
Strathprints Institutional Repository

Connor, Richard and Lievens, David and Simeoni, Fabio and Neely, Steve and Russell, George
(2002) Projector - a partially typed language for querying XML. In: PlanX Workshop on
Programming Language Technologies for XML, 2002-10-03 - 2002-10-08, Pittsburgh, USA.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Connor, R. and Lievens, D. and Simeoni, F. and Neely, S. and Russell, G. (2002)
Projector - a partially typed language for querying XML. In: PlanX Workshop on
Programming Language Technologies for XML.

http://eprints.cdlr.strath.ac.uk/2455/

Strathprints is designed to allow users to access the research output of the
University of Strathclyde. Copyright © and Moral Rights for the papers
on this site are retained by the individual authors and/or other copyright
owners. Users may download and/or print one copy of any article(s) in
Strathprints to facilitate their private study or for non-commercial
research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain. You may
freely distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2300/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk/
mailto:eprints@cis.strath.ac.uk

 1

Projector – a Partially Typed Language for Querying XML
Richard Connor, David Lievens, Fabio Simeoni, Steve Neely and George Russell

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow G1 1XH, Scotland

Abstract

We describe Projector, a language that can be used to
perform a mixture of typed and untyped computation
against data represented in XML. For some problems,
notably when the data is unstructured or
semistructured, the most desirable programming
model is against the tree structure underlying the
document. When this tree structure has been used to
model regular data structures, then these regular
structures themselves are a more desirable
programming model. The language Projector,
described here in outline, gives both models within a
single partially typed algebra and is well suited for
hybrid applications, for example when fragments of a
known structure are embedded in a document whose
overall structure is unknown.

Projector is an extension of ECMA-262 (aka
JavaScript), and therefore inherits an untyped DOM
interface. To this has been added some static typing
and a dynamic projection primitive, which can be
used to assert the presence of a regular structure
modelled within the XML. If this structure does exist,
the data is extracted and presented as a typed value
within the programming language.

1. Overview

Our context is standard programming languages used
to query data formatted in XML. We are interested in
“typeful” programming, by which we mean
programming with regular structures used to model
categories in the real world. Such structures can be
intuitively modelled in XML as labelled trees;
however when these trees are presented to the
programmer, as in various standards such as DOM
[1], SAX [2], XSLT [3] and XQUERY [4], only the
structure of the tree itself, rather than the real-world
structure it is used to represent, is given as the data
model. Any entity model in the mind of the
programmer must be explicitly reconstructed through
interpretation of the tree structure.

This problem can be overcome by somehow
presenting the programmer with a traditionally typed
view of the data, which is mechanically reconstructed
from the XML format based on metadata or type
information. We know of two solutions in this

category. JAXB [5] from Sun Microsystems takes a
DTD and generates a set of Java classes, along with
code to ‘marshal’ and ‘unmarshal’ data from the
DOM model. SNAQue [6], our own prototype, takes
a programming language type and projects it onto the
XML data, extracting the largest subset which is
correctly described by it.

In this paper, we examine the use of a structural
projection mechanism in combination with a tree-
based view of the XML data. This gives the effect of
adding a structural equivalence type mechanism into
the basic untyped framework. Through a scheme of
dynamic type projection, we allow structural type
assertions to be tested during program execution.

This hybrid approach gives both the versatility of
tree-based programming and, when desirable, the
ability to switch to a structurally typed programming
style. The structural typing can be used to guide the
basic tree navigation, and also allows fragments of
the code to be statically checked based on the type
hypothesis coded in the projection. Our prototype
language Projector is an extension of the ECMA-262
(“JavaScript”) standard [7], and allows an interesting
mix of typed and untyped code within a single
context.

2. Introduction

XML is increasingly used to model data, rather than
documents. Most programming interfaces incorporate
a tree-structured view of the XML as an abstraction
for the programmer. This is a good abstraction if the
data content is inherently irregular, however for
regular data it leaves much to be desired. A better
approach is to present the programmer with an
abstraction corresponding to a more traditional data
model.

To illustrate this concept by a simple example,
consider Figure 1. The program uses the data
constructors of array and record, and their associated
dereference operators, to build a model and to access
one of its component values.

