
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



An investigation of 

design and execution alternatives 

for the 

Committed Choice Non-Deterministic 

Logic languages 

Rajiv Trehan 

Ph.D. 

Department of Artificial Intelligence 

University of Edinburgh 

1989 



Abstract 

The general area of developing, applying and studying new and parallel models 

of computation is motivated by a need to overcome the limits of current Von 

Neumann based architectures. A key area of research in understanding how new 

technology can be applied to Al problem solving is through using logic languages. 

Logic programming languages provide a procedural interpretation for sentences of 

first order logic, mainly using a class of sentence called Horn clauses. Horn clauses 

are open to a wide variety of parallel evaluation models, giving possible speed-ups 

and alternative parallel models of execution. 

The research in this thesis is concerned with investigating one class of parallel 

logic language known as Committed Choice Non-Deterministic languages. The in- 

vestigation considers the inherent parallel behaviour of Al programs implemented 

in the CCND languages and the effect of various alternatives open to language 

implementors and designers. This is achieved by considering how various Al pro- 

gramming techniques map to alternative language designs and the behaviour of 

these Al programs on alternative implementations of these languages. 

The aim of this work is to investigate how Al programming techniques are 

affected (qualitatively and quantitatively) by particular language features. The 

qualitative evaluation is a consideration of how Al programs can be mapped to 

the various CCND languages. The applications considered are general search 

algorithms (which focuses on the committed choice nature of the languages); chart 

parsing (which focuses on the differences between safe and unsafe languages); 

and meta-level inference (which focuses on the difference between deep and flat 

languages). The quantitative evaluation considers the inherent parallel behaviour 

of the resulting programs and the effect of possible implementation alternatives 

on this inherent behaviour. To carry out this quantitative evaluation we have 

implemented a system which improves on the current interpreter based evaluation 

systems. The new system has an improved model of execution and allows several 
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Chapter 1 

Introduction 

Artificial Intelligence (AI) by its nature is a multi-disciplined field bringing to- 

gether subject areas such as Philosophy; Natural Language; Vision; Robotics; 

Logic; Computer Science; Engineering and Physics. The main tool of the Artifi- 

cial Intelligence researcher has been the digital computer, enabling theory to be 

put into practice. 

Currently most digital computers are based on the Von Neumann architecture; 

a single central processing unit with a small amount of memory and a large amount 

of separate memory (which holds the data and the program). The limits of such 

computers are widely recognised: the speed of a signal in a wire; the physical 

limits of integration; heat dissipation and memory accessing. 

The development of new architectures with several processing and memory 

units and new models of computation promises to alleviate some of these limita- 

tions. There are two clear implications for Artificial Intelligence: increased exe- 

cution speed and more natural decomposition of applications. An improvement 

in execution speed results in models and applications being tested that would not 

have been feasible on previous generations of computers, e.g. the use of AI in 

embedded real-time systems, which are time critical. More natural decomposition 

may be possible as many problems are parallel rather than sequential and so are 

better thought of in terms of a parallel rather than a sequential framework. For 
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example, being able to parse a string and build a semantic structure as well as 

refer to a world model in an incremental fashion requires control over how these 

parts execute and interlink. Implementing such a model in a sequential frame- 

work requires the programmer to consider how to mimic the parallel execution 

and control required. This adds an additional level of conceptual complexity to 

the problem when realising the solution as a program. 

A key area of research in understanding how this new technology can be 

applied to Al problem solving is through using logic languages. The Japanese 

Fifth Generation Computer Systems (FGCS) project uses logic programming as 

the link between information processing and parallel architectures [Uchida 82]. 

Logic programming languages provide a procedural interpretation for sentences 

of first order logic, mainly using a class of sentence called Horn clauses. The 

first and most widely used of the family of Horn clause based languages is Prolog 

[Clocksin & Mellish 81], [Sterling & Shapiro 86]. Prolog currently provides a se- 

quential means of evaluating Horn clause based programs. This sequential search 

efficiently realised in a stack based implementation [Warren 83] gives in excess of 

100,000 Logical inferences per second (Lips). However, Horn clauses are open to 

a wide variety of parallel evaluation models, giving possible speed-ups and alter- 

native parallel models of execution. 

The research in this thesis is concerned with investigating one class of paral- 

lel logic language known as Committed Choice Non-Deterministic (CCND) lan- 

guages. The investigation considers the inherent parallel behaviour of Al programs 

implemented in the CCND languages and the effect of various alternatives open 

to language implementors and designers. This is achieved by considering how 

various AI programming techniques map to alternative language designs and the 

behaviour of these Al programs on alternative implementations of these languages. 

The aim of this work is to evaluate some of the design and execution alterna- 

tives open in the development of these languages, in the light of Al requirements. 

While choices have been made as to the direction that the languages should take, 
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the choices to date appear to be motivated by implementation or historical reason- 

ing rather than a rational study of how the alternatives will affect the use of these 

languages and realisable parallelism. This work is a study of alternative language 

designs and execution models. 

1.1 Thesis outline 

The thesis is structured into three main parts: 

In part 1 we provide a review of the field of parallel logic programming. 

In part 2 we develop an evaluation system for the CCND languages. 

In part 3 we evaluate three distinct classes of AI program. 

The chapter structure is as follows: 

Chapter 2 serves as an introduction to sequential and parallel logic program- 

ming, in particular the CCND languages, introducing basic concepts and technol- 

ogy. The chapter also considers how the languages are modelled by interpretation 

and how these interpretation systems can be instrumented. 

Chapter 3 considers how the inherent parallelism available in the evaluation 

of programs implemented in the CCND languages can be measured. The chap- 

ter initially highlights the limitations of current evaluation systems and then in- 

crementally develops an improved model for obtaining measures of the inherent 

parallelism. 

Chapter 4 considers some of the alternatives open to language implementors. 

We also propose some new evaluation parameters that reflect the expected be- 

haviour of programs in the alternative models of execution. Finally, we develop a 

profiling tool, which is described by considering some simple programs. 
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Chapter 5 is the first of the evaluation chapters. In this chapter we consider 

the behaviour of the various techniques for offering exhaustive search in the CCND 

languages, namely: Continuation based compilation; Stream based compilation; 

and Layered Streams. The techniques considered have been evaluated before and 

so we are able to compare our new evaluation with this previous evaluation. 

Chapter 6 evaluates how shared data structures can be supported in the CCND 

languages. The main feature being investigated here is the differences between 

using safe and unsafe languages. The question of how shared data structures 

are supported in the CCND languages is an important one for Al. Several current 

AI paradigms which require several different forms of expertise, like blackboard 

systems, require a common communication medium which each expert can see and 

update. The various CCND languages require different programming techniques 

to support shared data structures, so this evaluation also serves to highlight and 

compare the differing language features. We use a well known natural language 

processing technique known as chart parsing as an application which makes use 

of shared data. 

Chapter 7 focuses on another variation in the possible styles of CCND lan- 

guage being proposed, namely: the difference in using deep and flat languages. 

The first style of language appears to be more expressive, or at least more high 

level, whilst the second, a subset of the first, is more likely to be efficiently imple- 

mented. One solution to this problem is to develop algorithms using the complete 

languages and then translate them to the executable subset. However, there are 

several alternative translations that can be employed. We use a program, known 

as PRESS - PRolog Equation Solving System, which naturally maps to the full 

CCND languages to evaluate and compare the behaviour of programs implemented 

using the complete language and the alternative translations to the more efficiently 

implementable subset. 

Finally, in chapter 8 we draw some conclusions on our work, comment on the 

research assumptions and highlight some areas of future work. 
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Part I 

Committed Choice 

Non-Deterministic languages 
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Preface 

This part of the thesis is a review of the field. The review consists of one chapter 

with three main focuses: 

to show how logic can be used as a programming language and how programs 

specified in logic are open to both sequential and parallel evaluation models; 

to introduce a class of parallel logic programming language, known as Com- 

mitted Choice Non-Deterministic languages, which we intend to evaluate in 

this thesis; and 

to consider the implementations of these languages for evaluation purposes, 

in particular via interpretation, as this is the method employed in the eval- 

uation system we develop. 
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Chapter 2 

The Languages 

2.1 Overview 

This chapter is a review of the field of parallel logic programming. The review aims 

to show how logic can be used as a programming language; how logic programs can 

be evaluated in a sequential or parallel fashion; the parallel computation model 

employed for the Committed Choice Non-Deterministic (CCND) languages (the 

class of language evaluated in this thesis); the execution of these CCND languages 

via interpretation (as this is the technique employed in our evaluation system). 

Section 2.2 considers how logic can be used as a programming language and 

how such logic programs are open to a sequential evaluation model. 

Section 2.3 considers several parallel execution models that can be employed 

in the evaluation of logic based programs. 

Section 2.4 introduces the three main CCND languages, namely Concurrent 

Prolog, Parlog and Guarded Horn Clauses. 

Section 2.5 presents two general classifications of the language features of these 

CCND languages. The classifications are used in our evaluation of how various AI 

programming techniques map to these languages. 
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Section 2.6 reviews current implementations of these languages, in particular 

the execution of these languages using interpreters which is how we implement our 

evaluation system. 

2.2 Logic as a programming language 

Logic provides a language of formal description. The earliest logic was syllogis- 

tic logic which was the main tool of philosophers and logicians up to the nine- 

teenth century. The limitations of syllogistic logic were addressed by the advent 

of propositional logic, followed by a more general logic known as predicate 

logic. The automated proofs of problems stated in both propositional logic 

and predicate logic have been of considerable interest. Consideration of efficient 

automated proof procedures has resulted in a subset of predicate logic known 

as Horn clauses being adopted as one of the main logic languages for automated 

proofs. The automated proof of a logical specification allows us to consider logic 

as a programming language. 

2.2.1 Syntax of Horn clauses 

A Horn clause program is a finite set of clauses of the form: 

H :- B1,...,B,, (n > 0) 

H is known as the clause head and Bl,... , B,, is known as the clause body. 

The clause head is an atom of the form: 

R(al,... , ak) (k > 0) 

R is the relation, or predicate, name and a1,... , ak are the arguments. The 

relation is said to be of arity k. Each of the elements of the clause body, B1, ... , B,, 

are literals. These literals are either atoms or negated atoms, of the form: 
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-'R(al,...,ak) (k> 0) 

Each argument is either a variable, a constant or a structure; these are 

collectively known as terms. The convention used in this thesis is that variables 

will be unquoted alphanumerics beginning with an upper-case letter, e.g. X, Foo 

and BaZ12. Structures are of the form: 

F(tl,... , t=) (i > 1) 

where F is known as the functor and t1, ... , t, are known as the arguments, which 

are also terms, e.g. foo(a,b,c), bazl2(X,Y) and foo(a,bazl2(X,Y)). Constants 

are either numbers, alphanumerics beginning with a lower-case letter or a term 

containing no variables. 

Lists are one of the most common types of structure used in Horn clause 

programs. Lists have a reserved functor, namely ".", e.g. . (a, . (b, . (c,nil)) ) 
is a three element list. For convenience, lists also have a more readable syntax. 

This syntax is based around a list being viewed as the first element of the list (the 

head), say h, and the rest of the list (the tail), say t. So a list could be denoted 

as [h It]. Using this syntax the above list becomes El 1 [2 I E31 [1111. This is still 

further simplified to [1 , 2 , 3] . 

A general query in a Horn clauses language has the following form: 

.- C1,C2,...,Cn 

each of the Ci is called a goal. 

2.2.2 Semantics of Horn clauses 

2.2.2.1 Declarative semantics 

A Horn clause program has a declarative reading based on each of its clauses. 

Each clause: 
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H :- B1,...,B,, 

is read as: 

H is true if B, and B2 and ... and B,, are all true. 

ancestor(X,Y) :- child(X,Y). 

ancestor(X,Y) :- child(X,Z),ancestor(Z,Y). 

child(abraham, isaac). 
child(abraham, ishmael). 
child(isaac, esau). 
child(isaac, jacob). 

Figure 2-1: Ancestor relation specified in Horn clauses 

For example consider the Horn clause program in Figure 2-1. This program has 

the following declarative reading: 

X is an ancestor of Y if X has a child Y. 

X is an ancestor of Y if X has a child Z and Z is an ancestor of Y. 

abraham has a child isaac. 

abraham has a child ishmael. 

isaac has a child esau. 

isaac has a child jacob. 

2.2.2.2 Operational semantics 

The declarative semantics of Horn clauses do not consider the meaning of a pro- 

gram for a given inference system. This operational, or procedural, meaning of 

the program is the set of queries that are provable given the program and the 

inference scheme. 
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2.2.3 Prolog 

In this section we consider a sequential logic programming language known as Pro- 

log. This language is used later in this thesis to simulate the execution behaviour 

of the CCND languages. 

In Prolog, Horn clauses are evaluated using a process known as resolution; a 

resolution step can be informally described as a process by which a given goal is 

reduced, via a Horn clause, to a conjunction of goals that must be satisfied. In this 

process, variables in the Horn clause may be instantiated, for the evaluation to 

proceed, known as unification. In Prolog these reduction steps occur in a sequential 

manner, namely a conjunction of body goals is evaluated left-to-right, with the 

search for a reduction path taking place from top-to-bottom (in a textual sense). 

Prolog provides a backtracking mechanism which ensures consistency of re- 

sults. If it is not possible to reduce the current goal using any of the clauses in 

the system, then the system will backtrack, undo the last reduction step, and try 

the next possible solution path. 

This control structure is basically a depth-first search of the AND/OR tree. 

Prolog's backtracking means that the search for a solution will try the clauses 

(possible reduction paths) until all the instantiations are consistent. For example 

consider a Prolog interpreter evaluating the following query based on the Horn 

clause program in Figure 2-1: 

:- ancestor(abraham, jacob) 

The evaluation reduces to child(abraham, jacob); using the first clause 

for ancestor in Figure 2-1. 

The evaluation of child(abraham, Jacob) fails and causes backtracking. 

On backtracking ancestor(abraham, jacob) is reduced to (using the sec- 

ond clause for ancestor in Figure 2-1) child(abraham, z) , ancestor(Z, 

j acob). 
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Prolog evaluates the goals in a left-to-right order, first child(abraham, Z) 

and then ancestor(Z, jacob). 

The child(abraham, Z) goal can be reduced (using the 1st clause for child) 

to true. In the process Z is instantiated to isaac. 

The second goal ancestor(isaac, jacob) is now attempted. This goal is 

true. 

So, ancestor(abraham, jacob) is true. 

2.3 Parallelism in logic programming 

Horn clauses are open to many forms of evaluation, in that there are many ways 

that the statements making up a logical system can be applied to proving a query. 

Often several resolution steps can be applied in parallel. There are four main 

approaches to parallel application of Horn clause statements to proving a query: 

All-solutions AND-parallelism; 

OR-parallelism; 

Restricted AND-parallelism; and 

Streamed AND-parallelism. 

2.3.1 All-solutions AND-parallelism 

All-solutions AND-parallelism involves the parallel evaluation of a conjunction 

of goals, hence the use of the phrase AND-parallelism. However, the conjunction 

is being solved for all possible solutions (that is all the alternative bindings), 
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hence the use of the phrase All-solutions. This has resulted in the term All- 

solutions AND-parallelism. It is intended that all solutions to the query should 

be obtained in about the same time as it takes to obtain one solution. There 

are two main ways this parallelism could be implemented. This is illustrated by 

considering the Horn clause system in Figure 2-2. 

smelly_flower(X) :- flower(X), has_scent(X). 

flower(rose). 
flower(tulip). 
flower(carnation). 
has-scent (rose) . 

has_scent (tulip). 
has-scent (carnation) . 

Figure 2-2: A simple Horn clause program 

To obtain all the solutions to the goal smelly_flower (X), we could evaluate the 

program as follows: 

Start a flower(X) evaluation process, which searches for all the solutions to 

this goal. As soon as a value for X is found, start evaluating the particular 

has-scent (X) goal. This could be done in two ways. The first is a pipeline- 

like evaluation, e.g. while flower(X) is evaluating another instantiation for 

X, has-scent (X) is checking the current instantiation value for X. The second 

is by generating all the possible X's for flower(X) as fast as possible and 

spawning a different has-scent (X) evaluation for each X. 

Another approach would be for each goal in the conjunction to compute a 

complete set of solutions and then to join these solution sets to obtain the 

overall solutions. Although this method allows for a great deal of parallelism 

(in that each goal is evaluated independently) it does have its drawbacks; 
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letting each of the goals in the conjunction produce a complete set of solu- 

tions without control may lead to a large amount of space being used for 

intermediate results. Depending on the type of problem the intersection 

could result in a small set of solutions. 

2.3.2 OR-parallelism 

If we again consider the example Horn clause system in Figure 2-2, then the 

following query: 

:- flower(X). 

would be true if X was tulip OR rose OR carnation. These solutions are the 

OR-solutions to the query posed. 

Basically OR-parallelism is the search for a solution via each of the clauses 

(OR-alternatives) for a given predicate in parallel. Using this form of parallelism 

will lead to a more complete search than that of Prolog as all the OR-branches can 

be investigated in parallel. In Prolog if we have a clause in the search tree that 

never terminates then the OR-branches that are to be searched after this branch 

will never be tried. Another point to note is that because we are dealing with 

the parallel search of clauses the evaluation of the clauses will be independent and 

hence fairly easy to implement. 

2.3.3 Restricted AND-parallelism 

The general parallel evaluation of a conjunction of goals may be complex, as 

the goals may share variables. These variables must have consistent bindings 

and so the evaluation of these goals cannot be totally independent. However, 

in Restricted AND-parallelism only goals which do not share variables are 

evaluated in parallel. This restriction makes this form of parallelism fairly easy 
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to implement. An example of this is the parallel search of two lists, each search 

looking for a different element; this system is specified in Figure 2-3. 

on 1ists(Iteml, Listl, Item2, List2) :- 
on(Iteml, Listi), on(Item2, List2). 

on(Item,[ItemiRest]). 
on(Item,[HeadlTail]) :- Item \== Head, on(Item, Tail). 

Figure 2-3: Searching down two lists in parallel 

A query to this program should specify two elements and two lists, e.g. the 

goal on_lists(a, [1,2,3,a,5] ,b, [1,2,b] ). The goal is reduced by clause (1) 

to two list searches which are totally independent and hence can be evaluated in 

parallel. 

This form of parallelism has different implications for execution performance to 

the forms of parallelism considered so far. The All-solutions AND-parallelism 

and OR-parallelism both rely on there being several possible solution paths, 

don't know non-determinism, which can be investigated in parallel hence resulting 

in a speed-up. Restricted AND-parallelism evaluates the various independent 

AND-branches of the computation tree in parallel and so would also give a speed- 

up in deterministic programs. 

2.3.4 Streamed AND-parallelism 

The forms of parallelism considered so far allow parallelism to be realised with- 

out the programmer having to worry about communication and synchronisation 

between parallel processes which are exploring the search space. This is because 

either they are restricted to not allow communication as in Restricted AND- 

parallelism, or they are involved in parallel evaluation of independent branches of 

the AND/OR-tree, as in All-solutions AND-parallelism and OR-parallelism. 
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In Streamed AND-parallelism we have a conjunction of goals to evaluate, 

hence the AND-parallelism. These goals share variables which can act as a 

means of communications between goals. If the evaluation of one goal binds a 

variable, the evaluation of the other goals that share the newly bound variable can 

use the binding. By incrementally binding a shared variable (i.e. binding it to 

a structure containing a message and a new shared variable), processes can view 

shared variables as communication streams, hence the term Streamed AND- 

parallelism. 

This form of parallelism can be realised in producer/consumer programs. The 

producer goal incrementally binds some shared variable, the consumer goal is 

evaluated in parallel with this producer and incrementally consumes the bindings. 

This is evident in the case where a list is being produced using a recursive pro- 

cedure and this list can be consumed incrementally using a recursive procedure; 

on each recursion the consumer processes the next element on the list. Figure 

2-4 is a example of a producer/consumer Horn clause program which can exploit 

Streamed AND-parallelism. 

producer(Current, List) :- 
List = [CurrentIRest], 
Next is Current + 1, 
producer(Next, Rest). 

consumer([Head(Rest]) :- process(Head), consumer(Rest). 

process(Item) :- write(Item). 

:- producer(1, List),consumer(List). 

Figure 2-4: An example of Streamed AND-parallelism 

The producer builds up a list of integers. Starting with 1 this list is built-up in- 

crementally by a perpetual producer process. The consumer takes the first integer 
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from the list, processes it and consumes the rest of the list. The consumer given 

in Figure 2-4 simply writes the next integer to the screen. Note that the expected 

behaviour of this consumer is that it should not reduce until the shared variable 

is instantiated to a list, that is its evaluation should be suspended until it can 

reduce with the required operational effect. Similarly, the process/1 goal should 

suspend until the head of the list is instantiated to give the required behaviour. 

So in offering this form of parallelism, issues of communication, synchronisation 

and suspension must be considered. 

The issue of insuring consistent binding in a model of AND-parallelism and 

shared variables can be addressed in two ways. Either all the goals are evaluated 

in parallel and parallel backtracking takes place if bindings become inconsistent or 

only one goal can bind a shared variable (the producer) and the other goals that 

share this variable are required to suspend until they can be evaluated without 

binding the variable. The first approach is a fully parallel evaluation of the AND- 

OR tree, while the second approach forms the basis of the CCND languages. 

Streamed AND-parallelism may become Restricted AND-parallelism 

if the shared variables become fully bound; making the goals independent. 

2.3.5 Implicit/ Explicit parallel languages 

Implicit parallel languages attempt to offer the forms of parallelism previously dis- 

cussed without the programmer being aware of the parallel execution. The idea 

is to speed up the execution of current Prolog programs (for instance) by using 

parallel evaluation. However, the parallel evaluation of Prolog programs may be 

limited in the degree of parallelism that can be obtained, in that these programs 

may rely on the (sequential) operational semantics of the Prolog interpreter. An- 

other problem is that Streamed AND-parallelism may be difficult to exploit 

as current sequential logic programs do not obviously exploit such a model of 

computation. So, parallelism is restricted to All-solutions AND-parallelism, 

Restricted AND-parallelism and OR-parallelism. Of these forms of paral- 

17 



lelism, OR-parallelism looks the most promising evaluation model for obtaining 

a speed-up. All-solutions AND-parallelism only applies if an exhaustive search 

is required. Restricted AND-parallelism can only be used if the conjunctive 

goals are independent. 

In explicit parallel languages the programmer has to address the issue of con- 

trolling the parallel evaluation, e.g. the parallel search of clauses and the synchro- 

nisation of the Streamed AND-parallelism. The justification for this language 

design is that the programmer usually knows the forms of parallelism that exist 

in the problem domain, and hence is best able to implement the parallelism ex- 

plicitly. Also, by adding Streamed AND-parallelism to the current procedural 

interpretation of Horn clauses, it may be possible to implement algorithms that 

cannot currently be implemented in Prolog. 

This explicit control of parallelism can be achieved in two ways. Firstly, by the 

addition of parallel search operators to Prolog which indicate those parts of the 

computation that will be unaffected by a parallel operational model. Secondly, 

by the addition of a controlling semantics to restrict a fully parallel evaluation of 

the AND/OR-tree for the purposes of control and synchronisation. This second 

approach can be seen as the basis of the Committed Choice Non-Deterministic 

logic languages. These languages derive their name from the use of a commitment 

operator (similar to Dijkstra's guarded command [Dijkstra 75]) which is used to 

control the parallel evaluation of the OR-alternatives while allowing the exploita- 

tion of Streamed AND-parallelism. The major variation between the CCND 

languages lies in their means of synchronisation of bindings of shared variables. 

18 



2.4 Committed Choice Non-Deterministic lan- 

guages 

2.4.1 Syntax of guarded horn clauses 

A Committed Choice Non-Deterministic (CCND) program is a finite set of guarded 

horn clauses of the form: 

R(al,...,ak) :- G1,...,Gn : Bi,..., Bm (n,m > 0) 

The different CCND languages adopt various names for the various components of 

the guarded horn clause. We use the following terminology for all the languages: 

R(al, ... , ak) is a head goal; 

R is its functor, or predicate name; 

k is the number of arguments (referred to as the predicate arity); 

G1, ... , Gn form the guarded goals; 

":" is known as the commit operator; 

B1,.. . , Bm are known as the body goals. 

where the Gs and Bs are literals. 

The commit operator generalises and cleans the cut of sequential Prolog; the 

cut is used to control and reduce the search of OR-branches in Prolog. The 

commit operator forms the means of pruning OR-branches in a parallel search. 

A general query in the CCND languages has the following form: 

.- C1, C2, ... , Cn 
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2.4.2 Semantics of guarded horn clauses 

2.4.2.1 Declarative semantics 

A guarded horn clause program has a similar declarative reading to Horn clause 

based programs (see section 2.2.2). 

Each clause: 

H :- G1,...,G, : B1i...,Bm 

is read as: 

H is true if G, and .. and G,, and B, and ... and B, are all true. 

2.4.2.2 Operational semantics 

As with Horn clauses the declarative semantics of guarded horn clauses does not 

consider the meaning of a program for a given inference system. This operational, 

or procedural, meaning of the program is the set of goals that are provable given 

the program and the inference scheme. 

In the CCND model the general feature of the evaluation of a conjunction of goals 

is as follows. A given goal in the conjunction Ci is evaluated by unifying the 

goal with the clauses in the system. Those clauses whose heads successfully unify 

are now possible solution paths for this goal. The guarded goals for the possible 

solution paths are then evaluated, this evaluation can take place in parallel. The 

first guarded system to terminate successfully causes the evaluation committing to 

the body goals of the given clause. These body goals are essentially added to the 

original conjunction for evaluation. This is known as a reduction. On commitment 

to a given clause the other OR-guard evaluations can be discarded. 

In the CCND languages concurrency is achieved by reducing several goals in 

parallel; Streamed AND-parallelism. The issue of insuring consistent bindings 

of shared variables is addressed by only allowing a variable to be bound once. This 
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requires some means of indicating that some goals should not be allowed to bind 

shared variables while others may. This requirement can be achieved in two ways: 

the evaluation of some goal which should not bind a variable can only be 

instigated when the given variable becomes bound; 

the evaluation of goals that should not bind a variable can be suspended 

when they require the given variable to be bound. 

The CCND languages adopt the second approach of suspending evaluations on 

undesired bindings. The CCND languages differ in their means of specifying and 

insuring which goals can be evaluated and which should suspend. 

The following sub-sections consider the three main CCND languages, Con- 

current Prolog, Parlog and Guarded Horn Clauses. This is followed by an 

example evaluation which highlights the difference in the synchronisation models 

they employ. 

2.4.3 Concurrent Prolog (CP) 

2.4.3.1 History and background 

Concurrent Prolog (CP), proposed by Shapiro [Shapiro 83], was initially designed 

to offer both Streamed AND-parallelism and some OR-parallelism (in the 

evaluation of the guarded goals). Due to implementation problems [Ueda 85a] 

several restricted versions of the language have been proposed. 

Flat Concurrent Prolog, FCP, [Mierowsky et al 85], here guarded goals are 

restricted to system predicates. 

Safe Concurrent Prolog, SCP, [Codish 85], Codish introduces output anno- 

tations into Concurrent Prolog. A clause is safe if all output instantiations 

are made through variables declared as output. 
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Dual Concurrent Prolog, DCP, [Levy 86b] Levy also introduces output an- 

notation into Concurrent Prolog. The resulting language is claimed to be a 

simple extension of Guarded Horn Clauses, [Ueda 85b] which is complemen- 

tary or Dual to Concurrent Prolog. 

2.4.3.2 Basic concept 

In Concurrent Prolog, communication is achieved by shared variables and syn- 

chronisation by declaring certain occurrences of these shared variables as read 

only. The evaluation of a goal will suspend if it attempts to bind a read only 

variable. Any instantiation made during the evaluation of the guarded goals is 

made in a local binding environment which is unified with the global environment 

at the time of trying to commit to a given clause. 

2.4.3.3 Syntax of CP 

Concurrent Prolog adds two syntactic constructs to that of the guarded horn 

clause. 

The read only annotation of variables, "?". Any occurrence of a variable 

in a clause can be read only annotated. 

The "otherwise" guarded goal. 

2.4.3.4 Operational semantics of CP 

The synchronisation mechanism for instantiating shared variables in a conjunction 

takes place through the read only annotation of variables. Any evaluation that 

tries to instantiate a read only variable must suspend evaluation until the unifica- 

tion can take place without causing the given instantiation. The issue of several 

guards instantiating a global variable is addressed by making local copies of the 
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instantiations to the global environment. Once a guard terminates successfully, 

several operations take place as follows: 

Local copies of instantiations are unified with those in the calling process, 

i.e. passing back instantiations made in the guard. 

If the unification is successful the other parallel guards for this evaluation 

are terminated, or ignored. 

The calling process is reduced to the body goals of the clause that was 

committed to. 

The guarded goals for a given clause can be evaluated in AND-parallel and 

once commitment takes place the body goals can also be reduced in AND-parallel. 

There is one remaining semantic addition to the language called the otherwise 

goal. This goal can appear as the first goal in the guard of a CP clause. The 

operational semantics for clauses are that predicates with an otherwise goal in 

their guard will not be evaluated until all the other clauses for this predicate have 

failed. 

2.4.4 Parlog 

2.4.4.1 History and background 

Parlog [Gregory 85], [Gregory 87] is a descendant of the Relational Language 

[Clark & Gregory 81]. The major difference between PARLOG and the Relational 

Language is that the mode constraints are relaxed in the former, to allow weak 

arguments. A weak argument of a goal is one in which an input argument con- 

tains variables which may be instantiated by evaluation of the goal; hence allowing 

a form of two way communication (back communication). 
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2.4.4.2 Basic concepts 

Synchronisation is achieved by declaring the inputs and outputs to every clause in 

the system. A goal can only attempt to be reduced by a clause if the arguments 

declared as input can be unified with the head of the clause without causing any 

instantiations in the goal being evaluated and if the output arguments are not 

instantiated. If head unification attempts to cause any instantiations of input 

arguments that clause evaluation is suspended. 

2.4.4.3 Syntax of Parlog 

Parlog adds three types of syntactic constructs to guarded horn clauses. 

Mode declarations take the form: 

mode A(ml...... mk). 

where A is the predicate name and each of the mi's of the mode is either ?, or 

, optionally preceded by an identifier, which has no semantic significance. 

OR-parallel operators which separate the clauses for a given relation. These 

can be either a "." or ";", e.g. Figure 2-5. 

clause(1); 
clause (2) 
clause (3) 
clause (4) 

Figure 2-5: Possible use of the "." and ";" operators in Parlog 

AND-parallel operators which separate the goals in a conjunction, these can 

be "," or "&" as follows: 
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(C1,C2) OR (Cl & C2) 

where C1 and C2 are both conjunctions of goals. 

2.4.4.4 Operational semantics of Parlog 

The mode declarations serve to synchronise the binding of shared variables in 

Parlog. A "?" in the mode declaration means that this argument of a goal cannot 

be instantiated on head unification or guard evaluation of a possible clause. If 

the head unification would result in an output instantiation the evaluation of the 

particular clause is suspended. " " in the mode declaration specifies the output 

arguments from the predicate, which will be output unified when a given clause is 

committed to. 

Note that the input restriction means that there is no need for local guard 

environments. Guard evaluations suspend if they require an output instantiation 

to be made. The mode declarations can be used by the compiler to translate 

programs into a form with explicit unification and suspension tests, known as 

kernel Parlog [Gregory 87]. 

The operators "." and ";" which separate clauses for a given predicate serve 

to control the OR-parallel search: 

Clauses separated by the "." can be tried in parallel. 

Clauses separated by ";" are evaluated sequentially, i.e. the clause after the 

";" can only be tried if the one before fails. 

If we consider the example in Figure 2-5, the clauses are tried as follows: clause(1) 

is evaluated, if it fails clause(2) and clause(3) are evaluated in parallel. If the first 

three clauses fail, clause(4) is tried. 

The "," and the "&" separators for conjunctive goals serve to control the 

degree of parallelism in the evaluation of the conjunction: 
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(Cl , C2) means that C1 and C2 would be evaluated in parallel. 

(Cl & C2) means that C2 is to be evaluated only when C1 has successfully 

terminated. 

2.4.5 Guarded Horn Clauses (GHC) 

2.4.5.1 History and background 

Guarded Horn Clauses (GHC), was intended to form the basis of a Kernel Lan- 

guage for the Japanese Fifth Generation Parallel Inference Machines. GHC was 

proposed by Kazunori Ueda in 1985 [Ueda 85b]. A restricted version of GHC has 

been proposed based on the AND-parallel subset of the language and with the 

restriction of system goals in the guard. This is known as Flat Guarded Horn 

Clauses (FGHC). 

2.4.5.2 Basic concepts 

GHC adopts a unique approach to the problem of offering Streamed AND- 

parallelism. In GHC synchronisation is achieved by giving special significance to 

the semantics of the commit operator. The basic idea is that no output instantia- 

tions can occur until the evaluation has committed to a given clause. If the system 

tries to instantiate a variable in the goal being executed before commitment, the 

evaluation suspends. By adopting this form of synchronisation, the part of the 

clause before the commit operator just forms a test for input instantiation. 

2.4.5.3 Syntax of GHC 

GHC adds one new syntactic constructs to guarded horn clauses, the "otherwise" 

guarded goal. 
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2.4.5.4 Operational semantics of GHC 

GHC adopts only one synchronisation rule for Streamed AND-parallelism, 

that is no instantiations may be passed to the calling goal in the passive part 

of the clauses - the head unification and the guarded evaluation. So output in- 

stantiations can only occur after commitment to a given OR-branch. There is one 

remaining semantic addition to the language, the otherwise goal. This construct 

has been borrowed from CP and has the same purpose and operational semantics 

as in CP. 

