programmer. This is a good abstraction if the 
data content is inherently irregular, however for 
regular data it leaves much to be desired. A better 
approach is to present the programmer with an 
abstraction corresponding to a more traditional data 
model. 

To illustrate this concept by a simple example, 
consider Figure 1. The program uses the data 
constructors of array and record, and their associated 
dereference operators, to build a model and to access 
one of its component values. 
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var people = [ { name : ‘Richard’, age : 40 }, 
    { name : “Fabio”, age : 30 } ] 
 
print( people[ 0 ].name ) 
 

Figure 1 : typed data access 

Figure 2 shows the same data represented in XML, 
along with JavaScript DOM code to perform the same 
dereference. The dereference here is coded over the 
tree structure of the XML document, rather than over 
the underlying data model. This is good for 
documents and unstructured data, but when the data is 
more highly structured the tree-model introduces an 
unnecessary complexity into the programming task. 
Furthermore, the class of error that may be detected 
by static analysis of the program before binding to the 
data is greatly reduced. We refer to the tree-based 
data model as ‘untyped’ as only the type of the tree, 
rather than the type of the data it represents, is 
available. 
 
<people> 
 <person> 
  <name>Richard</name> 
  <age>40</age> 
 </person> 
 <person> 
  <name>Fabio</name> 
  <age>30</age> 
 </person> 
</people> 
 
var people = XMLDocumentElement 
print( people.firstChild.firstChild.firstChild.nodeValue ) 
 

Figure 2 : tree-based (‘untyped’) data access 

The major motivation for our technique of type 
projection is illustrated by the desire to use the type 
model-based dereference code in Figure 1 against the 
data in Figure 2 whenever it is appropriate to do so. 

There is a further option of how to achieve this. We 
distinguish between two possibilities: 

• type generation, where a programming language 
type is obtained by analysis of either the data 
itself or a metadata description of it, and 

• type projection, where the type is taken from the 
context of the program and matched against the 
data. 

Our interest here is in the second strategy, which has 
various advantages. Crucially in this context, these 
include the ability to handle partial data model 
specifications. This is key in the case where the 
overall structure of the data is not tightly specified, 

yet it contains structured ‘islands’ whose structure is 
known a priori. Our key hypothesis is that in such 
cases it is valuable to mix the paradigms of typed and 
untyped programmatic access to the data. 

2.1. Mixing Typed and Untyped Programming 

We have previously worked on type projections over 
semistructured data, with the aim of allowing 
standard statically typed programming languages to 
bind, in a semantically intuitive way, to 
semistructured data emanating from outside their 
context. We now report a different application of this 
work, where the type projection algebra is embedded 
within an untyped programming discipline, giving a 
language which can query and manipulate its values 
in both typed and untyped algebras. When this is 
applied to the DOM standard as an XML query 
interface, we can use type projection to search via 
navigation for sub-trees that conform to a particular 
type’s semantics, and thence provide a generic typed 
interface to a programmer. 

The type projection mechanism we will describe 
gives several advantages over the basic DOM 
abstraction. Primarily, these correspond to the normal 
advantages of typed vs. untyped programming 
environments. Furthermore, the descriptive power of 
the type system can be used to handle abstractions 
corresponding to cycles and shared subgraph 
components which are present within the XML. 
While these are, by necessity, handled through 
interpretation, this occurs at an earlier stage and is 
cleanly separated from the application logic rather 
than being intermingled. 

While of course our language has no more descriptive 
power than the standard DOM interface, we believe 
that the effective encoding of a part of the language 
algebra within a type system framework gives clear 
succinctness to certain classes of computation. We 
use the type system framework in a very non-standard 
manner. Rather than it being used primarily as a static 
mechanism to ensure the partial safety of programs, it 
is also used as a shorthand within certain dynamic 
computations against the input data. We strongly 
believe that type system concepts are the best way to 
describe structural requirements that are normally 
expressed by fragments of computation. 