 2

var people = [{ name : ‘Richard’, age : 40 },
 { name : “Fabio”, age : 30 }]

print(people[0].name)

Figure 1 : typed data access

Figure 2 shows the same data represented in XML,
along with JavaScript DOM code to perform the same
dereference. The dereference here is coded over the
tree structure of the XML document, rather than over
the underlying data model. This is good for
documents and unstructured data, but when the data is
more highly structured the tree-model introduces an
unnecessary complexity into the programming task.
Furthermore, the class of error that may be detected
by static analysis of the program before binding to the
data is greatly reduced. We refer to the tree-based
data model as ‘untyped’ as only the type of the tree,
rather than the type of the data it represents, is
available.

<people>
 <person>
 <name>Richard</name>
 <age>40</age>
 </person>
 <person>
 <name>Fabio</name>
 <age>30</age>
 </person>
</people>

var people = XMLDocumentElement
print(people.firstChild.firstChild.firstChild.nodeValue)

Figure 2 : tree-based (‘untyped’) data access

The major motivation for our technique of type
projection is illustrated by the desire to use the type
model-based dereference code in Figure 1 against the
data in Figure 2 whenever it is appropriate to do so.

There is a further option of how to achieve this. We
distinguish between two possibilities:

• type generation, where a programming language
type is obtained by analysis of either the data
itself or a metadata description of it, and

• type projection, where the type is taken from the
context of the program and matched against the
data.

Our interest here is in the second strategy, which has
various advantages. Crucially in this context, these
include the ability to handle partial data model
specifications. This is key in the case where the
overall structure of the data is not tightly specified,

yet it contains structured ‘islands’ whose structure is
known a priori. Our key hypothesis is that in such
cases it is valuable to mix the paradigms of typed and
untyped programmatic access to the data.

2.1. Mixing Typed and Untyped Programming

We have previously worked on type projections over
semistructured data, with the aim of allowing
standard statically typed programming languages to
bind, in a semantically intuitive way, to
semistructured data emanating from outside their
context. We now report a different application of this
work, where the type projection algebra is embedded
within an untyped programming discipline, giving a
language which can query and manipulate its values
in both typed and untyped algebras. When this is
applied to the DOM standard as an XML query
interface, we can use type projection to search via
navigation for sub-trees that conform to a particular
type’s semantics, and thence provide a generic typed
interface to a programmer.

The type projection mechanism we will describe
gives several advantages over the basic DOM
abstraction. Primarily, these correspond to the normal
advantages of typed vs. untyped programming
environments. Furthermore, the descriptive power of
the type system can be used to handle abstractions
corresponding to cycles and shared subgraph
components which are present within the XML.
While these are, by necessity, handled through
interpretation, this occurs at an earlier stage and is
cleanly separated from the application logic rather
than being intermingled.

While of course our language has no more descriptive
power than the standard DOM interface, we believe
that the effective encoding of a part of the language
algebra within a type system framework gives clear
succinctness to certain classes of computation. We
use the type system framework in a very non-standard
manner. Rather than it being used primarily as a static
mechanism to ensure the partial safety of programs, it
is also used as a shorthand within certain dynamic
computations against the input data. We strongly
believe that type system concepts are the best way to
describe structural requirements that are normally
expressed by fragments of computation.

2.2. Static typing in ECMA-262

Our prototype language, Projector, is an extension of
the language defined by the December 1999 ECMA-

 3

262 standard of JavaScript/JScript1. We chose this
language for a number of important reasons: first, it is
statically completely untyped, which suits our
experimental purposes. Despite this, it is well-defined
and in fact, being an evolved form of Lisp, contains
an elegant functional core, and a pure object model of
prototype-based inheritance over aggregations of
first-class functions. The language is actually defined
on the basis of a type system, but this features only in
the definition of semantics rather than in any static
framework. Finally, it has a standard binding to XML
via the DOM interface.

To this language we have added some standard
syntactic forms for defining types, comprising object
and array constructors over the scalar types int, string
and bool, and a syntax for aliasing. Type expressions
are added to the standard syntax as an optional feature
within the parameter list of functions. The language
remains largely untyped: a single static restriction has
been added, that where a formal parameter is typed in
a function body, and that function is manifest2, then
the corresponding actual parameter at a call must be
appropriately statically typed.

In itself, this partially typed version of JavaScript
opens many questions about the integration of typed
and untyped programming algebras; however many
of these issues are parallel to the topic of this paper.
Here we concentrate on the application of this
paradigm to programming over XML data as
presented to the system via the DOM.