2.4.6 An example of a CCND program, and its evaluation 

In this section we consider a simple example program, quick-sort, to highlight 

the different suspension mechanisms proposed for the CCND languages. This 

example was first commented on for CP in [Shapiro 1983]. Figures 2-6, 2-7 

and 2-8 respectively provide the CP, Parlog and GHC versions of the quick-sort 

program. 

If we query the system with the goal Xquicksort([2,1,3] ,N), (X - is "c" 

for CP goals; "p" for Parlog goals; and "g" for GHC goals) this goal can reduce 

itself with clause (1) as follows: 

Xquicksort([2,1,3],X) :- Xgsort([2,1,3],X-[]). 

Xqsort ([2 ,1, 3] , X- [] ) in turn has two possible clauses to match against, but 

can only unify itself with the head of clause (1), resulting in the reduction: 

Xgsort([2,1,3],X-[]) :- 
Xpartition([1, 31,2, Y, Z), 
Xgsort(Y,X-[21W]), 
Xqsort (Z , W- []) . 
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(1) cquicksort(Unsorted, Sorted) :- 

cqsort(Unsorted, Sorted-[D. 

(1) cgsort([XlUnsorted], Sorted-Rest) :- 
cpartition(Unsorted?, X, Smaller, Larger), 
cqsort(Smaller?, Sorted- [X I SortedTemp]) , 

cqsort(Larger?, SortedTemp-Rest). 
(2) cqsort([], Rest-Rest). 

(1) cpartition([XIXs], A, Smaller, [XILarger]) :- 
A < X 

cpartition(Xs?, A, Smaller, Larger). 
(2) cpartition([XIXs], A, [XISmaller], Larger) :- 

A>=X 

cpartition(Xs?, A, Smaller, Larger). 

(3) cpartition([] ,_, [] , []) . 

(each clause is numbered for reference purposes) 

Figure 2-6: Quick-sort program in Concurrent Prolog 

The system now contains processes for three goals. In the case 

of CP the three new goals will be read-only annotated as follows: 

cpartition([1,3]?,2,Y,Z), 
cgsort(Y?, X- [21 W]) , 

cgsort (Z?, W- []) . 

The two Xqsort processes suspend, because: 

CP their evaluation by any clause would result in the binding of a read only 

variable; 

Parlog their input arguments are not yet instantiated and would be bound during 

their reduction; 
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mode pquicksort(?,"),pgsort(?,-),ppartit ion(?,?, 

(1) pquicksort(Unsorted, Sorted) :- 

pgsort(Unsorted,Sorted-[]). 

(1) pgsort([XlUnsorted], Sorted-Rest) :- 
ppartition(Unsorted, X, Smaller, Larger), 
pqsort(Smaller, Sorted-[XISortedTemp]), 

pqsort(Larger, SortedTemp-Rest). 

(2) pqsort([], Sorted-Rest) :- Sorted = Rest. 

(1) ppartition([XIXs], A, Smaller, [XILarger]) :- 
A < X 

ppartition(Xs, A, Smaller, Larger). 

(2) ppartition([XIXs], A, [XiSmaller], Larger) :- 
A>=X 

ppartition(Xs, A, Smaller, Larger). 

(3) ppartition([],_, [] , []) . 

(each clause is numbered for reference purposes) 

Figure 2-7: Quick-sort program in Parlog 

GHC the passive part of the two clauses that these goals could be reduced by 

would instantiate the goal arguments. 

The Xpartition goal can be reduced: 

CP the goal has its read only term bound to [1,3] so it evaluation can proceed; 

Parlog the goal has all its input instantiated, so its evaluation can proceed; 

GHC the goal can be unified with the head of both clause (1) and clause (2), 

without instantiating goal variables, so its evaluation can proceed. 
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(1) gquicksort(Unsorted, Sorti - 
gqsort(Unsorted, Sortea- U). 

(1) ggsort([PivotlUnsorted], Sorted-Rest) :- 
gpartition(Unsorted, Pivot, Smaller, Larger), 
gqsort(Smaller, Sorted-[PivotlSortedl]), 
gqsort(Larger, Sortedl-Rest). 

(2) gqsort([], RestO-Restl) :- 
RestO = Restl. 

(1) gpartition([ValuelList], Pivot, Smaller, BigOut) :- 
Pivot < Value : 

BigOut = [Value{Larger], 
gpartition(List, Pivot, Smaller, Larger). 

(2) gpartition([ValuelList], Pivot, LessOut, Larger) :- 
Pivot >= Value : 

LessOut = [ValuelSmaller], 
gpartition(List, Pivot, Smaller, Larger). 

(3) gpartition([], Pivot, Smaller, Larger) 
Smaller = [1, Larger = D. 

(each clause is numbered for reference purposes) 

Figure 2-8: Quick-sort program in GHC 

Its head matches both clause (1) and clause (2), and so invokes two subsystems 

for the two guards; only the second guard, (2 >= 1) succeeds and so clause (2) is 

used to reduce Xpartition: 

CP 

cpartition([1,3]?,2,[1,X],Y) :- ppartition([3]?,2,X,Y). 

Parlog 

ppartition([1,3],2,[1,X],Y) :- ppartition([3],2,X,Y). 
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GHC 

gpartition([1,3],2,X,Y) :- 

X = [1 IX1] , 

gpartition([3],2,X1,Y). 

As a result of this reduction, the read only argument of the first suspended Xqsort 

goal has become instantiated to [I I X] , so it can proceed: 

CP 

cgsort([1IX]?,Y-[21Z]) :- 
cpartition(X?,1,V,W), 
cqsort (V? , Y- [1 I Z 1]) , 

cqsort(W?,Z1-[21Z]). 

Parlog 

pgsort([1IX],Y-[21Z]) :- 
ppartition(X,1,V,W), 
pqsort(V,Y-[1IZ1]), 
pgsort(W,Z1-[21Z]). 

GHC 

ggsort([1IX1],Y-[21Z]) :- 
gpartition(X1,1,V,W), 
gqsort(V,Y-[1IZ1]), 

ggsort(W,Z1-[21Z]). 

However, these three new processes suspend (the fact that qsort could be run 

at all is because of the message-passing, which is facilitated by shared variables). 

The only process that can proceed is Xpartition([3]?,2,X,Y), which is reduced 

to: 
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CP 

cpartition([3]?,2,X,[31W]) cpartition([]?,2,X,W). 

Parlog 

ppartition([3],2,X,[31W]) :- ppartition([],2,X,W). 

GHC 

gpartition([3],2,X,Y) :- Y=[31W], gpartition([],2,X,W). 

As a result of this reduction, the first argument of the second Xqsort goal becomes 

instantiated, so its evaluation can proceed: 

CP 

cgsort([3IX]?,Y-[I) :- 
cpartition(X?,3,U,V), 
cgsort(U?,Y-[31Y1]), 

cgsort(V?,Y1-[]). 

Parlog 

pgsort([31X],Y-[I) :- 

ppartition(X,3,U,V), 

pgsort(U,Y-[31Y1]), 

pgsort(V,Y1-[]). 

GHC 

ggsort([31X],Y-[D 

gpartition(X,3,U,V), 

ggsort(U,Y-[31y11), 

ggsort(V,Y1-[]). 
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All the remaining reductions use unit clauses, and occur as: 

CP their read only variables become bound; 

cpartition([]?,2,[],[]) :- true 
cpartition([]?,1,[],[]) :- true 
cgsort([]?, [1IX]-[1IX]) :- true 
cgsort ([] ?, [21X]-[21X]) : - true 
cpartition([]?,3,[],[]) :- true 
cgsort ([] ? , [31X]-[31X]) : - true 
cgsort ([] ?, [] - []) :- true 

Parlog their input arguments become instantiated; 

ppartition([],2,[],[]) :- true 
ppartition([],1,[],[]) :- true 
pgsort([],[1IX]-[11X]) true 
pgsort ([] , [21X] - [2 I X]) : - true 
ppartition([],3,[],[]) true 
pgsort ([] , [3 I X] - [3 1 X]) true 
pgsort ([] , [] - []) :- true 

GHC their input arguments become instantiated. 

gpartition([],2,X,Y) 
gpartition([],1,X,Y) 
gqsort([], X1-X2) X1 

gqsort ([] , X1-X2) : - X1 

X=[], 

X=11, 

Y=[]. 

Y=[] . 

= X2. (X2 = [11X]) 
= X2. (X2 = [2 I X] ) 

gpartition([],3,X,Y) :- : X=[], Y=[]. 

ggsort ([] , X1-X2) : - X1 = X2. (X2 = [31X]) 
gqsort([], X1-X2) :- X1 = X2. (X2 = []) 

The computation terminates with X = [1,2,3]. 
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2.5 Classifications 

Although the CCND languages and their subsets adopt different synchronisation 

mechanisms the languages possess some similar features. Algorithms and program- 

ming techniques that make use of a given feature of a language will be portable to 

other languages with similar features. In our evaluation of the CCND languages 

for AI (part 3 of this thesis) we consider how some well known AI programming 

paradigms map to languages with different features. We then examine the execu- 

tion behaviour of programs which make use of the different language features. 

Two main groupings of the language features are widely recognised, these are 

detailed below. The Al applications considered later in this thesis highlight the 

differences between the languages in these two groups. 

2.5.1 Safe/Unsafe 

A clause is defined to be safe if and only if for any goal the evaluation of the head 

unification and guarded goals never instantiate a variable appearing in the goal to 

a non-variable term [Clark & Gregory 84]. This definition has been expanded by 

[Takeuchi & Furukawa 86] as follows: 

for any goal the evaluation of the head and guarded goals never instantiate 

a variable appearing in the goal to a non-variable; 

each clause in the program is safe; 

as a result, any program written in the language is safe; 

The design of Parlog is supposed to exclude any programs which would violate 

the safety condition. It is proposed that the legality of programs could be checked 

at compile time. However, current attempts at performing this analysis exclude 
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possible legal programs [Gregory 87]. GHC is a safe language, in fact the suspen- 

sion rule of GHC is based on guard safety. If a clause requires a goal variable to 

be instantiated in the guard the evaluation of that clause suspends. Concurrent 

Prolog is unsafe; goal variables are allowed to be instantiated by the evaluation 

of the guard. On commitment these bindings are unified with the global copies of 

the variables. The use of local environments results in difficulties in implementing 

Concurrent Prolog [Ueda 85a]. 

2.5.2 Deep/Flat 

A program which only has system goals in the guards is said to be flat 

[Mierowsky et al 85] [Foster & Taylor 87]. This results in a simple language which 

still offers Streamed AND-parallelism; as the guarded evaluations are simple. 

This reduces the complexity of implementing the languages. Moreover, it should 

be possible to compile the full language into its flat subset. [Gregory 87] discusses 

how OR-parallel evaluation can be compiled to AND-parallel evaluation by us- 

ing a controlled metacall. [Codish 85] provides a source to source transformation 

technique which does not require the introduction of a new language primitive. 

2.6 Implementations 

The development of the CCND languages has taken the following path. Firstly 

interpreters were implemented in Prolog [Shapiro 83], [Pinto 86]. These were 

followed by compilers where the target language was Prolog [Gregory 84], 

[Ueda & Chikayama 85]. Subsequently, compilers were produced where the 

target language was an abstract machine, which is emulated by a 'C' program 

[Foster et al 86]. Enough is now generally understood about the operational se- 

mantics of the languages to be able to consider implementation on a parallel archi- 

tecture [Crammond 88]. Although interpreters allow the synchronisation mecha- 

35 



nism in Streamed AND-parallelism to be tested and the operational semantics 

of the language to be studied, they provide slow execution speed. Compiling to 

Prolog offers some speed up giving better performance, while still allowing for 

quick development time and testing of the evaluation model. Writing a compiler 

to 'C' allows for the unification and synchronisation primitives to be tested for 

implement ability and gives even further improved performance. 

2.6.1 Interpreters 

One of the strengths of logic programming languages is the ability to implement 

interpreters' easily. This is in the main due to the equivalence of program and 

data in a logic programming framework. Figure 2-9 is a simple interpreter for 

Prolog in Prolog2. 

solve(true). 

solve((A,B)) :- solve(A), solve(B). 
solve(A) :- clause(A,B), solve(B). 

Figure 2-9: An interpreter for Prolog in Prolog 

A declarative reading of this program is: 

The goal true is solved. 

To solve a conjunction (A,B) solve A and solve B. 

'A interpreter treats other programs as data. 

2Interpreters for a language in the same language are sometimes referred to as meta- 

circular interpreters. 
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To solve a goal, pick a clause3 from the program (whose head unifies with 

the goal) and solve the body goals of this clause. 

The correct Prolog behaviour of this interpreter is due to the procedural (oper- 

ational) reading of this interpreter. The behaviour of this interpreter using the 

Prolog model of evaluation is: 

if a goal is true then it is solved; 

to solve a conjunction (A,B) first solve the left most goal A and then solve 

the other goals B; 

to solve a goal, pick the first clause (textually) from the program (whose 

head unifies with the goal) and then solve the body goals of this clause; 

if the evaluation of the body goals fails then clause/2 will select the next 

possible clause (textually) from the program. 

2.6.1.1 Enhanced interpreters 

Interpreters can be used to offer different models of execution, add functionality 

to the language, and provide information about program evaluation. Such inter- 

preters are often referred to as enhanced interpreters [Safra & Shapiro 87]. In 

this section we consider three enhanced interpreters. The first and second shows 

how interpreters can be instrumented to collect information about program execu- 

tion. The third shows how interpreters can be used to offer alternative models of 

execution. We consider these three systems as they provide suitable background 

3The clause/2 call is required to manipulate the program as data. Such calls are 

known as metacalls. 
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examples to interpreters and to some of the techniques employed in the imple- 

mentation of our evaluation interpreter for the CCND languages (part 2 of this 

thesis). 

For example, Figure 2-10 is an enhanced interpreter which records the number 

of resolution steps performed in the evaluation of a goal. 

solve(Query,Count) :- 

solve(Query,0,Count). 

solve(true,C,C). 

solve((A,B),Cin,Cout) :- 

solve(A,Cin,Cnext), 

solve(B,Cnext,Cout). 

solve(Goal,Cin,Cout) :- 

Cnext is Cin +1, 

clause(Goal,Body), 

solve(Body,Cnext,Cout). 

Figure 2-10: An interpreter for counting resolutions in Prolog 

The number of resolution steps recorded by this interpreter reflects the number 

of procedure calls along the solution path; that is resolution steps performed in 

branches of the search which lead to failure are not recorded. 

To count the total number of procedure calls performed in the evaluation of a 

goal requires a more complex interpreter. The main feature of such an interpreter is 

that it should not fail when a goal evaluation fails, as this will lead to backtracking 

and loss of the reduction count for the failed branch. Instead the interpreter should 

carry a status flag which indicates the success or failure of a given goal evaluation. 

On each procedure call the interpreter increments a counter. If a goal evaluation 

succeeds the interpreter returns the current counter value and sets the status flag 

to success. If a goal evaluation fails the interpreter returns the current counter 

value and sets the status flag to fail. The interpreter should try each of the clauses 
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solve(true,succeeded,R,R). 
solve((A,B),ConjStatus,RO,R) :- !, 

solve(A,Status,R0,R1), 
( Status=succeeded, 

solve(B,ConjStatus,R1,R) 

Status=failed, 
ConjStatus=f ailed, 

R=R1 ) 
solve(Goal,Status,RO,R) :- 

copy(Goal,GoalCopy), 

bagof((GoalCopy:-Body),clause(GoalCopy,Body),BodyList), 
R1 is RO+1, !, 
solve_bodygoals(Goal,BodyList,R1,R,Status) . 

solve(_,failed,R,R). 

solve_bodygoals(_, [] ,R,R,failed) . 

solve_bodygoals(Goal,[(Head:-Body)IMorel, RO,R,GoalStatus) :- 
solve(Body,Status,R0,R1), 
( Status=succeeded, 

Head=Goal, 
GoalStatus=succeeded, 
R=R1 

Status=failed, 
solve bodygoals(Goal,More,R1,R,GoalStatus) 

copy(Original, Copy) :- 
bagof(Original, true, [Copy]). 

Figure 2-11: An interpreter for counting procedure calls in Prolog 
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for a given goal (top-down) until one results in a solution. As the interpreter has 

a count of the procedure calls performed in the failed branches, it can aggregate 

them to give the total number of procedure calls performed in the evaluation of a 

goal. Such an interpreter is given in Figure 2-11. 

solve([]). 
solve([truelRest]) :- 

solve(Rest). 
solve([GoallRest]) :- 

clause(Goal,Body), 
addtolist(Rest,Body,NewGoals), 
solve(NewGoals). 

addtolist([HIT],Goals,[HIR]) :- 
addtolist(T,Goals,R). 

addtolist([],(A,B),[AIR]) :- 
addtolist([],B,R). 

addtolist([],Goal,[Goal]) :- Goal \= (A,B). 

Figure 2-12: An interpreter for breadth-first evaluation of Horn clauses 

The two enhanced interpreters considered so far have both provided informa- 

tion about the evaluation. We now consider a interpreter which provides a different 

model of execution. Figure 2-12 shows an interpreter which evaluates the conjunc- 

tion of goals breadth-first; that is, all the goals are reduced to their body goals, 

then those body goals are evaluated. As each goal is reduced the body goals are 

added to a continuation 4. The breadth-first nature of the interpreter is achieved 

by adding the body goals to the end of the continuation. 

4A list of goals that are to be solved upon successful reduction of this goal. 
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2.6.1.2 Interpreters for the CCND languages 

When Shapiro first proposed Concurrent Prolog [Shapiro 83] [Shapiro 87a] he also 

presented a interpreter in Prolog for the new language. The interpreter maintains 

a queue (continuation) of Concurrent Prolog goals and a status flag. 

To solve a query, the interpreter schedules the goals in the queue which also 

contains a cycle marker (used to indicate when all the goals have been attempted), 

and sets a status flag to deadlock. It then operates on each of the goals in the 

queue, dequeueing a goal, reducing it, and scheduling the body goals (according 

to the scheduling policy). If a goal reduction suspends, or fails to be reduced, the 

goal is placed at the end of the queue. The top level of the interpreter has the 

following procedural reading: 

If the queue only contains a cycle marker, then the interpreter terminates 

successfully. 

If each goal in the queue has been attempted and the status flag is deadlock, 

then the interpreter fails. 

If each goal in the queue has been attempted and the status flag is 

nodeadlock, then re-enqueue the cycle marker, set the status flag to 

deadlock and continue solving the remaining goals. 

If the dequeued goal is a system call, evaluate it and then solve the remaining 

goals in the queue. 

To reduce a Concurrent Prolog goal, the interpreter sequentially picks a 

guarded clause whose head unifies with the goal (according to Concurrent 

Prolog's unification algorithm). It then attempts to solve the guarded goals 

for this clause (by recursively calling itself). If the interpreter finds a clause 

(by backtracking) which satisfies such requirements, then the body goals for 

the clause are scheduled for evaluation. 
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The scheduling policy used in the interpreter for the goals is breadth-first, 

that is the body goals are scheduled at the back-end of the goal queue. However, 

because the guarded goals are evaluated by recursively calling the interpreter, 

the evaluation of the OR-goals is not breadth-first. The guarded clause selec- 

tion, which involves using Concurrent Prolog's read-only unification, is given in 

[Shapiro 83]. 

Shapiro also proposed three profiling parameters, cycles, reductions and sus- 

pensions, which provide information about the evaluation. 

Cycles 

The cycles parameter attempts to measure the length of the breadth-first 

execution. A cycle corresponds to attempting to reduce all the goals in the 

system once in parallel. 

Reductions 

This parameter aims to give a measure of the work involved in solving a 

query. The parameter attempts to measure the number of inference steps 

performed by the system. In [Shapiro 83] an inference step is considered to 

be a commitment to a clause. 

Suspensions 

This parameter attempts to count the number of suspended evaluations in 

the evaluation of a query. The number of suspensions is however dependent 

on when suspended evaluations are rescheduled. When an evaluation sus- 

pends in Shapiro's interpreter it is immediately rescheduled for evaluation; 

this is known as busy waiting. This rescheduled evaluation may resuspend 

and so will count as two or more suspensions. 

The cycles, reductions and suspensions have become the standard pa- 

rameters used when comparing applications and programming techniques 

[Okumura & Matsumoto 87], [Sterling & Codish 87]. 
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2.6.2 Abstract machine emulators 

Compilation 

Host Architecture 

Figure 2-13: Execution of imperative languages 

Compiling source language programs to the host machine proves to be a suitable 

way of executing many imperative languages. However, these languages are in 

a sense close to the "von-Neumann" target machine, this is not surprising given 

that their development has been based on such architectures. The same cannot 

be said of logic languages [Fagin et al 85]. One solution is to specify an abstract 

host machine which is more suited to the declarative language (logic language). 

Logic Languages 
Compilation 

Abstract Machine 
Emulation 

Host Architecture 

Figure 2-14: Execution of logic languages 

The abstract machine can then be emulated by interpretation (see Figures 2- 

13 and 2-14). This results in a speed advantage over pure interpretation in that 
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much of the run-time overheads of unification and flow of control can be compiled 

away. Over pure compilation it results in a space advantage, in that the abstract 

machine is more closely tailored to the logic language and so a more (direct) 

efficient mapping exists. 

A number of abstract machines have been proposed for logic languages, the 

most well known being [Warren 77a] [Warren 77b] [Warren 83] who proposed 

an abstract machine for Prolog. This notion of abstract machine emulation 

has also been applied to concurrent/ parallel logic languages, the many different 

types of parallelism (see section 2.3) giving rise to a whole host of different ab- 

stract machines [Foster et al 86] [Houri & Shapiro 87] [Kimura & Chikayama 87] 

[Shapiro 87b] [Warren 87] [Crammond 88]. 

2.6.3 Multi-processor implementations 

The Concurrent Logic Languages are amenable to parallel execution; in fact, this 

has been one of the driving forces in their development. The work on multi- 

processor realisations of these languages is split into two main areas. 

The first area of work is on the implementation of these languages on shared 

memory multi-processors, like the Sequent SymmetryTM, [DeGroot 84] 

[Crammond 85] [Hausman et al 87] [Warren 87] [Westphal et al 87] 

[Crammond 88] [Sato & Goto 88]. With shared memory implementation, 

global binding schemes can be implemented directly, i.e. each processor 

manipulates the same data areas. 

The second area of work is on the implementation of these languages on dis- 

tributed memory multi-processors, like the Intel iPSC HypercubeTM, [Ali 86] 

[Conery 87] [Taylor et al 87]. With a distributed memory implementation 

either data areas are stored on one processor, or distributed binding and 

unification schemes are required. This makes distributed implementations 

more complex. 
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2.7 Summary 

In this chapter the following have been presented and discussed: 

How logic can be used as a programming language, in particular via Horn 

clauses and the sequential evaluation model of Prolog. 

The various forms of parallel evaluation of programs specified in Horn 

clauses, namely OR-parallelism, Restricted AND-parallelism, All-Solutions 

AND-parallelism and Streamed AND-parallelism. 

The Committed Choice Non-Deterministic (CCND) model of execution. The 

synchronisation mechanisms for the three main CCND languages, Concur- 

rent Prolog, Parlog and Guarded Horn Clauses, are highlighted using an 

example sort program. 

The CCND languages are then classified in two ways: safe/unsafe and 

deep/flat. In the evaluation of the CCND languages for Al (part 3 of this 

thesis) we consider how some well known Al programming paradigms map 

to languages with different features. 

Finally we review current implementations of these languages, in particular 

the modelling of the execution of these languages by enhanced interpreters. 
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Part II 

An evaluation system 
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Preface 

In this part of the thesis we develop our evaluation system for the CCND languages. 

The system developed aims to measure the inherent parallelism available in the 

execution of programs implemented in the CCND languages and the effects of 

alternative implementation possibilities on this inherent behaviour. 

The first chapter in this part, chapter 3 has three main focuses: 

the limitations of current evaluation systems; 

the requirements of an improved model of execution on which we can collect 

information about the inherent behaviour of programs; and 

the incremental design and development of an interpreter which provides the 

basis of our new evaluation system. 

The second chapter in this part, chapter 4 also has three main focuses: 

the possible implementation alternatives open to language implementors, 

which form the basis of a set of evaluation parameters; 

how we collect these evaluation parameters; and 

the theoretical behaviour of some example programs and the behaviour in- 

dicated using our evaluation system and proposed evaluation parameters. 
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Chapter 3 

Interpreters for evaluation 

3.1 Overview 

This chapter considers the inherent parallelism available in the evaluation of pro- 

grams implemented in the CCND languages. A measure of the inherent parallelism 

has several uses: it gives a theoretical measure of parallelism against which partic- 

ular implementations can be gauged; and it provides information for programmers 

on the relative merits of various programming techniques. 

For typical Computer Science application areas, such as matrix multiplication, 

it is often possible to obtain theoretical measures for the inherent parallelism. 

However, for Al type problems the parallelism depends on several factors, such as 

data structures (knowledge representation), inference mechanisms and irregular 

search spaces. The irregular nature of Al problems makes a theoretical measure of 

parallelism difficult. Another approach to obtaining measures of inherent paral- 

lelism for both regular and irregular problems is to simulate the given computation 

on an infinite processor model. The simulated processor utilisation then gives a 

measure of the inherent parallelism. 

It is this second approach we adopt in this work. To obtain a measure of 

the inherent parallelism available in program execution we adopt a breadth-first 
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execution model assuming an unlimited number of processors. The evaluation 

system developed is used in the following chapters to consider some of the execution 

alternatives open to language implementors. 

Section 3.2 considers some current evaluation systems for the CCND languages. 

The focus is on interpretation systems as these are generally used when evaluating 

and comparing programming techniques and applications. 

Section 3.3 considers the current parameters that are collected during program 

execution and discusses their limitations as a way of measuring inherent paral- 

lelism. 

Section 3.4 considers the requirements of an execution system which will allow 

us to more accurately obtain a measure of the inherent parallelism. 

In section 3.5 we give an overview of the idealisations we assume in our execu- 

tion model. 

Finally, in section 3.6 we incrementally develop an interpreter which offers 

an improved AND/OR-parallel evaluation model which allows us to measure the 

inherent parallelism available in the execution of a program more accurately. 

3.2 Current evaluation systems 

The first implementations of the CCND languages consisted of interpreters on top 

of Prolog [Shapiro 83] [Gregory 84] [Tanaka et al 86] [Pinto 86], these were instru- 

mented to record simple parameters, namely cycles, suspensions and reduc- 

tions (see section 2.6.1.2). To measure the inherent parallelism of programs these 

interpreters use a breadth-first evaluation model. Subsequently, compilers to Pro- 

log were produced. The compiled code could also include mechanisms for collect- 

ing cycles, suspensions and reductions [Gregory 84] [Ueda & Chikayama 85] 

[Saraswat 87a]. These compilers to Prolog could be viewed as partial evaluators 

of the original interpreters [Safra & Shapiro 87]. More recently, these languages 
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have been implemented via abstract machine emulators realised in 'C' (see sec- 

tion 2.6.2) [Foster et al 86] [Levy 86a] [Chikayama & Kimura 87], giving a speed- 

up over the original interpreters and compilers. However, for efficiency reasons 

these systems tend not to be instrumented, as in [Foster et al 86). So, the eval- 

uation of programming techniques and applications tends to be carried out on 

interpreters [Sterling & Codish 87] [Okumura & Matsumoto 871. Although these 

interpreters claim to execute the object code (CCND program) breadth-first (see 

section 2.6.1.2), hence collecting information about inherent parallelism, the actual 

evaluation models used make several approximations, as follows: 

the AND-parallel goals are represented as a list of goals to be evaluated; 

as each goal is reduced, the resulting body goals are added to the goal list 

and any appropriate bindings are made; 

variable bindings are produced in the order that the goals are evaluated; 

guarded goals are evaluated as a single reduction which incur no cycle over- 

heads; 

the interpreters make no distinction between suspension and failure of 

guarded goals; 

the interpreters model OR-parallelism by backtracking through alternative 

clauses; 

the first textual clause in a predicate whose guarded goals succeed is com- 

mitted to. 
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solve(Goal) :- 
schedule(Goal,[],QueueTemp), 
append(QueueTemp,[cycle],Queue), 
solve(Queue,deadlock). 

solve([cycle],_) :- !. 

solve([cyclel_],deadlock) :- !,fail. 
solve([cyclelRest],nodeadlock) :- 

append(Rest,[cycle],NextQueue),!, 
solve(NextQueue,deadlock). 

solve([GoallRest],_) :- 
system(Goal),!,Goal, 
solve(Rest,nodeadlock). 

solve([GoallRest],_) :- 
get_modes(Goal,Functor,Arity,GoalArgs,Modes), 
functor(ClauseHead,Functor,Arity), 
clause(ClauseHead,(Guard:Body)), 
ClauseHead =.. [FunctorlHeadArgs], 
verify modes(Modes,GoalArgs,HeadArgs), 
solve(Guard),!, 
schedule(Body,Rest,NewQueue), 
solve(NewQueue,nodeadlock). 

solve([GoallRest],DeadlockFlag) :- 
schedule(suspended(Goal),Rest,NewQueue), 
solve(NewQueue,DeadlockFlag). 

schedule(true,Queue,Queue) :- !. 
schedule(suspended(Goal),CurrentQueue,NewQueue) :-,!, 

append(CurrentQueue,[Goal],NewQueue). 
schedule((A,B),Queue,NewQueue) :- !, 

schedule(A,Queue,TempQueue), 
schedule(B,TempQueue,NewQueue). 

schedule(Goal,CurrentQueue,NewQueue) :- 
append(CurrentQueue,[Goal],NewQueue). 

Figure 3-1: A basic Parlog interpreter in Prolog 
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get_modes(Goal,Functor,Arity,GoalArgs,Modes) :- 
functor(Goal,Functor,Arity), 

functor(Copy,Functor,Arity), 

par_mode(Copy), 

Goal =..[FunctorlGoalArgs], 
Copy =..[FunctorlModes]. 

verify_modes ([] , [] , []) :- !. 
verify_modes(['?'IModes],[GArgIGArgs],[HArgIHArgs]) :- 

'<='(HArg,GArg), 
verify_modes(Modes,GArgs,HArgs). 

verify_modes(['"'IModes],[GArgIGArgs],[HArgtHArgs]) :- 
':='(GArg,HArg), 
verify-modes(Modes,GArgs,HArgs)- 

% '<='/2 ONE WAY UNIFICATION PRIMITIVE 

var(X), !, X=Y. 

var(Y), ! , fail. 
'<='([X{Xs],[YIYs]) :- !, 

'<='(X,Y), '<='(Xs,Ys). 

atomic(X), !, X=Y. 

X=..[FIXs], Y=..[FIYs], '<='(Xs,Ys). 

'/, ':='/2 ASSIGNMENT UNIFICATION PRIMITIVE 
':='(X,Y) :- 

var(X),X=Y. 

I , 

Figure 3-2: Mode based unification for PARLOG in Prolog 
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3.3 Current measurements and their limita- 

tions 

Shapiro proposed three parameters, cycles, suspensions and reductions (see 

section 2.6.1.2) when he first proposed Concurrent Prolog [Shapiro 83]. These pa- 

rameters are usually quoted when evaluating applications and programming tech- 

niques for CCND languages [Sterling & Codish 87], [Okumura & Matsumoto 87]. 

This thesis uses Parlog as a typical CCND language. Figures 3-1 and 3-2 pro- 

vide a basic breadth-first Parlog interpreter (based on Shapiro's basic Concurrent 

Prolog interpreter, given in [Shapiro 83]). Later in this section we incrementally 

enhance this basic Parlog interpreter to provide a system which can be used to 

obtain improved measures of the inherent parallelism. In this section we high- 

light the limitations of the current parameters collected by interpretation. In the 

following section we consider requirements for a system which evaluates CCND 

programs in a breadth-first manner assuming an unlimited number of processors. 

These requirements are then implemented for one of the CCND languages, Parlog; 

although they are equally valid for the other CCND languages. 

3.3.1 Cycles 

The cycles [Shapiro 83] parameter attempts to measure the depth of the breadth- 

first execution tree. A cycle corresponds to reducing all the goals in the system 

once in parallel. So if we consider the simple member check program and query 

in Figure 3-3, the query takes three cycles to reduce, as it recurses three times on 

its single body goal. 

In the early interpreters [Shapiro 83] [Pinto 86], the evaluation of guarded 

goals was carried out by a call to a top-level of the interpreter and for simplic- 

ity took zero cycles to evaluate. So the cycle count can only claim to measure 
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mode member(?,?). 
member(Element,[HeadITail]) 

Element == Head 

true. 
member(Element,[HeadiTail]) :- 

Element \== Head 

member(Element,Tail). 

:- member(foo,[baz,bazl,foo,baz2]). 

Figure 3-3: Member check in Parlog 

the depth of the evaluation tree when evaluating flat code [Mierowsky et al 85], 

[Foster & Taylor 87]. Moreover, in the case of deep guards, any goals suspended 

awaiting the evaluation of a guard will only suspend for one cycle and not the 

number of cycles it takes for the deep guard to be evaluated. This distorts the 

breadth-first evaluation tree, reducing the cycle count. 

mode foo(?),bas(" ),bast(?," 

foo (b) . 

bas (a) . 

basl(a,b). 

:- foo(X), basl(Y,X), bas(Y). 