2.2. Static typing in ECMA-262 

Our prototype language, Projector, is an extension of 
the language defined by the December 1999 ECMA-
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262 standard of JavaScript/JScript1. We chose this 
language for a number of important reasons: first, it is 
statically completely untyped, which suits our 
experimental purposes. Despite this, it is well-defined 
and in fact, being an evolved form of Lisp, contains 
an elegant functional core, and a pure object model of 
prototype-based inheritance over aggregations of 
first-class functions. The language is actually defined 
on the basis of a type system, but this features only in 
the definition of semantics rather than in any static 
framework. Finally, it has a standard binding to XML 
via the DOM interface. 

To this language we have added some standard 
syntactic forms for defining types, comprising object 
and array constructors over the scalar types int, string 
and bool, and a syntax for aliasing. Type expressions 
are added to the standard syntax as an optional feature 
within the parameter list of functions. The language 
remains largely untyped: a single static restriction has 
been added, that where a formal parameter is typed in 
a function body, and that function is manifest2, then 
the corresponding actual parameter at a call must be 
appropriately statically typed. 

In itself, this partially typed version of JavaScript 
opens many questions about the integration of typed 
and untyped programming algebras; however many 
of these issues are parallel to the topic of this paper. 
Here we concentrate on the application of this 
paradigm to programming over XML data as 
presented to the system via the DOM. 

Figure 3 shows some essential features of the 
extended language. The two functions getName and 
getName2 both return the name of their argument p, 
which is expected to represent a person. Both 
function bodies are standard JavaScript. However, the 
typed version is checked statically and the function 
body is therefore guaranteed to behave correctly. The 
untyped version instead has a series of dynamic 
checks to ensure it has been called appropriately. 

 

                                                           
1 We will subsequently refer to this language as JavaScript, 
forsaking both political and technical correctness for the 
sake of readability! 
2 Functions are first class and we do not, at this point, type 
them. 

 
type person = { name : string, age : int } 
 
var getName = function( p : person ) 
{ 
 return( p.name ) 
} 
 
var getName2 = function( p ) 
{ 
 if( p.name != undefined && p.age != undefined && 
 typeof( p.name ) == "string" && 
 typeof( p.age ) == "number" ){ 
  return( p.name ) } 
 else{ 
  error( "getName2: p is not a person" ) } 
} 
 

Figure 3 : structure checking by type and by algorithm 

At a call to getName, a static error will occur if the 
argument cannot be deduced to be of the appropriate 
structure, whereas at a call to getName2 no such 
restriction is imposed. However, total static checking 
is not possible when some of the data is imported into 
the context during execution, and so the statically 
typed function cannot be called directly under these 
circumstances. A type projection primitive is 
therefore introduced, which is a static assertion of the 
structure of a value only available dynamically. 

If the assertion is correct no action is taken; if it is 
incorrect an exception is raised. This allows the target 
expression to be safely statically retyped for the 
remainder of the execution block. Figure 4 illustrates 
the use of a projection expression to allow a statically 
verified call to getName with an argument whose type 
is not statically known. If the argument u turns out to 
have an incorrect structure, the function call will not 
occur. 

 
 
var showName = function( u ) 
{ 
 try{ alert( getName( project u as person ) ) } 
 catch( e ){ alert( ‘showName: u is not a person’ ) } 
} 
 

Figure 4 : statically typed call using projection 

Notice that the dynamic behaviour of the projection 
expression is exactly the same checking code that 
appears at the head of the getName2 function. 
However, as well as significantly better succinctness 
of expression, the use of the projection primitive also 
allows the static retyping of the expression. 

So far we have talked only about core JavaScript 
language values. In the next section we will consider 
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a similar mechanism applied over DOM data 
structures. 

2.3. Typed projection from DOM 

We start by giving a motivating example drawn from 
an artificially simple XML data collection, valid with 
respect to the DTD given in Figure 5. 