Figure 3 shows some essential features of the
extended language. The two functions getName and
getName2 both return the name of their argument p,
which is expected to represent a person. Both
function bodies are standard JavaScript. However, the
typed version is checked statically and the function
body is therefore guaranteed to behave correctly. The
untyped version instead has a series of dynamic
checks to ensure it has been called appropriately.

1 We will subsequently refer to this language as JavaScript,
forsaking both political and technical correctness for the
sake of readability!
2 Functions are first class and we do not, at this point, type
them.

type person = { name : string, age : int }

var getName = function(p : person)
{
 return(p.name)
}

var getName2 = function(p)
{
 if(p.name != undefined && p.age != undefined &&
 typeof(p.name) == "string" &&
 typeof(p.age) == "number"){
 return(p.name) }
 else{
 error("getName2: p is not a person") }
}

Figure 3 : structure checking by type and by algorithm

At a call to getName, a static error will occur if the
argument cannot be deduced to be of the appropriate
structure, whereas at a call to getName2 no such
restriction is imposed. However, total static checking
is not possible when some of the data is imported into
the context during execution, and so the statically
typed function cannot be called directly under these
circumstances. A type projection primitive is
therefore introduced, which is a static assertion of the
structure of a value only available dynamically.

If the assertion is correct no action is taken; if it is
incorrect an exception is raised. This allows the target
expression to be safely statically retyped for the
remainder of the execution block. Figure 4 illustrates
the use of a projection expression to allow a statically
verified call to getName with an argument whose type
is not statically known. If the argument u turns out to
have an incorrect structure, the function call will not
occur.

var showName = function(u)
{
 try{ alert(getName(project u as person)) }
 catch(e){ alert(‘showName: u is not a person’) }
}

Figure 4 : statically typed call using projection

Notice that the dynamic behaviour of the projection
expression is exactly the same checking code that
appears at the head of the getName2 function.
However, as well as significantly better succinctness
of expression, the use of the projection primitive also
allows the static retyping of the expression.

So far we have talked only about core JavaScript
language values. In the next section we will consider

 4

a similar mechanism applied over DOM data
structures.

2.3. Typed projection from DOM

We start by giving a motivating example drawn from
an artificially simple XML data collection, valid with
respect to the DTD given in Figure 5.

<!ELEMENT people (person+) >
<!ELEMENT person (name, age) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT age (#PCDATA) >

Figure 5 : example trivial DTD

It is important to point out that the type projection
scheme directly relates the programming language
type and the data itself, and does not require any
involvement with DTD or XMLSchema metadata.
The DTD is used here only to explain the structure of
the envisaged data, and there is no mechanical
requirement for it to exist.

A Projector function to calculate the average age of
any such collection may be written as in Figure 6.

The Collection type describes a JavaScript model of
the expected structure of the whole XML document.
The document element, people, is described as a
record with a single field of this name. The type of
this field is a record, with a single field array_person.
The syntactic form of this label reflects the fact that a
uniformly typed collection within JavaScript is
typically modelled as an array, whereas within XML
is signified by a repeated element label. When
mapping between these formats, the mechanically
significant prefix array_ is used to maintain human
readability. The type of the array elements, a record
with scalar name and age fields, corresponds to the
scalar fields as defined in the DTD3.

The XMLProject keyword signifies a static assertion
of the expected structure of the function parameter
domData, which should be a DOM tree conforming
to the DTD given in Figure 5. Its use conveys two
effects: first, it tests the structure of the input, and
will throw an exception if this is incorrect. Secondly,
it results in a reference to a data structure conforming
to the given type description, Collection, which in
this example is assigned to the local variable data.
From this point onwards, data is statically known to
have the type Collection. The significance of this is

3 Actually a subset; XMLSchema gives a tighter definition
more fit for our purpose, but currently suffers less general
support than DTD.

that the code in the rest of the block is known to be
type-safe by the programmer and allowance for
failure need not be made.

type Collection = { people :
 { array_person : [{ name : string, age : int }] } }

var averageAge = function(domData) {
 var count = 0; var total = 0

 var data = XMLProject domData as Collection

 var people = data.people.array_person
 for(i in people){ count++; total += people[i].age }
 return(total / count)
}

Figure 6 : structure checking through projection

This motivating example looks convincing in terms of
the succinctness of expression it achieves in
comparison to code with an equivalent meaning
written directly over the structure of the DOM tree.
However when the use of the paradigm is extended to
non-trivial examples, which by nature do not fit in
academic papers, its use becomes more significant.
Both DTD and XMLSchema tend to be used to
describe general grammars, rather than tightly
structured types, and typically allow great flexibility
in conformance. In such cases structural projection
looks even more convincing in terms of allowing
code whose meaning is clear to programmers. This is
of course true only in cases where a common
structure, typically a subset of allowed structures, is
the target of the computation.