Figure 3-4: Simple example program for suspensions 

Another limitation is that the goal list in the interpreters is processed in a 

left-to-right order, any bindings made in the evaluation of goals taking place im- 

mediately. So, these bindings will be available to any remaining goals in the goal 

list. This will allow goals that require these bindings to reduce in the current 

cycle. Hence the evaluation is dependent on goal order. 
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If we consider the program in Figure 3-4, then by changing the order of the 

query to be: 

:- bas(Y),bas1(Y,X) ,foo(X) . 

the existing interpreters will give a cycle count of one, whereas the previous query 

(Figure 3-4) resulted in a cycle count of three. Previously the goal evaluation order 

resulted in the goals foo(X) and bas1(Y,X) suspending in the first cycle and the 

goal foo(X) suspending in the second cycle. However, now the goal evaluation 

order and the order in which the bindings are produced are the same. So, all the 

goals are able to reduce to true in one cycle. In an AND-parallel evaluation, the 

cycle count should be three, as follows: in the evaluation of the first cycle both 

foo (X) and basl (Y, X) will suspend; in the second cycle foo (X) will suspend and 

in the last cycle all the goals will evaluate to true. 

3.3.2 Reductions 

This parameter attempts to measure the reductions performed by the system in 

solving a query, which indicates the number of parallel goal evaluations that can 

take place. For the example query in Figure 3-3, the number of reductions mea- 

sured by Shapiro's interpreter is three; where each commitment counts as a re- 

duction. The evaluation of system calls, supported by calls to the underlying 

Prolog, are not counted as reductions. However, these system calls do contribute 

to the overall work done in evaluating programs. By ignoring their contribution 

the comparison of programming techniques which make use of system primitives is 

meaningless or at best misleading. If we also consider the successful system calls 

as reductions, then the evaluation will now perform six reductions (three more 

because of system guards) 1. 

'It may be the case that some system calls like == should not be counted as a reduction 

as they are simple, and could be compiled to be part of the head unification. However, 
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Another limitation is that current interpreters try evaluating the alternatives 

for a given predicate top-down, committing to the first clause whose guarded 

goals succeed. So reductions can only be counted for the clauses that have been 

attempted. Hence the reduction count depends on the order of the clauses. In a 

parallel OR-evaluation model the set of guarded goals for the clauses whose head 

unified successfully should be evaluated in parallel, the evaluation committing to 

the first clause whose guard succeeds. 

Finally if a goal fails, then in the current interpreters it is rescheduled and 

may be re-attempted (the failed goal will be re-evaluated if the computation goes 

on for further cycles before the whole computation deadlocks). The re-evaluation 

of failed goals may introduce erroneous statistics into the reduction count (that 

is if reductions are performed in a deep guard evaluation before failure, these 

reductions will be repeated when the goal is re-evaluated). 

3.3.3 Suspensions 

This parameter attempts to count the number of suspended evaluations in the 

evaluation of a query. The number of suspensions may be dependent on when 

suspended evaluations are rescheduled. When an evaluation suspends in the ex- 

isting interpreters they are immediately rescheduled for evaluation; this is known 

as busy waiting. For example, the query in Figure 3-4 will undergo three reduc- 

tions in three cycles, and incur three suspensions, assuming that the interpreter is 

evaluating the query breadth-first. However, a non-busy waiting strategy could 

have been used 2. Using an ideal non-busy waiting strategy each suspended 

as a general principle system calls should be counted as reductions as they contribute 

to the overall work done. 

2The suspended goals could be hooked (or tagged) to the variables that they are sus- 

pended on so that they can be reactivated when sufficient variables become instantiated. 
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goal will be suspended once. So, the example query in Figure 3-4 will incur two 

suspensions. 

Another point to note is that current interpreters process the goals from left- 

to-right, allowing any bindings that result to be made available to the remaining 

goals to be processed in the current cycle. This may allow a goal to reduce in the 

current cycle which would suspend if the goals were evaluated in a different order. 

Finally, as failed goals are rescheduled they may introduce erroneous statistics 

into the suspension count as failed goals will add to the suspension counts. 

3.4 Requirements of an improved model 

Many of the limitations and inaccuracies of the statistics generated by current 

interpreter implementations are due to the execution mechanisms employed to 

model these languages. The collection of more meaningful statistics requires the 

development of an improved implementation. Such an implementation would have 

to exhibit the following features: 

The implementation must distinguish between suspension and failure of an 

evaluation of a goal. Goal evaluations can either: 

The implementation must more accurately measure the depth of the evalu- 

ation tree: 

- the depth of the evaluation tree must account for the use of deep 

guards; 
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- the depth of the evaluation tree should not be dependent on goal or 

clause order; 

- the depth of the tree should account for producer-consumer type algo- 

rithms. That is, a consumer should suspend for as many cycles as it 

takes the producer to generate the message. This is particularly rele- 

vant in the case of deep guarded producers, where consumer processes 

should suspend for the duration of the producers guard evaluation. 

The implementation should model parallel AND-parallelism: 

each of the goals in the conjunction should appear to be evaluated in 

parallel; 

each AND-parallel goal should be reduced once in each cycle. The 

reduction may take place in the guarded evaluation in the case of deep 

guards; 

the simulated reduction of each goal in a given cycle should be inde- 

pendent of the actual order in which the goals are processed. 

The implementation should model parallel OR-parallelism: 

- each of the clauses that a goal could use to reduce should appear to be 

explored in parallel; 

- in a parallel evaluation a goal should commit to the first clause whose 

guard successfully terminates; 

- the evaluation of a goal suspends if no committable clause exists and at 

least one clause evaluation suspends (not suspend or fail as in current 

interpreters). 

In the following subsection we consider the idealisations made in the design of 

our improved execution model. Then taking each of the requirements above we 

incrementally develop an improved interpreter. The interpreter developed aims 
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to provide a fully parallel model of program execution with which we can col- 

lect meaningful statistics. Using an interpreter allows us to collect coarse grained 

information like number of commitments or size of suspension queues. These 

coarse parameters are similar to the coarse grained parameters, like logical in- 

ferences [Wilk 83], collected for sequential logic programming languages (Pro- 

log) and to the currently accepted evaluation parameters used for the CCND 

languages [Shapiro 83] [Sterling & Codish 87] [Okumura & Matsumoto 87]. How- 

ever, it does not easily allow us to measure fine detail like the cost of the commit- 

ment operation. 

The dynamic cost of various operations and the reference characteristics of 

CCND languages would require the instrumentation of a suitable and representa- 

tive abstract machine, like [Crammond 88] for Parlog. The emulator for such an 

abstract machine can then be used to collect information about data and instruc- 

tion referencing, in the same vein as [Tick 87]. This approach was not feasible for 

this work because there was no representative abstract machine for the entire class 

of CCND languages available for instrumentation. 

3.5 Idealisations in our improved model 

3.5.1 AND-parallel idealisations 

In Shapiro's interpreter the goal list is processed in a left-to-right order, any bind- 

ings made in the evaluation of goals take place immediately. So, these bindings 

will be available to any remaining goals in the goal list. Hence the evaluation is 

dependent on goal order. 

A fully accurate model would be able to determine exactly when a goal makes 

a binding, how long it would take for this binding to reach another goal and 

whether this would be in time for the goal to use it. Such a model would be 

heavily implementation dependent and its results would not transfer easily to 
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other implementations. Clearly the inherent parallelism should not be dependent 

on goal order. Instead we make the assumption that, in a cycle, a goal can only 

use bindings available to it at the start of the cycle. Such a model may not display 

all the parallelism that could be achieved in a given implementation, but at least 

it gives a measure which is not dependent on how the goals are ordered. 

3.5.2 Guard evaluation idealisations 

Shapiro's model assumed, that in a cycle, a goal can be head unified with the 

clauses in the system, the guarded goals could be evaluated, and the body goals 

committed to. This model assumed that guard evaluations take zero cycles, so no 

contribution of the guard evaluations are seen in the overall depth measure of the 

evaluation. Shapiro's depth measure (cycles count) only records the depth of the 

commitments of the goals at the top-level of the AND/OR-tree. Only in the case 

where all guards are all flat does this measure give an indication the depth of the 

evaluation tree. 

We propose two alternative models for incorporating the effect of the guard 

evaluation into the overall evaluation. The first assumes that in a cycle, a goal 

can be head unified with a clause and the guarded goal evaluation instigated. The 

body goals will be committed to at a depth of 1+(the depth of the guarded 

evaluation). Note that this model assumes that guarded system goals (flat 

guards) will evaluate in 1 cycle. The second assumes that in a cycle, a goal can 

be head unified with a clause and either the guarded evaluation instigated or a 

system guard evaluated. Commitment to the body goals occurs at 1+(the depth 

of the guarded evaluation) for deep guards and in the next cycle for flat 

guards. Note that this model assumes that system goals incur no cycle costs. 

We adopt the second model as this model has a similar notion of depth to the 

previous implementations when executing flat guarded programs. 
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It should be noted that most cycle based models for obtaining a measure of the 

depth of the evaluation tree will be prone to giving distorted results, in that they 

will tend to associate fixed costs with the various components of the evaluation, like 

head unification, system call evaluation and commitment. Although an elaborate 

model of cost could be developed, these costs would tend to be implementation 

dependent. Moreover, such a model is unlikely to give a radically different view of 

the general features of the evaluation compared with a fixed cost model. 

3.5.3 OR-parallel idealisations 

The model of inherent OR-parallelism requires the evaluation to commit to the 

clause whose first guard successfully terminates. In our system the duration of 

a guard evaluation is approximated by the depth of its evaluation tree. So the 

evaluation should commit to the guard with the shallowest evaluation tree. 

3.5.4 System call idealisations 

The evaluation of system calls contributes to the overall work done in the evalu- 

ation of a goal. We assume the evaluation of a system call counts as a reduction. 

It may be the case that some system calls like == should not be counted as a 

reduction as they are simple, and could be compiled to be part of the head uni- 

fication. As a general principle system calls should be counted as reductions as 

they contribute to the overall work done. 

In suspending the evaluation of a system call we assume it behaves like a 

goal with one clause. Later in this thesis (section 4.2.2), we consider alternative 

suspension mechanisms and this idealisation will reflect the fact that there should 

be no performance difference in which suspension mechanism is employed for such 

calls. 
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3.6 Development of our improved model 

We could implement the required improved execution model by an abstract ma- 

chine emulated in 'C' (see section 2.6.2). The abstract machine could then be 

instrumented to dump, rather than dynamically collect information (as this will 

reduce the speed of the system) about program evaluation. Alternatively, we could 

implement an improved interpreter which could either dynamically collect statis- 

tics like the previous evaluation interpreters or dump information about the pro- 

gram evaluation as in the 'C' emulator. We have chosen to implement an improved 

interpreter which will then be used to dump profiling data about the program ex- 

ecution. This dump data is post analysed. Adopting a interpreter rather than a 

'C' based emulator allows us to rapidly prototype our system [Sterling & Beer 86], 

however the trade-off is that our system executes orders (at least 2) of magnitude 

slower than a comparable 'C' version. 

In this section we take each of the requirements for an improved evaluation 

system given in section 3.4 and incrementally design and develop an improved 

interpreter. 

3.6.1 Suspension/ Failure 

Providing a interpreter which can distinguish between suspension and failure re- 

quires several improvements to the basic interpreter, given in Figure 3-1. The 

basic interpreter returned only two states nodeadlock or deadlock/failed in- 

dicated by the interpreter succeeding or failing. To indicate three possible termi- 

nation states, nodeadlock, deadlock or failed, requires an additional argument 

which indicates the final state of the computation. This results in a two argument 

(top-level) interpreter, as given in Figure 3-5. 
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solve(Goal,StatusOut) :- 
schedule(Goal,[],QueueTemp), 
append(QueueTemp,[cycle],Queue), 
solve(Queue,deadlock,StatusOut). 

Figure 3-5: Two argument call for a suspend/fail Parlog interpreter 

The next stage is for each of the clauses in the original interpreter, Figure 3-1, 

to support this extra argument. The resulting interpreter is given in Figure 3-6. 

This interpreter has the following procedural reading: 

If the goal list only contains a cycle marker, the evaluation has terminated 

successfully, so set the output status flag to nodeadlock. 

If each goal in the goal list has been attempted and the current status flag 

is deadlock, then set the output status flag to deadlock. 

If each goal in the goal list has been attempted and the status flag is 

nodeadlock, then re-enqueue the cycle marker, set the status flag to 

deadlock and pass the output status flag onto the next cycle of the solver. 

If the dequeued goal is a system call and can be evaluated (that is if the goal 

is sufficiently bound to allow it to be evaluated), evaluate it using Prolog's 

built in metacall (call/1). If the evaluation fails then the output status 

flag is set to failed; if the evaluation succeeds then continue evaluating the 

goal list; and if the goal is not sufficiently bound to be evaluated suspend 

the goal and then continue evaluating the goal list. 

Checking if a goal is sufficiently bound can be simply achieved by a call such 

as: 

eval(_ is Y) :- numbervars(Y,1,1). 
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solve([cycle],_,nodeadlock) :- !. 
solve([cyclel_],deadlock,deadlock) :- !. 
solve([cyclelRest],nodeadlock,StatusOut) :- !, 

append(Rest,[cycle],NextQueue), 
solve(NextQueue,deadlock,StatusOut). 

solve([GoallRest],StatusIn,StatusOut) :- 
system(Goal), 
(eval(Goal) -> 

(call(Goal) -> solve(Rest,nondeadlock,StatusOut) 
StatusOut = fail) ; 

schedule(suspend(Goal),Rest,NextQueue), 
solve(NextQueue,Statusln,StatusOut)). 

solve([GoallRest],Statusln,StatusOut) :- 
get_modes(Goal,Functor,Arity,GoalArgs,Modes), 
functor(ClauseHead,Functor,Arity), 
bagof( 

(StatusGuard, (ClauseHead :- (Guard:Body))), 
Functor"HeadArgs"GoalArgs"StatusHU" 
( 
clause(ClauseHead,(Guard:Body)), 
ClauseHead =.. [FunctorlHeadArgs], 
verifymodes(Modes,GoalArgs,HeadArgs,StatusHU), 
(StatusHU == nodeadlock -> 

solve(Guard,StatusGuard) 
StatusGuard = StatusHU)), 

Guardlnfo), 
(pick_commitment(Guardlnfo,(Goal :- (Guard:CommitBody))) -> 

schedule(CommitBody,Rest,NewQueue),!, 
solve(NewQueue,nodeadlock,StatusOut); 

suspended(Guardlnfo) -> 
schedule(suspended(Goal),Rest,NewQueue),!, 
solve(NewQueue,Statusln,StatusOut); 

StatusOut = failed). 

Figure 3-6: A suspend/fail Parlog interpreter in Prolog 
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verify_modes ([] , [] , ,nodeadlock) :- !. 
verifymodes ([' ?' I Modes] , [GArg (GArgs] , [HArg I HArgs] ,Status) 

'<='(HArg,GArg,StatusTemp), 
(StatusTemp == nodeadlock -> 

verify modes(Modes,GArgs,HArgs,Status) 
Status = StatusTemp),!. 

verify_modes(['"IlModes],[GArgIGArgs],[HArgIHArgs],Status) :- !, 
':='(GArg,HArg,StatusTemp), 
(StatusTemp == nodeadlock -> 

verifymodes(Modes,GArgs,HArgs,Status) 
Status = StatusTemp). 

'<='/2 ONE WAY UNIFICATION PRIMITIVE 
'<='(X,Y,nodeadlock) :- 

var(X), !, X=Y. 

'<='(_,Y,deadlock) .- 
var(Y), !. 

'<='([XIXs],[YIYs],Status) :- !, 
'<='(X,Y,Statusl), '<='(Xs,Ys,Status2), 
(Statusl==nodeadlock,Status2 ==nodeadlock -> 

Status = nodeadlock ; 

(Statusi == failed;Status2==f ailed) -> 
Status = failed 

Status = deadlock). 
'<='(X,Y,Status) :- 

atomic(X),!, 
(X=Y -> Status = nodeadlock ; Status = failed). 

'<='(X,Y,Status) :- 
X=..[FIXs], Y=..[FIYs], '<='(Xs,Ys,Status). 

,<=,(-,-,failed). 

% ':='/2 ASSIGNMENT UNIFICATION PRIMITIVE 

':='(X,Y,nodeadlock) :- 
var(X), X=Y,!. 

':='(_,_,failed). 

Figure 3-7: Mode based unification for suspend/fail PARLOG interpreter 
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which indicates that the is/2 system call can be evaluated if its second 

argument contains no variables. 

Before considering the procedural interpretation of the clause that processes 

Parlog goals we should consider some of the required extensions and how they may 

be achieved. The reduction/suspension/failure of a Parlog process requires 

several extensions. 

- The head unification of a goal with some clause head may suspend, succeed 

or fail. This requires an extension to the mode based unification given in 

Figure 3-2, which is used by the basic interpreter. The new mode based 

unification should indicate the state of the unification; again this is achieved 

using an additional argument. The resulting mode based unification is given 

in Figure 3-7. 

Suspending a goal evaluation requires that no clause is committable and at 

least one clause evaluation suspends. Failing a goal evaluation requires that 

no clause is committable and no clause has suspended. These requirements 

mean that each clause has to be attempted and the status of each guard 

evaluation collected. This is achieved using a Prolog bagof/3 metacall. 

Once a set of clause evaluation statuses are known, picking a committable 

clause, or testing if the goal evaluation has suspended, or testing if the 

goal evaluation has failed is a relatively simple task. The code for picking 

a committable clause or testing if the goal evaluation suspends is given in 

Figure 3-8. 

Now we can consider the procedural interpretation of the clause used to reduce 

a Parlog process. 

Firstly, obtain the mode declarations for the dequeued Parlog goal. Secondly, 

for each clause (using a bagof/3) head unify the goal and the clause head. 

If the unification succeeds then evaluate the guard. The state of each clause 
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pick_conunitment([(nodeadlock,Clause)L],Clause) :- ! 

pick-commitment ([_IRest] ,Clause) :- 

pick-commitment (Rest, Clause). 

suspended(GuardInfo) :- 

member((deadlock,_),GuardInfo). 

Figure 3-8: Simple clause selection for suspend/fail PARLOG interpreter 

evaluation is collected. Finally, if there is a committable clause, schedule 

its body goals for evaluation; if no committable clause exists and a clause 

evaluation suspends then suspend the goal evaluation; otherwise the goal 

evaluation failed so set the output status flag to failed. 

3.6.2 Depth (cycles) 

In a parallel computation the length of the evaluation provides an important mea- 

sure; comparing the execution time for a parallel evaluation with the execution 

time on a single processor indicates the degree of parallelism. For logic based 

programs the depth of the search tree can give a measure of the duration of the 

computation. However, some points should be noted: 

If the search tree is explored sequentially, as in Prolog, the duration of the 

computation will not depend on the depth of the search tree but on the 

length of those branches in the tree which are explored. 

If an OR-parallel evaluation strategy is used, the duration of the evaluation 

involves summing the expected duration of each of the goals (which will be 

tried sequentially); that is the depths of the goals evaluation. 

For the CCND languages, where the search space is explored partly in OR- 

parallel and partly in AND-parallel, the duration of the computation is more 
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complex to calculate as some goals in the evaluation may not be explored for 

several cycles (corresponding to the possibility of some goals suspending). 

Shapiro proposed the cycle depth measure described in section 2.6.1.2 for the 

evaluation. However, the depth measured by his Concurrent Prolog interpreter 

(see section 2.6.1.2) did not include the depth of the guard evaluations (see section 

3.3.1). The mechanism used in Shapiro's CP interpreter [Shapiro 83] provides 

the basis of our cycle counter (depth measure). Shapiro's interpreter included 

a counter in the cycle marker. On each new cycle this counter is incremented. 

The first stage of our cycle counter is to introduce this mechanism into our basic 

interpreter, given in Figure 3-1. The resulting interpreter has two arguments, the 

goal and its evaluation depth. Figure 3-9 is the top-level call of this cycle counting 

interpreter. 

solve(Goal,StatusOut) :- 

schedule(Goal,[],QueueTemp), 

append(QueueTemp,[cycle(1)],Queue), 

solve(Queue,deadlock,Status0ut). 

Figure 3-9: Two argument top-level cycle counting Parlog interpreter 

The second stage, incrementing the cycle counter each cycle, requires modifying 

the third clause of our interpreter (Figure 3-6), as follows: 

solve([cycle(CurrentCycle) IRest],nodeadlock,Status0ut) :- ! 

NextCycle is CurrentCycle +1, 

append(Rest,[cycle(NextCycle)],NextQueue), 

solve(NextQueue,deadlock,StatusOut). 

However, Shapiro's mechanism does not provide a means of including the cycles 

incurred in the guard evaluation in the overall cycle measure. To incorporate 

the cycles incurred in the guard evaluation requires some mechanism by which 
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solve(Goal,StatusOut,DepthOut) :- 
schedule(Goal,[],QueueTemp), 
append(QueueTemp,[cycle(1)],Queue), 
solve(queue,deadlock,StatusOut,DepthOut). 

solve([cycle(Depth)],_,nodeadlock,Depth) :- !. 
solve([cycle(Depth)I_],deadlock,deadlock,Depth) !. 
solve([cycle(Depth)IRest],nodeadlock,StatusOut,DepthOut) 

DepthNext is Depth + 1, 
append(Rest,[cycle(DepthNext)],NextQueue), 
solve(NextQueue,deadlock,StatusOut,DepthOut). 

solve([GoallRest],StatusIn,StatusOut,DepthOut) :- 
system(Goal), 

(eval(Goal) -> 
(call(Goal) -> solve(Rest,nondeadlock,StatusOut,DepthOut); 

StatusOut = fail) ; 

schedule(suspend(Goal),Rest,NextQueue), 
solve(NextQueue,StatusIn,StatusOut,DepthOut)). 

solve([GoallRest],StatusIn,StatusOut,DepthOut) :- 
get modes(Goal,Functor,Arity,GoalArgs,Modes), 
functor(ClauseHead,Functor,Arity), 

bagof( 
(StatusGuard, GuardDepth,(ClauseHead :- (Guard:Body))), 
Functor-HeadArgs-GoalArgs-StatusHU- 

clause(ClauseHead,(Guard:Body)), 
ClauseHead =.. [FunctorlHeadArgs], 
verify_modes(Modes,GoalArgs,HeadArgs,StatusHU), 
(StatusHU == nodeadlock -> 

solve(Guard,StatusGuard,DepthGuard) 
StatusGuard = StatusHU)), 

Guardlnfo), 

(pick_commitment(Guardlnfo, CommitDepth, 
(Goal :- (Guard:CommitBody))) -> 

schedule(CommitBody,Rest,NewQueue),!, 
solve(Newqueue,nodeadlock,StatusOut,DepthOut); 

suspended(Guardlnfo,SuspendDepth) -> 
schedule(suspended(Goal),Rest,NewQueue),!, 
solve(Newqueue,Statusln,StatusOut,DepthOut); 

StatusOut = failed). 

Figure 3-10: Three argument call for Parlog in Prolog 
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the depth of a guard evaluation is returned. This is achieved by having a three 

argument call. The first argument is the goal conjunction to be evaluated, the 

second argument is the final status of the evaluation and the third is the depth of 

the evaluation. Figure 3-10 provides such a three argument interpreter. 

We can now develop a mechanism by which the cycles incurred in the guard 

evaluation can contribute to the overall cycle (depth) measure. The actual 

mechanism developed forms the means by which we also model inherent AND- 

parallelism, and is covered in the next section. 
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3.6.3 AND-parallelism 

As stated earlier (see section 3.3.1) current interpreters evaluate the process 

queue left-to-right and any bindings made by the evaluation of goals in the queue 

take place immediately. So these bindings will be available to any remaining goals 

in the goal list. This will allow goals that require these bindings to reduce in the 

current cycle. Hence the evaluation is dependent on goal order. We make the 

assumption that, in a cycle, a goal can only use bindings available to it at the 

start of the cycle (see section 3.5). 

To offer such a model requires the addition of a binding list in which the 

bindings produced are maintained until the appropriate cycle. In the case of deep 

guards this mechanism can also be employed to account for the cycles performed 

in the guard evaluation. As well as having a binding list we maintain a commit 

list, this commit list contains a set of 'body goal'/'depth counter' pairs. The 

depth counter indicates when the body goals would have been committed to if the 

guard evaluation took place in parallel with other body goal evaluations. We have 

combined both the lists (bindings and goals) into one list. The new list contains 

wtc/3-(wait to commit) structures. Such a structure contains a relative depth 

counter (the depth of the guard evaluation), the goal that was evaluated and the 

clause that is to be committed to. The output bindings are made by unifying the 

goal and the head of the committed clause when the appropriate cycle is reached. 

Implementing this functionality in our interpreter requires an additional argu- 

ment, a wait to commit list, in the main loop of our interpreter. The resulting 

'When carrying out the guard evaluation a copy of the goal is used to select the 

committable clause, hence the bindings that result are maintained in the committed 

clause and only exported when the goal and the clause head are unified. Using this 

mechanism the binding list becomes semi-implicit, in that no real binding list need be 

maintained. This method is suitable for safe languages, like Parlog. 
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solve([cycle(Depth)],[],_,nodeadlock,Depth) :- !. 

solve([cycle(Depth){_],[],deadlock,deadlock,Depth) :- !. 

solve([cycle(Depth)IRest],WCL,_,StatusOut,DepthOut) :- 

do_a_wait_update(WCL,Commits,WCLnext), 

DepthNext is Depth + 1, 

append(Rest,Commits,TempQueue), 

append(TempQueue,[cycle(DepthNext)],NextQueue), 

solve(NextQueue,WCLnext,deadlock,StatusOut,DepthOut). 

solve([GoallRest],WCL,StatusIn,StatusOut,DepthOut) :- 

system(Goal), 

(eval(Goal) -> 

(copy(Goal,GoalCopy), 

call(GoalCopy) -> 

append([wtc(1,Goal,GoalCopy)],WCL,WCLnxt), 

solve(Rest,WCLnxt,nondeadlock,StatusOut,DepthOut) 
StatusOut = fail) ; 

schedule(suspend(Goal),Rest,NextQueue), 

solve(NextQueue,WCL,StatusIn,StatusOut,DepthOut)). 

solve([GoallRest],WCL,StatusIn,StatusOut,DepthOut) :- 

get_modes(Goal,Functor,Arity,GoalArgs,Modes), 
functor(ClauseHead,Functor,Arity), 

bagof( 
(StatusGuard, GuardDepth,(ClauseHead :- (Guard:Body))), 

Functor"HeadArgs"GoalArgs"StatusHU" 

clause(ClauseHead,(Guard:Body)), 
ClauseHead =.. [FunctorlHeadArgs], 
verify_modes(Modes,GoalArgs,HeadArgs,StatusHU), 
(StatusHU == nodeadlock -> 

solve(Guard,StatusGuard,DepthGuard) 
StatusGuard = StatusHU)), 

Guardlnfo), 
(pick_commitment(Guardlnfo, CommitDepth,(Head:-(Guard:Body))) -> 

append([wtc(CommitDepth,Goal,(Head:-(Guard:Body)))],WCL,WCLnxt), 
solve(Rest,WCLnxt,nodeadlock,StatusOut,DepthOut); 

suspended(Guardlnfo,SuspendDepth) -> 
schedule(suspended(Goal),Rest,NewQueue),!, 
solve(NewQueue,WCL,Statusln,StatusOut,DepthOut); 

StatusOut = failed). 

Figure 3-11: Parlog interpreter with a bindings and commitments queue 
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interpreter is given in Figure 3-11. The processing of the wait to commit list is 

given in Figure 3-12. 

do_a_wait update([] , [] , []) . 

do_a_wait_update([wtc(1,Goal, (Goal:-(_:Body)))IRest],Commits, 
WCLOut) :-!, 

do_a_wait_update(Rest,Commit sRest,WCLOut), 
schedule(Body,CommitsRest,Commits). 

do_a_wait_update([wtc(1,Goal, Goal) I Rest], Commits, WCLOut) :-!, 
do_a_wait_update(Rest,Commits, WCLOut). 

do_a_wait_update([wtc(D,G,C)IRest],Commits, 
[wtc(Dnext,G,C)JWCLOut]) :- 

Dnext is D - 1, 
do_a_wait_update(Rest,Commits, WCLOut). 

Figure 3-12: Binding/commitments processing for Parlog interpreter 

3.6.4 OR-parallelism 

The model of inherent OR-parallelism requires the evaluation to commit to the 

clause whose first guard successfully terminates. In our idealisation this will 

be the guard with the shallowest evaluation depth (see section 3.5). This en- 

hancement can be simply incorporated in pick-commitment/3. The sequen- 

tial pick-commitment/3, given in Figure 3-8, recurses down the (guard state, 

guarddepth, clause) list produced by evaluating each of the guarded goals in 

bagof/3, returning the first committable clause. 

The pick-commitment/3 of Figure 3-13 picks the clause with the shallowest 

guard evaluation as the committable clause. This is achieved by comparing the 

depth of the first committable clause with the depth of the committable clause 

chosen from the remainder of the (guard state, guarddepth, clause) list. 
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pick_commitment([(nodeadlock,Depth,Clause)],Depth,Clause). 

pick_commitment([HeadITail] ,Clause-out ,Dept h_out) :- 

Head = (nondeadlock,Depthii,Clause-H), 

, 

(pick_commitment(Tail,Depth-T, Clause_T) -> 
(Depth_T > Depthii -> 

Clause-out = Clause-H, 

Depth-out = Depthii 

true -> 

Clause-out = Clause T, 
Depth-out = Depth T) 

Clause-out = Clause-H, 

Depth-out = Depth-H). 

pick-commitment ([_ITail] , Depth, Clause) :- 
pick_commitment(Tail,Depth, Clause). 

Figure 3-13: Modelling parallel clause selection in a interpreter 
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3.6.5 Features of our improved model 

The features of our interpreter are as follows: 

both AND and OR-parallelism are modelled; 

each of the guarded goals for a given predicate are tried and relevant statistics 

collected; 

the statistics from the evaluation of the guarded goal are used to pick the 

solution path (currently this is the shallowest successful guard, i.e. the first 

guard that would have succeeded in a breadth-first execution); 

the goals that form the goal list each undergo one reduction in a cycle; any 

bindings made as the goal list is processed occur only when all the goals have 

been attempted; 

the evaluation of a system goal which makes a call to the underlying Prolog 

system is counted as one reduction; 

bindings made using calls to the underlying Prolog system are made only 

when all the goals have been attempted; 

the interpreter makes a distinction between suspension and failure; 

although guard evaluations are carried out to completion in one go, the 

commitment of a goal to a given clause is prevented for the number of cycles 

the guard took to evaluate; and 

the suspension of all the guarded goals causes suspension of the goal being 

evaluated. 
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3.7 Summary 

In this chapter the following have been presented and discussed: 

Why a measure of the inherent parallelism is useful. 

How we can obtain a measure of the inherent parallelism by simulating the 

execution of the evaluation on an unlimited number of processors. 

The current models of execution and what they provide in terms of evaluation 

metrics. 

The currently quoted metrics (cycles, reductions and suspensions) and 

their limitations. 

The requirements of an improved model of execution, which would be used 

to collect information about the inherent parallelism. 

The idealisations we assume in our execution model. 

The incremental design and implementation of an improved interpreter which 

forms the basis of our new evaluation system. 
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Chapter 4 

New evaluation parameters and 
example evaluations 

4.1 Overview 

The current interpreters used for evaluation are limited in two respects: 

their model of breadth-first execution of these languages contains several 

major deviations from a fully parallel execution; 

the evaluation parameters used (cycles, reductions and suspensions) give 

no indication of various alternatives open to the language implementors. 

In chapter 3, we considered limitations in the execution model provided by 

the current interpreters and then developed a new interpreter which allows us to 

obtain improved measures of the inherent parallelism in a program. 

In this chapter we consider the second limitation of the current evaluation sys- 

tems; the parameters collected. Current parameters give no indication as to how 

the program would have behaved under alternative models of execution. For exam- 

ple, on commitment to one clause the other guard evaluations could be terminated 

or ignored. 
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Section 4.2 considers some possible execution alternatives open to language 

implementors. This provides the basis for a set of parameters which can be used 

to indicate the relative merits of these alternatives. These are presented in Section 

4.3. 

In section 4.4 we present a tool developed to profile the various proposed pa- 

rameters over time (cycles). Later in this thesis we use this profiling tool to 

consider the execution behaviour of several AI programs. 

Section 4.5 presents measurements of our parameters for one CCND language, 

Parlog. An evaluation using these parameters is given for a small set of simple 

example programs and the results analysed. The nature of these examples allows 

us to consider the theoretical behaviour of these programs compared with the 

behaviour predicted by our evaluation system. 

Finally, section 4.6 considers some of the limitations of our evaluation system. 

4.2 Basis for new parameters 

Apart from having inaccuracies in measuring the inherent parallel behaviour of 

programs introduced through limitations in the execution model, the parameters 

proposed by Shapiro (cycles, suspensions and reductions) do not give any 

indication of the effects that alternative implementation models may have had. 

Currently the models of execution being adopted for the CCND languages are 

settling down to a subset of the possible models. For example, the languages 

are being restricted to flat guards or only allowing the clauses to be investigated 

sequentially. In general the subset being adopted as standard is being governed 

by implementation issues rather than application requirements. This work aims 

to present an applications viewpoint of the possible direction that the CCND 

implementors may take. To this end we have considered how applications would 
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behave on various alternative executions and hence provide some applications 

rationale for the implementation alternatives. 

The execution alternatives considered are relevant to the complete CCND lan- 

guage rather than any given subset and represent extremes in the implementation 

options, for instance the alternatives for scheduling are busy and non-busy wait- 

ing. Our results for busy waiting, an implementation option which many think 

is not appropriate, indicates that for Layered Streams this could be a suitable im- 

plementation option (see section 5). In the following subsections we consider some 

of these alternatives. The new parameters we propose aim to provide information 

about the relative merits of these different alternatives. 