 
 
<!ELEMENT people ( person+ ) > 
<!ELEMENT person ( name, age ) > 
<!ELEMENT name ( #PCDATA ) > 
<!ELEMENT age ( #PCDATA ) > 
 

Figure 5 : example trivial DTD 

It is important to point out that the type projection 
scheme directly relates the programming language 
type and the data itself, and does not require any 
involvement with DTD or XMLSchema metadata. 
The DTD is used here only to explain the structure of 
the envisaged data, and there is no mechanical 
requirement for it to exist. 

A Projector function to calculate the average age of 
any such collection may be written as in Figure 6.  

The Collection type describes a JavaScript model of 
the expected structure of the whole XML document. 
The document element, people, is described as a 
record with a single field of this name. The type of 
this field is a record, with a single field array_person. 
The syntactic form of this label reflects the fact that a 
uniformly typed collection within JavaScript is 
typically modelled as an array, whereas within XML 
is signified by a repeated element label. When 
mapping between these formats, the mechanically 
significant prefix array_ is used to maintain human 
readability. The type of the array elements, a record 
with scalar name and age fields, corresponds to the 
scalar fields as defined in the DTD3. 

The XMLProject keyword signifies a static assertion 
of the expected structure of the function parameter 
domData, which should be a DOM tree conforming 
to the DTD given in Figure 5. Its use conveys two 
effects: first, it tests the structure of the input, and 
will throw an exception if this is incorrect. Secondly, 
it results in a reference to a data structure conforming 
to the given type description, Collection, which in 
this example is assigned to the local variable data. 
From this point onwards, data is statically known to 
have the type Collection. The significance of this is 

                                                           
3 Actually a subset; XMLSchema gives a tighter definition 
more fit for our purpose, but currently suffers less general 
support than DTD. 

that the code in the rest of the block is known to be 
type-safe by the programmer and allowance for 
failure need not be made. 

 
 
type Collection = { people : 
 { array_person : [ { name : string, age : int }  ] } } 
 
var averageAge = function( domData ) { 
 var count = 0; var total = 0 
 
 var data = XMLProject domData as Collection 
 
 var people = data.people.array_person 
 for( i in people ){ count++; total += people[ i ].age } 
 return( total / count ) 
} 
 

Figure 6 : structure checking through projection 

This motivating example looks convincing in terms of 
the succinctness of expression it achieves in 
comparison to code with an equivalent meaning 
written directly over the structure of the DOM tree. 
However when the use of the paradigm is extended to 
non-trivial examples, which by nature do not fit in 
academic papers, its use becomes more significant. 
Both DTD and XMLSchema tend to be used to 
describe general grammars, rather than tightly 
structured types, and typically allow great flexibility 
in conformance. In such cases structural projection 
looks even more convincing in terms of allowing 
code whose meaning is clear to programmers. This is 
of course true only in cases where a common 
structure, typically a subset of allowed structures, is 
the target of the computation. 

3. The projection mechanism 

We have described type projection schemes for 
semistructured data in detail elsewhere in more 
formal terms [6], and give a simple and relatively 
informal overview here. 

The projection mechanism is based upon a subtype 
relation between the ‘high level’ type contained in the 
program, and a ‘low level’ type assigned to the XML 
data collection. If the XML type is a subtype of the 
high-level type, then the projection of this high-level 
type onto the data corresponds, in database terms, to a 
typed view onto the data. 

There is however some tension between type systems 
for these two domains. For example, a type system 
for the document model would include the concept of 
ordering of elements, and would allow repeated 
element names within a single scope. On the other 
hand, a type system for a programming language will 
include higher-level data constructors such as arrays, 
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abstractions such as unions, and other higher-level 
concepts. 

In general, we avoid these problems by considering a 
single, hybrid type system which contains sub-
languages suitable for both domains. In this 
description, we define type languages T, the hybrid 
system, which contains languages PL (the 
programming language subset of types) and SS (the 
semistructured language subset of types). We define a 
meaning for PL within the programming language, 
and a meaning for the whole of T (rather than SS) 
within the semistructured domain. 