3. The projection mechanism

We have described type projection schemes for
semistructured data in detail elsewhere in more
formal terms [6], and give a simple and relatively
informal overview here.

The projection mechanism is based upon a subtype
relation between the ‘high level’ type contained in the
program, and a ‘low level’ type assigned to the XML
data collection. If the XML type is a subtype of the
high-level type, then the projection of this high-level
type onto the data corresponds, in database terms, to a
typed view onto the data.

There is however some tension between type systems
for these two domains. For example, a type system
for the document model would include the concept of
ordering of elements, and would allow repeated
element names within a single scope. On the other
hand, a type system for a programming language will
include higher-level data constructors such as arrays,

 5

abstractions such as unions, and other higher-level
concepts.

In general, we avoid these problems by considering a
single, hybrid type system which contains sub-
languages suitable for both domains. In this
description, we define type languages T, the hybrid
system, which contains languages PL (the
programming language subset of types) and SS (the
semistructured language subset of types). We define a
meaning for PL within the programming language,
and a meaning for the whole of T (rather than SS)
within the semistructured domain.

Given this semantic framework, we can demonstrate
the soundness of a subtype relation over T in terms of
the semistructured data. Furthermore, this implies that
if we can accordingly relate an expression in SS with
one in T, then we also have a mechanism for
interpreting the corresponding subset of the
semistructured data as a value within the
programming language.

The strategy for performing this typecheck is
essentially to start with the type assigned to the data
and continually rewrite it, trying to achieve the
projection type. As the type assigned to the data is
isomorphic to the data itself, in reality we can operate
over the data rather than explicitly generating the
assigned type. This is the mechanism by which the
data extraction is performed in parallel with
typechecking. For this reason we give the subtype
relation as a set of rewrite rules, rather than in a more
conventional notation.

3.1. Semi-formal definition

In the context of JavaScript, an appropriate set of type
languages is shown in Figure 7. The curly and square
brackets in PL are syntactic forms representing
JavaScript object and array type constructors. No
union type is included as the JavaScript untyped
model makes this unnecessary for our purpose. One
unusual aspect of the grammar SS is that repeated
label names are allowed within object types; when the
normal restriction of non-repetition is imposed, the
PL subset is derived.

T ::= PL | SS

PL ::= scalar | { l1 : PL, … , ln : PL } | [PL] (li ≠ lj)

SS ::= scalar | { l1 : SS, … , ln : SS }

scalar ::= int | string | bool

Figure 7 : A type grammar for JavaScript/XML projection

The type assignment from any simple XML
document onto SS is straightforward: the XML tree is
simply typed as a collection of nested objects. Scalar
content is typed as int, bool or string according to its
structure, and structured content is typed as an object,
each tag name being represented by a label. The lack
of repetition restriction in the definition of object
typing deals with the case of repeated tags within a
single nesting context. Type assignment is extended
to cover attributes and mixed content also, by use of
the reserved label prefix attribute_ and the reserved
label mixedContent as shown by example in Figure 8.

<person xmlns="person.richard.cis.strath.ac.uk">
 <name>Richard</name>
 <age>40</age>
 <motto>XML doesn’t care.</motto>
 <motto><i>Never</i> mix content.</motto>
</person>

 :

{ person : { attribute_xmlns : string,
 name : string,
 age : int,
 motto : string,
 motto : { i : string, mixedContent : string } } }

Figure 8 : an example type assignment

The subtype relation is based on the following
semantic interpretation of the type grammar T within
the XML context:

1. objects are represented by a set of elements at the
same level, where the tag names represent the
object field names.

2. arrays, which must be contained within objects
and labelled with an identifier of the form
array_X, are represented by a set of elements at
the same level which share a common tag name
X.

3. scalar types are represented by text conforming
to the structural rules of that type, as defined in
the microsyntax of the language.