4.2.1 Pruning OR-branches 

The parallel evaluation of a goal invokes several guarded systems, one for each 

clause that the goal successfully head unifies with. The evaluation commits to the 

first clause whose guarded system successfully terminates. On commitment, the 

other guarded systems invoked by the goal evaluation can be terminated or ig- 

nored. Terminating the alternative clauses (pruning) requires the system to stop 

the computation being carried out in the alternative branches. This may prevent 

these branches carrying out needless computation. However, if the guarded goals 

for a given predicate are balanced, that is evaluated in the same time, then prun- 

ing the OR-search will not prevent any computation in the alternative guards. 

Ignoring the other alternative clauses (non-pruning) when a goal commits, re- 

quires the system to disregard any commitment requests from the other alterna- 

tives should their guarded systems also terminate successfully. This assumes that 

guard evaluations terminate and certainly do not diverge. This may save some 

computation (in sending a terminate message to the other guard evaluation) if the 

guards are balanced or in cases where only one clause can be committed to. 

Even if pruning the clauses reduces some theoretical computation it may be 

worth attempting only if the amount of work saved is comparable to the expected 
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overheads of terminating the other clause evaluations. This will depend on the 

architecture and implementation. 

Pruning clauses is likely to be most beneficial for programming techniques 

and applications that employ an uneven guarded computation. Such programs 

in the main will employ deep guards [Gregory 87]. However, it should be noted 

that even flat guards may benefit from pruning. This will occur when some of 

the (flat) guards have data dependencies which result in them taking longer to 

evaluate than other guards, or if some guards make use of costly system predicates 

while others do not. However, most programs with flat guards are likely to have 

an even guard evaluation. 

4.2.2 Suspension mechanisms 

A goal evaluation suspends if there is no committable clause and at least one of the 

guard evaluations or head unifications suspends. Suspending the evaluation can 

be achieved in several ways, the two extremes being goal suspension and clause 

suspension. Goal suspension involves suspending the parent goal of a computation 

when each of the clauses it could reduce by suspend. Note that this parent goal 

may actually be the guarded goal of some other evaluation. 

Alternatively each of the clauses (guarded computations and head unifications) 

could be suspended, which is known as clause suspension. Here the current state 

of each clause evaluation is saved. As there may be recursive guard evaluations 

invoked, clause suspension may result in a tree of suspended evaluations, rep- 

resenting the guard call structure. The trade-off between these two extremes is 

basically a space-time consideration. Suspending a goal requires less space than 

suspending the evaluation of each of the clauses. However, if some computation is 

performed in the evaluation of the guarded goals before the evaluation suspends 

then this computation will be lost, and repeated, if the goal is suspended. 
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In our system we treat system calls as goals with one clause. This is because we 

assume the two suspension mechanism alternatives should not portray a difference 

for system calls (see section 3.5). 

4.2.3 Scheduling policy 

Another choice is how and when suspended evaluations are re-scheduled. When 

an evaluation suspends it could be tagged to the variables which are required and 

unbound and re-scheduled when they become bound, this is known as non-busy 

waiting. It should be noted that some predicates, like merge/3, only suspend on 

one variable whereas others, like equals/2, require both arguments to be bound. 

The other extreme would be to immediately reschedule the suspended evaluation, 

known as busy waiting. 

Employing a non-busy waiting suspension mechanism is appropriate if sus- 

pended evaluations remain suspended for several cycles, for example in generating 

primes numbers by sifting [Gregory 87] most of the filter processes will be sus- 

pended most of the time. Employing a busy waiting suspension mechanism is 

appropriate if suspended goals are only likely to be suspended for a short period, 

as with Layered Streams [Okumura & Matsumoto 87] (see chapter 5). 

4.3 Proposed profiling parameters 

The profiling parameters we propose aim to reflect the effect of the various op- 

tions available in pruning OR-branches, alternative suspension mechanisms and 

alternative scheduling polices. The basic parameters are still suspensions and 

reductions. However, these are given for the various combinations of the execu- 

tion alternatives considered. Two additional parameters are also considered, the 

depth of the evaluation and the minimum reductions. So the basic top-level 

parameters put forward are suspensions and reductions using: 
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busy waiting, non-pruning and goal suspension; 

busy waiting, non-pruning and clause suspension; 

busy waiting, pruning and goal suspension; 

busy waiting, pruning and clause suspension; 

non-busy waiting, non-pruning and goal suspension; 

non-busy waiting, non-pruning and clause suspension; 

non-busy waiting, pruning and goal suspension; and 

non-busy waiting, pruning and clause suspension. 

mode on_either(?,?,?,"). 

on_either(Element,Listl,List2,Output) :- 

member(Element,Listl) 

Output = Listi. 

on_either(Element,Listl,List2,Output) :- 

member(Element,List2) 

Output = List2. 

mode member(?,?). 
member(E,[HIT]) :- 

E == H : true. 

member(E,[HIT]) :- 

E \== H : member(E,T). 

on_either(a,[1,2,3,a,b],[1,2,a,b],Output), 
on-either (b, Output, [11 Output]. Output 1) . 

Figure 4-1: Parallel member test in Parlog 

Table 4-1 gives predicted results for our new parameters for the query in Figure 

,4-1. We now discuss the reductions and suspensions obtained for two of the 
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execution models with reference to this query, (a full description of all 8 models of 

execution is given in appendix A). We also consider the two additional parameters. 

Execution Model Cycles Reductions Suspensions 
Original model Section 3.2 3 11 1 

Busy waiting, Non-Pruning, Goal suspension 10 40 6 

Busy waiting, Non-Pruning, Clause suspension 10 36 14 

Busy waiting, Pruning, Goal suspension 10 38 6 

Busy waiting, Pruning, Clause suspension 10 34 14 
Non-busy waiting, Non-Pruning, Goal suspension 10 38 3 

Non-busy waiting, Non-Pruning, Clause suspension 10 36 4 
Non-busy waiting, Pruning, Goal suspension 10 34 3 
Non-busy waiting, Pruning, Clause suspension 

1 

10 34 4 

Table 4-1: Predicted results for example query 

4.3.1 Busy waiting, non-pruning, goal suspension 

Here the execution model is: suspended evaluations are immediately rescheduled 

for evaluation; on commitment to one clause the other clauses are not terminated; 

and the suspension of an evaluation involves suspending the parent goal. 

We now consider the evaluation of the two query goals given in Figure 4-1: 

goal 1: This goal (on_either(a, [1,2,3,a,b] , [1,2,a,b] ,Output)) evaluation 

results in two sets of guarded systems, member (a, [ 1, 2 , 3 , a , b] ) and 

member(a, [1 ,2,a,b]). The first of these will require 8 reductions to reduce 

to true; that is the guard test takes 1 reduction for each element and the 

commitment another 1. Similarly the second (guard) member (a, [1,2,a,b] ) 

goal requires 6 reductions. 

As this execution model uses non-pruning both these guards will be eval- 

uated fully. So, the total number of reductions performed in the evaluation 

'This is because we count system calls as reductions (see section 3.5). 
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of this goal is 16 (8 in evaluating the first guard, 6 in the second guard, 1 for 

the commitment to the body goals and finally 1 for the output unification). 

The total number of cycles that this evaluation takes is 4. That is the 

evaluation commits to the second, on-either/4, clause after 3 cycles and it 

takes 1 cycle to carry out the output unification. So the binding made to 

the shared variable "Output" will be seen by the other AND-parallel goals 

in cycle 5. 

goal 2: The second goal (on_either(b,Output, [11 Output] ,Outputl)) eval- 

uation results in two sets of guarded goals, member(b,Output) and 

member(b, El IOutput]). The first of these could be evaluated via two 

clauses, however these both suspend on head unification. As we are us- 

ing goal suspension the evaluation of the first guarded goal suspends. The 

second (guard) is able to perform 2 reductions (the guard test and the com- 

mitment to member (b, Output)). The resulting goal could be evaluated via 

two clauses but both of these suspend on head unification. This results in 

the suspension of the second guarded goal. Now both sets of guarded goals 

have suspended the evaluation of the second query goal suspends, giving a 

total of 3 goal suspensions and 2 reductions, the second query goal suspends 

after 2 cycles. 

Using busy waiting this top-level goal will be retried in cycle 3. In cycle 3 

the variable "Output" will still be unbound, so the rescheduled evaluation 

will perform the same 2 reductions and then suspend again. The goal will 

next be tried in cycle 5. 

In cycle 5 the shared variable "Output" will be bound, so the sec- 

ond query goal becomes on_either(b, [1,2,a,b] , [1,1,2,a,b] ,Outputl). 

This goal invokes two guarded systems, member (b, [1, 2 , a, b]) and 

member(b,[1,1,2,a,b]). The first of these will require 8 reductions to 

reduce to true. Similarly the second guard requires 10 reductions. 
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As the execution uses non-pruning both these guards will be evaluated 

fully. Hence the final attempt at evaluating this goal results in 20 reductions 

(8 in the first guard, 10 in the second, 1 for the commitment to the body 

goals and finally 1 for the output unification). The total number of cycles 

that this evaluation takes is 5. That is the evaluation commits to the first 

clause after 4 cycles and it takes 1 cycle to carry out the output unification. 

So, the evaluation of the query using this execution model takes: 10 cycles; 40 

reductions (16 for the first goal, 4 for the second goal before suspension, and 20 

for the final evaluation of the second goal); and 6 goal suspensions (1 suspension 

for the first guarded goal, member(b,L), 1 suspension for the second guarded goal, 

member(b, [1IL]) and 1 suspension for the query goal, these suspensions occur 

twice because of the busy waiting). 

4.3.2 Non-busy waiting, pruning, clause suspension 

Here the execution model is: suspended evaluations are tagged to the variables 

which must be bound before the evaluation can proceed; on commitment to one 

clause the other clauses are not terminated; and the suspension of an evaluation 

involves suspending the clauses. 

We now consider the evaluation of the two query goals given in Figure 4-1: 

goal 1: The evaluation of the first goal of the query will invoke two guarded 

systems, member(a, [1,2,3,a,b]) and member(a, [1,2,a,b]). The first of 

these requires 8 reductions to reduce to true, and evaluates in 4 cycles. The 

second (guarded) goal requires 6 reductions and evaluates in 3 cycles. 

This execution model uses pruning, so on commitment to the second clause 

the system will be able to prevent 2 reductions being performed2 in the 

2That is two reductions at best, ie. assuming that pruning can happen immediately. 
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evaluation of the first guard. Hence the total number of reductions performed 

in the evaluation of this goal is 14 (6 in the first guard (when it is pruned), 

6 in the second guard (when it commits), 1 for the commitment to the body 

goals and finally 1 for the output unification). The binding of the variable 

"Output" will be available to the other goals in cycle 5. 

goal 2: The second goal will invoke two guarded systems, member(b,Output) 

and member(b, [1 I Output] ). The first (guard) could be evaluated via two 

clauses. However, both evaluations suspend on head unification. These sus- 

pended clause evaluations are tagged to the variable "Output". The second 

(guard) is able to perform 2 reductions (the guard test and the commit- 

ment to member (b, Output)). This resulting goal could be evaluated via 

two clauses but again both evaluations suspend on head unification. The 

two suspended clause evaluations are again tagged to variable "Output". 

In cycle 5 the shared variable "Output" will be bound, so the 4 suspended 

clause evaluations will now be evaluated. These will reduce to true in 16 

reductions. Hence the total number of reductions performed in the evalua- 

tion of this goal is 20 (8 in the first guard, 10 in the second (2 before the 

suspensions and 8 after the suspensions), 1 for the commitment to the body 

goal and finally 1 for the output unification). No pruning can take place, 

although the guards are different depths the evaluation of the deeper guard 

(via second clause) is able to perform some evaluation while the first guard 

is suspended. 

So the evaluation of the query using this execution model takes: 10 cycles; 34 

reductions (14 for the first goal and 20 for the second goal); and 4 suspensions. 

4.3.3 Depth of evaluation 

A measure of the average expected processor utilisation is a useful quantity in se- 

lecting appropriate architectures or in estimating expected performance improve- 
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ments. This quantity can be estimated by the average number of reductions that 

can be performed in parallel. While we have measures for the total numbers of 

reductions we require a measure of the duration of the computation. 

Such a measure was available in previous interpreters, the cycle parameter. 

However this parameter was erroneous in several respects (see section 3.3.1). The 

improvements in our interpreter (see section 3.6.5) result in our system providing 

a more accurate measure of this cycle parameter. 

4.3.4 Minimum reductions 

The evaluation of CCND programs contains a mix of AND-parallel evaluations and 

OR-parallel evaluations. It would be useful to have a break-down of the overall 

parallelism in terms of AND-parallelism and OR-parallelism, as this may affect 

the design of abstract machines and implementations of the languages. 

The AND-parallelism can be estimated by comparing the reductions performed 

in only those clauses that are committed to with the cycle parameter. The OR- 

parallelism can be estimated by comparing the overall parallelism with the AND- 

parallelism. 

OR-parallelism Average parallelism / AND-parallelism 

Average parallelism = Total reductions / Depth (cycles) 

AND-parallelism Minimum reductions / Depth (cycles) 

OR-parallelism N Total reductions / Minimum reductions 

The total number of reductions may differ for the different evaluation models, 

this results in several different measures for the OR-parallelism. If goal suspension 

is used then rescheduled goals may result in deep guards being retried and so 

increase the OR-parallelism. To obtain a measure of the minimum reductions 

required we count the reductions in only the guards that are committed to. 
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To obtain a measure of the OR-parallelism we need to have a measure of 

reductions performed in only those guards that are committed to. For the example 

program and query in Figure 4-1 this is sixteen reductions: six reductions to 

evaluate the guard of the on-either goal; one reduction to commit to the assign/2 

system goal; one reduction to evaluate the assign/2 goal and eight reductions 

to evaluate the member/2 test. Comparing this value to the various reduction 

parameters gives a measure of the degree of OR-parallelism, as given in Table 4-2. 

Evaluation Model Reductions OR-Parallelism 
Busy waiting, Non-Pruning, Goal Suspension 40 2.5 
Busy waiting, Non-Pruning, Clause Suspension 36 2.25 
Busy waiting, Pruning, Goal Suspension 38 2.375 
Busy waiting, Pruning, Clause Suspension 34 2.125 
Non-busy waiting, Non-Pruning, Goal Suspension 38 2.375 
Non-busy waiting, Non-Pruning, Clause Suspension 36 2.25 
Non-busy waiting, Pruning, Goal Suspension 34 2.125 
Non-busy waiting, Pruning, Clause Suspension 34 2.125 

Table 4-2: Example of degree of OR-parallelism 

4.4 Profile tool 

As mentioned earlier, see section 3.6, our new interpreter provides information 

about the execution by creating a dump-data file. This dump file contains to- 

kens which allows us to build a parallel picture of the execution under a range 

of alternative models of execution. For example, the tokens indicate when the 

interpreter starts to evaluate a goal and the final outcome (suspension, failure or 

commitment); when the interpreter starts evaluating a guarded evaluation; the 

suspension of an evaluation and if the evaluation had suspended before. 

The tokens in this dump file are used by our post analysis to extract the 

parameters we put forward. The main features of this post analysis are: 
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The profiler maintains a cycle by cycle aggregate of each of the proposed pro- 

file parameters. This provides us with a break down of the various profiling 

parameters which can be used to give a dynamic picture of the execution. 

Moreover this mechanism also provides the means by which we are able to 

collect pruned/non-pruned, busy/non-busy and goal/clause data. 

Profiling the guard data also maintains a cycle by cycle aggregate of each of 

the parameters as collected in the guard evaluation. 

On completing the profiling of some guard data the next token indicates that 

the parent goal either commits, suspends or fails. 

If the goal commits, the clause number and depth of the commitment 

are also returned. This provides information which is used to prune 

those profiling parameters which adopt a pruned execution model. 

The pruned guard cycle by cycle profile is then combined (spliced) into 

its parents cycle by cycle profile. Next, an additional reduction repre- 

senting this commitment is added to each of the reduction parameters 

at the depth at which the guarded evaluation committed. Finally, the 

minimum reduction parameter from the guard evaluation is added 

to the parents minimum reduction parameter, which is then incre- 

mented by one (to reflect the commitment). 

If the goal evaluation suspends for the first time the suspension param- 

eters of the guarded goal evaluations are spliced into the parents profile. 

An additional suspension is also added to all the goal suspension pa- 

rameters at the depth at which the guard suspended. 

- If the goal evaluation re-suspends (non-busy waiting) the busy sus- 

pension parameters of the guarded goal evaluations are spliced into 

the parents profile. An additional suspension is also added to the busy 

waiting goal suspension parameters, at the depth at which the guarded 

evaluation suspended. 
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- Head unifications only contribute to the clause suspension parameters. 

The data produced by our analysis system gives a cycle by cycle break down of 

the various proposed parameters. We have also implemented a profile tool which 

executes under SUNVIEWTM. This tool allows us to see any, or several, profiling 

parameters in graphical form. The tool also provides information on the totals of 

the various parameters. The tool is best used in an interactive mode. However as 

technical reports do not facilitate this usage we have included, where appropriate, 

screendumps of this tool executing. 

The dump file could be used to collect several other parameters. For example, 

we count system calls as reductions, which we use as a measure of parallelism. 

However the dump file contains different tokens for commitments and system call 

evaluations and so different measures for the parallelism could be obtained. Sim- 

ilarly, our current analysis assumes that pruning takes place immediately. How- 

ever the dump file could be processed differently, allowing some number of cycles 

before pruning is applied. This would reflect the possible delay in committing to 

a clause and being able to terminate the evaluation of the other clauses. 

Figure 4-2 contains an example screendump of our tool. The tool shows plots 

of the number of reductions and suspensions (y-axis) in each cycle (x-axis). Such 

plots can be given for any combination of suspension mechanism, scheduling 

strategy and pruning option. The options selected are indicated by the toggle 

buttons on the right hand side. The tool also presents information on the total 

number of reductions and suspensions using a given execution model. These are 

presented next to the toggle buttons for each option. Finally, the tool also contains 

some more general information, like: the goal that was evaluated; the elapsed time 

of the evaluation; and the minimum number of reductions required to evaluate the 

goal, assuming the existence of an oracle to pick the correct clause. 
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Figure 4-2: An example of an interactive profile tool to analyse program execu- 

tion 

4.5 Example executions and measurements 

In this section we consider the behaviour of some simple example programs. This 

serves two purposes: 

considering simple programs allows us to determine the theoretical behaviour 

of these programs and compare it to the behaviour observed using our profile 

tool; 

these example programs hopefully will introduce the reader to the informa- 

tion provided by the profile tool. 
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4.5.1 List member check 

This example program highlights how system calls are handled in our system. 

Consider the program in Figure 3-3 with the following query: 

:- member(a,[1,2,3,4,5,6,a,7,8]) 

Firstly, note that the evaluation of this goal will not result in any suspensions. 

Secondly, as the guards are system calls, pruning the guards will not save any 

reductions. 

The schematic representation of the evaluation of this query on our Parlog 

version of Shapiro's interpreter is given in Figure 4-3 (the -> indicates a reduction, 

while the indentations indicate cycles). This evaluation records 7 reductions in 7 

cycles and 0 suspensions. 

member(a,[1,2,3,4,5,6,a,7,8]) 
->member(a,[2,3,4,5,6,a,7,8]) 

->member(a,[3,4,5,6,a,7,8]) 
->member(a,[4,5,6,a,7,8]) 

->member(a,[5,6,a,7,8]) 
->member(a,[6,a,7,8]) 

-> member(a,[a,7,8]) 
->true 

Figure 4-3: Schematic of member/2 evaluation on the original Parlog interpreter 

Figure 4-4 gives a schematic representation of the evaluation of this query on 

our new system. This system records the evaluation as taking L reductions in 7 

cycles and 0 suspensions. 

For this example, both the original model and our new model appear valid. 

As the guards are flat both systems record the evaluation depth as 7 cycles. Also 

each guard only contains one system call, so the 7 reductions recorded by the 
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member(a,[1,2,3,4,5,6,a,7,8]) 
a == 1 

a 
->member(a,[2,3,4,5,6,a,7,8]) 

a == 2 

a\==2-> 
->member(a,[3,4,5,6,a,7,8]) 

a == 3 

a \_= 3 -> 
->member(a,[4,5,6,a,7,8]) 

a == 4 

a\==4-> 
->member(a,[5,6,a,7,8]) 

a == 5 

a\=-5-> 
->member(a,[6,a,7,8]) 

a == 6 

a \== 6 -> 
-> member(a,[a,7,8]) 

a == a -> 
a \_= a 

->true 

Figure 4-4: Schematic of member/2 evaluation on our new system 

original interpreter are as valid as the 14 reductions recorded by our new system3. 

However, it should be noted that if the guarded goals contained several system 

calls then the original model would appear more erroneous. Figure 4-5 contains 

a reduction profile of the evaluation performed by our system. 

3Although the meaning of a reduction differs for the two systems 
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Figure 4-5: List member check reductions 

4.5.2 Parallel list member checks 

In this example we consider how deep guards are handled in our system. Consider 

the program in Figure 4-1 with the following query: 

on_either(a,[1,2,3,4,5,6,7,8,9,a],[1,a],L) 

The program checks to see if a given a term is on either of two lists. The two 

lists are searched in parallel in the guards of two clauses. The first list that is 

found to contain the given term is returned. Firstly, note that the evaluation of 

the above query will not result in any suspensions. Secondly, as the guards are 

deep and uneven, pruning the guards should save some reductions. 

Figure 4-6 gives a schematic representation of the evaluation of the query 

on our Parlog version of Shapiro's interpreter (the branches of the tree indicate 

reductions while the depth indicates cycles). The evaluation commits to the first 
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one3ther(a,[I,2.3,4,5,6,7.8,9.a1,[I.ald-) 

on(a,[ I ,2.3,4,5,6,7.8.9,aJ) 

on(a,[2,3.4,5.6,7,8,9.a]) 

on(a,13.4.5.6.7.8.9,al) 

I 
on(a,[4,5,6,7.8,9.al) 

on(a,[5,6,7,8,9,a1) 

1 

on(a,[6,7,8.9.a]) 

I 
on(a,[7,8,9.al) 

I 
on(a,[8,9.al) 

I 
on(a.[9.al) 

I 
on(a,[a]) 

cycle 

cycle 

cycle 

cycle 

cycle 

cycle 

cycle 

cycle 

cycle 

cycle 

true 

Hoot explore d 

cycle 

Figure 4-6: Schematic of oneither/4 evaluation on the original Parlog inter- 

preter 

clause (as it is the first clause tried) and incurs 10 reductions in 1 cycle and 0 

suspensions. This does not reflect the nature of the computation, in that the 

guard evaluation takes 10 cycles and yet the overall evaluation only takes 1 cycle. 

Figure 4-7 gives a schematic representation of the evaluation of this query 

on our new system (the branches of the tree indicate reductions while the depth 

indicates cycles). Using the new interpreter the evaluation commits to the second 

clause whose guard succeeds in two cycles. So the evaluation commits to the 

second clause, in cycle 3, and the evaluation of the first clause can be pruned 

from cycle 3 onward (the pruned part of the first guard evaluation is indicated by 

the shading). 

Figure 4-8 contains a profile of the evaluation performed by our system. This 

profile graphically indicates the advantages of pruning in this computation. It is 
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oncither(a,[1.2,3,4,5,6,7,8,9,a1.[1.aM) 

on(a,[1,2,3,4,5,6,7,8.9.a1) 

I 
on(a.[2,3,4.5.6.7,8.9.81) 

I 

on(a,[3.4.5.6.7.8.9.a1) 

I 

on(a,[4.5,6.7,8.9.a]) 

D 

M 

on(a,[1,al) 

on(a,[al) 

Figure 4-7: Schematic of oneither/4 evaluation on our new system 

also worth noting the depth of the overall evaluation (number of cycles) incorpo- 

rates the depth of the guard evaluation. 

96 



loll on61tMr(1, t1,2, 1,0,AAT,I.AU. C1, U, SSSee20 
[l..p Tins 1. SB 0000 
111.1.00 0.!..1100. 6 

TOTALS. 200.001. 4.010 
e 0 80.11 I wm-hurl 161.1 wpa.1100 
e O 60.11 I Non-rrlme i ct.l.l I wp.n.lenl 

.0011 12.1a I eat 1 110.0.011. e 0 
a 0 60.11 t v..../ I cl0.. 1 wopndam 
e 0 Men-111 I Ma-hurl 1 ert I S p..1... 
6 0 ya.-e0.y 1 yen-hurl I C1.0.. 111..00000. 

e 0 yen-.100 1 Pr 16-1 wpn.1en. 
e 0 ya.e,ny 12.ww 
xe A tiny I wen-err./ I sat I lotto... 
21 0 61ry I wan-ft-d I Cl.w. I b100110. 
12 B tw.y 120110" I wt 11.101110. 

12 0 wy 1 h I C1u0. 11/01111000 

2e 0 ino e I 0.0-20-001 1 1.01 1 
1.1.1100. 

26 01000-000y 10180-hurl I Cl.... 11./0:11.0. 
13 0 NO-81011 1 h.0./ I sat I Rmr11m1 

12 0 1100-11111 I P8 111.1..1 8.e,e01en. 

Figure 4-8: Parallel list member check (pruned and non-pruned reductions) 
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4.5.3 Quick-sort 

This example highlights the various differences in the various suspension param- 

eters and how regular and irregular queries result in differing dynamic features 

of the computation. The program being used is quick-sorting a list (see Figure 

2-7). This program was used in section 2.4.6, to highlight the difference in the 

suspension mechanisms employed by the various CCND languages. 

Firstly, we consider how this program behaves if the list to be sorted is already 

ordered. We then consider how this program behaves if the input list is unordered. 

4.5.3.1 Quick-sort of an ordered list 

Consider the program in Figure 2-7 with the following query: 

quicksort([1,2,3,4,5,6,7,8,9,10],L) 

The regular nature of the data for this query allows us to reason about its 

evaluation. Basically, quicksort([1,2,3,4,5,6,7,8,9,10],L) will be reduced 

to the initial qsort/2 goal. This goal is then reduced to a partition/4 and two 

new qsort/2 goals. The partition/4 goal will partition the input list (based on 

the current first element; the pivot) into two output lists. One output list contains 

elements greater than the pivot the other elements less than the pivot. As the input 

list is already ordered the partition/4 goal will only add elements to one of the 

output lists. The two qsort processes will initially suspend awaiting the output 

lists from the partition/4 to be generated. In the following cycle one of the qsort 

goals will be able to reduce, as the partition/4 process constructs the output 

lists. The reduction of this qsort goal will again result in a partition/4 process 

and two qsort/2 processes. The other qsort/2 process remains suspended until 

the entire list has been partitioned, i.e. until the partition/4 processes complete. 
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These processes will behave as before: the partition/4 process will only add 

elements to one of its output lists, the two qsort processes will initially suspend, 

one of which will be able to reduce in the following cycle. 

This computation results in the following partition/4 processes being 

spawned: 

partition([2,3,4,5,6,7,8,9,10],1,Smaller,Larger) 
partition([3,4,5,6,7,8,9,10],2,Smaller,Larger) 
partition([4,5,6,7,8,9,10],3,Smaller,Larger) 
partition([5,6,7,8,9,10],4,Smaller,Larger) 
partition([6,7,8,9,10],5,Smaller,Larger) 
partition([7,8,9,10],6,Smaller,Larger) 
partition([8,9,10],7,Smaller,Larger) 
partition([9,10],8,Smaller,Larger) 
partition([10],9,Smaller,Larger) 
partition([],10,Smaller,Larger) 

Note that Smaller and Larger represent different variables 
in each process above. 

The processes will be spawned in cycles 2,4,6,8,10,12,14,16,18,20 respectively. The 

duration of the processes will be 9,8,7,6,5,4,3,2,1 cycles respectively. So these 

partition/4 processes will terminate in cycles 11,12,13,14,15,16,17,18,19,20,21. 

After cycle 11 there will be one less suspended process each cycle (a qsort/2 

process) until cycle 21. 

This effect has to be combined with the spawning pattern of the qsort/2 goals, 

i.e. initially 2 suspensions, of which 1 reduces in the next cycle. So the overall 

goal suspension pattern is that initially in every other cycle there will be two new 

suspensions, one of which is able to reduce in the following cycle. After cycle 11 

the pattern will be inverted. In every other cycle there will be one new suspension 

followed by two of the suspended goals being re-scheduled and reducing. 

We now consider profiles of this execution obtained on our new system, see 

Figures 4-9, 4-10 and 4-11. 
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Figure 4-9: Quick-sorting an ordered list (goal and clause suspensions) 

Figure 4-9 gives profiles for goal and clause suspensions using busy waiting 

and non-pruning. Using busy waiting gives us a measure of the total number of 

processes suspended. Note that the goal suspension profile (the lower graph) is as 

predicted, that is the total number of suspended processes will initially increase 

in a step wise manner (steps of +2, -1) and from cycle 11 onwards will reduce in 

a step wise manner (steps of +1,- 2). 

Moreover comparing the goal and clause suspension profiles indicates the 

number of clauses that each suspended evaluation could be reduced by in the 

dynamic program 4. This gives a ratio of exactly 2 clause suspensions for every 

4There is a difference between counting the number of clauses for each predicate 

statically, and the dynamic nature of the program, as some predicates may be used 

more often than others, hence weighting the results. Of course comparing suspensions 

for goal and clause suspension mechanisms only provides the dynamic information for 
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Figure 4-10: Quick-sorting an ordered list (busy and non-busy suspensions) 

goal suspension. This is also confirmed by our analysis, in that the only processes 

to be suspended are qsort/2 which could be evaluated via two clauses. 

Figure 4-10 gives profiles for goal suspension using busy and non-busy 

scheduling strategies. Busy waiting (the upper graph) gives a measure of the 

total number of suspended processes while non-busy gives a measure of the new 

suspended processes in each cycle. The profiles fit the analysis of this execution. 

In every other cycle there will be two new suspended goals one of which will reduce 

in the next cycle. 

suspended evaluations and not the whole evaluation. This comparison still provides 

useful information about the space-time considerations for the suspension mechanism. 

Suspending the clauses may save head unifications and possibly some reductions (for 

deep guard examples) but requires more space in that there may be several clause states 

to suspend rather than a single goal state. 
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Figure 4-11: Quick-sorting an ordered list (reductions and suspensions) 

Finally we give a profile of the reductions in Figure 4-11. The number of 

reductions increases by 1 each cycle, as new partition/4 processes are spawned 

and reduced. After cycle 11 the partition/4 goals begin to succeed (terminate) 

and the processes begin to collapse. At the peak there will be 10 partition/4 
and 1 qsort process reducing in parallel. 

4.5.3.2 Quick-sort of an unordered list 

We now turn our attention to the behaviour of quicksort on an unordered list. 

Consider the program in Figure 2-7 with the following query: 

quicksort([4,6,2,9,5,5,1,10,3,7],L) 

The irregular nature of the data for this query makes reasoning about its 

evaluation difficult. However some global features can be predicted, namely: 

z . s t 2s 22 2. 2t ft a 22 
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Figure 4-12: Quick-sorting an unordered list (goal and clause suspensions) 

The unordered query will result in the part it ion/4 process adding elements 

to both output lists. This will result in both the qsort/2 processes reducing 

before the partition/4 processes have terminated. Compared with the 

ordered list example this should show an increase in the average number of 

reductions and reduce the total length of the computation. 

As the part ition/4 processes add elements to both output lists the qsort/2 

goals may reduce to three suspended processes, i.e. the newly spawned 

part it ion/4 goal may suspend because no further elements have been added 

to its input list. This will be indicated by the ratio between goal and clause 

suspensions increasing, as the partition/4 processes can be evaluated via 

3 clauses, whereas the qsort/2 processes can be evaluated by 2 clauses. 

In both the ordered list example and the unordered list example there will 

be 10 partition/4 processes spawned (one for each element of the input 

list). In the ordered example each partition/4 process will partition the 

103 



.tr Mr .,e.s/ryaz/re/Cae_.w, 4Nm_r a 01a. . 

...1 e.ert(C642,446.i.iA471_uaitiq 

MM.... e...ect... 72 

a ,o,.i.a r..,61. r.c-a 
c ,e A or" I ««.+..-.. I .-., I 
e 
y M O wy I «a--+...... I t,...- I .-t -1- 
C 

zs o w.y -.w. I m., I w.r.-n«- 

a $ ,Mn w.e I Mn.wN 1 tq.t I wy.N.n. a 
" s 17 to w.y I «.. v w. I Ci.w. I &"-I ... 7v 

33 93 N_" P-d 6.1 1 

u » O m..-....a I P7-.... I CT.w. 1 wg.-,... 
$ s 72 13 %. 14-4--d I 6- 1 1 

A 72 13 wte I «-P-... I c,..... I .w.t7.-. u n 17 ww I r...-. I .--t 1 ...uet,am 
72 13 w.y I h..-s 1 ci.... I t.e-clam 

S 
A 72 13 ft-" I «.--M.-.. 1 .-., 1 t.s-tt--. 

. . \ 72 13 «...-w.V I «w.rv-. I Cite I Mb.f.-. 
B 

` 

# ao-,w.y I rr..-. I e-.1 1 Ma.-0a. 

e 2 r e . Y 12 fr is i. 72 17 «.--.-.e I ..-m. I ON,. 1 .....ttt.-. 
CYCuc 

Figure 4-13: Quick-sorting an unordered list (busy and non-busy suspensions) 

remainder of the input list, i.e. the partition process with a pivot of 3 will 

have to partition the remainder of the input list, namely [4,5,6,7,8,9, 101. 