Given this semantic framework, we can demonstrate 
the soundness of a subtype relation over T in terms of 
the semistructured data. Furthermore, this implies that 
if we can accordingly relate an expression in SS with 
one in T, then we also have a mechanism for 
interpreting the corresponding subset of the 
semistructured data as a value within the 
programming language. 

The strategy for performing this typecheck is 
essentially to start with the type assigned to the data 
and continually rewrite it, trying to achieve the 
projection type. As the type assigned to the data is 
isomorphic to the data itself, in reality we can operate 
over the data rather than explicitly generating the 
assigned type. This is the mechanism by which the 
data extraction is performed in parallel with 
typechecking. For this reason we give the subtype 
relation as a set of rewrite rules, rather than in a more 
conventional notation. 

3.1. Semi-formal definition 

In the context of JavaScript, an appropriate set of type 
languages is shown in Figure 7. The curly and square 
brackets in PL are syntactic forms representing 
JavaScript object and array type constructors. No 
union type is included as the JavaScript untyped 
model makes this unnecessary for our purpose. One 
unusual aspect of the grammar SS is that repeated 
label names are allowed within object types; when the 
normal restriction of non-repetition is imposed, the 
PL subset is derived. 

 
 
T ::= PL | SS 
 
PL ::= scalar | { l1 : PL, … , ln : PL } | [ PL ] ( li ≠ lj ) 
 
SS ::= scalar | { l1 : SS, … , ln : SS } 
 
scalar ::= int | string | bool 
 
Figure 7 : A type grammar for JavaScript/XML projection 

The type assignment from any simple XML 
document onto SS is straightforward: the XML tree is 
simply typed as a collection of nested objects. Scalar 
content is typed as int, bool or string according to its 
structure, and structured content is typed as an object, 
each tag name being represented by a label. The lack 
of repetition restriction in the definition of object 
typing deals with the case of repeated tags within a 
single nesting context. Type assignment is extended 
to cover attributes and mixed content also, by use of 
the reserved label prefix attribute_ and the reserved 
label mixedContent as shown by example in Figure 8. 

 
 
<person xmlns="person.richard.cis.strath.ac.uk"> 
 <name>Richard</name> 
 <age>40</age> 
 <motto>XML doesn’t care.</motto> 
 <motto><i>Never</i> mix content.</motto> 
</person> 
 
 : 
 
{ person : { attribute_xmlns : string, 
   name : string, 
   age : int, 
   motto : string, 
   motto : { i : string, mixedContent : string } } } 
 

Figure 8 : an example type assignment 

The subtype relation is based on the following 
semantic interpretation of the type grammar T within 
the XML context: 

1. objects are represented by a set of elements at the 
same level, where the tag names represent the 
object field names. 

2. arrays, which must be contained within objects 
and labelled with an identifier of the form 
array_X, are represented by a set of elements at 
the same level which share a common tag name 
X. 

3. scalar types are represented by text conforming 
to the structural rules of that type, as defined in 
the microsyntax of the language. 

At this point it is worth mentioning ordering. The 
interpretation above is driven mainly by the 
programming language type system, as we require to 
present the result of the projection within this 
semantic domain. This will not normally be a perfect 
match as mentioned above, but as long as the 
translation rules are clear to the programmer this 
should not pose a problem. In the JavaScript 
translation, there is no concept of ordering of labels 
within a record, and so this aspect of the source data 
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is lost. This loss of ordering does not preclude the 
extraction of order from the original data, but this 
must occur in the untyped view of the data. In the 
case of arrays, which are ordered data structures, the 
relative ordering of components will be maintained 
by the system. 

The subtype relation is informally defined by the 
rewrite rules given in Figure 9, which specify a 
mechanism for rewriting a given type as a supertype. 
The reason for expressing the relation in this unusual 
form is that this represents exactly the process 
required when a projection is applied: if the type 
assigned to the XML can be rewritten as the goal 
type, then the projection is valid. Furthermore, the 
structure of the rewrite rules gives a basis for 
performing the required extraction or building of 
indexing structures. 