At this point it is worth mentioning ordering. The
interpretation above is driven mainly by the
programming language type system, as we require to
present the result of the projection within this
semantic domain. This will not normally be a perfect
match as mentioned above, but as long as the
translation rules are clear to the programmer this
should not pose a problem. In the JavaScript
translation, there is no concept of ordering of labels
within a record, and so this aspect of the source data

 6

is lost. This loss of ordering does not preclude the
extraction of order from the original data, but this
must occur in the untyped view of the data. In the
case of arrays, which are ordered data structures, the
relative ordering of components will be maintained
by the system.

The subtype relation is informally defined by the
rewrite rules given in Figure 9, which specify a
mechanism for rewriting a given type as a supertype.
The reason for expressing the relation in this unusual
form is that this represents exactly the process
required when a projection is applied: if the type
assigned to the XML can be rewritten as the goal
type, then the projection is valid. Furthermore, the
structure of the rewrite rules gives a basis for
performing the required extraction or building of
indexing structures.

(1: record subtyping)
{ l1 : T1, … , lm : Tm , … , ln : Tn } ⇒ { l1 : T1, … , ln : Tn }

(2: array introduction)
{ l1 : T1, … , lm : Tm , … , ln : Tn }⇒
 { l1 : T1, … , array_lm : [Tm] , … , ln : Tn }

(3: array assimilation)
{ l1 : T1, … , array_lm : [Tm] , … , lm : Tm , …, ln : Tn } ⇒
 { l1 : T1, … , array_lm : [Tm] , … , ln : Tn }

(4-5: scalar widening)
int ⇒ string bool ⇒ string

Figure 9 : The subtype relation expressed by rewrite rules

The rules given are not formally exhaustive but
informally give the main axioms of subtyping. Rule
(1) is standard record subtyping; from any object
type, a supertype can be obtained by dropping any
label : type pair from the structure. Rule (2) is an
array introduction, which states that any single tag X
in an object can be viewed as an array, labelled
array_X, with a single element. Rule (3) is an array
assimilation, which allows other fields with the same
label and type to be assimilated into such an array
once formed. Rules (4-5) are just an admission that
the eager typing of scalar values according to their
microstructure does not necessarily reflect their
intended meaning.

A variant of rule (2), which will be used later in the
paper, is given in Figure 10. This version seems less
justifiable, but is useful in conditions where it is
sensible for an object abstraction to be typed as
containing an array of some type even when the
current manifestation does not do so; logically this
assumes the presence of an empty array. Whether this

is desirable or not depends on the nature of the
application; how to handle this elegantly is an open
issue.

(2a : empty array introduction)
{ l1 : T1, … , ln : Tn }⇒
 { l1 : T1, … , ln : Tn, array_lp : [Tp]}

Figure 10 : introduction of empty arrays

4. Mixed mode programming

We now give some more sophisticated examples of
the use of the paradigm: XML fragments; recursive
types, and interpreted references within XML
denoting shared subgraphs or cycles. For these
purposes we modify our example data model to that
given by the DTD in Figure 11.

<!ELEMENT person (name, age, child*) >
<!ATTLIST person myid ID #REQUIRED >
<!ATTLIST person xmlns CDATA #FIXED
 “person.richard.cis.strath.ac.uk” >
<!ELEMENT name (#PCDATA) >
<!ELEMENT age (#PCDATA) >
<!ELEMENT child EMPTY >
<! ATTLIST child childId IDREF #REQUIRED >

Figure 11 : a more realistic DTD

An increasing use of XML conforms to the general
principle of using the xmlns standard as a mechanism
akin to name type equivalence matching, therefore
allowing generic code to be written independently of
its context of use. The mandatory embedding of a
URI in the namespace attribute of person in Figure 11
means that general traversal code can be written to
locate instances of valid data within arbitrary XML
collections.

Projection was originally envisaged as a binding
mechanism to allow the incorporation of
semistructured data into a statically typed
programming algebra. In this context however it can
be useful for the different (navigational versus
structured) views over the DOM trees to coexist. In
the mixed paradigm, for instance, it is possible to
write an unstructured, navigation-based traversal over
the tree and apply projections wherever the structured
view is more appropriate. This style of programming
is particularly well-suited to tasks where only partial
knowledge of the data is available. One common case
of this is where fragments of the data are governed by
a global XML namespace, and code is written over
those fragments independent of the context in which
they occur.