For the unordered example each partition/4 process will only have to par- 

tition a subset of the remaining input list because the remaining input list 

will be partitioned into two lists. So there will be less reductions performed 

in the sorting of the unordered list example. 

We now compare the data collected using our new profiling system with the 

theoretical evaluation given above. Figure 4-12 gives profiles for goal and clause 

suspensions using busy waiting and non-pruning. The first point to note is 

that the ratio of goal to clause suspensions changes from 1:2 for the ordered 

example, to 90:205 for the unordered example. From this we can conclude that 

some partition/4 processes suspend. Furthermore, we can see that the overall 

length of the computation has been reduced from 23 cycles (for qsorting an ordered 

list) to 18 cycles for this example. 
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Figure 4-14: Quick-sorting an unordered list (reductions and suspensions) 

Figure 4-13 gives profiles for goal suspensions using busy and non-busy 

scheduling strategies. Firstly, we can see that the duration of suspended processes 

is more complex to predict. Secondly, we see that the ratio of busy to non- 

busy suspensions is 90:33 for this query, whereas it was 65:20 for the ordered list 

example. This indicates that the suspended goals remain suspended for less time 

in the unordered example, which is intuitively the case. 

Finally, we give a profile of the reductions in Figure 4-1 (the dashed curve). 

Comparing the total reductions performed for the ordered list (122 reductions) 

and the unordered list (72 reductions) we see that, as predicted, there is a marked 

decrease in the required number of reductions. 
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4.5.4 Iso-tree 

This example highlights how recursive deep guards (user defined guarded goals 

which in turn have user defined guarded goals) are handled in our system. The 

example used is to test if two binary trees are isomorphic. Trees are isomorphic if: 

either both trees are empty; 

or if they have the same root node and both left and right subtrees are 

isomorphic; 

or if they have the same root node and the left subtree of one is isomorphic 

with the right subtree of the other and vice-versa. 

This algorithm can be realised in the CCND languages using deep guards. 

The resulting program is given in Figure 4-15. 

mode isomorphic(?, ?). 

isomorphic(terminal, terminal). 
isomorphic(tree(Node, Ltreel, Rtreel), 

tree(Node, Ltree2, Rtree2)) :- 
isomorphic(Ltreel, Ltree2), 
isomorphic(Rtreel, Rtree2) 

true. 
isomorphic(tree(Node, Ltreel, Rtreel), 

tree(Node, Ltree2, Rtree2)) :- 
isomorphic(Ltreel, Rtree2), 
isomorphic(Rtreel, Ltree2) 

true. 

Figure 4-15: Isomorphism algorithm expressed in a CCND language (Parlog) 
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If we evaluate this program for the three pairs of trees given in Figure 4-16 

the resulting reduction profiles are given in Figures 4-17, 4-18 and 4-19. 

TREE 1 TREE 2 TREE 1 

(pair 1) I I 

term term a 

(pair 2) 

TREE 2 

I 

term term 

TREE 1 TREE 2 

a (pair 3) a 

b c c b 

term term term term term term term term 

Figure 4-16: Iso-tree examples 

a 

term term 

As mentioned in section 3.6.2 our model of evaluation assumes that in a cycle 

a goal can be unified with the head of the clauses in the system and either the 

guarded evaluation instigated, or system guards evaluated. The body goal is 

committed to at a depth of 1+(the depth of the guarded evaluation) and in 

the next cycle for system guards. 

If we now consider the first example, that is two empty trees. This will evaluate 

in 1 cycle and incur 1 reduction. The profile for this evaluation is given in Figure 

4-17. 

The second example considers a guarded goal whose depth is 1 cycle. In our 

model this will result in the four guard evaluations, which are all: 

isomorphic(term,term) 
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Figure 4-17: Iso-tree evaluation example 1 (reductions) 

These will reduce to true in 1 cycle and incur 4 reductions. In the next cycle (cycle 

2) the original query goal will commit to true. Figure 4-18gives a reduction profile 

for this evaluation. 

The third example considers guarded goals which in turn have guarded goals. 

The query is: 

isomorphic (tree (a,tree (b,term, term),tree (c,term,term)). 
tree (a,tree(c,term,term),tree (b,term,term))). 

The evaluation results in two sets of guarded goals, namely: 

1. isomorphic(tree(b,term,term),tree(c,term,term)), 

isomorphic(tree(c,term,term),tree(b,term,term));and 
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Figure 4-18: Iso-tree evaluation example 2 (reductions) 

2. isomorphic (tree (b,term,term),tree (b, term, term)), 

isomorphic(tree(c,term,term),tree(c,term,term)). 

I 

The first guarded system fails. The second guarded system has two goals, each of 

which has the same profile as example 2 above. Using our system the resulting 

profile for this example is obtained by composing the profiles for the two guarded 

systems and one additional reduction in cycle 3 when the top-level goal commits. 

Figure 4-19 gives a profile for this evaluation. 
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Figure 4-19: Iso-tree evaluation example 3 (reductions) 
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4.5.5 Prime number generation by sifting 

primes :- 
integers(2,I), sift(I,J). 

mode integers(?," ). 
integers(N,[NII]) :- 

Ni is N+1,integers(N1,I). 

mode sift(?," ). 
sift([],[]). 
sift([PII],[PIR1]) :- 

filter(I,P,R), sift(R,R1). 

mode filter(?,?," ) . 

filter ([] , _, []) . 

filter([NII],P,R) :- 
0 =:= N mod P 

filter(I,P,R). 

filter([NII],P,[NIR]) :- 
0 =\= N mod P 

filter(I,P,R ). 

Figure 4-20: Prime number generation by sifting 

This example illustrates how our model for AND-parallelism gives a more re- 

alistic indication of the depth of the computation. The program used generates 

prime numbers by sifting a stream of integers [Ueda 86a]. The algorithm involves 

generating a pipeline of filter processes one for each integer that is unfiltered (new 

prime) by the previous set of filters, the combined effect of these filters is to sift 

the stream of integers (see Figure 4-20). Each unsifted integer is a prime number. 

As each prime number is produced it results in a filter process being spawned; 

each filter process removes multiples of itself from the remainder of the stream. So 

the algorithm involves generating a pipeline of filter processes one for each integer 
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that is unfiltered (new prime) by the previous set of filter processes. We consider 

the generation of primes up to 50 and primes up to 100. 
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Figure 4-21: Prime numbers up to 50 (busy and non-busy suspensions) 

The prime number generation by sifting example gives a good indication of how 

the execution model affects the collection of meaningful statistics. The technique 

involves generating a stream of integers, say fifty, these integers being generated 

in fifty cycles. This stream of integers then under-goes a sifting stage, this will 

require further cycles. Consider the number 47. This will be generated in the forty- 

seventh cycle. This integer will then be filtered by filter processes representing the 

following prime numbers: 2;3;5;7;11;13;17;19;23;29;31;37;41;43. This takes at least 

fourteen cycles, one for each filter process. 

Now let us look at the statistics that were previously given for this example 

program (see Table 4-3) obtained on our Parlog version of Shapiro's CP inter- 

preter. The cycle count is only fifty, this is because the goals in the process queue 

are evaluated in a left-to-right fashion. Any bindings made in reducing a goal 
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Figure 4-22: Prime numbers up to 500 (busy and non-busy suspensions) 

occur immediately. So an integer that is produced in a given cycle is able to 

propagate through the filter processes in the same cycle (the filter processes in the 

queue are set-up in a left to right fashion). Our system gives 67 cycles to produce 

the first 50 prime numbers (see Table 4-5). Fifty of these cycles can be attributed 

to producing the 50 integers, fifteen of these can be attributed to propagating the 

last integer through the fifteen filter processes and the remaining two are due to 

spawning the first filter process and terminating the output of these integers. The 

effect of accounting for the propagation of the integers through the filter processes 

results in the number of suspended goals being higher. Other points that arise 

are: 

There is no difference between the various new reduction counts (see Table 

4-4) for this program. The similarity in the reduction counts using goal 

and clause suspensions indicate either there are no suspensions or that the 
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Program Cycles Reductions Suspensions 
on - List member check 7 7 0 
onelther - Parallel list member check 1 10 10 
qsortl - Qsorting an ordered list 12 77 45 
qsort2 - Qsorting an unordered list 12 52 70 

isotreel - Iso-tree example 1 1 1 0 

isotree2 - Iso-tree example 2 1 3 0 

isotree3 - Iso-tree example 3 1 7 0 
primes50 - Primes up to 50 50 249 321 
primes100 - Primes up to loo 100 587 1151 

Table 4-3: Summary of previous measurements for example programs 

Reductions 
Minimum Busy Waiting Non-Busy Waiting 
Required Non- Pruned Pruned Non- Pruned Pruned 

Program Reductions Goal Clause Goal Clause Goal Clause Goal Clause 
on 14 14 14 14 14 14 14 14 14 

oneither 6 26 26 12 12 26 26 12 12 

gsortl 122 122 122 122 122 122 122 122 122 

qsort2 72 72 72 72 72 72 72 72 72 

isotreel 1 1 1 1 1 1 1 1 1 

isotree2 5 5 5 5 5 5 5 5 5 

isotree3 11 11 11 11 11 11 11 11 11 

primes50 528 561 561 561 561 561 561 561 561 

primeslOO 1244 1317 1317 1317 1317 1317 1317 1317 1317 

Table 4-4: Summary of new reduction parameters for example programs 

evaluations suspend on head unification. However, as some suspensions occur 

(see Table 4-5) these suspensions must be on head unification. 

The similarity in the reduction and suspension counts using pruned and 

non-pruned evaluation models indicate that either guards are even in their 

computation or that only one could ever be picked as a solution path. If 

we also consider the minimum reductions (see Table 4-4) then the actual 

reductions performed are similar to the minimum possible reductions. This 

implies that only one clause in general succeeds as a solution path. 

114 



Suspensions 
Busy Waiting Non-Busy Waiting 

Non-Pruned Pruned Non-Pruned Pruned 
Program Cycles Goal Clause Goal Clause Goal Clause Goal Clause 
on 7 0 0 0 0 0 0 0 0 

oneither 4 0 0 0 0 0 0 0 0 

gsortl 22 65 130 65 130 20 40 20 40 

qsort2 17 90 205 90 205 33 79 33 79 

isotreel 1 0 0 0 0 0 0 0 0 

isotree2 2 0 0 0 0 0 0 0 0 

isotree3 3 0 0 0 0 0 0 0 0 

primes50 67 354 963 354 963 148 412 148 412 

primesl00 127 1204 3413 1204 3413 388 1112 388 1112 

Table 4-5: Summary of new suspension parameters for example programs 

The difference between suspension counts using goal and clause suspension 

highlights the number of clauses that each clause could be reduced by in 

the dynamic program. The ratio for this program is about 1:3 (354:963 for 

prime numbers up to 50 and 3412:1204 for prime numbers up to 100). 

The difference between suspension counts using busy waiting and non-busy 

waiting scheduling policies indicates the benefit of tagging suspended exe- 

cutions to variables (see section 4.2.3). It also suggests how long suspended 

evaluations remain suspended. If we compare busy and non-busy suspen- 

sions for prime numbers up to 50, the ratio is about 5:2 (354:148) for goal 

suspension. For prime numbers up to 100, the ratio is about 3:1 (1204:388). 

So, on average the number of cycles that a process is suspended is about 3. 

However, for large examples the results imply that this ratio will increase. 

This is because a pipeline of filter processes is being spawned as each new 

prime number is generated. This pipeline will be more active for the earlier 

primes rather than the later ones. For example, the filter process for the 

prime number 2 , will never be suspended, it will either be removing an inte- 

ger from the stream or passing it on to the next filter process. This result is 

highlighted graphically in Figures 4-21 and 4-22, in that the ratio between 
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two suspension graphs for busy (the large plot) and non-busy (the smaller 

plot) suspensions increases with the number of primes being produced. 

4.6 Limitations of the new measurements 

The limitations of our new system can be classified in two ways. Those associated 

with modelling the execution and the collection of our proposed parameters, and 

those associated with information we do not collect. The second class of limitation 

forms the basis of future possible evaluation systems, these are discussed in the 

section on future work at the end of this thesis. Here we focus on the first class 

of limitation - those with our evaluation model and the collection of our new 

parameters: 

Firstly, we adopt a fixed cost model (see section 3.6.2). In this model the var- 

ious components of the evaluation, like head unification, have been assigned 

fixed costs (in terms of cycles). However, the cost of the given operation may 

depend on several factors, such as its complexity. It would be better to adopt 

a functional cost model, where the cost of an operation is calculated based 

on its complexity. Such a model would however require the costs of the var- 

ious operations to be accurately quantified. The resulting cost model would 

be difficult to construct without reference to an actual implementation. 

Secondly, we make the assumption that, in a cycle, a goal can only use 

bindings available to it at the start of the cycle. This is an improvement 

over the current interpreters, in modelling the inherent parallelism. Current 

interpreters process the goals in a given order, allowing bindings to be made 

immediately and so possibly allowing subsequent goals that require these 

bindings to reduce in the current cycle. This problem is compounded if deep 

guards are employed. A fully accurate model would be able to determine 

exactly when a goal makes a binding, how long it would take for this binding 
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to reach another goal and whether this would be in time for the goal to 

use it in the current cycle. Such a model would be heavily implementation 

dependent and its results would not transfer easily to other implementations. 

Clearly the inherent parallelism should not be dependent on goal order. Our 

model may not display all the parallelism that could be achieved in a given 

implementation, but at least it gives a measure which is not dependent on 

how the goals are ordered. 

Finally, in our interpreter, if an evaluation suspends, the top-level goal being 

evaluated is suspended. Unlike previous interpreters the suspension record 

contains information (counters) about the duration of the guard evaluation 

before the evaluation suspended. Although each goal record in the goal list 

is processed each cycle the additional counters indicate whether this goal 

would have been evaluated in a given execution model. Whilst this is an 

improvement over the previous evaluation systems our new parameters may 

be in error for certain classes of program. 

Two related problems arise: 

- There may be a problem in busy clause suspension profiles. Only 

the bindings that are available at the beginning of a cycle are used in 

the evaluation of a goal. However, if the guard has a deep consumer 

then this guard may suspend, whereas in a parallel implementation the 

bindings may become available as the deep guard is being evaluated. 

- There may be a problem in pruning consumer guards. If a clause 

suspension model is employed and the different consumer guards have 

different data dependencies then it may be possible for one guard to 

be processed further than another, before suspending. So, the depth to 

which these guards will be evaluated may differ if clause suspension 

is employed (as one guard can be processed while the other suspends). 

Our interpreter actually employs goal suspensions, while some infor- 

mation like the depth of the previous evaluation before suspension is 
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stored in the suspension record. The depth to which each of the various 

guards was previously evaluated to is not stored and so this informa- 

tion is lost. If pruning is employed then for such evaluation models 

the results may be in error, as the evaluation depth may be in error. 

The class of program affected by these two problems have consumer goals in 

the guard (deep consumer guards) which suspend and the guard evaluations 

suspend at different depths. An example of such a program and query is 

given in Figure 4-1- 

-Execution Model Cycles Reductions Suspensions 

Original model Section 3.2 3 11 1 

Busy waiting, Non-Pruning, Goal Suspension 10 40 6 

Busy waiting, Non-Pruning, Clause Suspension 10 36 16 

Busy waiting, Pruning, Goal Suspension 10 36 6 

Busy waiting, Pruning, Clause Suspension 10 32 16 

Non-busy waiting, Non-Pruning, Goal Suspension 10 38 3 

Non-busy waiting, Non-Pruning, Clause Suspension 10 36 4 

Non-busy waiting, Pruning, Goal Suspension 10 34 3 

Non-busy waiting, Pruning, Clause Suspension 10 32 4 

Table 4-6: Results collected for example query 

The query has two goals. The second goal is a deep guarded consumer 

and the first goal is a producer. Table 4-1 gives a summary of the pre- 

dicted results of the evaluation of this query. Table 4-6 gives a summary 

of the results obtained by our evaluation system. As expected our results 

are slightly in error for the suspension parameters using busy waiting and 

clause suspension and also for reductions using pruning. 
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4.7 Summary 

In this chapter the following have been presented and discussed: 

The basis of the new profiling parameters we propose. 

A detailed example execution which highlights the various new parameters. 

How the new parameters are collected by post analysis of a dump file and 

an example of a graphical tool developed for viewing profiles of the various 

new parameters. 

The use of this graphical tool to analyse the execution of several example 

programs. These highlight several features of both the interpreter and our 

proposed metrics. 

The limitations of our evaluation system. 
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Part III 

Example AI programs and their 
evaluation 
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Preface 

In this part of the thesis we evaluate the execution behaviour of Al applica- 

tions/programming techniques realised on the CCND languages. The selection 

of the application areas was motivated by two requirements: 

The applications should represent some common Al programming techniques 

or paradigms. 

The possible realisations (mappings) should highlight the use of particular 

language features. The evaluation of the resulting programs then allows us 

to compare the dynamic behaviour of the use of these features in our Al 

applications. 

This part of the thesis consists of three chapters, each focusing on a different 

Al application and CCND language feature: 

Chapter 5 considers how Al search based algorithms can be mapped to the 

committed choice feature of the CCND languages. The qualitative evalua- 

tion highlights the need for some techniques for translating general search 

programs into all-solutions search programs. Three techniques for trans- 

lating search programs on to the CCND computation model are then dis- 

cussed, namely Continuation based compilation; Stream based compilation; 

and Layered Streams. We then evaluate three all-solutions versions (obtained 

using each of the translation techniques) of the n-queens problem. 

Chapter 6 considers how multiple writers to shared data structures can be 

supported in the CCND languages. The main feature being investigated 

here is the difference between using safe and unsafe languages. Support for 

shared data areas appears to be a important consideration for Al program- 

ming. Several current Al applications/programming paradigms use a shared 
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area to allow independent experts to co-operate in the solving of a problem 

e.g. blackboard type problem solvers and chart parsers. We consider how 

chart parsing maps to safe and unsafe languages and to a language with 

additional primitives to support shared streams. The three resulting chart 

parsers are then evaluated. 

Chapter 7 considers how an AI programming technique known as meta-level 

inference maps to the CCND languages. The language feature being in- 

vestigated here is the difference between using deep and flat languages. 

Meta-level inference attempts to control the search at one level of the prob- 

lem space (the object-level) by providing some general control rules (the 

meta-level) to guide the search over the object level search. The application 

evaluated is known as PRESS. We consider how the meta-level of PRESS 

maps to deep guards and to flat guards using two techniques in supporting 

the meta-level. The three resulting PRESS systems are then evaluated. 
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Chapter 5 

Search - committed choice 

5.1 Overview 

This chapter considers how Al search based algorithms can be mapped to the com- 

mitted choice feature of the CCND languages. Axioms specified in Horn clauses 

can be viewed as a program if there is some theorem prover which can apply the 

axioms to solving a query. The selection of which axioms to apply to solving a 

given goal highlights several types of choice point (don't care; don't know; and 

generate and test) that exists in the search space for the theorem prover. The 

scope and applicability of a logic programming language is determined by how it 

supports/caters for these various choice points. 

This chapter first considers how various forms of non-determinism (don't care; 

don't know; and generate and test) can be realised in the CCND framework. This 

analysis highlights a class of search algorithms which cannot be supported di- 

rectly (mapped) on the CCND computational model. We then consider various 

techniques for offering exhaustive search in the CCND languages. The techniques 

considered are Continuation based compilation, Stream based compilation and 

Layered Streams. 
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These exhaustive search techniques have been evaluated and compared before 

in [Okumura & Matsumoto 87]. The main program used in their comparison was 

n-queens; in particular 4-queens, 6-queens and 8-queens. We re-evaluate the 4- 

queens and 6-queens examples for each of the programming techniques on our new 

evaluation system. 

Section 5.2 considers various issues related to how the CCND languages can 

model search algorithms. 

In sections 5.3, 5.4 and 5.5 we consider in detail the use of the various All- 

solutions programming techniques. 

Section 5.6 summarises the previous analysis [Okumura & Matsumoto 87] of 

these techniques. 

Section 5.7 gives our analysis of these programming techniques. 

Finally, in section 5.8 we give a synopsis of our results. 

5.2 Search 

5.2.1 Don't care non-determinism 

Don't care non-determinism is where choice of any evaluation path will lead to 

a solution. Take for example the merge predicate (the unordered combination of 

two lists) in Figure 5-1. 

CCND realisation 

In the CCND execution model the first clause that can commit does commit, 

so the evaluation of the merge/3 predicate given in Figure 5-1 will produce an 

unordered combination of the two input lists. The other feature is that the lists 

can be thought of as streams, so this process serves to merge the two streams 
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merge([],L,L). 

merge(L, [] ,L) . 

merge([HIT],L, [HIY]) :- merge(T,L,Y). 
merge(L, [HIT] , [HIY]) :- merge(T,L,Y). 

Figure 5-1: Unordered combination of two lists in Horn clauses 

into one (hence the name merge), i.e. the evaluation of the merge goal suspends 

waiting for either one of its input arguments to be instantiated to a list (an input 

on a stream), when either argument becomes instantiated (a message) it is added 

as the head of the output list (the output stream) and the tail forms the new list 

(rest of the input stream) to be merged. 

The CCND languages provide a good approximation to this form of non- 

determinism. However, the fairness of the merge will depend on the actual imple- 

mentation. 

5.2.2 Don't know non-determinism 

Don't know non-determinism is where there is a choice of possible solution paths. 

However, at this choice point it is not known which path will lead to a solution. 

(Here we restrict ourselves to choice points in which no instantiations need to be 

made, we treat the other cases in the next section on "Generate and test non- 

determinism"). 

A typical example of such a search is testing if two binary trees are isomorphic. 

Basically two trees are isomorphic if. 

either both trees are empty; 

or, if they have the same root node and both left and right subtrees are 

isomorphic; 
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or if they have the same root node and the left subtree of one is isomorphic 

with the right subtree of the other and vice-versa. 

isomorphic(terminal, terminal). 
isomorphic(tree(Node, Ltreel, Rtreel), 

tree(Node, Ltree2, Rtree2)) :- 
isomorphic(Ltreel, Ltree2), 

isomorphic(Rtreel, Rtree2). 
isomorphic(tree(Node, Ltreel, Rtreel), 

tree(Node, Ltree2, Rtree2)) :- 
isomorphic(Ltreel, Rtree2), 
isomorphic(Rtreel, Ltree2). 

Figure 5-2: Isomorphic tree program expressed in Horn clauses 

These three statements can be represented by Horn clauses as in Figure 5-2. 

Each node in the tree is either labelled a terminal, for a node whose parent is a 

leaf node, or has two subtrees. If we use this Horn clause definition to test if two 

binary trees are isomorphic, then we cannot pre-determine which of the last two 

clauses will be used to prove the isomorphism. 

CCND realisation 

In the CCND execution model a goal is unified with the heads of the clauses in the 

system. Those clauses that successfully unify are possible OR-alternative solution 

paths. The guarded goals for these solution paths are then evaluated in parallel. 

The first such guarded system to succeed is committed to and its body goals are 

added to the goals to be solved. 

The algorithm for testing if two trees are isomorphic requires an OR choice to 

be made. To insure that the correct solution path is committed to, the OR-search 

has to be resolved within the guard. So the Horn clause algorithm in Figure 5-2, 
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would be transformed into a CCND language by making use of deep guards (see 

section 2.5.2) as shown in Figure 5-3. 

mode isomorphic(?, ?). 

isomorphic(terminal, terminal). 
isomorphic(tree(Node, Ltreel, Rtreel), 

tree(Node, Ltree2, Rtree2)) :- 
isomorphic(Ltreei, Ltree2), 
isomorphic(Rtreel, Rtree2) 

true. 
isomorphic(tree(Node, Ltreel, Rtreel), 

tree(Node, Ltree2, Rtree2)) :- 
isomorphic(Ltreei, Rtree2), 
isomorphic(Rtreel, Ltree2) 

true. 

Figure 5-3: Isomorphism algorithm expressed in a CCND language (Parlog) 

So the CCND computation model is able to support this form of non- 

determinism. 

5.2.3 Generate and test non-determinism 

Another type of non-deterministic construction exploited in logic programming 

algorithms is known as generate and test. Here one process generates a possible 

solution to a problem and another process places certain test conditions upon the 

solution. The non-determinism lies at the point where the possible solution is 

generated, as it cannot be predetermined whether the possible solution will pass 

the test stage. 

Figure 5-4 gives a simple generate and test algorithm in Horn clauses. The 

male-height/2 is a search on a database which returns (Person, Height) pairs. 
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male_and_tall(Person) :- 
male-height (Person, Height), 
tall(Height). 

tall(Height) :- 
Height >=180. 

mal else ight (john , 150). 
male-height (jack, 175). 
male-height (j im , 190). 

Figure 5-4: Generate and test algorithm expressed in Horn clauses 

The tall/i predicate verifies that this person is tall. However, at the point when 

the Person and Height pairs are generated it cannot be determined if the tall test 

will succeed. 

CCND realisation 

In CCND languages, this sort of non-determinism is not so easily modelled. The 

basic problem is that the generate goal has to commit to a given clause in order 

to generate a possible solution (make an instantiation) for testing. However, the 

generate goal may commit to the wrong solution, and with CCND languages, once 

the evaluation has committed to a given solution path, all others paths are ignored. 

Consider trying to directly map the generate and test algorithm in Figure 5-4 into 

a CCND language, as in Figure 5-5. 

If we pose the query: 

:- male_and_tall(X). 

then depending on which male-height/2 clause is committed to, the evaluation 

will either fail or return the instantiation: 

X = j im. 
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mode male-and-tall(?). 

male_and_tall(Tall) :- 

male-height (Person, Height), 
tall (Height) 

assign(Tall,Person). 

mode malelieight (?, ?). 

malelieight (john, 150). 
malelieight (jack, M). 
malelieight (j im , 190). 

mode tall(" ). 

tall(Height) :- 

Height >= 180 

true. 

Figure 5-5: Generate and test algorithm nearly implemented in Parlog 

The problem is that the evaluation has to commit to a given male-height/2 

clause before any instantiations for X and Height can be passed back to the tall/1 
goal. Once the evaluation commits, the evaluation cannot backtrack to obtain 

another possible instantiation as in Prolog. 

5.2.4 Summary 

The CCND languages are based on don't care non-determinism. Don't know non- 

determinism can be realised using deep guards; i.e. placing the relevant OR- 

search within the guarded goals. However, generate and test non-determinism 

cannot be directly mapped to the CCND model. The problem is that to generate a 
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solution the evaluation has to commit to a given solution path. Once the evaluation 

has committed, alternative bindings cannot be generated. 

In [Trehan & Wilk 87] we consider various automated and manual methods 

for offering full search in the CCND languages. The automatic methods are only 

suitable for a restricted set of Horn clause programs. The basic restrictions are 

that each predicate must be input and output moded and the input arguments 

must be instantiated when a goal is to be evaluated and its output arguments 

must be fully instantiated when the goal has been evaluated. This prevents the 

use of Streamed And-Parallelism in the algorithm. 

Three manual methods for addressing the generate and test problem have been 

considered: restructuring the knowledge; selected use of all-solutions parallelism; 

and Layered Streams. The first involves generating a set of possible solutions. This 

is achieved by altering the data to insure that all possible solutions can be gener- 

ated by a deterministic search. The second involves using an all-solutions search 

mechanism at the generate choice points, to return a set of possible bindings. The 

last provides a programming style suitable for solutions that are generated incre- 

mentally and bottom-up, for example constructing sentences from words. Here, 

the test goal is placed inside the generate goal. 

In the following sub-sections we consider three of the techniques for translating 

Horn clause programs into all-solutions search programs in more detail. The tech- 

niques are applied to a simple search program for the 4-queens problem, (given in 

Figure 5-6). Two of the techniques, Continuation based compilation and Stream 

based compilation allow Horn clause programs to be automatically translated into 

an all-solutions CCND program. The third technique is suitable for problems in 

which the solution can be generated in an incremental and bottom-up manner. 
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queen(Q) :- q( [1,2,3,4] , [] ,Q) . 

q([],SoFar,SoFar). 
q([HIT],SoFar,Q) :- 

sel([HIT],Picked,Rest), 
insqueen(SoFar,Picked,Rest,Q). 

sel ([X IY] ,X,Y). 
se1([XIY],U,[XIV]) :- 

sel(Y,U,V). 

insqueen(SoFar,Picked,Rest,Q) :- 
check(SoFar,Picked,i), 
q(Rest,[PickedlSoFar],Q). 

check([],_,_). 
check([QueenlRest],Pos,Diag) :- 

Queen =\= Pos + Diag, 
Queen =\= Pos - Diag, 
NextDiag = Diag + 1, 
check(Rest,Pos,NextDiag). 

Figure 5-6: 4-queens problem in Horn clauses 

131 



5.3 Continuation based compilation 

The Continuation based compilation approach [Ueda 86b],[Ueda 87] involves un- 

packing the search via the use of a continuation. The continuation provides a 

record of the remaining goals to be evaluated after the evaluation of the current 

goal. The compiled code is open to "Restricted AND-parallel" evaluation. 

This technique is applicable to a restricted set of Horn clause programs. The 

restriction is that every goal appearing in the program must be moded (inputs and 

output arguments to predicates fixed). Input arguments must be fully instantiated 

when a goal is to be evaluated. Output arguments must be fully instantiated when 

the goal has been successfully evaluated. 

The first stage in the compilation is to I/O mode each clause, for example 

Figure 5-7 gives the modes for sel/3 clauses in Figure 5-6. 

+ - - 
se1([XIY],X,Y) . 

se1([XIY],U, [XIV]) :- se1(Y,U,V). 

( + : input, - : output) 

Figure 5-7: Mode analysis of sel/2 

The next stage is to move all the output instantiations from the head to dummy 

output goals. The resulting code is known as normal form (see Figure 5-8). 

se1([XIY],X,Y). 
se1([XIY],Z,Y) :- se1(Y,U,V), /*L1*/ Z=U,Y=[XIV] 

Figure 5-8: Normal form of sel/2 

Note also that a continuation marker L1 is included in the code. 
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The last stage is to transform the two clauses into two AND-parallel goals. 

The clauses are renamed and carry a continuation and difference list pair to collect 

solutions. The resulting code is given in Figure 5-9. 

s(L,Cont,SO,S2) :- s1(L,Cont,SO,S1), s2(L,Cont,S1,S2). 

s1([HIT],Cont,SO,S1) :- conts(Cont,H,T,SO,S1). 
s1( ,Cont,SO,S1) :- So = S1. 

s2([HIT],Cont,SO,S1) :- s(T,'L1'(Cont,H),SO,S1). 
s2([],Cont,SO,S1) :- SO = S1. 

conts('L1'(Cont,H),L,T2,SO,S1) :- conts(Cont,L,[HIT],SO,S1). 
conts('LO',H,T,SO,S1) :- SO = [(H,T)IS1]. 

Figure 5-9: sel/2 - translated using Continuation based compilation 

If we evaluate the following query: 

:- s([1,2,3,4],'LO',S,[]) 

Swill be bound to: [(1, [2,3,4]) , (2, [1,3,4]) , (3, [1,2,4]) , (4, [1,2,3] )] . 

Applying this technique to the entire 4-queens program given in Figure 5-6 

results in the All-solutions 4-queens program given in Figure 5-10. 
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mode 'CB4_queens'("). 
'CB4_queens'(Q) :- 

true : 'sweeper$gi' ([1,2,3,4] , ,'L1' ,Q, ) . 
mode 'sweeper$gi'(?,?,?, ?). 

'sweeper$gi'([HIT],R,Cont,RsO,Rsl) :- 
true : 'sweeper$sel'([H(T],'L2'(Cont,R),'L2',RsO,Rsl). 

'sweeper$gl'([],R,Cont,RsO,Rsl) :- 
true : RsO = [RIRs1]. 

mode 'sweeper$sel'(?,?,?,",?). 

'sweeper$sel'(HT,Cont,Conts,RsO,Rs2) :- 
true : 'sel/3#1'(HT,Cont,Conts,RsO,Rsl), 

'sel/3#2'(HT,Cont,Conts,Rsl,Rs2). 

mode 'sel/3#1'(?,?,?, ?). 

'sel/3#1'([AIL],'L2'(Cont,R),Conts,RsO,Rsl) 
true : 'sweeper$checks'(R,A,1,'L2b'(Cont,R,A,L,Conts),RsO,Rsl). 

'sel/3#1'( ,Cont,Conts,RsO,Rsl) :- 
true : RsO = Rsi. 

mode 'sel/3#2'(?,?,?,",?). 
'sel/3#2'([HIT],Cont,Conts,RsO,Rsl) :- 

true : 'sweeper$sel'(T,Cont,'L5'(Conts,H),RsO,Rsl). 
'sel/3#2'( ,Cont,Conts,RsO,Rsl) :- 

true : RsO = Rsi. 

mode 'sweeper$checki'(?,?,?,?,",?). 
'sweeper$checkl'([HIT],U,N,Cont,RsO,Rsl) :- 

H =\= U+N, H=\=U-N, N1 is N+1 : 

'sweeper$checki'(T,U,N1,Cont,RsO,Rsl). 
'sweeper$checki'([HIT],U,N,Cont,RsO,Rsl) :- 

H is U+N : RsO = Rsi. 
'sweeper$checki'([HIT],U,N,Cont,RsO,Rsl) :- 

H is U-N : RsO = Rsi. 
'sweeper$checks'([],U,N,'L2b'(Cont,R,A,L,Conts),RsO,Rsl) :- 

true : b(Conts,'L3'(Cont,R,A),L,RsO,Rsl). 

mode b(?,?,?,-,?). 

b('L5'(Conts,A),Cont,T,RsO,Rs1) :- 
true : b(Conts,Cont,[AIT],RsO,Rs1). 

b('L2','L3'(Conts,R,A),L,RsO,Rsl) :- 
true : 'sweeper$gi'(L,[AIR],Cont,RsO,Rsl). 