 
 
(1: record subtyping) 
{ l1 : T1, … , lm : Tm , … , ln : Tn } ⇒ { l1 : T1, … , ln : Tn } 
 
(2: array introduction) 
{ l1 : T1, … , lm : Tm , … , ln : Tn }⇒ 
   { l1 : T1, … , array_lm : [ Tm ] , … , ln : Tn } 
 
(3: array assimilation) 
{ l1 : T1, … , array_lm : [ Tm ] , … , lm : Tm , …, ln : Tn } ⇒ 
    { l1 : T1, … , array_lm : [ Tm ] , … , ln : Tn } 
 
(4-5: scalar widening) 
int ⇒ string bool ⇒ string 
 

Figure 9 : The subtype relation expressed by rewrite rules 

The rules given are not formally exhaustive but 
informally give the main axioms of subtyping. Rule 
(1) is standard record subtyping; from any object 
type, a supertype can be obtained by dropping any 
label : type pair from the structure. Rule (2) is an 
array introduction, which states that any single tag X 
in an object can be viewed as an array, labelled 
array_X, with a single element. Rule (3) is an array 
assimilation, which allows other fields with the same 
label and type to be assimilated into such an array 
once formed. Rules (4-5) are just an admission that 
the eager typing of scalar values according to their 
microstructure does not necessarily reflect their 
intended meaning. 

A variant of rule (2), which will be used later in the 
paper, is given in Figure 10. This version seems less 
justifiable, but is useful in conditions where it is 
sensible for an object abstraction to be typed as 
containing an array of some type even when the 
current manifestation does not do so; logically this 
assumes the presence of an empty array. Whether this 

is desirable or not depends on the nature of the 
application; how to handle this elegantly is an open 
issue. 

 
 
(2a : empty array introduction) 
{ l1 : T1, … , ln : Tn }⇒ 
    { l1 : T1, … , ln : Tn, array_lp : [ Tp ]} 
 

Figure 10 : introduction of empty arrays 

4. Mixed mode programming 

We now give some more sophisticated examples of 
the use of the paradigm: XML fragments; recursive 
types, and interpreted references within XML 
denoting shared subgraphs or cycles. For these 
purposes we modify our example data model to that 
given by the DTD in Figure 11. 

 
 
<!ELEMENT person ( name, age, child* ) > 
<!ATTLIST person myid ID #REQUIRED > 
<!ATTLIST person xmlns CDATA #FIXED 
      “person.richard.cis.strath.ac.uk” > 
<!ELEMENT name ( #PCDATA ) > 
<!ELEMENT age ( #PCDATA ) > 
<!ELEMENT child EMPTY > 
<! ATTLIST child childId IDREF #REQUIRED > 
 

Figure 11 : a more realistic DTD 

An increasing use of XML conforms to the general 
principle of using the xmlns standard as a mechanism 
akin to name type equivalence matching, therefore 
allowing generic code to be written independently of 
its context of use. The mandatory embedding of a 
URI in the namespace attribute of person in Figure 11 
means that general traversal code can be written to 
locate instances of valid data within arbitrary XML 
collections. 

Projection was originally envisaged as a binding 
mechanism to allow the incorporation of 
semistructured data into a statically typed 
programming algebra. In this context however it can 
be useful for the different (navigational versus 
structured) views over the DOM trees to coexist. In 
the mixed paradigm, for instance, it is possible to 
write an unstructured, navigation-based traversal over 
the tree and apply projections wherever the structured 
view is more appropriate. This style of programming 
is particularly well-suited to tasks where only partial 
knowledge of the data is available. One common case 
of this is where fragments of the data are governed by 
a global XML namespace, and code is written over 
those fragments independent of the context in which 
they occur. 
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Generic code to calculate the average age of all 
person records embedded in any data source can be 
written using JavaScript first class functions against 
the standard DOM model as in Figure 12. This code 
abstracts the details of the functions isPerson and 
getAge, which respectively test for whether a DOM 
node represents a person, and return the age field of 
such a node.. 