 7

Generic code to calculate the average age of all
person records embedded in any data source can be
written using JavaScript first class functions against
the standard DOM model as in Figure 12. This code
abstracts the details of the functions isPerson and
getAge, which respectively test for whether a DOM
node represents a person, and return the age field of
such a node..

var applyToDOMTree = function(node, f)
{
 if(node != undefined)
 {
 f(node)
 applyToDOMTree (node.firstChild, f)
 applyToDOMTree (node.nextSibling, f)
 }
}

var averageAge = function(domData)
{
 var count = 0; var total = 0
 var accumulate = function(n)
 {
 if(isPerson(n)){ count++; total += getAge(n) }
 }
 applyToDOMTree(domData, accumulate)
 return(total / count)
}

Figure 12 : generic traveral of the DOM

Minimal JavaScript code for the two functions
isPerson and getAge is shown in Figure 13. Notice
that this code is not guaranteed to succeed
structurally, and will only do so if the namespace
convention is correctly enforced throughout the use of
the URI; otherwise the getAge function may fail
dynamically or, worse, succeed mechanically but
result in an incorrect answer. Full code for isPerson,
which guarantees the correct meaning for getAge,
must incorporate many more structural checks; even
so, the onus is still on the programmer to ensure that
the data extraction expressed within getAge
corresponds correctly to the DOM structure
corresponding to the schema description.

var isPerson = function(node) // node is a DOM tree node
{
 return(node.namespaceURI ==
 "person.richard.cis.strath.ac.uk")
}

var getAge = function(p) // p is a DOM tree node
{
 return(p.firstChild.nextSibling.nodeValue)
}

Figure 13 : “dynamically typed” DOM code

Figure 14 shows the equivalent Projector code for the
two functions. Once again two significant advantages
are highlighted. First is the succinctness of expression
of the specification of the dynamic structural test, as
seen in the isPerson function. The isPerson function
in Projector is no harder to read than that of Figure
13, even although the latter does not perform any
structural checks; the equivalent JavaScript code to
perform the same degree of structural checking is
given in Figure 15. Secondly is the static safety
shown in the getAge function, giving the programmer
confidence that the extraction expression is the
correct one as a static error would otherwise be
reported.

type Person = { attribute_xmlns : string,
 name : string, age : int }

var isPerson = function(node) // node is a DOM tree node
{
 try{
 var p = XMLProject node as Person
 return(p.attribute_xmlns ==
 "person.richard.cis.strath.ac.uk")
 }
 catch(e){ return(false) }
}

var getAge = function(p) // p is a DOM tree node
{
 return((XMLproject node as Person).age)
}

Figure 14 : the same example expressed in Projector

 8

function isPerson()
{
 return(
 node!= undefined &&
 node.namespaceURI =
 "person.richard.cis.strath.ac.uk " &&
 node.firstChild != undefined &&
 node.firstChild.nodeName == "name" &&
 node.firstChild.nextSibling != undefined &&
 node.firstChild.nextSibling.nodeName == "age"
)
}
 Figure 15 : structural test coded against the DOM

5. Recursive types, shared subgraphs and cycles

Recursive types are required to capture regular data
structures. In XML such structures can be modelled
either by implicit nesting of a common substructure
or, more commonly, by interpreted references. Figure
16 shows some example XML with nested instances
of a person representation, and a Projector program
using a recursive type to describe them. In this case
we require to use type rule (2a) to deduce the empty
array which occurs logically in the child object
representations. The move from non-recursive to
recursive types is highly significant in terms of the
underlying type theory, but does not present any
significant new challenges in this context.

The representation of references within XML data is
achieved by interpretation over the data content rather
than by a defined semantic mechanism within the
definition of XML itself. Metadata descriptions do
allow the specification of internal references and, in
conjunction with a schema, references may be
deterministically identifiable within a data collection.
However the DOM is defined only over the XML
structure, and therefore handling of references to
denote both shared subgraphs and cycles must be
achieved by interpretation of these within the
application code.

Other more sophisticated mechanisms for encoding
both inter- and intra-document pointers are emerging;
however it is not clear that the tree-based data
structures representing such documents will support
these. The jump from supporting tree-based to
general graph-based traversals is extremely
significant and will not be undertaken lightly. It
therefore seems likely that all related computing
paradigms will continue to require interpretation of
such references at the application level for the
foreseeable future.