Figure 5-10: 4-queens implemented using Continuation based compilation 
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5.4 Stream based compilation 

The Stream based compilation approach [Tamaki 87] involves viewing the exe- 

cution of a predicate as a function that maps a stream of variable bindings to 

a stream of variable bindings. Each set of bindings on the input stream results 

in several sets of bindings on the output stream. This method places the same 

restrictions on the set of Horn clause programs that can be compiled as the Con- 

tinuation based method. These restrictions result in the compiler being able 

to determine the sets of bindings that should be passed from one goal to the next. 

This information is used to compile the original Horn clause code into committed 

choice code. 

An additional problem is how output streams are composed. Consider the 

example clause, given in [Tamaki 87]: 

p(X,Y : Z,V) :- q(X : Z,W), r(Y,Z,W : V). 

where inputs and outputs are delimited by colons. The output stream for p is 

not simply a composition of output streams for q and r as the elements need to 

be synchronised to insure outputs are only combined for matching inputs. This 

problem is resolved by using interfaces which distribute and combine tuples on the 

various I/O streams. 

We now consider how sel/2 given in Figure 5-6 is translated using Stream 

based compilation, the resulting program is given in Figure 5-11. sel/2 is trans- 

lated to s/3 whose first argument is the input argument to sel/2 and second 

and third arguments are a difference list pair used to collect the solutions. The 

first clause of s/3 is the ground case for sel/3: if there are no elements to select 

from then return as the solution. The second clause: places a solution, the 

one that would have been generated by the first clause of sel/2, on the output 

stream; makes the recursive call, as given by the second clause of sel/2; and then 
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s([],SO,Si) :- 
So = S1. 

s([HIT],SO,S2) :- 

SO = [(H,T) IS1], 
s(T,UV,[]), 

i(H,UV,S1,S2). 

i(x,[(U,V)IUVs],SO,S2) 

i(x,UVs,Si,s2), 

so = [(u, [xIV]) IS1] . 

i(x,[],SO,Si) :- SO = S1. 

Figure 5-11: sel/2 - translated using Stream based compilation 

combines the solution of the recursive call with the input argument to give the 

remainder of the solution stream. The composing interface is given by i/4. 

If we execute the following goal: 

:- s([1,2,3,4],S,[]). 

Swill be bound to: [(1, [2,3,4]) , (2, [1,3,4]) , (3, [1,2,4]) , (4, [1,2,3] )] . 

Applying this technique to the entire 4-queens program given in Figure 5-6 

results in the All-solutions 4-queens program given in Figure 5-12. 
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mode 'SB4_queens'("). 
'SB4_queens'(Q) :- true : 'Qq'([1,2,3,4],[3,Q,[3). 

mode 'Qq'(?,?, ?). 

'Qq'([],Y,ZO,Z1) :- true : ZO = [YIZ1]. 

'Qq'(X,Y,ZO,Z1) :- X \= [] : 

'Qsel'(X,UVs,[]), 'Ig21'(Y,UVs,ZO,Z1). 

mode 'Qsel'(?,",?). 

'Qsel'([],ZO,Z1) :- true : ZO = Z1. 

'Qsel'([XIY],ZO,Z2) :- true : ZO = [(X,Y)IZ1], 

'Qsel'(Y,UVs,[]), 

'Isel2l'(X,UVs,Z1,Z2). 

mode 'Ig21'(?,?,",?). 

'Ig21'(Y,[(U,V)IUVs],ZO,Z2) :- 

true : 'Qcheck'(Y,U,1,YY), 

'Ig22'(V,[UIY],YY,ZO,Z1), 

'Ig21'(Y,UVs,Z1,Z2). 

'Ig21'(_,[],ZO,Z1) :- true : ZO = Z1. 

mode 'Ig22'(?,?,?,",?). 

'Ig22'(V,List,ok,ZO,Z1) :- true : 'Qq'(V,List,ZO,Z1). 

'Ig22'(_,_,ng,ZO,Z1) :- true : ZO = Z1. 

mode 'Ise121'(?,?,",?). 

'Isel2l'(X,[(U,V)IUVs],ZO,Z2) :- 
true : ZO = [(U,[XIV])IZ1], 'Isel2l'(X,UVs,Z1,Z2). 

'Isel2l'(_,[],ZO,Z1) :- true : ZO = Z1. 

mode 'Qcheck'(?,?,?,"). 

'Qcheck'([QIR],P,N,Res) :- 
Q =\= P+N, Q=\= P-N : M is N+1, 'Qcheck'(R,P,M,Res). 

'Qcheck'([QIR],P,N,Res) :- Q is P+N : Res = ng. 
'Qcheck'([QIR],P,N,Res) :- Q is P-N : Res = ng. 
'Qcheck'([],_,_,Res) :- true : Res = ok. 

Figure 5-12: 4-queens implemented using Stream based compilation 
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5.5 Layered Streams 

The Layered Streams approach [Okumura & Matsumoto 87] is a programming 

paradigm for implementing search problems in the CCND languages. Using Lay- 

ered Streams, solutions are generated in an incremental and bottom-up manner. 

This gives rise to partial solutions (on each incrementation) which can be tested, 

and so incorrect partial solutions can be eliminated before being fully generated. 

The other feature of this programming technique is that the partial solutions are 

represented in a layered data structure. This data structure provides the means 

by which each further generation of the possible solutions can share the previous 

bottom-up solutions. This allows for an efficient testing mechanism. 

Figure 5-13 gives a Layered Streams solution to the 4-queens problem. Using 

Layered Streams queens can be added to the board incrementally, on each incre- 

mentation the new partial board solutions can be tested. The representation of the 

board is a layered data structure which combines together the bottom-up gener- 

ated partial solutions. The top-level call ' LS4_queens' (Q4) spawns four queen/2 

processes, which are connected by streams. Each queen/2 process places another 

queen on to the board and tests (or rather filters) out the previous bottom-up 

partial solutions that are incompatible with this new queen. 

The use of the layered data structure and testing of partial solutions is high- 

lighted by considering the streams which connect the four queen/2 processes. The 

first stream Q1 will be bound to: 

[1*begin,2*begin,3*begin,4*begin] 

This stream represents the position of the final queen whilst no other queens are 

in place (as the solution is being generated bottom-up); the final queen can (for 

now) be placed anywhere. 
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mode 'LS4_queens'(?). 
'LS4_queens'(Q4) :- 

true 

queen(begin,Q1), 
queen(Q1,Q2), 
queen(Q2,Q3), 
queen(Q3,Q4). 

mode queen(?,"). 
queen(In,Out) :- 

true 

filter(In,1,1,Outl), 
filter(In,2,1,Out2), 
filter(In,3,1,Out3), 
filter(In,4,1,Out4), 
Out = [1*Outl,2*Out2,3*Out3,4*Out4]. 

mode filter(?,?,?,"). 

filter(begin,_,_,Out) :- 
true : Out = begin. 

filter([] ,_,_,Out) .- 
true : Out = [] . 

filter([I*_ I Ins],I,D,Out) :- 
true : filter(Ins,I,D,Out). 

filter([J*_ I Ins],I,D,Out) :- 
D=:=I-J . 

filter(Ins,I,D,Out). 
filter([J*_ I Ins],I,D,Out) :- 

D=:=J-I . 

filter(Ins,I,D,Out). 
filter([)*Inl I Ins],I,D,Out) :- 

J \= I, D =\= I - J, D=\= J- I 
D1 is D + 1, 
filter(InI,I,D1,Out1), 
filter(Ins,I,D,Outs), 
Out = [J*Outl I Outs]. 

Figure 5-13: 4-queens implemented using Layered Streams 
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The second stream Q2 will be bound to: 

[1*[3*begin,4*begin], 
2* [4*begin] , 

3* [1*begin] , 

4*[1*begin,2*begin]] 

This represents that the last two queens can be in the following positions: the 

second from last queen on position 1 and the last queen on position 3 or 4; the 

second from last queen on position 2 and the last queen on position 4; the second 

from last queen on position 3 and the last queen on position 1; the second from 

last queen on position 4 and the last queen on position 1 or 2. This is obtained 

from the partial solution for the last queen being filtered to remove incompatible 

solutions with the previous queen position. Moreover this layered data structure 

means that once a queen position is found to be incompatible with a bottom-up 

generated partial solution all the sub-board positions are removed in one operation. 

The third stream Q3 will be bound to: 

[1* [3* [] , 4* [2*begin] ] , 
2* [4* [1*begin] ] , 

3* [1* [4*begin] ] , 

4* [1 * [3*begin] , 2* [] ] ] 

Finally the fourth stream Q4 will be bound to the complete solution: 

[1*[3*[] ,4*[2*[]]], 
2*[4*[1*[3*begin]]], 
3* [1* [4* [2*begin] ] ] , 

4*[1*[3*[]],2*[]]] 

This data structure has the following interpretation: 
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The first queen can be placed on position 1. The second queen can be placed 

on position 3 or 4. If the second queen is placed on position 3 then no further 

queens can be added. If the second queen is placed on position 4 then the 

only place the next queen can be added is position 2. However, no further 

queens can be added after this third queen. 

The first queen can be placed on position 2. The only place for the second 

queen is position 4. Similarly the third and fourth queens can only be placed 

in positions 1 and 3 respectively. This is a complete solution. 

The first queen can be placed on position 3. The only place for the second 

queen is position 1. Similarly the third and fourth queens can only be placed 

in positions 4 and 2 respectively. This is a complete solution. 

The first queen can be placed on position 4. The second queen can be placed 

on position 1 and 2. If the second queen is placed on position 1 then the 

only place the next queen can be added is position 3. However, no further 

queens can be added after this third queen. If the second queen is placed on 

position 2 then no further queens can be added. 
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5.6 Previous analysis 

Program Cycles Reductions Suspensions 
CB4Q (Continuation based 4-queens) 38 241 0 

SB4Q (Stream Based 4-queens) 35 252 155 

LS4Q (Layered Streams 4-queens) 11 119 17 

CB6Q (Continuation based 6-queens) 81 2932 0 

SB6Q (Stream Based 6-queens) 70 3161 2146 
LS6Q (Layered Streams 6-queens) 18 1297 306 

Table 5-1: Summary of previous measurements for All-solutions programs 

We have reconstructed the previous analysis of the example programs on our 

Parlog version of Shapiro's interpreter (see Figure 3-1). The results are given in 

Table 5-1. These results agree with those obtained in the earlier analysis of this 

work [Okumura & Matsumoto 87]. 

The conclusions drawn in [Okumura & Matsumoto 87] were based on results 

replicated in Table 5-1. From these results it appears that using a technique like 

Layered Streams is particularly good for reducing the amount of computation- 119 

reductions as compared to 241 reductions for Continuation based compilation and 

252 reductions for Stream based compilation. Also the degree of parallelism (or 

rather average parallelism-reductions/cycle) is better for Layered Streams- 10.8 

(119/11) compared to 6.3 (241/38) for Continuation based compilation and 6.6 

(252/35) for Stream based compilation. The last point to note is that both Layered 

Streams and Stream based compilation require the systems to support suspended 

processes whereas Continuation based compilation does not '. 

'The resulting program for Continuation based compilation is hence open to "Re- 

stricted AND-parallel" evaluation [DeGroot 84]. 
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5.7 Results and new analysis 

Reductions 
Minimum Busy Waiting N on-Busy Waiting 
Required Non- Pruned Pruned Non- Pruned Pruned 

Program Reductions Goal Clause Goal Clause Goal Clause Goal Clause 
CB4Q 365 373 373 373 373 373 373 373 373 
SB4Q 511 519 519 519 519 519 519 519 519 

LS4Q 325 355 352 355 352 355 352 355 352 

CB6Q 5382 5484 5484 5484 5484 5484 5484 5484 5484 

SB6Q 7177 7279 7279 7279 7279 7279 7279 7279 7279 
LS6Q 4303 4653 4555 4653 4555 4653 4555 4653 4555 

Table 5-2: Summary of reduction parameters for All-solutions programs 

Suspensions 
Busy Waiting Non-Bus y Waiting 

Non-Pruned Pruned Non-Pruned Pruned 
Program Cycles Goal Clause Goal Clause Goal Clause Goal Clause 
CB4Q 38 0 0 0 0 0 0 0 0 

SB4Q 49 338 628 338 628 175 302 175 302 
LS4Q 13 69 266 69 266 46 158 46 158 

CB6Q 81 0 0 0 0 0 0 0 0 

SB6Q 104 6316 10028 6316 10028 3736 4868 3736 4868 

LS6Q 23 1265 3812 1265 3812 902 2614 902 2614 

Table 5-3: Summary of suspension parameters for All-solutions programs 

The results obtained by our system are summarised in Tables 5-2 and 5-3. In 

addition some information is given pictorially in Figures 5-14,5-15 and 5-17. We 

first compare our data to the previous statistics collected and then compare the 

various programming techniques using our new results. 

The previous interpreters employed goal suspension and busy waiting; sys- 

tem calls were not counted in the reduction measure (see section 3.3). The 

previous reduction counter is closest to our new reduction counter using 

busy waiting and goal suspension. Table 5-4 compares the previous reduc- 

tion counts with our new reduction counts. 
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Figure 5-14: Profile of 6-queens using Continuation based compilation 

Our new reduction count is consistently higher than the previous count. The 

difference between the two sets of results can be attributed to system calls 

which we count in the reduction parameter. The next point to consider 

is why Stream based compilation has a larger increase in reductions than 

Continuation based compilation and why Layered Streams has the highest 

increase in reductions. Stream based compilation requires predicate inter- 

Comparison of previous and new reduction measures 
Program Previous New Busy-Goal Difference % Difference 
CB4Q 
CB6Q 

241 

2932 
373 

5484 

132 

2552 
55 

87 

SB4Q 
SB6Q 

252 

3161 

519 
7279 

267 
4148 

106 

131 

LS4Q 
LS6Q 

119 

1297 

355 

4653 

236 

3356 

198 

259 

Table 5-4: Comparison of previous and new reduction measures 
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Figure 5-15: Profile of 6-queens using Stream based compilation 

faces (see section 5.4) to distribute and combine tuples on the various I/O 

streams. This results in an extra reduction to construct each partial solu- 

tion. The increase for Layered Streams is because this technique involves 

the filtering of partial solutions which are generated in a bottom-up fashion. 

The solution is constructed using a layered data structure, the deepest layer 

being the first incrementation of the solution. Each layer in this data struc- 

ture is generated eagerly, that is before the previous layer has been fully 

constructed. The construction of the deeper layer is a process of filtering 

the layered data structure generated so far with respect to the current layer. 

This may of course result in no solutions. 

The result is incomplete solutions which are eagerly generated and contin- 

ually filtered. In our system we count system calls that are applied to the 

filtering of each partial/incomplete solution, so our results show a higher 

increase in the reductions for this particular technique. In fact for larger 

problems the continual filtering of incomplete solutions may result in more 
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Figure 5-16: Profile of 6-queens using Stream based compilation 

reductions being performed in a Layered streams even if we do not count 

system calls as reductions. 

This is further highlighted by comparing the data for 4-queens and 6-queens. 

The 6-queens example generates more incomplete solutions which are con- 

tinually filtered. As we count the system calls in this filtering process our 

statistics will show a larger increase in reductions. 

previous interpreters employed goal suspension and busy waiting. Moreover 

some failed evaluations would be recorded as suspensions (see section 3.3). 

The previous suspension counter is closest to our new suspension counter 

using busy waiting and goal suspension. Table 5-5 compares the previous 

suspension counts with our new suspension counts. 

Our new suspension count is consistently higher than the previous. This is 

because we model the inherent AND-parallelism (see sections 3.3.3 and 3.4) 

and because we count the suspension of system calls. 
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Figure 5-17: Profile of 6-queens using Layered Streams 

Table 5-6 compares the degree of parallelism (reductions/cycles) obtained 

using our system and the previous system. 

Our results give higher measures for the average degree of parallelism. This 

is because our system records the work done by system calls. 

Com paring previous and new suspension measures 
Program Previous New Busy-Goal Difference % Difference 
SB4Q 
SB6Q 

155 

2146 

338 
6316 

183 

4170 
118 

194 

LS4Q 
LS6Q 

17 

306 
69 

1265 

52 

959 
306 

313 

Table 5-5: Comparing previous and new suspension measures 
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Figure 5-18: Profile of 6-queens using Layered Streams 

We now carry out an analysis of the programming techniques using our new results. 

There is no difference between the various reduction counts (see Table 5- 

2) for Continuation based compilation. The same is true of the reduction 

counts for Stream based compilation. The similarity in the reduction counts 

using goal and clause suspensions indicates either there are no suspensions, 

or that the evaluation suspends on head unification before any reductions 

Comparing previous and new measures for average parallelism 
Previous New Busy-Goal 

program Reductions Cycles Parallelism Reductions Cycles Parallelism 
CB4Q 
CB6Q 

241 
2932 

38 
81 

6.34 
36.2 

373 
5484 

38 
81 

9.82 
67.70 

SB4Q 
SB6Q 

252 

3161 
35 
70 

7.20 
45.16 

519 
7279 

49 
104 

10.59 
69.99 

LS4Q 
LS6Q 

119 

1297 
11 

18 

10.82 
72.10 

355 
4653 

13 

23 
27.31 
202.30 

Table 5-6: Comparing previous and new measures for average parallelism 
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Figure 5-19: Profile of 6-queens using Layered Streams 

in the guard take place. From Table 5-3, we see that Continuation based 

compilation results in no suspensions. So, goal and clause reductions will 

be the same. For Stream based compilation suspensions occur; these must 

occur on head unification. 

There is a small difference between the goal and clause reduction counts 

for Layered Streams (see Table 5-2). This is because the last clause in 

the filter/4 predicate given in Figure 5-13, can suspend after doing one 

reduction. This reduction will be repeated if goal suspension is used. 

The similarity in the reduction and suspension counts using pruned and 

non-pruned evaluations (see Tables 5-2 and 5-3) indicates that either 

guards are balanced in their computation (this includes the guards being 

flat) or that the clause committed to has the deepest guard evaluation. In 

this case the code is known to be flat. 
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Comparing the minimum reductions to the actual reductions gives a measure 

of the OR-parallelism (see section 4.3.4). Table 5-7 summarises the degree 

of OR-parallelism for the various All-solutions programs. 

Program Reductions Minimum Reductions OR-parallelism 
CB4Q 373 365 1.021 

CB6Q 5484 5382 1.018 
SB4Q 519 511 1.015 
SB6Q 7279 7177 1.014 
LS4Q 355 325 1.092 
LS6Q 4653 4303 1.081 

Table 5-7: Degree of OR-parallelism for All-solutions programs 

The All-solutions programming techniques result in code with minimal OR- 

parallelism. This is not surprising as the compilation techniques involve 

translating OR-parallel search into AND-parallelism. 

As we give a cycle by cycle profile of our evaluation parameters we are able 

to see the maximum number of reductions and suspensions in a cycle using a 

given execution model. Table 5-8 is a summary of the maximum number of 

reductions that can be performed in a given cycle; some of this information 

is given graphically in Figures 5-14, 5-16 and 5-19. 

Program Max reductions Cycle number 
CB4Q 22 25 

CB4Q 187 49 

SB4Q 25 30 

SB6Q 164 58 

LS4Q 49 7 

LS6Q 461 11 

Table 5-8: Maximum reductions in a given cycle for All-solutions programs 

Table 5-9 is a summary of the maximum number of suspensions that can oc- 

cur in a given cycle. This information provides an indication of the maximum 

size of the various suspension queues that will be needed for the different 
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suspension mechanisms and scheduling policies, given by the busy waiting 

suspension parameters. It also indicates the maximum number of suspen- 

sions that will occur in a cycle, given by the non-busy waiting suspension 

parameters. 

Maximum number of suspensions in a given cycle 
Busy Waiting Non-Bus y Waiting 

Goal Clause Goal Clause 
Program Max Cycle Max Cycle Max Cycle Max Cycle 
SB4Q 
SB6Q 

23 
180 

31 
59 

34 
258 

31 

59 

13 

120 

31 

61 

16 

166 

28 
55 

LS4Q 
LS6Q 1 

16 

1 141 

8 

14 

72 

460 

3 

14 1 

14 

1 115 

8 

14 

72 
364 

3 

14 

Table 5-9: Maximum suspensions in a given cycle for All-solutions Programs 

The difference between suspensions using goal and clause suspension mech- 

anisms highlights the number of clauses that each goal could be reduced by 

in the dynamic program (see section 4.5.3.1). Table 5-10 is a summary of 

the ratio of clause to goal suspensions for Stream based compilation and 

Layered Streams, using busy and non-busy waiting. 

Busy Waiting Non-Busy Waiting 
Program Goal Clause Ratio Goal Clause Ratio 
SB4Q 
SB6Q 

338 

6316 
628 

10028 

1.875 
1.587 

175 

3736 

302 

4868 
1.725 

1.302 

LS4Q 
LS6Q 

69 

1265 

266 

3812 
3.855 
3.013 

46 

902 

158 

2614 

3.434 
2.898 

Table 5-10: Goal/Clause suspension ratios for All-solutions programs 

Consider the results for Stream based compilation and the program given 

in Figure 5-12. Most of the predicates in the program have two clauses 

which can suspend for each goal. However, the last predicate ' Qcheck' /4 

will result in four clause suspensions for each goal if its first input is not 

bound and four clause suspensions and five goal suspensions if its first input 

is partially bound; the first element on the list is unbound. This is because 
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system calls are treated as goals with one clause. The ratios for clause to 

goal suspensions shown in Table 5-10 indicate that the ' Qcheck' /4 does 

suspend with its first argument bound, as the ratios for SB4Q and SB6Q 

are less than two. Furthermore, the difference in the ratio for busy and 

non-busy waiting indicates that a larger number of two clause predicates 

suspend for more than one cycle. 

Now consider the results for Layered Streams (the program given in Figure 

5-13). This program quickly reduces to a large number of filter/4 goals. 

If the first argument to such a goal is unbound then there will be six clause 

suspensions for each goal. However, if the first argument is bound and the 

evaluation suspends there will be 6 clause suspensions (D=:=I-J; D=:=.J-I; 

J\=I; D=\=I-J; D=\=J-I; and one head unification) and six goal suspensions 

(D=:=I-J; D=:=J-I; J\=I; D=\=I-J; D=\=J-I; and the top-level filter/4 
goal). The ratios of goal to clause suspensions indicate that more filter/4 
evaluations suspend due the first argument being unbound rather than on 

the suspensions of the guard evaluations. This is because this programming 

technique generates the next stage of the layered data structure (see section 

5.5) before filtering the bottom-up solutions that make up the lower layers. 

This allows subsequent filter/4 processes to start evaluating even if their 

evaluation is short lived. 

The difference between busy waiting and non-busy waiting suspensions in- 

dicates the benefit of tagging suspended executions to variables (see section 

4.2.2). It also indicates how long suspended executions remain suspended. 

Table 5-11 summarises the ratios of busy and non-busy waiting suspen- 

sions for Stream based compilation and Layered Streams, using goal and 

clause suspensions. 

For both Stream based compilation and Layered Streams the ratio is higher 

for clause suspensions. This occurs because when a goal can commit, some 

clauses may still suspend. 
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Goal Suspension Clause Suspension 
Program Busy Non-busy Ratio Busy Non-busy Ratio 
SB4Q 
SB6Q 

338 
6316 

175 

3736 

1.93 
1.69 

628 
10028 

302 
4868 

2.08 
2.06 

LS4Q 
LS6Q 

69 

1265 
46 

902 
1.50 
1.40 

266 1 

3812 
158 

2614 
1.68 

1.46 

Table 5-11: Busy/Non-busy suspension ratios for All-solutions programs 

The ratio of busy to non-busy waiting suspensions for Stream based com- 

pilation is 2:1. So, on average, each suspended goal remains suspended for 

about 2 cycles. This conclusion is highlighted in Figure 5-15, in that the 

non-busy suspension graph (solid line) gives the new suspensions that oc- 

cur each cycle and the busy suspension graph (dashed line) gives all the 

suspensions that occur each cycle. As both graphs have the same shape and 

scale about 2:1, suspended processes only remain suspended for two cycles 

The same comparison for Layered Streams, busy and non-busy suspen- 

sions, gives a ratio of about 3:2 indicating that most suspended goals only 

suspend for 1 cycle. Again this result is confirmed graphically in Figure 5- 

18, busy suspensions are given by the solid line and non-busy suspensions 

are given by the dashed line. The ratio between the two graphs is about 3:2. 
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5.8 Synopsis of analysis 

In this section we consolidate some of the results given in our analysis. 

The previous results for the All-solutions programming techniques indicate 

that Layered Streams achieves the best results: 

Cycles: Layered Streams requires about 1/4 of the cycles of Continuation 

based compilation and about 1/3 the cycles of Stream based compila- 

tion. 

Reductions: Layered Streams requires half as many reductions as Contin- 

uation based compilation or Stream based compilation. 

Suspensions: Layered Streams incurs only about 1/8 of the suspensions 

incurred by Stream based compilation. Continuation based compilation 

incurs no suspensions. 

Our new results give a slightly different picture: 

Cycles: In terms of cycles, our new results are similar to the previous cy- 

cle measures for Layered Streams and Continuation based compilation. 

The cycles parameter indicates the duration of the computation, so if 

all the parallelism could be exploited Layered Streams would indeed be 

the best. 

The results for Stream based compilation have increased. The increase 

in cycles is due to our model of AND-parallelism, we assume only bind- 

ings available at the start of a given cycle are available for each of the 

goal evaluations and not those that are generated during the processing 

of each goal. This causes some goals to suspend for additional cycles 

and so increases the cycle count. 
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Viewed another way, the processing of goals in the previous interpreters 

gave rise to goal data dependencies being satisfied as the goals were 

processed. This reduced the measured depth of the evaluation tree. 

Reductions: In terms of reductions, our new results are higher for each of 

the All-solutions techniques. Although Layered Streams has a larger 

increase in reductions than either of the other All-solutions program- 

ming techniques we see that it is still the most parallel programming 

technique (see Table 5-6). However, if the chosen architecture cannot 

support all of the realisable parallelism then other factors like the over- 

all amount of work become important considerations; that is the total 

number of reductions. In which case Layered Streams and Continuation 

based compilation would appear comparable. 

Suspensions: In terms of suspensions, our new results are higher than 

the previous suspension counts. This is because our model of AND- 

parallelism does not allow goals to reduce on bindings generated in the 

same cycle as their evaluation and because we count the suspension of 

system calls as suspensions. 

The suspension statistics for Layered Streams (see Table 5-11) indi- 

cate that on average suspended evaluations suspend for about 1.5 cy- 

cles. Given that there will be overheads in using non-busy suspensions 

(tagging suspended computations) it may be the case that a busy sus- 

pension mechanism is suitable for applications employing this search 

technique. 

None of these techniques make use of OR-parallelism (see Table 5-7). This is 

not surprising as the compilation techniques involve translating OR-parallel 

search into AND-parallelism. 
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5.9 Summary 

In this chapter the following have been presented and discussed: 

How the CCND languages support various forms of non-deterministic search. 

Several methods, automatic and manual, for addressing the limitations 

of mapping generate and test non-determinism on to the CCND com- 

putation model. The particular example program used was n-queens, 

which has been evaluated using the previous evaluation system by 

[Okumura & Matsumoto 87]. 

Our re-evaluation of the n-queens example for 4-queens and 6-queens, using 

our basic Parlog interpreter, confirm the previous evaluation was carried out 

on a similar system. 

The results from the evaluation of the 4-queens and 6-queens on our new 

evaluation system. The results differ in several respects to those obtained 

on our basic Parlog interpreter. Our new analysis and results highlight how 

our new evaluation gives a better picture of the program behaviour and 

the relative merits of the various programming techniques. In particular, it 

shows that Layered Streams is not as good as was previously supposed. 

A consolidation of the results obtained using our system. 
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Chapter 6 

Shared data structures - safe/unsafe 

6.1 Overview 

Support for shared data areas appears to be an important consideration for AI pro- 

gramming. Several current AI applications/programming paradigms use a shared 

area to allow independent experts/problem solvers to cooperate in the solving of 

a problem, e.g. blackboard type problem solvers [Hayes-Roth 85] [Hayes-Roth 88] 

[Corkill et al 88] and chart parsers [Earley 70], [Kay 73]. These systems could be 

parallelised by having the problem solvers working in parallel. 

It has been noted by several researchers [Shapiro 87c] that only CP derivatives, 

like Flat Concurrent Prolog (FCP) [Mierowsky et al 85] can directly support sev- 

eral processes with write access to shared data structures. By directly we mean 

that the language provides the relevant synchronisation primitives to allow mul- 

tiple writers. Such languages are known as unsafe (see section 2.5.1). Parlog 

and GHC cannot directly support such shared data structures, they are known 

as safe (see section 2.5.1). Shared data areas can be indirectly supported in safe 

languages by a manager process which maintains the shared data structure, the 

writer processes send update requests to this manager. The two particular appli- 
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cations/programming paradigms mentioned above have been reconstructed (par- 

allelised) for Parlog (a safe language) in [Davison 87] and [Trehan & Wilk 88]. 

This chapter considers how multiple writers to shared data structures and 

streams can be supported in the CCND languages. Initially two types of CCND 

language are considered, safe and unsafe. We then consider a third language 

in which streams and multiple writers are supported by system primitives. The 

three language types, unsafe, safe and safe+system streams are examined by 

considering how they support a shared binary tree with multiple writers. We go 

on to consider how an Artificial Intelligence application which requires a shared 

data structure, a chart parser, maps onto the various languages. Three resulting 

chart parsers are described and then evaluated. 

Section 6.2 considers how shared data structures are supported by the various 

features of the CCND languages. 

In section 6.3 we consider how shared data structures can be supported in the 

three styles of language, unsafe, safe and safe+system streams. 

Section 6.4 provides an overview of chart parsing. 

Section 6.5 describes the chart parsers developed for comparing the three styles 

of language. 

In section 6.6 we evaluate the execution of these chart parsers. 

Finally, in section 6.7 we give a synopsis of our results. 
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6.2 Shared Data 

The CCND languages provide an elegant means of inter-process communication. 

Communication is achieved though a variable which is shared between the pro- 

cesses that wish to communicate. If one process binds the variable another process 

can consume the binding. These languages easily support one-to-many commu- 

nication. That is one process binds a shared variable, which is shared by several 

other consumer processes each of which consumes the binding. By incrementally 

binding a shared variable, that is binding it to a structure containing a message 

and a new variable, processes can use shared variables as communication streams. 

The most common data structure used for this stream communication is a list, 

the tail of which is incrementally bound to a message and a new variable. 

It has been noted by several researchers [Shapiro 87c] that only CP deriva- 

tives, like Flat Concurrent Prolog (FCP) [Mierowsky et al 85] can directly sup- 

port many-to-one communication on a single variable. By directly we mean that 

the language provides the relevant synchronisation primitives to allow multiple 

writers. In the CP family of languages this is supported by allowing process eval- 

uations to make bindings to variables within a local environment, the guard. On 

commitment the system tries to unify the local bindings with the binding envi- 

ronment of the parent process. This requires the commitment stage to be atomic 

[Saraswat 87b], that is all bindings that would result by unifying local and parent 

environments should be made in one step or not at all. Such languages are known 

as unsafe, as the local bindings that are made are speculative until commitment 

has taken place. 

Parlog and GHC do not allow bindings of global variables to be made in the 

guard. They are known as safe languages, so they avoid the problems associated 
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with supporting atomic commitment 1. As a consequence they cannot directly 

support multiple writers. However, one important case of multiple writers, mul- 

tiple writers to a stream, can be modelled by the use of merge/3 processes (see 

Figure 6-1). 

Figure 6-1: Use of merge processes to support multiple writers to a stream 

These merge processes serve as interconnections between several writer pro- 

cesses. Each writer that wishes to update some shared stream binds a local stream. 

The local streams for each writer are then merged together to form the final shared 

stream. 

This use of merge processes to connect together communication streams be- 

tween processes is one of the commonest ways to achieve many-to-one stream com- 

munication, even when using a Concurrent Prolog derivative, which could use its 

multiple writers capabilities directly. Hence the use and implementation of merge 

'Experiments comparing Flat Parlog and Flat Concurrent Prolog, safe and unsafe 

languages, indicate that allowing unsafe bindings requires a more complex abstract ma- 

chine. On a single processor architecture, where atomic unification is less costly than on 

a multiple processor, Flat Parlog executes 5 to 15% faster than Flat Concurrent Prolog 

[Foster & Taylor 87]. 
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merge([],L,L). 

merge (L,[],L). 
merge([HIT],L, [HIR]) :- merge(T,L,R). 
merge(L, [HIT] , [HIR]) :- merge(T,L,R). 

Figure 6-2: Predicate to merge two streams into one 

operations has received much attention [Ueda & Chikayama 84] [Kusalik 84] 

[Shapiro & Mierowsky 87] [Shapiro & Safra 87] [Saraswat 87c] [Gregory 87]. 

The general use of multiple writers to any structure, not just a stream, can be 

supported by creating a process which manages the structure. Multiple processes 

that wish to write to the structure make write requests to this manager process. 

The write requests from the writer processes are merged together to form a re- 

quest stream. This technique has been used in several applications which require 

multiple writers to a shared resource [Davison 87] [Trehan & Wilk 88]. 