 
 
var applyToDOMTree = function( node, f ) 
{ 
 if( node != undefined ) 
 { 
  f( node ) 
  applyToDOMTree ( node.firstChild, f ) 
  applyToDOMTree ( node.nextSibling, f ) 
 } 
} 
 
var averageAge = function( domData ) 
{ 
 var count = 0; var total = 0 
 var accumulate = function( n ) 
 { 
  if( isPerson( n ) ){ count++; total += getAge( n ) } 
 } 
 applyToDOMTree( domData, accumulate ) 
 return( total / count ) 
} 
 

Figure 12 : generic traveral of the DOM 

Minimal JavaScript code for the two functions 
isPerson and getAge is shown in Figure 13. Notice 
that this code is not guaranteed to succeed 
structurally, and will only do so if the namespace 
convention is correctly enforced throughout the use of 
the URI; otherwise the getAge function may fail 
dynamically or, worse, succeed mechanically but 
result in an incorrect answer. Full code for isPerson, 
which guarantees the correct meaning for getAge, 
must incorporate many more structural checks; even 
so, the onus is still on the programmer to ensure that 
the data extraction expressed within getAge 
corresponds correctly to the DOM structure 
corresponding to the schema description. 

 

 
var isPerson = function( node ) // node is a DOM tree node 
{ 
 return( node.namespaceURI == 
   "person.richard.cis.strath.ac.uk" ) 
} 
 
var getAge = function( p ) // p is a DOM tree node 
{ 
 return( p.firstChild.nextSibling.nodeValue ) 
} 
 

Figure 13 : “dynamically typed” DOM code 

Figure 14 shows the equivalent Projector code for the 
two functions. Once again two significant advantages 
are highlighted. First is the succinctness of expression 
of the specification of the dynamic structural test, as 
seen in the isPerson function. The isPerson function 
in Projector is no harder to read than that of Figure 
13, even although the latter does not perform any 
structural checks; the equivalent JavaScript code to 
perform the same degree of structural checking is 
given in Figure 15. Secondly is the static safety 
shown in the getAge function, giving the programmer 
confidence that the extraction expression is the 
correct one as a static error would otherwise be 
reported. 

 
 
type Person = { attribute_xmlns : string, 
      name : string, age : int } 
 
var isPerson = function( node ) // node is a DOM tree node 
{ 
 try{ 
  var p = XMLProject node as Person 
  return( p.attribute_xmlns == 
     "person.richard.cis.strath.ac.uk" ) 
 } 
 catch( e ){ return( false ) } 
} 
 
var getAge = function( p ) // p is a DOM tree node 
{ 
 return( ( XMLproject node as Person ).age ) 
} 
 

Figure 14 : the same example expressed in Projector 
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function isPerson() 
{ 
 return( 
  node!= undefined && 
  node.namespaceURI = 
     "person.richard.cis.strath.ac.uk " && 
  node.firstChild != undefined && 
  node.firstChild.nodeName == "name" && 
  node.firstChild.nextSibling != undefined && 
  node.firstChild.nextSibling.nodeName == "age" 
 ) 
} 
 Figure 15 : structural test coded against the DOM 

5. Recursive types, shared subgraphs and cycles 

Recursive types are required to capture regular data 
structures. In XML such structures can be modelled 
either by implicit nesting of a common substructure 
or, more commonly, by interpreted references. Figure 
16 shows some example XML with nested instances 
of a person representation, and a Projector program 
using a recursive type to describe them. In this case 
we require to use type rule (2a) to deduce the empty 
array which occurs logically in the child object 
representations. The move from non-recursive to 
recursive types is highly significant in terms of the 
underlying type theory, but does not present any 
significant new challenges in this context. 

The representation of references within XML data is 
achieved by interpretation over the data content rather 
than by a defined semantic mechanism within the 
definition of XML itself. Metadata descriptions do 
allow the specification of internal references and, in 
conjunction with a schema, references may be 
deterministically identifiable within a data collection. 
However the DOM is defined only over the XML 
structure, and therefore handling of references to 
denote both shared subgraphs and cycles must be 
achieved by interpretation of these within the 
application code. 