<person>
 <name>Richard</name>
 <age>40</age>
 <child>
 <person>
 <name>Thomas</name>
 <age>5</age>
 </person>
 </child>
 <child>
 <person>
 <name>Elizabeth</name>
 <age>1</age>
 </person>
 </child>
</person>

type Person = { name : string, age : int,
 array_child : [Person] }
type Data = { person : Person }

var listFamily = function(p : Person)
{
 print(p.name)
 for(i in p.array_child){ listFamily(p.array_child[i])
}

listFamily((XMLProject domData as Data).person)

Figure 16 : use of recursion over nested data

However if the same code is used against data
conforming to the DTD given in Figure 11 it will not
work properly as the references modelled within the
data attributes will not be detected during the type
projection. To achieve the same effect, the untyped
tree would need to be traversed and the references
interpreted before projection onto the simple Person
type could occur, thus mixing the structural checking
code with the application logic. However avoidance
of such mixing is the primary intention for the
Projector language.

To solve this the observation is required that the
dynamic type projection already performs a traversal
of the relevant data, and that the requirement is for
this traversal to somehow incorporate the semantics
of references within that data. This can be achieved
by the incorporation of a “reference following”
functionality into the projection operation.

To find the DOM nodes representing a person’s
children requires the following steps:

1. form a list of tokens by extracting the appropriate
IDREF from each <child> node

2. form a list to contain DOM node references
corresponding to these, with each node initially
set to null

 9

3. traverse the entire DOM tree; for each <person>
node encountered, extract its ID. If this matches
an entry in the list of tokens, then update the
corresponding element in the node list.

type Child = { attribute_IDREF : string }
type Person = { attribute_ID : string, name : string,
 age : int, array_child :[Child] }

var findIDToken = function(n)
{
 try{
 var c = XMLProject n as Child
 return(c.attribute_IDREF)
 }
 catch(e){ return("") }
}

var resolveIDToken = function(n, t)
{
 try{
 var p = XMLProject n as Person
 return(p.attribute_IDREF == t)
 }
 catch(e){ return(false) }
}

Figure 17 : resolution of references

A solution to this coded in Projector gives rise to the
functions shown in Figure 17. Although this will lead
to a relatively elegant implementation of the above
algorithm, it remains unsatisfactory as the typing of
Child and Person captures their implementation rather
than the semantics of the model. The solution to this
is to perform the algorithm at the time of projection,
and allow the type projection to occur over the
resulting logical graph, rather than the simple tree of
the DOM. This is achieved by an extension of the
syntax of project to include generic “find” and
“resolve” functions as illustrated in Figure 18.

type Person = { name : string, age : int,
 array_child : [Person] }

var listFamily = function(p : Person)
{
 print(p.name)
 for(i in p.$array_child){
 listFamily(p.array_child[i])
 }
}

var p = XMLProject domData as Person using
 findIDToken, resolveIDToken
listFamily(p)

Figure 18 : type projection over interpreted references

During traversal of the DOM tree, the find and
resolve functions will be used wherever appropriate
to present a transformed tree to the projection
algorithm. The result in this case will be the building
of a tree structure corresponding to that of Figure 16,
even although the data is presented in a flat list,
allowing the recursive algorithm to operate correctly.
XML data representing shared subgraphs and cycles
are translated into the corresponding JavaScript data
structures via type projection.

The find and resolve functions are in general
programmer provided, and so the string token passed
from one to the other can be used to model arbitrary
structures in cases where the reference is resolved by
more than a simple token. It is possible to generate
the functions automatically in cases where a DTD is
available, yet the mechanism is also sufficiently
flexible to allow other conventions to be coded if
unique references are coded in the XML in a non-
standard manner.

6. Related work

Computations over XML data can be specified in a
variety of paradigms, models and languages. Two
kinds of approaches, however, appear to prevail:
dedicated query languages and bindings to
programming languages, typically object-oriented
ones.

The first resort to regular expressions to match data
with irregular or partially known structure (e.g. XML-
QL [8], XQL [9], Lorel [10]). They also include
Turing-complete and/or strongly typed functional
languages, which exploit structural regularity to
ensure correctness of arbitrary computations (e.g.
XQUERY [11], XSLT [3], XDuce [12], TeQuyLA
[13], and TQL [14]). All of these approaches are
primarily designed for working against unstructured
or semistructured data, and therefore suffer from the
basic problem of the programmer being required to
reconstruct higher-level semantic data models
whenever these are encoded in the underlying tree
format. Some have their own weak type systems, and
notably those of XDuce and TQL bear some
resemblance in their underlying structures to those we
use. However, we are more interested in moving
fluidly between completely untyped (tree-structured)
and strongly typed programming modes.