6.3 Support for Shared Data Structures 

In this section we indicate how general shared resources can be manipulated in 

three styles of language, unsafe, safe and safe+system streams. The example 

we use is that of a shared ordered binary tree to store integers. For a given 

node in the tree, nodes in the left subtree contain integers which are smaller 

than the integer labelling this node, and the nodes in the right subtree contain 

integers which are greater than the integer labelling this node. Terminal nodes 

are variables. The example programs in this section have not been annotated with 

specific synchronisation primitives or mode declarations; we assume the generic 

features of the particular language systems when executing a given program. For 

example, unsafe languages allow global variables to be bound in the guard while 

in safe languages attempting to bind in the guard results in a suspension. 
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6.3.1 Unsafe 

The unsafe predicate in Figure 6-3 allows several processes to add integers to a 

shared binary tree. The predicate takes an integer and an ordered binary tree. The 

integer either already exists in the tree or should be added to the tree. The first two 

clauses traverse the binary tree comparing the integer to be added to the current 

node value and hence traversing either the left or right subtree. The last clause has 

a dual purpose. If the second argument (the binary tree) is instantiated, the clause 

serves as a test whether the integer to be added already exists in the tree. If the 

second argument is uninstantiated the clause serves to make an unsafe binding 

of the terminal node, currently a variable, in the binary tree. On committing to 

this clause the local and global binding environments will be atomically unified. 

add-binary-tree (Element, tree (Value, Left, Right)) 

Element < Value 

add_binary_tree (Element ,Left). 
add_binary_tree(Element,tree (Value, Left, Right)) :- 

Element > Value 

add-binary-tree (Element, Right) . 

add-binary-tree (Element, tree (Element,_,_)). 

Figure 6-3: An unsafe predicate to add an element to an ordered binary tree 

Consider the behaviour of two processes which make additions, 4 and 3, to a 

shared binary tree, namely tree(7,L,R): 

add_binary_tree(4,tree(7,L,R)),add_binary_tree(3,tree(7,L,R)). 

Both processes will traverse the binary tree to the left subtree L, resulting in 

two goals add_binary_tree(4,L) and add_binary_tree(3,L). Now consider the 

evaluation of these goals. The evaluation of both goals via the first two clauses will 
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suspend, as the guard evaluations Value > 3, Value < 3, Value > 4 and Value 

< 4 suspend. Both will hence make speculative bindings of the parent variable 

L via the last clause; the first binding L to tree(4,_,_); the second binding L 

to tree (3, _, _) . The system will then on commitment try to make both local 

bindings global. However, using atomic commitment one of the processes will 

succeed and the other will fail. Say the second process succeeds, hence L will be 

bound to tree (3, _, _) . Now the two suspended clauses for the first process can 

be rescheduled for evaluation as Value is now bound to 3. This will result in the 

evaluation committing to the second clause, as 4 > 3. Finally, this process will 

bind the right subtree of the newly created node to tree (4,-,-). So, the final 

state of the shared binary tree is: 

tree (7,tree(3,_,tree(4,_,_)),_) 

6.3.2 Safe 

In a safe language the binary tree addition predicate in Figure 6-3 would suspend. 

Safe languages do not permit the binding of global variables in the guard. In the 

case where the last clause is used to add an element to a binary tree, rather than 

test to see if an element already exists, the evaluation of the third clause would 

suspend awaiting the second argument to be bound. The programmer could, of 

course, transfer the output binding of the global variable to the body of the clause. 

However, if the binding is transferred to the body, two processes could try to bind 

the same variable to different terms. In this case one of the processes would fail. 

The manipulation of a global data structure, like a global binary tree, by several 

writer processes would have to be supported by a manager process, (perpetual 

process [Shapiro & Takeuchi 83)). This manager is the only process which can 

write to the shared data structure, hence resolving the problem of binding conflicts 

that occurs with several processes writing to a shared resource. The processes that 
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manager-binary-tree ([add(X)I Rest], continue,BinaryTree) :- 
add_binary_tree(Element,Flag, BinaryTree), 
manager-binary-tree (Rest,Flag,BinaryTree). 

add_binary_tree(Element, Flag, tree (Value,Left, Right)) 
Element < Value 

add_binary_tree(Element,Flag, Left). 

:- 

add_binary_tree(Element, Flag, tree (Value,Left, Right)) :- 

Element > Value 

add_binary_tree(Element,Flag, Right). 
add_binary_tree(Element,Flag, BinaryTree) :- 

var(BinaryTree) 

bind (tree (Element,_,_),BinaryTree, continue, Flag). 

bind(TreeIn,TreeOut,FlagIn,FlagOut) :- 
TreeOut = Treeln, 
f lagger(TreeOut,FlagOut,FlagIn). 

f lagger(TreeOut,FlagOut,FlagIn) :- 
data(TreeOut) 

FlagOut = FlagIn. 

Figure 6-4: Manager process for a binary tree 

wish to update the shared data structure send requests to this manager process. 

The requests from each of the writer processes are merged together to form a single 

request stream to the manager process. 

Figure 6-i$ shows the code for a perpetual process that manages a binary tree. 

The process consumes a stream of requests, in this case requests for additions. For 

each request the manager invokes a process to add the element to a binary tree. 

Once the addition, or confirmation, has taken place the manager processes the 

next request. The addition and the recursive call to the manager have been se- 
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quentialised using a short circuit technique [Hirsch et al 87]. The writer processes 

that wish to make additions to this data structure would send requests to the man- 

ager, which in turn would make the updates. So, requests from write processes 

would have to be collected together into a single request stream. The commonest 

way of collecting the requests together is via merge processes (see Figure 6-2). 

Consider two processes that generate streams of integers which are to be added to 

a shared binary tree (see Figure 6-5). The request streams from the two processes 

are merged together and the resultant stream is consumed by a manager process 

for the binary tree, as in the query in Figure 6-5. 

random(Seed,Requests) :- 
generate(Seed, Number,NewSeed), 
Requests = [NumberINewRequests], 
random(NewSeed,NewRequests). 

random(1,Ra),random(2,Rb),merge(Ra,Rb,Requests), 
manager-binary-tree (Requests, continue, BinaryTree). 

(merge/3 and manager-binary-tree/3 are defined in Figures 6-2 and 6-4) 

Figure 6-5: A perpetual process which generates a stream of random integers 

For large numbers of writer processes the problems associated with how to 

interconnect the writer processes, allowing each fair access to the resource, has 

been the attention of considerable research [Kusalik 84] [Ueda & Chikayama 84] 

[Gregory 87] [Shapiro & Mierowsky 87] [Shapiro & Safra 87] [Saraswat 87c]. Two 

main issues arise when one is faced with an interconnection of merge processes. 

Ensuring that a given request stream is not starved indefinitely and that the delay 

in propagating a request to the final stream is small. 
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6.3.3 Safe+System Streams 

In the safe languages merge processes are the commonest way to support many- 

to-one communication. Moreover the general manipulation of a shared data struc- 

tures by multiple writers can be supported by using merge processes to combine 

streams of write requests and manager processes to maintain the shared data struc- 

ture. The general feature of both these uses of streams is to combine requests from 

many sources to one final stream, the resultant stream. 

Consider another view of this resultant stream, that is a list with a tail vari- 

able to be instantiated. This view of the resultant stream was employed in 

[Saraswat 87c] to mimic merging several streams together in constant time. Basi- 

cally, processes that wish to write to the resultant stream could use the multiple 

writers capabilities of unsafe languages. Each writer would have a copy of the 

stream, additions to the stream taking place by a writer recursing down the stream 

until it finds the tail variable which is then instantiated to a list containing the 

required message and a new tail variable. For efficiency the writer could keep a 

copy of the new tail variable for future additions. This technique would require n 

process reductions, where n is the number of new elements that have been added 

to the stream since the last addition. However, this approach is not applicable to 

safe languages, as they do not support multiple writers. 

The use of streams generally requires the use of merge processes to combine 

these streams. While the use of merge processes is logically clear with respect to 

the CCND computation model they may add heavy overheads in terms of creating 

and managing large numbers of processes. This may degrade system performance. 

An alternative option is for the system to support the use of streams more 

directly [Itoh et al 87]. [Itoh et al 87] propose several stream manipulation prim- 

itives for GHC, for creating a system supported stream, adding an element to a 

stream, removing an element from a stream and merging streams. The most inter- 

esting of these primitives is the merge operation. The merge primitive introduces 

an indirect stream pointer cell which is shared by every producer and points to the 
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random(Seed,Resultant_handle) :- 

generate(Seed,Number,NewSeed), 
add_to_stream(Result ant-handle, Number), 
random(NewSeed,Resultant_handle). 

make-stream (resultant, Requests), 
random(1,resultant),random(2,resultant), 

manager-binary-tree (Requests, continue, BinaryTree) 

the above query assumes add-to-stream/2 will suspend if 
the stream handle has not been identified, 
ie. make-stream (resultant,Requests) has not been evaluated. 

Figure 6-6: A perpetual process which uses proposed stream primitives 

current tail of the resultant stream. The addition of elements to a merged stream 

now have to be atomic actions, that is if two processes wish to add elements to 

a merged stream only one process at a time is permitted to update the shared 

pointer to the tail of the resultant stream. This requires the shared pointer to 

have a locking mechanism which introduces two forms of overhead: 

the locking of a given variable may be a costly operation. However most 

parallel architectures provide such locks (semaphores) and so the overheads 

should not be too high; and 

while one process is adding an element to a merged stream another process 

will have to wait. This is not likely to be a significant overhead compared 

with the merge process alternative. If two processes wish to add elements 

to a merged stream using merge processes one message will be added to the 

resultant stream and then the other; this will take two process reductions. 

While using system streams one process will be locked out while the other 

process make its addition. 
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The results of [Itoh et al 87] show a significant improvement when using their 

proposed primitives. This clearly indicates that the cost of manipulating streams 

in the system is less than when under programmer control. 

We consider similar extensions to our system, the basis for these extensions 

being that the system could provide special primitives for multiple writers to a 

resultant stream. The extended language we identify as safe+system streams. 

This requires the system to know when a given stream, or variable, is a resultant 

stream. The system can then keep track of the end of this stream via a pointer 

to the tail variable. Additions to this stream would be supported by the system 

which would automatically update the pointer. The additions to this resultant 

stream would have to be atomic actions. The consumption of a resultant stream 

by any process would proceed as normal, as it is still a stream. 

Two primitives are introduced to support our notion of a resultant stream. The 

first make_stream (STREAM_ID,STREAM) identifies a stream as a resultant stream. 

The second add_to_stream(STREAM_ID,Element) directly adds an element to this 

resultant stream. An additional primitive to close a resultant stream could also 

be provided. Using these primitives the example predicate in Figure 6-5, is trans- 

formed into Figure 6-6. A point to note is that the clarity of the program with 

respects to the CCND computation model has been somewhat lost. This is because 

the use of system streams means that streams are addressed by some global name 

rather than as a local logical variable so predicates are not declarative. Future sys- 

tems may be able to recognise the use of streams in predicates and automatically 

support their use by system streams. 

Our analysis of programs which use system streams compared with the two 

other language types, unsafe and safe, indicates that while programs may be less 

declarative if system streams are used the advantages in performance and sys- 

tem predictability make this language extension an important addition for future 

systems (see section 6.7). 
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6.4 Chart Parsing: an overview 

In this section we present an overview of an Artificial Intelligence programming 

technique known as chart parsing [Earley 70] [Kay 73]. The basis of chart pars- 

ing is that duplicate attempts at parses of sub-phrases of a sentence, should be 

prevented. Redundant parses occur because natural language is often ambiguous 

(at least locally) and hence alternative parsing options must be frequently tried. 

These alternative options may have common parts and it is wasteful to duplicate 

these sub-parses. We now consider a sequential chart parsing algorithm and a 

parallel extension. 

6.4.1 Sequential chart parsing 

Sequential chart parsing is achieved by keeping a record of all parses undertaken 

in an Active Edge Table (AET), and a record of all sub-strings found, in the 

Well Formed Sub-string Table (WFST). The AET and the WFST form the chart. 

Ongoing parses are referred to as active edges and complete sub-strings are referred 

to as inactive edges: 

An example of the contents of an active edge is: 

- searching for a Noun Phrase (NP); 

- using the grammar rule a NP is a Determiner (Det), Noun (N); 

- so far a Det has been found; 

- the initial words being parsed are: "the man saw the woman"; 

- the remaining words to be parsed are: "man saw the woman". 

An example of the contents of an inactive edge is: 

- searching for a Noun Phrase (NP); 
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- using the grammar rule NP is a Det,N; 

- we have found the Det and the N; 

- the initial words being parsed are: "the man saw the woman"; 

- the remaining words to be parsed are: "saw the woman". 

The AET is used by the parser to ensure that no repeat parsing attempts are 

undertaken. The WFST is used by the parser to share the results of successful sub- 

parses. The data structure used to represent the chart may be anything that allows 

the parser to refer to it and update it, e.g. a database or partially instantiated 

list. 

The parser picks an active edge from the AET. The parser may further the 

evaluation of the active edge using information in the WFST. Active edges and 

inactive edges are combined under the fundamental rule [Thompson & Ritchie 84]. 

The resulting edges may be active (which will be added to the AET) or inactive 

(which will be added to the WFST). Possible new active edges are also generated 

using the grammar and an activation strategy. A bottom-up strategy constructs 

possible new active edges based on the WFST (inactive edges). A top-down strat- 

egy constructs possible new active edges based on the AET (active edges). Active 

edges that are new are added to the AET. New active edges are those that do 

not already exist in the AET. A description of sequential chart parsing, and an 

implementation, can be found in [Thompson & Ritchie 84]. 

6.4.2 Parallel chart parser 

There are many ways of adding parallel extensions to sequential chart parsers. The 

parallelism occurs at a number of conceptual levels within a chart parser. Here, we 

consider several processes which pick different active edges from the AET, process 

them in parallel, and update the chart by adding any new active edges to the AET 

and any sub-strings to the WFST. This approach requires that testing for a new 

active edge and its addition to the AET be an atomic step. Without an atomic 
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step another process might add the proposed edge after the test and before the 

update. Usually, this type of extension is supported by an atomic test and set 

operation in the programming language. This approach is similar to that taken in 

several chart parsers, for example [Grishman & Chitrao 88]. 

6.5 Parallel Chart Parsers for the CCND lan- 

guages 

In this section we focus on how the AET table of a parallel chart parser could be 

implemented in the various languages. 

6.5.1 Unsafe Chart Parser 

In an unsafe language the shared data structure, the chart, can be directly sup- 

ported. Given some possible new active edges the parser compares these proposed 

new edges against the AET. Those edges that do not exist on the AET are added 

to the AET. The predicate in Figure 6-7 supports an AET which is a stream. The 

edges to be added are compared against each of the edges in the AET. If the head 

of the AET and the edge to be added are the same the addition process succeeds 

(not adding the edge to the AET). If the head of the AET and the edge to be 

added are different the process recurses on the rest (tail) of the AET. If the AET 

is a variable then this variable (tail) is bound, in the guard, to the new edge and 

a new tail variable. 

If the activation strategy is top-down, the process generating the possible new 

active edges will consume the AET. For each active edge in the AET, the process 

will examine the grammar to see if there are any grammar rules which can be 

applied to further the evaluation of this edge. For each grammar rule a new 

possible active edge is generated. Those active edges that are new are added to 
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add_new_additions(AET,[]). 
add-new_additions (AET,[HIT]) :- 

add_if-new (AET,H) , 
add-new_additions (AET,T). 

add_if_new ( [AET. H I AET_T] , Edge) : - 
testedges(Edge,AETJi) 

true. 
:- add-if -new ([AET.HIAET_T],Edge) 

not(testedges(Edge,AET-i)) 

add-if -new (AET-T, Edge) 
add-if -new (AET, Edge) : - 

var(AET), 
AET= [Edge I _] 

true. 

Figure 6-7: Unsafe predicate to support an AET based on a stream 

the AET using the predicate in Figure 6-7. This activation processing of each 

new active edge on the AET can take place in parallel (see Figure 6-8). 

chart_adder_td([EdgeIAET_rest],AET) :- 
chart_adder_td(AET_rest,AET), 
grammar-act ivation-td (Edge,Grammar-rules), 
grammar_forker_td(Edge,Grammar_rules,Additions) , 

add-new_additions (AET,Additions) . 

Figure 6-8: Top-down activation process for an unsafe language 

Note that the predicate in Figure 6-8 has two arguments. The first argument 

is the AET consumed by this process and used to generate new possible active 

edges. The second argument is the complete AET, used by add-new-additions/2 

to insure that no duplicate edges are added to the AET. 
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6.5.2 Safe Chart Parser 

In a safe language the shared data structure, the chart, can only be supported 

by a manager process and writer processes which make requests for updates. The 

manager process for a chart has to insure that no two update requests will lead 

to duplicate active edge requests in the chart. The basic mechanism employed by 

our manager is "sifting" which is a generalisation of a prime number generator 

program [Ueda 86a]. Prime numbers are generated by sifting a stream of integers. 

Each unsifted integer is a prime number. As each prime number is produced it 

results in a filter process being spawned; each filter process removes multiples of 

itself from the remainder of the stream. Hence the sifting is achieved by a set of 

filter processes. 

In the chart parser, a stream of sub-parse requests is generated with reference 

to the current state of the parse. This stream contains possible new entries for the 

AET. Before any of these requests are added to the AET the stream undergoes a 

sifting stage. This stage removes requests for sub-parses that have already been 

undertaken. The sifting is achieved by a set of filter processes that are spawned 

as a result of requests for a new sub-parse. Figure 6-9 presents a sifter predicate 

for a chart parser. 

So, a set of filter processes, one for each new active edge request, dynamically 

sifts possible additions to the AET. Any new sub-parses can of course be processed 

concurrently with other requests. This technique for chart parsing is covered more 

fully in [Trehan & Wilk 88]. 

Using a top-down activation strategy the activation process which will generate 

new possible active edges is based on the AET. For each applicable grammar rule 

a new possible active edge is generated. This stream of possible new active edges 

will then be sifted using the predicate in Figure 6-9. The activation processing 

for each new active edge can take place in parallel, the resulting request streams 

generated being merged together (see Figure 6-10). 
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sifter([Request I Rest], [Request I Rest-out]) :- 
filter (Rest, Request, Rest_tmp), 
sifter (Rest-tmp,Rest-out) 

sifter([] , []) . 

filter( [Request IRest],Edge, Rest..filtered) :- 

test edges(Edge,Request) 

filter (Rest,Edge, Rest..filtered) . 

filter([RequestlRest],Edge,Filtered) :- 

not(test edges(Edge,Request)) 

Filtered = [Request IRest_filtered], 
filter(Rest,Edge,Rest filtered). 

Figure 6-9: Safe predicate to support a manager for an AET based on a stream 

The first argument of the activation process in Figure 6-10 is consumed by this 

process, and used to generate new possible active edges. The second argument is 

used to send the stream of activation requests to the sifter/2 process defined in 

Figure 6-9. Note that the second argument of the recursive consumer call and the 

grammar rule activation that take place by this call are merged together. 

chart _adder_td([EdgeIAETxest],AET_out) :- 

chart-adder-td (AET-rest, AETa_out) , 
grammar_activation-td (Edge,Grammar_rules), 
grammar_forker_td(Edge,Grammar-rules,AETh_out), 

merge (AETa_out,AETb_out,AET_out). 

Figure 6-10: Top-down activation process for a safe language 
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6.5.3 Safe+System Streams Chart Parser 

In our safe+system streams language the shared data structure, the chart, 

must be supported by a manager process. Writer processes make update requests 

to this manager. However, unlike pure safe languages, these requests need not 

make explicit use of merge processes. Instead the writer processes could make use 

of the support for system streams outlined earlier. The manager process for the 

chart, the process that insures no duplicate edges are added, is the same as for a 

safe language (see Figure 6-9). 

For a top-down activation strategy the activation process will consume the 

AET. For each applicable grammar rule a new possible active edge is generated. 

These possible new active edges will be added to a stream of unfiltered requests 

using the built in goal add-to-stream/2. The resulting activation object is given 

in Figure 6-11. 

chart _adder_td([EdgeIAET_rest]) :- 
chart _adder_td(AETxest) , 
grammar-act ivation_td(Edge,Grammar_rules), 
grammar.Iorker_td(Edge,Grammar-rules) . 

grammar_f orker_td ( [Edge, _, _, _, WordsLeft] , Grammar-rules) : - 
forks(Grammar_rules,WordsLeft) . 

forks([] ,_) . 

forks([['-->' (Edge,FindList)] I Rest],Words) :- 
add_to_stream (aet_ugas,[Edge,FindList,FindList,Words, Words]), 
forks(Rest,SO) 

The resultant stream has a handle aet_ugas. 

Figure 6-11: Top-down activation process making use of system streams 
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6.6 Results and analysis 

As these parsers have not been analysed before and the safe+system streams exam- 

ple cannot run on previous interpreters we do not carry out a comparative analysis 

of our new system with the previous systems. To execute the three styles of lan- 

guage on one system, Parlog, we have added some extensions to our evaluation 

system. 

unsafe predicates are declared by program annotation. The interpreter 

delays the processing of any goals to be evaluated by such a predicate within 

a cycle until all the safe goals have been processed. The unsafe goals are 

then evaluated as in the previous interpreters (see section 2.6.1.2) which 

handle the evaluation of unsafe predicates 2 

The two stream manipulation system calls are also supported by extensions 

to our system. Any stream calls are only processed at the end of a cycle. The 

interpreter maintains a record of the streams declared as resultant stream and 

is hence able to add elements to these streams as if they were atomic actions. 

2Unsafe predicates are allowed to bind the input variables in the guard. In Shapiro's 

original interpreter [Shapiro 83] these predicates did not cause any implementation dif- 

ficulties as bindings were generated as the goals were processed. As this processing 

was sequential there were no problems associated with supporting atomic commitment 

required for unsafe bindings. In our system we have attempted to model parallel AND- 

parallelism and to this end we have developed a model in which goal order does not 

affect the overall computation; by allowing only bindings available at the beginning of a 

cycle to be used by the goals (see section 3.6.3). To execute unsafe predicates we relax 

this restriction but require that such predicates are evaluated at the end of a cycle and 

only possess flat guards 
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We evaluate the various chart parsers using both top-down and bottom-up 

activation strategy. Profiles of the execution of the various chart parsers are given 

in Figures 6-12, 6-13, 6-14, 6-15, 6-16, 6-17, 6-18, 6-19, 6-20, 6-21, 6-22, and 

6-23. The results are also summarised in Tables 6-1 and 6-2. 

Minimum 
Required Actual 

Chart Parser Cycles Reductions Reductions 
Unsafe, top-down activation (UTD) 943 9397 12508 
Safe, top-down activation (STD) 951 8863 11554 
Safe+system streams top-down (S+SSTD) 632 7840 10531 
Unsafe, bottom-up activation (UBU) 526 12565 16538 
Safe, bottom-up activation (SBU) 591 12611 16220 
Safe+system streams bottom-up (S+SSBU) 385 10708 14317 

For a given chart parser the results for the various reduction parameters are the same 
(see Figures 6-12, 6-15 and 6-18) hence only one value is given for the reductions, 
namely the Actual Reductions. 

Table 6-1: Summary of reduction parameters for the various chart parsers 

Suspensions 
Busy waiting Non-bus y waiting 

Non-Pruned Pruned Non-Pruned Pruned 
Chart Parsers Goal Clause Goal Clause -Goal Clause Goal Clause 
UTD 20935 40163 20935 40163 627 1285 627 1285 

STD 81096 255585 81096 255585 1962 6148 1962 6148 

S+SSTD 21179 43081 21179 43801 777 1645 777 1645 

UBU 14218 27607 14218 27607 1094 2219 1094 2219 
SBU 67704 218602 67704 218602 3192 10398 3192 10398 

S+SSBU 14895 30291 14895 30291 1110 2334 1110 2334 

Table 6-2: Summary of suspension parameters for the various chart parsers 
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Figure 6-17: Profile of a top-down safe chart parser 
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Figure 6-18: Profile of a top-down safe+system streams chart parser 
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Figure 6-21: Profile of a bottom-up unsafe chart parser 
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Figure 6-23: Profile of a bottom-up safe+system streams chart parser 
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First we consider some general points raised by these profiles: 

There is no difference between the various reduction counts for the unsafe 

chart parsers (see Figure 6-14). The same is also true of the safe and 

safe+system streams parsers (see Figures 6-17 and 6-20). The similarity 

in the reduction counts, using goal and clause suspensions, indicates either 

there are no suspensions or that the evaluation suspends on head unification 

before any reductions in the guard take place. As there are suspensions for 

each of these chart parsers the suspensions must occur on head unification. 

The similarity in the suspension counts using pruned and non-pruned 

evaluations indicates that either guards are even in their computation (this 

includes the guards being flat) or that only one clause could ever be picked 

as a solution path. 

Comparing the minimum reductions to the actual reductions gives a measure 

of the OR-parallelism (see section 4.3.4). Table 6-3 summarises the degree 

of OR-parallelism for the various chart parsers and activation strategies. 

Chart Parser 
Actual 

Reductions 
Minimum 

Reductions OR-parallelism 
UTD 12508 9397 1.33 
STD 11554 8863 1.30 
S+SSTD 10531 7840 1.34 

UBU 16538 12565 1.32 
SBU 16220 12611 1.29 

S+SSBU 14317 10708 1.34 

Table 6-3: Degree of OR-parallelism for the various chart parsers 

The various chart parser do not exhibit much OR-parallelism. This is be- 

cause the perpetual process view of Parlog which was employed in the design 

of these chart parsers gives rise to predicates with simple guards. The most 

complex guards in the systems check if two edges combine or if two edges 
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will result in the same activations. Also chart parsing computes all-solutions, 

essentially replacing OR-parallelism by AND-parallelism. 

Our profiles allow us to obtain an indication of the maximum number of 

reductions and suspensions in a cycle. Table 6-4 summarises the maximum 

number of reductions that can be performed in a given cycle, some of this 

information is given graphically in Figures 6-13, 6-16 and 6-19. 

Program Max reductions Cycle number 
UTD 95 757 
STD 105 834 
S+SSTD 107 497 

UBU 154 374 

SBU 145 458 

S+SSBU 152 280 

Table 6-4: Maximum reductions in a given cycle for the various chart parsers 

Whilst we see that the maximum number of reductions is high, the profiles, 

Figures 6-13, 6-16 and 6-19 show that these maxima are very narrow peaks. 

This indicates that the maximum reductions in a cycle should not be taken 

as a strong indication of the possible number of exploitable processes 3. 

The main feature to note is the maximum parallelism occurs sooner for 

the bottom-up activation strategy, indicating that activation model is more 

parallel at the start. 

Table 6-5 summarises the maximum number of suspensions that can occur 

in a given cycle. Because of the nature of these chart parsing algorithms 

31t can be argued that the average number of reductions over the whole computa- 

tion is the only measure that reflects realistic processor requirements. However, some 

computation may exhibit large amounts of parallelism for several cycles but still have 

a low average utilisation. In these cases some weight should be given to the maximum 

possible processor utilisation. 
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(ie. they terminate by deadlocking), the maximum number of suspended 

processes will occur in the last cycle. However, the maximum number of new 

suspensions in a given cycle will occur some time during the computation. 

This is confirmed pictorially in Figures 6-12, 6-13, 6-15, 6-16, 6-18, and 

6-19. 

Maximum number of suspens ions in a given cycle 
Busy waiting Non-bus y waiting 

Goal Clause Goal CI-ause 
Program Max Cycle Max Cycle Max Cycle Max -Cycle 
UTD 40 943 78 930 33 766 65 766 
STD 136 951 424 938 42 751 100 751 

S+SSTD 59 632 119 632 30 512 60 512 
UBU 53 526 104 526 40 378 80 378 
SBU 180 591 564 591 57 459 142 459 
S+SSBU 

1 1 
77 385 155 385 44 315 88 315 

Table 6-5: Maximum suspensions in a given cycle for the various chart parsers 

We now compare the three chart parsers. 

The difference between suspensions using goal and clause suspension mech- 

anisms highlights the number of clauses that each goal could be reduced by 

in the dynamic program (see section 4.5.3.1). Table 6-6 summarises the ratio 

of clause to goal for the various chart parsers using busy and non-busy 

waiting scheduling. 

Busy waiting Non-busy waiting 
Program Goal Clause Ratio Goal Clause Ratio 
UTD 20935 40163 1.9 627 1285 2.0 

STD 81096 255585 3.2 1962 6148 3.1 

S+SSTD 21179 43081 2.0 777 1645 2.1 

UBU 14218 27607 1.9 1094 2219 2.0 

SBU 67704 218602 3.2 3192 10398 3.3 

S+SSBU 14895 30291 2.0 1110 2334 2.1 

Table 6-6: Clause/Goal suspension ratios for the various chart parsers 
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The similarity in busy and non-busy waiting ratios indicates that the dif- 

ferent predicates (differing in number of clauses) suspend for similar numbers 

of cycles. The similarity in the ratios for top-down and bottom-up activa- 

tions indicates either that all the goals that suspend have similar numbers of 

clauses or that the program's behaviour is independent of activation model. 

In the various chart parsers most predicates have two clauses. 

The ratio of suspensions using clause and goal suspension mechanisms is 

largest for the safe chart parsers. This is due to merge/3 processes. In the 

main these merge processes are suspended. Since each merge goal can reduce 

via four clauses this increases the average suspension count. 

The (non-busy) suspension parameter records the number of new sus- 

pended processes that occur in each cycle. For the safe chart parser the 

number of new goals suspended is 1962 (see Table 6-2) for the unsafe chart 

parser the number is 627 and for the safe+system streams chart parser 

the number is 777. 

In the unsafe chart parser the main processes that suspend are those for 

active edges. Updates to the shared data structure are achieved by directly 

accessing the chart. In the safe+system streams chart parser there will 

be suspended processes for active edges and some filter processes, which sift 

the request stream. Messages are placed on the request stream using system 

primitives. In the safe chart parser there will be suspended processes for 

active edges, filter processes and a network of merge processes to combine 

local request streams from each active edge process. For each active edge 
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their are two associated merge processes 4. This indicates that generally 

both the filter processes and the network of merge processes are suspended. 

Goal Suspension Clause Suspension 
Program Busy Non-busy Ratio Busy Non-busy Ratio 
UTD 20935 627 33.4 40163 1285 31.2 
STD 81096 1962 41.3 255585 6148 41.6 

S+SSTD 21179 777 27.3 43081 1645 26.2 

UBU 14218 1094 13.0 27607 2219 12.4 

SBU 67704 3192 21.2 218602 10398 21.0 

S+SSBU 14895 1110 13.4 30291 2334 13.0 

Table 6-7: Busy/Non-busy suspension ratios for the various chart parsers 

The comparison of busy and non-busy suspensions (total suspensions with 

new suspensions) indicates the benefit of tagging suspended executions to 

variables (see section 4.2.2). Table 6-7 summarises the ratios of busy and 

non-busy waiting suspensions for the various chart parsers using goal and 

clause suspension mechanisms. 

In chart parsing the generation of inactive edges can be delayed in two ways: 

Firstly, delays in the creation of new active edges and their addition to the 

AET, which construct the inactive edges. Secondly, in the addition of newly 

formed inactive edges being added to the WFST (see section 6.5). The 

interaction and effect of the alternative delays result in the behaviour of the 

chart parsers being complex 5. From the results we can deduce: 

4Merge processes are created by the active edge spawner, this process spawns one 

active edge and two merge processes. That is the AET and WFST streams from the 

spawned active edge are merged with AET and WFST streams from any active edge 

processes that will be generated in the future. 

51n the unsafe chart parser additions to the WFST take place using an unsafe pred- 

icate which recurses down the WFST until it reaches the unbound tail which it then 
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- the delay is less for the bottom-up activation model rather than top- 

down. This is because the bottom-up activation is more parallel; 

- the delay is greatest for the safe chart parser. Comparing unsafe and 

safe chart parsers, the additional delay is because the safe chart parser 

has to first combine possible requests and then sift the resultant request 

stream while the unsafe chart parser combines these operations. Com- 

paring safe+system streams and safe chart parsers, the additional 

delay is because the safe chart parser added elements to the resultant 

stream by merging streams, whilst the safe+system streams uses 

system primitives; 

- using top-down activation the safe+system stream chart parser has 

smaller delays than the unsafe chart parser. However using a bottom- 

up activation model the delays are comparable. For the unsafe chart 

parser the delay in adding elements to the WFST will be proportional 

to the number of elements that have to be recursed over to find the 

tail of the WFST. If a top-down activation model is used, the active 

edge processes which will combine sub-parses together will be generated 

first. These active edge processes will form inactive edges near the end 

of the parse and so have to recurse over most of the WFST in order to 

binds to the new inactive edge. Additions to the AET take place by a similar means 

however the new edge is also compared with each current element of the AET. 

In the safe chart parser additions to the WFST take place using a network of merge 

processes which combine streams from the various active edge processes onto the resul- 

tant WFST. Additions to the AET undergo a two stage process. Firstly, the possible 

additions are combined using a network of merge processes. The resultant stream is 

sifted to remove any edges that would result in duplicate activations. 

In the safe+system streams chart parser additions to the WFST take place using 

a system primitive (see section 6.3.3). Additions to the AET are firstly added to a 

resultant stream using a system primitive, the resultant stream is then sifted. 
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add these edges to the WFST. If a bottom-up activation model is used 

the active edge processes which will combine sub-parses together will 

be generated towards the end of the parse. These active edge processes 

are given the tail of the WFST stream when they are created, so they 

will only need to recurse over a subset of the WFST in order to add an 

edge. So, for the unsafe chart parser, the delays in adding elements to 

the WFST will be larger for top-down activations. The delay in adding 

elements to the WFST in the safe+system streams chart parser will 

be constant, as the additions are supported using system primitives. 