Other more sophisticated mechanisms for encoding 
both inter- and intra-document pointers are emerging; 
however it is not clear that the tree-based data 
structures representing such documents will support 
these. The jump from supporting tree-based to 
general graph-based traversals is extremely 
significant and will not be undertaken lightly. It 
therefore seems likely that all related computing 
paradigms will continue to require interpretation of 
such references at the application level for the 
foreseeable future. 

 
<person> 
 <name>Richard</name> 
 <age>40</age> 
 <child> 
  <person> 
   <name>Thomas</name> 
   <age>5</age> 
  </person> 
 </child> 
 <child> 
  <person> 
   <name>Elizabeth</name> 
   <age>1</age> 
  </person> 
 </child> 
</person> 
 
type Person = { name : string, age : int, 
        array_child : [ Person ] } 
type Data = { person : Person } 
 
var listFamily = function( p : Person ) 
{ 
 print( p.name ) 
 for( i in p.array_child ){ listFamily( p.array_child[ i ] ) 
} 
 
listFamily( ( XMLProject domData as Data).person ) 
 

Figure 16 : use of recursion over nested data 

However if the same code is used against data 
conforming to the DTD given in Figure 11 it will not 
work properly as the references modelled within the 
data attributes will not be detected during the type 
projection. To achieve the same effect, the untyped 
tree would need to be traversed and the references 
interpreted before projection onto the simple Person 
type could occur, thus mixing the structural checking 
code with the application logic. However avoidance 
of such mixing is the primary intention for the 
Projector language. 

To solve this the observation is required that the 
dynamic type projection already performs a traversal 
of the relevant data, and that the requirement is for 
this traversal to somehow incorporate the semantics 
of references within that data. This can be achieved 
by the incorporation of a “reference following” 
functionality into the projection operation. 

To find the DOM nodes representing a person’s 
children requires the following steps: 

1. form a list of tokens by extracting the appropriate 
IDREF from each <child> node 

2. form a list to contain DOM node references 
corresponding to these, with each node initially 
set to null 
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3. traverse the entire DOM tree; for each <person> 
node encountered, extract its ID. If this matches 
an entry in the list of tokens, then update the 
corresponding element in the node list. 

 
 
type Child = { attribute_IDREF : string } 
type Person = { attribute_ID : string, name : string, 
       age : int, array_child :[ Child ] } 
 
var findIDToken = function( n ) 
{ 
 try{ 
  var c = XMLProject n as Child 
  return( c.attribute_IDREF ) 
 } 
 catch( e ){ return( "" ) } 
} 
 
var resolveIDToken = function( n, t ) 
{ 
 try{ 
  var p = XMLProject n as Person 
  return( p.attribute_IDREF == t ) 
 } 
 catch( e ){ return( false ) } 
} 
 

Figure 17 : resolution of references 

A solution to this coded in Projector gives rise to the 
functions shown in Figure 17. Although this will lead 
to a relatively elegant implementation of the above 
algorithm, it remains unsatisfactory as the typing of 
Child and Person captures their implementation rather 
than the semantics of the model. The solution to this 
is to perform the algorithm at the time of projection, 
and allow the type projection to occur over the 
resulting logical graph, rather than the simple tree of 
the DOM. This is achieved by an extension of the 
syntax of project to include generic “find” and 
“resolve” functions as illustrated in Figure 18. 

 
type Person = { name : string, age : int,  
         array_child : [ Person ] } 
 
var listFamily = function( p : Person ) 
{ 
 print( p.name ) 
 for( i in p.$array_child ){ 
  listFamily( p.array_child[ i ] ) 
 } 
} 
 
var p = XMLProject domData as Person using 
       findIDToken, resolveIDToken 
listFamily( p ) 
 

Figure 18 : type projection over interpreted references 

During traversal of the DOM tree, the find and 
resolve functions will be used wherever appropriate 
to present a transformed tree to the projection 
algorithm. The result in this case will be the building 
of a tree structure corresponding to that of Figure 16, 
even although the data is presented in a flat list, 
allowing the recursive algorithm to operate correctly. 
XML data representing shared subgraphs and cycles 
are translated into the corresponding JavaScript data 
structures via type projection. 