Language bindings are instead defined by
implementing programming interfaces to a structured
representation of the data. Differences between our
and approach and the DOM approach has been
largely discussed in the paper, and the main
observations can be immediately extended to the
SAX approach [2].

 10

Sun Microsystems have introduced the JAXB [5]
Java to XML binding model, which is similar in spirit
to ours in that it relies on static type information to
preserve the semantics of real-world entities.
However, JAXB bindings are automatically generated
from DTD document descriptions. This forces
generation of typed structure to match the entire
documents description, which must be known a priori
as validation is required to preserve soundness. This
limits its granularity with respect to the target data,
and restricts its ability to evolve within heterogeneous
and distributed systems.

Other type-related support is available by use of the
XML namespace (xmlns) standard [15], in
conjunction with XML data validated with respect to
DTD or XMLSchema [16] metadata. The
combination can allow the effective introduction of
some “type” knowledge for the programmer, albeit by
convention rather than by guarantee. However this
still leaves much to be desired for programmers
trying to recreate the higher-level conceptual
structures from labelled trees. The namespace
mechanism is relatively heavyweight for many
purposes, and may require explicit structural checking
within the program logic to ensure that conventions
are obeyed. As well as these, it has the established
disadvantages that “name equivalence” type systems
suffer in comparison with “structural equivalence”
over distributed programming systems, in particular
with respect to evolution and version control.

7. Implementation status

Projector is a new language specification and at time
of writing a full and rigorous implementation does
not yet exist. Various partial systems have been built
and some are available on the web [17]; it is
implemented in, and compiles to, ECMA-262, and so
can be executed in a standard browser.

The projection algorithms themselves are robust and
have been extensively investigated, and proofs of
soundness and completeness have been performed.
Two robust implementations exist and have been used
to solve real-world problems; one is CORBA-based
and projects via IDL, the other is a Java language
version. Anyone interested in using any of these
systems should get in touch with the authors.

8. Conclusions

A new programming language Projector has been
introduced largely by motivating examples. The
particular paradigm of mixing typed and untyped
program segments against XML data looks novel and
exciting; however the project is at an early stage and
the language has not yet been used “in anger” against

real world data collections or problems. There are
very many unresolved issues to be investigated.

9. Acknowledgements

This work has been financially supported by EPSRC
(GR/M 72265) and BBSRC (17/BIO 12052). The
work has further benefited from discussions with Prof
Al Dearle of St Andrews University and Dr Miles
Whitehead of Reuters Ltd. David Lievens is
supported by EU Framework V project GLOSS (EU
IST-2000-26070), and George Russell is supported by
a University of Strathclyde PhD studentship.

10. References and bibliography

[1] W3C Document Object Model:
http://www.w3.org/DOM/

[2] SAX: http://www.saxproject.org/

[3] XSLT: http://www.w3.org/TR/xslt

[4] W3C XML Query: http://www.w3.org/XML/Query

[5] The Java Architecture for XML Binding:
http://java.sun.com/xml/jaxb/

[6] Simeoni, Manghi, Lievens, Connor & Neely An
Approach to High-Level Language Bindings to XML
Information and Software Technology, 44 (2002) 217 –
228, Elsevier

[7] ECMAScript Language Specification:
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

[8] XML-QL: http://www.w3.org/TR/NOTE-xml-ql/

[9] XQL: http://www.w3.org/TandS/QL/QL98/pp/xql.html

[10] Lorel: http://www-db.stanford.edu/lore/

[11] XQuery: http://www.w3.org/TR/xquery/

[12] XDuce: http://xduce.sourceforge.net/

[13] A. Albano, D. Colazzo, G. Ghelli, P. Manghi, C.
Sartiani A Type System for Querying XML documents ACM
SIGIR 2000 Workshop On XML and Information Retrieval,
Athens, Greece 2000.

[14] Tree Query Language: http://tql.di.unipi.it/tql/

[15] W3C XML Namespaces: http://www.w3.org/TR/REC-
xml-names/

[16] W3C XML Schema: http://www.w3.org/XML/Schema

[17] http://www.cis.strath.ac.uk/~richard/typescript/

[18] Tirthankar Lahiri, Serge Abiteboul, Jennifer Widom:
Ozone: Integrating Structured and Semistructured Data.
DBPL 1999: 297-323

