3,030 research outputs found

    An Abstract Machine for Unification Grammars

    Full text link
    This work describes the design and implementation of an abstract machine, Amalia, for the linguistic formalism ALE, which is based on typed feature structures. This formalism is one of the most widely accepted in computational linguistics and has been used for designing grammars in various linguistic theories, most notably HPSG. Amalia is composed of data structures and a set of instructions, augmented by a compiler from the grammatical formalism to the abstract instructions, and a (portable) interpreter of the abstract instructions. The effect of each instruction is defined using a low-level language that can be executed on ordinary hardware. The advantages of the abstract machine approach are twofold. From a theoretical point of view, the abstract machine gives a well-defined operational semantics to the grammatical formalism. This ensures that grammars specified using our system are endowed with well defined meaning. It enables, for example, to formally verify the correctness of a compiler for HPSG, given an independent definition. From a practical point of view, Amalia is the first system that employs a direct compilation scheme for unification grammars that are based on typed feature structures. The use of amalia results in a much improved performance over existing systems. In order to test the machine on a realistic application, we have developed a small-scale, HPSG-based grammar for a fragment of the Hebrew language, using Amalia as the development platform. This is the first application of HPSG to a Semitic language.Comment: Doctoral Thesis, 96 pages, many postscript figures, uses pstricks, pst-node, psfig, fullname and a macros fil

    From UBGs to CFGs A practical corpus-driven approach

    Get PDF
    We present a simple and intuitive unsound corpus-driven approximation method for turning unification-based grammars (UBGs), such as HPSG, CLE, or PATR-II into context-free grammars (CFGs). The method is unsound in that it does not generate a CFG whose language is a true superset of the language accepted by the original unification-based grammar. It is a corpus-driven method in that it relies on a corpus of parsed sentences and generates broader CFGs when given more input samples. Our open approach can be fine-tuned in different directions, allowing us to monotonically come close to the original parse trees by shifting more information into the context-free symbols. The approach has been fully implemented in JAVA. This report updates and extends the paper presented at the International Colloquium on Grammatical Inference (ICGI 2004) and presents further measurements

    Investigation of design and execution alternatives for the committed choice non-deterministic logic languages

    Get PDF
    The general area of developing, applying and studying new and parallel models of computation is motivated by a need to overcome the limits of current Von Neumann based architectures. A key area of research in understanding how new technology can be applied to Al problem solving is through using logic languages. Logic programming languages provide a procedural interpretation for sentences of first order logic, mainly using a class of sentence called Horn clauses. Horn clauses are open to a wide variety of parallel evaluation models, giving possible speed-ups and alternative parallel models of execution. The research in this thesis is concerned with investigating one class of parallel logic language known as Committed Choice Non-Deterministic languages. The investigation considers the inherent parallel behaviour of Al programs implemented in the CCND languages and the effect of various alternatives open to language implementors and designers. This is achieved by considering how various Al programming techniques map to alternative language designs and the behaviour of these Al programs on alternative implementations of these languages. The aim of this work is to investigate how Al programming techniques are affected (qualitatively and quantitatively) by particular language features. The qualitative evaluation is a consideration of how Al programs can be mapped to the various CCND languages. The applications considered are general search algorithms (which focuses on the committed choice nature of the languages); chart parsing (which focuses on the differences between safe and unsafe languages); and meta-level inference (which focuses on the difference between deep and flat languages). The quantitative evaluation considers the inherent parallel behaviour of the resulting programs and the effect of possible implementation alternatives on this inherent behaviour. To carry out this quantitative evaluation we have implemented a system which improves on the current interpreter based evaluation systems. The new system has an improved model of execution and allows severa

    Extended logic-plus-functional programming

    Get PDF
    Extensions of logic and functional programming are integrated in RELFUN. Its valued clauses comprise Horn clauses (true\u27-valued) and clauses with a distinguished foot\u27 premise (returning arbitrary values). Both the logic and functional components permit LISP-like varying-arity and higher-order operators. The DATAFUN sublanguage of the functional component is shown to be preferable to relational encodings of functions in DATALOG. RELFUN permits non-ground, non-deterministic functions, hence certain functions can be inverted using an is\u27-primitive generalizing that of PROLOG. For function nestings a strict call-by-value strategy is employed. The reduction of these extensions to a relational sublanguage is discussed and their WAM compilation is sketched. Three examples (serialise\u27, wang\u27, and eval\u27) demonstrate the relational/functional style in use. The list expressions of RELFUN\u27s LISP implementation are presented in an extended PROLOG-like syntax