The find and resolve functions are in general 
programmer provided, and so the string token passed 
from one to the other can be used to model arbitrary 
structures in cases where the reference is resolved by 
more than a simple token. It is possible to generate 
the functions automatically in cases where a DTD is 
available, yet the mechanism is also sufficiently 
flexible to allow other conventions to be coded if 
unique references are coded in the XML in a non-
standard manner. 

6. Related work 

Computations over XML data can be specified in a 
variety of paradigms, models and languages. Two 
kinds of approaches, however, appear to prevail: 
dedicated query languages and bindings to 
programming languages, typically object-oriented 
ones. 

The first resort to regular expressions to match data 
with irregular or partially known structure (e.g. XML-
QL [8], XQL [9], Lorel [10]). They also include 
Turing-complete and/or strongly typed functional 
languages, which exploit structural regularity to 
ensure correctness of arbitrary computations (e.g. 
XQUERY [11], XSLT [3], XDuce [12], TeQuyLA 
[13], and TQL [14]). All of these approaches are 
primarily designed for working against unstructured 
or semistructured data, and therefore suffer from the 
basic problem of the programmer being required to 
reconstruct higher-level semantic data models 
whenever these are encoded in the underlying tree 
format. Some have their own weak type systems, and 
notably those of XDuce and TQL bear some 
resemblance in their underlying structures to those we 
use. However, we are more interested in moving 
fluidly between completely untyped (tree-structured) 
and strongly typed programming modes. 

Language bindings are instead defined by 
implementing programming interfaces to a structured 
representation of the data. Differences between our 
and approach and the DOM approach has been 
largely discussed in the paper, and the main 
observations can be immediately extended to the 
SAX approach [2]. 
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Sun Microsystems have introduced the JAXB [5] 
Java to XML binding model, which is similar in spirit 
to ours in that it relies on static type information to 
preserve the semantics of real-world entities. 
However, JAXB bindings are automatically generated 
from DTD document descriptions. This forces 
generation of typed structure to match the entire 
documents description, which must be known a priori 
as validation is required to preserve soundness. This 
limits its granularity with respect to the target data, 
and restricts its ability to evolve within heterogeneous 
and distributed systems. 

Other type-related support is available by use of the 
XML namespace (xmlns) standard [15], in 
conjunction with XML data validated with respect to 
DTD or XMLSchema [16] metadata. The 
combination can allow the effective introduction of 
some “type” knowledge for the programmer, albeit by 
convention rather than by guarantee. However this 
still leaves much to be desired for programmers 
trying to recreate the higher-level conceptual 
structures from labelled trees. The namespace 
mechanism is relatively heavyweight for many 
purposes, and may require explicit structural checking 
within the program logic to ensure that conventions 
are obeyed. As well as these, it has the established 
disadvantages that “name equivalence” type systems 
suffer in comparison with “structural equivalence” 
over distributed programming systems, in particular 
with respect to evolution and version control. 

7. Implementation status 

Projector is a new language specification and at time 
of writing a full and rigorous implementation does 
not yet exist. Various partial systems have been built 
and some are available on the web [17]; it is 
implemented in, and compiles to, ECMA-262, and so 
can be executed in a standard browser. 

The projection algorithms themselves are robust and 
have been extensively investigated, and proofs of 
soundness and completeness have been performed. 
Two robust implementations exist and have been used 
to solve real-world problems; one is CORBA-based 
and projects via IDL, the other is a Java language 
version. Anyone interested in using any of these 
systems should get in touch with the authors. 

8. Conclusions 

A new programming language Projector has been 
introduced largely by motivating examples. The 
particular paradigm of mixing typed and untyped 
program segments against XML data looks novel and 
exciting; however the project is at an early stage and 
the language has not yet been used “in anger” against 

real world data collections or problems. There are 
very many unresolved issues to be investigated. 
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