    Parallel Natural Language Parsing: From Analysis to Speedup

    Get PDF
    Electrical Engineering, Mathematics and Computer Scienc

    Automated verification of model transformations based on visual contracts

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10515-012-0102-yModel-Driven Engineering promotes the use of models to conduct the different phases of the software development. In this way, models are transformed between different languages and notations until code is generated for the final application. Hence, the construction of correct Model-to-Model (M2M) transformations becomes a crucial aspect in this approach. Even though many languages and tools have been proposed to build and execute M2M transformations, there is scarce support to specify correctness requirements for such transformations in an implementation-independent way, i.e., irrespective of the actual transformation language used. In this paper we fill this gap by proposing a declarative language for the specification of visual contracts, enabling the verification of transformations defined with any transformation language. The verification is performed by compiling the contracts into QVT to detect disconformities of transformation results with respect to the contracts. As a proof of concept, we also report on a graphical modeling environment for the specification of contracts, and on its use for the verification of transformations in several case studies.This work has been funded by the Austrian Science Fund (FWF) under grant P21374-N13, the Spanish Ministry of Science under grants TIN2008-02081 and TIN2011-24139, and the R&D programme of the Madrid Region under project S2009/TIC-1650

    Toatie : functional hardware description with dependent types

    Get PDF
    Describing correct circuits remains a tall order, despite four decades of evolution in Hardware Description Languages (HDLs). Many enticing circuit architectures require recursive structures or complex compile-time computation — two patterns that prove difficult to capture in traditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) structure for efficient parallel filtering proves to be naturally recursive, and most Multiple Constant Multiplication (MCM) blocks decompose multiplications into graphs of simple shifts and adds using demanding compile time computation. Generalised versions of both remain mostly in academic folklore. The implementations which do exist are often ad hoc circuit generators, written in software languages. These pose challenges for verification and are resistant to composition. Embedded functional HDLs, that represent circuits as data, allow for these descriptions at the cost of forcing the designer to work at the gate-level. A promising alternative is to use a stand-alone compiler, representing circuits as plain functions, exemplified by the CλaSH HDL. This, however, raises new challenges in capturing a circuit’s staging — which expressions in the single language should be reduced during compile-time elaboration, and which should remain in the circuit’s run-time? To better reflect the physical separation between circuit phases, this work proposes a new functional HDL (representing circuits as functions) with first-class staging constructs. Orthogonal to this, there are also long-standing challenges in the verification of parameterised circuit families. Industry surveys have consistently reported that only a slim minority of FPGA projects reach production without non-trivial bugs. While a healthy growth in the adoption of automatic formal methods is also reported, the majority of testing remains dynamic — presenting difficulties for testing entire circuit families at once. This research offers an alternative verification methodology via the combination of dependent types and automatic synthesis of user-defined data types. Given precise enough types for synthesisable data, this environment can be used to develop circuit families with full functional verification in a correct-by-construction fashion. This approach allows for verification of entire circuit families (not just one concrete member) and side-steps the state-space explosion of model checking methods. Beyond the existing work, this research offers synthesis of combinatorial circuits — not just a software model of their behaviour. This additional step requires careful consideration of staging, erasure & irrelevance, deriving bit representations of user-defined data types, and a new synthesis scheme. This thesis contributes steps towards HDLs with sufficient expressivity for awkward, combinatorial signal processing structures, allowing for a correct-by-construction approach, and a prototype compiler for netlist synthesis.Describing correct circuits remains a tall order, despite four decades of evolution in Hardware Description Languages (HDLs). Many enticing circuit architectures require recursive structures or complex compile-time computation — two patterns that prove difficult to capture in traditional HDLs. In a signal processing context, the Fast FIR Algorithm (FFA) structure for efficient parallel filtering proves to be naturally recursive, and most Multiple Constant Multiplication (MCM) blocks decompose multiplications into graphs of simple shifts and adds using demanding compile time computation. Generalised versions of both remain mostly in academic folklore. The implementations which do exist are often ad hoc circuit generators, written in software languages. These pose challenges for verification and are resistant to composition. Embedded functional HDLs, that represent circuits as data, allow for these descriptions at the cost of forcing the designer to work at the gate-level. A promising alternative is to use a stand-alone compiler, representing circuits as plain functions, exemplified by the CλaSH HDL. This, however, raises new challenges in capturing a circuit’s staging — which expressions in the single language should be reduced during compile-time elaboration, and which should remain in the circuit’s run-time? To better reflect the physical separation between circuit phases, this work proposes a new functional HDL (representing circuits as functions) with first-class staging constructs. Orthogonal to this, there are also long-standing challenges in the verification of parameterised circuit families. Industry surveys have consistently reported that only a slim minority of FPGA projects reach production without non-trivial bugs. While a healthy growth in the adoption of automatic formal methods is also reported, the majority of testing remains dynamic — presenting difficulties for testing entire circuit families at once. This research offers an alternative verification methodology via the combination of dependent types and automatic synthesis of user-defined data types. Given precise enough types for synthesisable data, this environment can be used to develop circuit families with full functional verification in a correct-by-construction fashion. This approach allows for verification of entire circuit families (not just one concrete member) and side-steps the state-space explosion of model checking methods. Beyond the existing work, this research offers synthesis of combinatorial circuits — not just a software model of their behaviour. This additional step requires careful consideration of staging, erasure & irrelevance, deriving bit representations of user-defined data types, and a new synthesis scheme. This thesis contributes steps towards HDLs with sufficient expressivity for awkward, combinatorial signal processing structures, allowing for a correct-by-construction approach, and a prototype compiler for netlist synthesis

    Extensible Languages for Flexible and Principled Domain Abstraction

    Get PDF
    Die meisten Programmiersprachen werden als Universalsprachen entworfen. UnabhĂ€ngig von der zu entwickelnden Anwendung, stellen sie die gleichen Sprachfeatures und Sprachkonstrukte zur VerfĂŒgung. Solch universelle Sprachfeatures ignorieren jedoch die spezifischen Anforderungen, die viele Softwareprojekte mit sich bringen. Als Gegenkraft zu Universalsprachen fördern domĂ€nenspezifische Programmiersprachen, modellgetriebene Softwareentwicklung und sprachorientierte Programmierung die Verwendung von DomĂ€nenabstraktion, welche den Einsatz von domĂ€nenspezifischen Sprachfeatures und Sprachkonstrukten ermöglicht. Insbesondere erlaubt DomĂ€nenabstraktion Programmieren auf dem selben Abstraktionsniveau zu programmieren wie zu denken und vermeidet dadurch die Notwendigkeit DomĂ€nenkonzepte mit universalsprachlichen Features zu kodieren. Leider ermöglichen aktuelle AnsĂ€tze zur DomĂ€nenabstraktion nicht die Entfaltung ihres ganzen Potentials. Einerseits mangelt es den AnsĂ€tzen fĂŒr interne domĂ€nenspezifische Sprachen an FlexibilitĂ€t bezĂŒglich der Syntax, statischer Analysen, und WerkzeugunterstĂŒtzung, was das tatsĂ€chlich erreichte Abstraktionsniveau beschrĂ€nkt. Andererseits mangelt es den AnsĂ€tzen fĂŒr externe domĂ€nenspezifische Sprachen an wichtigen Prinzipien, wie beispielsweise modularem Schließen oder Komposition von DomĂ€nenabstraktionen, was die Anwendbarkeit dieser AnsĂ€tze in der Entwicklung grĂ¶ĂŸerer Softwaresysteme einschrĂ€nkt. Wir verfolgen in der vorliegenden Doktorarbeit einen neuartigen Ansatz, welcher die Vorteile von internen und externen domĂ€nenspezifischen Sprachen vereint um flexible und prinzipientreue DomĂ€nenabstraktion zu unterstĂŒtzen. Wir schlagen bibliotheksbasierte erweiterbare Programmiersprachen als Grundlage fĂŒr DomĂ€nenabstraktion vor. In einer erweiterbaren Sprache kann DomĂ€nenabstraktion durch die Erweiterung der Sprache mit domĂ€nenspezifischer Syntax, statischer Analyse, und WerkzeugunterstĂŒtzung erreicht werden . Dies ermöglicht DomĂ€nenabstraktionen die selbe FlexibilitĂ€t wie externe domĂ€nenspezifische Sprachen. Um die Einhaltung ĂŒblicher Prinzipien zu gewĂ€hrleisten, organisieren wir Spracherweiterungen als Bibliotheken und verwenden einfache Import-Anweisungen zur Aktivierung von Erweiterungen. Dies erlaubt modulares Schließen (durch die Inspektion der Import-Anweisungen), unterstĂŒtzt die Komposition von DomĂ€nenabstraktionen (durch das Importieren mehrerer Erweiterungen), und ermöglicht die uniforme Selbstanwendbarkeit von Spracherweiterungen in der Entwicklung zukĂŒnftiger Erweiterungen (durch das Importieren von Erweiterungen in einer Erweiterungsdefinition). Die Organisation von Erweiterungen in Form von Bibliotheken ermöglicht DomĂ€nenabstraktionen die selbe Prinzipientreue wie interne domĂ€nenspezifische Sprachen. Wir haben die bibliotheksbasierte erweiterbare Programmiersprache SugarJ entworfen und implementiert. SugarJ Bibliotheken können Erweiterungen der Syntax, der statischen Analyse, und der WerkzeugunterstĂŒtzung von SugarJ deklarieren. Eine syntaktische Erweiterung besteht dabei aus einer erweiterten Syntax und einer Transformation der erweiterten Syntax in die Basissyntax von SugarJ. Eine Erweiterung der Analyse testet Teile des abstrakten Syntaxbaums der aktuellen Datei und produziert eine Liste von Fehlern. Eine Erweiterung der WerkzeugunterstĂŒtzung deklariert Dienste wie SyntaxfĂ€rbung oder CodevervollstĂ€ndigung fĂŒr bestimmte Sprachkonstrukte. SugarJ Erweiterungen sind vollkommen selbstanwendbar: Eine erweiterte Syntax kann in eine Erweiterungsdefinition transformiert werden, eine erweiterte Analyse kann Erweiterungsdefinitionen testen, und eine erweiterte WerkzeugunterstĂŒtzung kann Entwicklern beim Definieren von Erweiterungen assistieren. Um eine Quelldatei mit Erweiterungen zu verarbeiten, inspizieren der SugarJ Compiler und die SugarJ IDE die importierten Bibliotheken um die aktiven Erweiterungen zu bestimmen. Der Compiler und die IDE adaptieren den Parser, den Codegenerator, die Analyseroutine und die WerkzeugunterstĂŒtzung der Quelldatei entsprechend der aktiven Erweiterungen. Wir beschreiben in der vorliegenden Doktorarbeit nicht nur das Design und die Implementierung von SugarJ, sondern berichten darĂŒber hinaus ĂŒber Erweiterungen unseres ursprĂŒnglich Designs. Insbesondere haben wir eine Generalisierung des SugarJ Compilers entworfen und implementiert, die neben Java alternative Basissprachen unterstĂŒtzt. Wir haben diese Generalisierung verwendet um die bibliotheksbasierten erweiterbaren Programmiersprachen SugarHaskell, SugarProlog, und SugarFomega zu entwickeln. Weiterhin haben wir SugarJ ergĂ€nzt um polymorphe DomĂ€nenabstraktion und KommunikationsintegritĂ€t zu unterstĂŒtzen. Polymorphe DomĂ€nenabstraktion ermöglicht Programmierern mehrere Transformationen fĂŒr die selbe domĂ€nenspezifische Syntax bereitzustellen. Dies erhöht die FlexibilitĂ€t von SugarJ und unterstĂŒtzt bekannte Szenarien aus der modellgetriebenen Entwicklung. KommunikationsintegritĂ€t spezifiziert, dass die Komponenten eines Softwaresystems nur ĂŒber explizite KanĂ€le kommunizieren dĂŒrfen. Im Kontext von Codegenerierung stellt dies eine interessante Eigenschaft dar, welche die Generierung von impliziten ModulabhĂ€ngigkeiten untersagt. Wir haben KommunikationsintegritĂ€t als weiteres Prinzip zu SugarJ hinzugefĂŒgt. Basierend auf SugarJ und zahlreicher Fallstudien argumentieren wir, dass flexible und prinzipientreue DomĂ€nenabstraktion ein skalierbares Programmiermodell fĂŒr die Entwicklung komplexer Softwaresysteme darstellt

    Extended logic-plus-functional programming

    Get PDF
    Extensions of logic and functional programming are integrated in RELFUN. Its valued clauses comprise Horn clauses (true'-valued) and clauses with a distinguished foot' premise (returning arbitrary values). Both the logic and functional components permit LISP-like varying-arity and higher-order operators. The DATAFUN sublanguage of the functional component is shown to be preferable to relational encodings of functions in DATALOG. RELFUN permits non-ground, non-deterministic functions, hence certain functions can be inverted using an is'-primitive generalizing that of PROLOG. For function nestings a strict call-by-value strategy is employed. The reduction of these extensions to a relational sublanguage is discussed and their WAM compilation is sketched. Three examples (serialise', wang', and eval') demonstrate the relational/functional style in use. The list expressions of RELFUN's LISP implementation are presented in an extended PROLOG-like syntax
    • 

    corecore