Table 6-8 summarises the degree of parallelism (reductions/cycle) for the 

various chart parsers. 

Average parallelism for the various chart parsers 
Program Reductions Cycles Parallelism 
UTD 12508 943 13.3 
STD 11554 951 12.1 
S+SSTD 10531 632 16.7 

UBU 16538 526 31.4 
SBU 16220 591 27.4 
S+SSBU 14317 385 37.2 

Table 6-8: Average parallelism for the various chart parsers 

For the grammar used in our chart parsers a bottom-up activation model is 

about twice as parallel as a top-down one the bottom-up activation model 

requires more reductions to be performed. This is because of using a bottom- 

up activation model, which results in some phrases being constructed that 

cannot be used. Using a top-down model results only in searches for phrases 

which can be combined. 

190 



6.7 Synopsis of analysis 

In this section we consolidate some of the results given in our analysis. 

The various chart parsers do not exhibit much OR-parallelism. This is be- 

cause the chart parsers are constructed as a collection of simple processes 

which receive messages and based on these messages, send further messages. 

The computation involved in processing incoming messages is simple, so the 

guards are not too complex and hence there is little OR-parallelism. 

The maximum number of suspended processes occur at the end of the com- 

putation for all of the chart parsers, as they deadlock, although the maximum 

number of new suspensions occur somewhere during the computation. 

It was expected that the unsafe chart parser would be significantly better 

than the safe chart parser, because of the differences in the support for 

shared data structures. The actual results give the following conclusions: 

Reductions: In terms of reductions, the safe and unsafe systems are very 

similar. The combining of request streams using a network of merge 

processes and the filtering of the resultant stream, requires a similar 

number of reductions to recursing down the shared chart comparing 

the possible new edge with the existing edges and eventually adding 

the new edge to the tail of the shared data structure. 

Suspensions: In terms of suspensions, the unsafe chart parser only has one 

type of suspended process: that representing the active edge searches. 

The safe chart parser has three types of suspended processes: those 

representing the active edge searches; those representing the network of 

merge processes; and those representing the pipeline of filter processes. 

This is reflected in the results, in that there are about 4 times as many 

suspensions for the safe chart parser as for the unsafe chart parser. 
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Cycles: In terms of cycles, the unsafe chart parser was marginally better 

than the safe chart parser. Both chart parsers have the same activation 

model and search space so the difference between the cycle counts is 

due to different delays in making additions to the shared chart. 

In the unsafe chart parser additions to the chart involve finding the tail 

of the shared data structure, while in the safe chart parser additions 

to the chart involve first merging streams of requests together and then 

filtering the request stream. 

If a top-down activation model is used, the active edge processes which 

combine sub-parses together will be generated first. These active edge 

processes will form inactive edges near the end of the parse. For the 

unsafe chart parser this will involve recursing over most of the WFST in 

order to add these edges to the WFST, whilst for the safe chart parser 

the additions will involve the traversal of only a few merge processes (as 

the active edge processes were generated early on in the parse). This is 

a complex feature of the parsers which results in the actual difference 

in cycles not being as high as first expected. 

So the unsafe chart parser appears marginally better than the safe chart 

parser. However, this margin is based mostly on the difference in suspended 

processes. In an actual implementation if an efficient suspension mechanism 

can be employed and the cost of atomic unification to support the unsafe 

chart parser is accounted for, this margin may swing to the benefit of the 

safe system. 

The merge networks which connect together streams onto one single resultant 

stream are mostly suspended. This is indicated by considering goal and 

clause suspensions using busy and non-busy waiting. 

We now turn our attention to the safe+system streams chart parser. This 

system proves to be better than either the unsafe or safe chart parser. 
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Reductions: In terms of reductions, the safe+system streams preforms 

about 10 % fewer reductions than either of the other two parsers. Com- 

pared with the unsafe chart parser the difference occurs in processing 

over the shared data structure to find the unbound tail. Compared with 

the safe chart parser the difference occurs in supporting a network of 

merge processes. 

Suspensions: In terms of suspensions, the safe+system streams parser 

has more suspensions than the unsafe parser. These are due to the 

pipeline of filter processes. Compared with the safe chart parser the 

safe+system streams chart parsers has about 1/4 of the suspensions 

using busy waiting and about 1/3 of the suspensions using non-busy 

waiting. This is due to the safe+system streams parser not support- 

ing a network of (mostly suspended) merge processes. 

Cycles: In terms of cycles, the safe+system streams shows about a 30% 

reduction in the overall cycle count. This is due to the additions to the 

resultant stream being supported by the system and so the delays asso- 

ciated with the merge network are avoided in the case of the safe chart 

parser. Compared with the unsafe chart parser the safe+system 

streams parser gains because processing over the shared data struc- 

ture to find the unbound tail can be avoided. 

Finally, the safe+system streams chart parser exhibits the most paral- 

lelism. This is because of improved accessing to the shared data structures. 

Supporting streams in the system results in fewer reductions being performed 

in data management and also fewer cycles for the overall computation. 
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6.8 Summary 

In this chapter the following have been presented and discussed: 

How all the CCND languages easily and directly support one-to-many com- 

munication by single writers to a shared variable. 

Why only unsafe CCND languages are able to directly support many-to-one 

communication. 

How shared data structures can be supported in the other, safe, CCND 

languages; by merging requests for updates to a manager process. 

Possible stream manipulation extensions to safe languages which support 

the combining of several streams onto one resultant stream. The extended 

language is known as safe+system streams. 

How an Al application, a chart parser, maps onto the three different lan- 

guages: unsafe; safe; and safe+system streams. 

The evaluation of the three resulting chart parsers using our profiling system 

developed in Chapter 3. The results indicate that: 

- there are significant overheads introduced by networks of merge pro- 

cesses, in the safe languages; 

- the unsafe languages also introduce some delays in supporting shared 

streams, in that the tail of the shared stream has to be found; 

- in terms of suspension overheads, available parallelism and total num- 

ber of cycles required the safe+system streams chart parser is best, 

highlighting the benefits of supporting multiple writers to a stream by 

the system. 
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Chapter 7 

Meta-level inference - deep/flat 

7.1 Overview 

This chapter considers how an AI programming technique known as meta-level 

inference maps to the CCND languages. Meta-level inference attempts to control 

the search at one level of the problem space (the object-level) by providing some 

general control rules (the meta-level) to guide the search over the object level 

search. The program evaluated is known as PRESS- PRolog Equation Solving 

System, [Sterling et al 821. PRESS was originally implemented in Prolog, this 

system was translated to Concurrent Prolog and FCP in [Sterling & Codish 85] 

resulting in CONPRESS and FCPPRESS respectively. 

In [Trehan 86] we reconstruct this translation for Concurrent Prolog, Parlog 

and GHC, resulting in CONPRESS, PARPRESS and GHCPRESS. The transla- 

tions were used to compare the synchronisation, expressiveness and programma- 

bility of the various CCND languages. 

In this chapter we consider the behaviour of DeepPARPRESS (which employs 

deep guards) and two flattened versions known as F1atPARPRESS-term and 

Flat PARP RES S-nonterm. The flat programs are derived from DeepPARPRESS 
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using some of the techniques employed in flattening CONPRESS to FCPPRESS 

and some techniques covered in [Gregory 87]. 

The purpose of this chapter is to highlight improvements in our system as a 

basis for collecting information about the inherent parallelism of programs with 

deep guards; to provide an application which allows us to investigate the rela- 

tionship between deep and flat guards; and to consider the effects of employing 

termination techniques for flat guarded programs. 

In section 7.2 we give a short review of PRESS and consider how the meta-level 

of PRESS was originally represented in Prolog. 

Section 7.3 considers the issues of translating PRESS to a CCND language 

which supports deep guards. 

Section 7.4 considers the method employed in flattening CONPRESS to FCP- 

PRESS and how we have flattened PARPRESS. 

In section 7.5 we present the programs and queries that we intend to evaluate. 

Section 7.6 summarises the previous analysis [Sterling et al 82] of the execution 

of the Parallel PRESSes. 

In section 7.7 we first compare our results with those obtained in the previous 

evaluation. We compare the behaviour of our three Parallel PRESSes. 

Finally, in section 7.8 we give a synopsis of our results. 

7.2 PRESS 

PRESS attempts to capture a theory of solving mathematics equations in terms of 

axioms specified in Prolog. These axioms can then be executed to give an equation 

solving system. The axioms of PRESS represent a control level which embodies a 

meta-theory of solving mathematical equations. As such the top-level of PRESS is 
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termed the meta-level. The level of the search space that this meta-level controls 

is termed the object-level. 

The meta-level of PRESS is defined as a set of axioms which have two parts. 

A precondition which determines the suitability of some method and the method 

itself. In the following sections we consider how the meta-level of PRESS was 

originally realised in Prolog. This is followed by considering how the meta-level 

of PRESS can be realised in the CCND languages. We focus on the use of deep 

guards to directly support the meta-level rules in CCND languages and how these 

deep guards can be flattened. 

7.2.1 Prolog 

The axioms that make up the meta-level of PRESS are easily represented in an 

executable form as Prolog clauses of the following form: 

solve_equation(Equation,X,Solution) :- 

precondition(Equation,X), solution-nethod(Equation,X,Solution). 

The subset of PRESS we consider has meta-rules (axioms) which cater for 

equations requiring the following types of solution methods: 

factorisation; 

isolation; 

polynomial; and 

homogenisation. 

The meta-level axioms for PRESS are given in Figure 7-1. The main point 

to note is that the meta-level rules will be investigated sequentially, according to 

Prolog's evaluation model. 
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solve_equation(Equation, Unknown, Solution) :- 
factorisation test(Equation, Unknown), 
factorisation. nethod(Equation, Unknown, Solution). 

solve_equation(Equation, Unknown, Solution) 
isolation-test (Equation, Unknown), 
isolation.method(Equation, Unknown, Solution). 

solve_equation(Equation, Unknown, Solution) 
polynomial-test (Equation, Unknown), 
polynomial.method(Equation, Unknown, Solution). 

solve_equation(Equation, Unknown, Solution) :- 
homogenisation_test(Equation, Unknown), 
homogenisationlnethod(Equation, Unknown, Solution). 

Figure 7-1: Meta-level of PRESS in Prolog 

7.3 Using deep guards 

Translating Prolog programs to a language which has deep guards is mostly a 

matter of translating code with generate and test type choice points (see section 

5.2.3) to allow different alternative solutions to be generated and maintained (see 

sections 5.2). Exploring (or rather applying) the object-level of PRESS, the rewrite 

rules for mathematics, result in a search space with many generate and test choice 

points; each rewrite generates a new temporary equation, which may be a solution 

or may lead to a solution or may never result in a solution. However, the meta-level 

of PRESS embodies a theory for solving equations which serves to control the use of 

the object-level rewrites and hence guides the search over the object-level generate 

and test search. The translation of PRESS to CONPRESS [Sterling et al 82] serves 

to highlight the fact that PRESS does not actually have any generate and test 
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choice points; in that the translation essentially involves replacing Prolog's cut 

operator for Concurrent Prolog's (Parlog's and GHC's) guard operator. 

Consider the meta-level axioms of PRESS. The structure of the meta-rules 

maps to the CCND languages in the following way. The tests for the suitability of 

various solution methods becomes the guarded goals and the solution methods be- 

come the body goals (which are committed to if the guards succeed), i.e. guarded 

horn clauses of the following form: 

solve_equation(Equation,X,Solution) :- 
precondition(Equation,X) : solution..method(Equation,X,Solution). 

Now the meta-rules can be evaluated in parallel, and the first rule to evaluate 

its guard completely is committed to. There are several points arising from this 

evaluation model: 

When the conditions are written the sequential evaluation of the conditions 

(as in Prolog) cannot be assumed, i.e. the conditionK cannot assume the 

negation of condition) to conditionK-1 being true. The only reason for 

adopting knowledge of the control mechanism, like the negation of certain 

goals, is performance. By knowing certain goals will have been attempted, 

some computation may be prevented. In a parallel system, the evaluation 

of the conditions occurs in parallel, and hence this particular efficiency as- 

pect is no longer such a major consideration for the programmer. Instead 

the conditions are made completely independent of textual order, i.e. they 

introduce whatever explicit tests are required in each condition, even if it 

means duplicating code. 

Each condition must be strict enough to ensure that the action will produce 

a solution because once a method is committed to there is no backtracking 

to find another possible solution method. In Prolog, backtracking allows 

the programmer to try another meta-rule, should the current one fail to 
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produce a solution. Even if the current condition succeeded, this could lead 

to all sorts of poor programming practice, like ignoring the real structure of 

a meta-rule. The effect of commitment could be introduced into a Prolog 

meta-rule by using the "cut operator". 

Figure 7-2 gives the meta-rules for PRESS, for the CCND languages with deep 

guards. 

mode solve_equation meta(?,?,"). 

solve_equation_meta(LHS=RHS,X,Soln) :- 
precond_factorial(LHS=RHS,X) 

factorise(LHS,X,Factorsl\ ), 
remove_duplicates(Factorsl,Factors), 
solve_f actors(Factors,X,Soln). 

solve_equation_meta(LHS=RHS,X,Soln) :- 
precond_ isolation(LHS=RHS,X) 

position(X,LHS=RHS,[SidelPosition]), 
maneuver_sides(Side,LHS=RHS,Equationl), 
isolate(Position,Equationl,Soln). 

solve_equation_meta(LHS=RHS,X,Soln) :- 
precond_polynomial(LHS=RHS, X) 

polynomial_normal_form(LHS-RHS,X,PolyForm), 
solve_polynomial_equation(PolyForm,X,Soln). 

solve_equation_meta(LHS=RHS,X,Soln) :- 
precond_homog(LHS=RHS,X,Offenders) 

homogenize(LHS=RHS,X,Offenders,Equationl,X1), 
solve_equation(Equationl,Xl,Soln1), 
solve_equation(Soln1,X,Soln). 

Figure 7-2: Meta-level of PRESS using deep guards 
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7.4 Using flat guards 

The flattening of a deep guarded program essentially requires translating OR- 

parallelism into AND-parallelism. [Sterling & Codish 87] consider three tech- 

niques for translating deep guards into flat guards. We call these techniques: 

guard continuation-mutual exclusion semaphore; 

if-then-else; and 

rewriting. 

The first of these techniques can only be used for unsafe languages. However 

it does have a safe analogue, given in [Gregory 87], which we term: 

Guard continuation-monitor goal. 

We now consider each of these techniques in turn. 

7.4.1 Guard continuation - mutual exclusion semaphore 

The guard continuation technique makes use of FCP's unsafe features. The 

guarded goals for the various clauses are translated into an a conjunction of goals; 

one goal for each guard. Each goal contains an additional call argument known 

as a mutual exclusion variable. The conjunction also contains a continuation goal. 

The goals that represent meta-level preconditions are executed in parallel. On 

successful termination of one of the preconditions the given goal binds the mutual 

exclusion variable to the successful method. This variable is consumed by the 

continuation goal which commits to the selected solution method. The resulting 

meta-level is given in Figure 7-3. Note that this method requires each of the goals 

to succeed, even if the precondition that it is testing for fails. 

201 



mode solve_equationmeta(?,?,"). 
solve_equationmeta(LHS=RHS,X,Soln) :- 

precond_factorial(LHS=RHS,X,Method), 
precond_isolation(LHS=RHS,X,Method), 
precond_polynomial(LHS=RHS,X,Method), 
precond_homog(LHS=RHS,X,HomoCont,Method), 
meta_level_cont(Method, HomoCont, LHS=RHS,X,Soln). 

mode meta_level_cont(?,?,?,?,"). 

meta_level_cont(f actorisation,_,Lhs = _,X,Soln) :- 
f actorise(Lhs,X,Factorsl\ ), 
remove_duplicates(Factorsl,Factors,_), 
solve_factors(Factors,X,Soln). 

meta_level_cont(isolation,_,Equation,X,Soln) :- 
position(X,Equation,[SideIPosition]), 
maneuver_sides(Side,Equation,Equationl), 
isolate(Position,Equationl,Soln). 

meta_level_cont(polynomial,_,Lhs = Rhs,X,Soln) 
polynomial_normal_form(Lhs-Rhs,X,PolyForm), 
solve_polynomial_equation(PolyForm,X,Soln). 

meta_level_cont(homogenization,Offenders,Equation,X,Soln) :- 
homogenize(Equation,X,Offenders,Equationl,X1), 
solve_equation(Equationl,X1,Solnl), 
solve_equation(Soln1,X,Soln). 

Figure 7-3: Meta-level of PRESS using flat guards-mutual exclusion variable 

The mutual exclusion variable can also be consumed by the other goals to 

allow them to be terminated early. This is achieved by treating the mutual ex- 

clusion variable not only as a selection semaphore for the meta-level but also as a 

termination broadcast message to the other goals exploring the preconditions. 

This technique can be applied to flattening any deep guarded program at 

least for the unsafe languages, as they support the use of a single variable (the 

mutual exclusion variable) with several writers. 
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7.4.2 If-then-else 

The second method given in [Sterling & Codish 871 is a much weaker technique 

than using a guard continuation. The technique relies on there being only one 

clause for a predicate with a deep guarded goal. This clause is translated into 

the default clause with the guarded goal returning a status, as in the guard con- 

tinuation technique the status is used as an if-then-else selector. We highlight 

this technique by considering the predicate parse/3 which collects a set of terms 

which do not parse as a polynomial or trigonometric in the unknown. Figure 7- 

gives a deep guarded version of this predicate. The first 9 clauses provide various 

cases that test for allowable terms. The last clause adds a term which cannot be 

parsed to the output list. The only deep guard in this predicate is free_of/2. 

mode parse(?,?,?). 
parse(Term,Term,L\L). 

parse(cos(Term),X,L1\L2) :- 

parse(Term,X,L1\L2). 

parse(sin(Term),X,L1\L2) :- 

parse(Term,X,L1\L2). 

parse(A+B,X,L1\L2) :- 

parse(A,X,L1\L3), parse(B,X,L3\L2). 

parse(A*B,X,L1\L2) :- 

parse(A,X,L1\L3), parse(B,X,L3\L2). 
parse(A-B,X,L1\L2) :- 

parse(A,X,L1\L3), parse(B,X,L3\L2). 

parse(A=B,X,L1\L2) :- 

parse(A,X,L1\L3), parse(B,X,L3\L2). 

parse(A"B,X,L) :- 

integer(B), B>1 : parse(A,X,L). 

parse(A,X,Lout\L) :- 

free_of(X,A) : Lout = L; 
parse(A,X,[AIL]\L). 

Figure 7-4: parse/3 using deep guards 
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Figure 7-5 gives the flattened version of the last two clauses for this predicate. 

The deep guard and output clause have been combined into the default clause 

using an if-then-else construct; if the free-of fails, output the term, else output 

nothing. 

mode parse(?,?,?). 

parse(A,X,Lout\L) :- 

free_of (X,A,F1ag) , 

output_fail_flag(A,Flag,Lout\L). 

mode output_fai1_f1ag(?,?,"). 
output_fail_flag(A,failed, [AIL] \L) . 

output_fail_flag(_,true,L\L). 

Figure 7-5: Flattened clauses of parse/3 

7.4.3 Rewriting 

This technique basically involves rewriting the definition of certain deep guarded 

predicates. [Sterling & Codish 87] refer to this as a specialisation process. Con- 

sider the predicate remove-duplicates given in Figure 7-6. 

The member/2 guarded goal can be specialised for its use within 

remove-duplicates which gives rise to the the flat version given in Figure 7- 

7. 

This particular predicate could have been flattened using either of the previ- 

ous two techniques considered. However, the code generated by the previous two 

techniques would have been less efficient than rewriting (specialising) the member 

check with respect to its use in remove_duplicates. 
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mode remove-duplicates(?,-). 
remove_duplicates(In,Out) :- 

remove_duplicates(In, ,Outs ). 

remove_duplicates(,[]). 
remove_duplicates([XIXs],Ys) :- 

member(X,Xs) 

remove_duplicates(Xs,Ys); 
remove_duplicates ([X I Xs] , [X I Ys]) : - 

remove_duplicates(Xs,Ys). 

Figure 7-6: remove-duplicates/2 using deep guards 

7.4.4 Guard continuation - monitor goal 

The guard continuation using a mutual exclusion variable given in section 7.4.1 

makes use of FCP's unsafe features, in that the mutual exclusion variable can 

be bound by several goals and hence requires atomic unification (see chapter 5). 

However, this technique has an analogue which can be supported in safe languages. 

The technique given in [Gregory 87] for eliminating OR-parallel search can be seen 

as analogous to the guard continuation using a mutual exclusion variable. Both 

use a guard continuation to commit to a given set of body goals, the commitment 

being based on the evaluation of several AND-parallel goals which perform the 

guarded search. 

The difference between the two techniques is that, using a mutual exclusion 

variable, each guard is translated into a goal with the same additional argument 

serving to flag the selected guard; as well as acting as a semaphore for excluding 

the selection of the other guards. In the safe languages the guards are translated 

into goals, each of which has a unique termination flag. Each of these termination 

flags is monitored by the guard continuation goal, which commits to a set of body 

goals as soon as one of the flags is bound to success. Hence we term this technique 
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mode remove-duplicates(?,-). 
remove_duplicates(In,Out) :- 

remove_duplicates(In,[],Out\ ) 
mode remove-duplicates(?,?,-). 

remove_duplicates( ,_,Out\Out). 
remove_duplicates([XIXs],Sofar,Out\Outl) :- 

remove_duplicates(X,Sofar,SofarNext,Out\Out2), 

remove_duplicates(Xs,SofarNext,Out2\Out1). 

mode remove_duplicates(?,?,","). 

remove_duplicates (X, [] , [X] , [X I Out] \Out) . 

remove_duplicates(X,[HIT],[HIT1],Out) :- 
X\=H 

remove_duplicates(X,T,T1,Out). 
remove_duplicates(X,[HIT],[HIT],Out\Out) :- 

X==H 

true. 

Figure 7-7: remove-duplicates/2 using flat guards 

guard continuation using a monitor goal. Figure 7-8 gives the meta-level of PRESS 

using this technique. 

Using a mutual exclusion variable also provided a means by which the other 

goals could be terminated early, once a selection has been found. This can also 

be achieved using a monitor goal. Basically it requires the monitor goal to set a 

terminate flag on committing to a given set of body goals. Note that this flag is 

only written to by the monitor goal and is consumed by each of the goals exploring 

meta-level preconditions. The resulting meta-level is given in Figure 7-9. 

206 



mode solve_equation_meta(?,?,"). 

solve_equation_meta(LHS=RHS,X,Soln) :- 
precond_f actorial(LHS=RHS,X,FactFlag), 
precond_isolation(LHS=RHS,X,IsoFlag), 
precond_polynomial(LHS=RHS,X,PolyFlag), 
precond_homog(LHS=RHS,X,HomoCont,HomoFlag), 
meta_level_cont(FactFlag,IsoFlag,PolyFlag,HomoFlag 

HomoCont, LHS=RHS,X,Soln). 

mode meta_level_cont(?,?,?,?,?,?,?,"). 

meta_level_cont(true,_,_,_,_,Lhs = _,X,Soln) .- 
f actorise(Lhs,X,Factorsl\ ), 
remove_duplicates(Factorsl,Factors,_), 
solve_f actors(Factors,X,Soln). 

meta_level_cont(_,true,_,_,_,Equation,X,Soln) 
position(X,Equation,[SidelPosition]), 
maneuver_sides(Side,Equation,Equationl), 
isolate(Position,Equationl,Soln). 

meta_level_cont(_,_,true,_,_,Lhs = RhS,X,Soln) :- 
polynomial.normal_form(Lhs-Rhs,X,PolyForm), 
solve.polynomial_equation(PolyForm,X,Soln). 

meta_level_cont(_,_,_,true,Offenders,Equation,X,Soln) :- 
homogenize(Equation,X,Offenders,Equationl,X1), 
solve_equation(Equationl,X1,Solnl), 
solve_equation(Soln1,X,Soln). 

Figure 7-8: Meta-level of PRESS using flat guards-monitor goal (nonterminat- 

ing) 
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mode solve_equation_meta(?,?,"). 
solve_equation_meta(LHS=RHS,X,Soln) 

meta_f actorial(LHS=RHS,X,FactFlag,MetaKill), 
meta_isolation(LHS=RHS,X,IsoFlag,MetaKill), 
meta_polynomial(LHS=RHS,X,PolyFlag,MetaKill), 
meta_homog(LHS=RHS,X,HomoCont,HomoFlag,MetaKill), 
meta_level_cont(FactFlag,IsoFlag,PolyFlag,HomoFlag, 

MetaKill,HomoCont, LHS=RHS,X,Soln). 

par mode meta_level_cont(?,?,?,?, ?,?,?,"). 

meta_level_cont(true,_,_,_,_,_,Lhs = _,X,Soln) .- 
factorise(Lhs,X,Factorsl\[]), 
remove_duplicates(Factorsl,Factors,_), 
solve_factors(Factors,X,Soln). 

meta_level_cont(_,true,_,_,_,_,Equation,X,Soln) .- 
position(X,Equation,[SidelPosition]), 
maneuver_sides(Side,Equation,Equationl), 
isolate(Position,Equationl,Soln). 

meta_level_cont(_,_,true,_,_,_,Lhs = Rhs,X,Soln) .- 
polynomial_normal_f orm(Lhs-Rhs,X,PolyForm), 
solve_polynomial_equation(PolyForm,X,Soln). 

meta_level_cont(-,_,_,true,_,Offenders,Equation,X,Soln) :- 
homogenize(Equation,X,Offenders,Equationl,X1), 
solve_equation(Equationl,Xl,Soln1), 
solve_equation(Soln1,X,Soln). 

Figure 7-9: Meta-level of PRESS using flat guards-monitor goal (terminating) 
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7.5 Programs evaluated 

There are several programs that we could evaluate: 

Parallel PRESS, making use of deep guards for both the meta-level axioms 

and the various auxiliary functions. 

Parallel PRESS, using deep guards only for the meta-level axioms (rules) 

and flat guards for the various auxiliary functions: 

- the flat code does not employ termination techniques; 

- the flat code does employ termination techniques. 

Parallel PRESS, using flat guards for the meta-level axioms and the various 

auxiliary functions. The flat code does not employ termination techniques. 

Parallel PRESS, using flat guards for the meta-level axioms and the various 

auxiliary functions. The flat code does employ termination techniques. 

The subset of PRESS being considered allows the following type of equation to be 

solved (these examples were the ones evaluated in [Sterling & Codish 87]): 

PRESS example 1 cos(x) x (1 - sin(2 x x)) = 0 

PRESS example 2 x2 - 3 x x + 2 = 0 

PRESS example 3 : 
22xo - 5 x 20+1 + 16 = 0. 

We can evaluate all the Parallel PRESSes with all the queries. However this 

would lead to a large amount of data which may obscure the purpose of this 

particular evaluation: to highlight improvements in our system as a basis for 

collecting information about the inherent parallelism of programs; to provide an 
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application which allows us to investigate the relationship between deep and flat 

guards; and to consider the effects of employing termination techniques for flat 

guarded programs. 

We have chosen to consider one aspect of PRESS and meta-level inference; how 

the execution of the meta-level differs using deep and flat guards, where the 

flat meta-levels may or may not employ termination techniques. The systems 

evaluated are: 

DeepPARPRESS : Parallel PRESS implemented in Parlog, employing deep 

guards just for the meta-level axioms. 

Flat PARPRESS-nonterm : Parallel PRESS implemented in Parlog, employing 

flat guards. On successful termination of one of the preconditions (to a 

meta-level axiom) the other preconditions are not terminated. 

F1atPARPRESS-term : Parallel PRESS implemented in Parlog, employing 

flat guards. On successful termination of one of the preconditions (to a 

meta-level axiom) the other preconditions are terminated. 

We evaluate these systems using the three example queries given above. 

Using our basic Parlog interpreter (see Figure 3-1) we have reconstructed the 

previous evaluation of these systems. Our raw results differ from those given in 

[Sterling & Codish 871 due to using slightly different parallel implementations; we 

only employ deep guards for the meta-level. However, the conclusions that can be 

drawn from these results are the same as those drawn in [Sterling & Codish 87]. 

In the following sections we first briefly consider the conclusions that can be 

drawn from the results obtained using the basic Parlog interpreter. We then 

present the raw data obtained from our improved Parlog interpreter. The results 

from the two interpreters are then briefly compared. We finally analyse the data 

from our improved Parlog interpreter. 
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7.6 Previous analysis 

Using deep guards 
Query Cycles Reductions Suspensions 
PRESS1 30 142 99 
PRESS2 17 79 51 
PRESS3 41 284 218 

Using non-terminating flat guards 
Query Cycles Reductions Suspensions 
PRESS1 42 337 213 
PRESS2 24 149 97 
PRESS3 71 564 426 

Using terminating flat guards 
Query Cycles Reductions Suspensions 
PRESS1 42 241 162 
PRESS2 24 126 90 
PRESS3 71 539 416 

Table 7-1: Summary of our reconstructed previous measurements for Parallel 
PRESSes 

The conclusions drawn in [Sterling & Codish 87] were based on results sim- 

ilar to those given in Table 7-1; in that if we perform the same analysis as in 

[Sterling & Codish 87] we can obtain the same conclusions. We feel that the pre- 

vious analysis was confused and mis-leading in several respects: 

It is not known whether system calls were counted as Prolog reductions. 

They certainly do not count the system calls as reductions in their CP in- 

terpreter. 

There are open questions as to the correlation between Prolog reductions, 

CCND reductions and cycles. As the Prolog reductions occur sequentially 

the reduction count gives some measure of the duration of the computation; 

whilst the duration of the computation is given by the cycle count for the 
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CCND languages. But how long does a Prolog reduction take compared to 

a CCND cycle? Are they really the same? 

They do not count reductions in the failed guards (preconditions) of their 

CP code. Did they count reductions in the branches backtracked over in the 

Prolog code? If not, the comparison of CP cycles with Prolog reductions to 

measure parallel speed-up is incorrect. 

We feel that from these results it can be noted that using termination tech- 

niques for the meta-level axioms specified in flat Parlog saves some computation 

for PRESSI. However the extent of this saving is not as noticeable for PRESS2 

and PRESS3. 

The cycle counter for both flat implementations is the same for each example. 

So we can conclude that the evaluations of the preconditions all terminate before 

the selected solution method is applied. 

The cycle count for deep guards is less than that given for the flat systems. 

This is because guard evaluations were assumed not to incur cycle overheads in 

the interpreter. 

The number of reductions and suspensions recorded using deep guards is less 

than that recorded for the flat examples. This is because the clauses are evaluated 

sequentially, so using deep guards some meta-level preconditions may never be 

tried, whilst in the flat system, the meta-level axioms will all be attempted. 

Finally the degree of parallelism (reductions/cycle) is about 5 for the deep 

guarded PARPRESS and flat guarded PARPRESS employing termination of the 

meta-level, and is about 7 for the flat guarded PARPRESS not employing termi- 

nation of the meta-level. 
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7.7 Results and new analysis 

We first compare our data to the previous statistics collected and then compare 

the various programming technique using our results. The results obtained by our 

system are summarised in Tables 7-2 and 7-3. Also, some information is given 

pictorially in Figures 7-10 to 7-18 

Reductions 
Minimum Busy waiting Non-busy waiting 
Required Non-Pruned Pruned Non-Prune Pruned 

Query Reductions Goal Clause Goal Clause o ause Goal Clause 
Using deep guard s 

PRESS1 
PRESS2 
PRESS3 

333 
159 

631 

988 
435 
1917 

983 
433 
1657 

675 
339 
1755 

673 
339 
1498 

983 
433 
1911 

983 
433 
1657 

673 
339 
1752 

673 
339 
1498 

Using non-terminating flat guards 
PRESSI 
PRESS2 
PRESS3 

802 
332 
1289 

1032 
445 
1704 

1022 
441 
1694 

1032 
445 
1704 

1022 
441 
1694 

1022 
441 
1694 

1022 
441 
1694 

1022 
441 

1694 

1022 
441 
1694 

Using terminatin g flat guards 
PRESS1 
PRESS2 
PRESS3 

574 
275 
1187 

749 

370 
1583 

745 
370 
1579 

748 
370 
1581 

744 
370 
1577 

745 

370 
1579 

745 
370 
1579 

744 

370 
1577 

744 

370 
1577 

Table 7-2: Summary of reduction parameters for Parallel PRESSes 
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Suspensions 
Busy waiting Non-busy waiting 

Non-Pruned Pruned Non-Prune Prune 
Query Cycles Goal Clause o Clause o ause Goal Clause 
Using deep guards 
PRESS1 
PRESS2 
PRESS3 

87 

40 

130 

1110 

364 

2031 

1862 

760 

4924 

837 

265 

1853 

1338 

513 

4464 

413 

136 

597 

650 

236 

1017 

292 

86 

575 

441 

140 

968 

Using non-terminating flat guards 
PRESS1 
PRESS2 
PRESS3 

86 

44 

132 

1088 

380 

1736 

2953 

1172 

5227 

1088 

380 

1736 

2953 

1172 

5227 

409 

129 

614 

953 

338 

1509 

409 

129 

614 

953 

338 

1509 

Using terminating flat guards 
PRESS1 
PRESS2 
PRESS3 

86 

44 

132 

816 

302 

1605 

2034 

892 

4730 

816 

302 

1605 

2034 

892 

4730 

286 

86 

546 

643 

231 

1328 

286 

86 

546 

643 

231 

1328 

Table 7-3: Summary of suspension parameters for Parallel PRESSes 
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Figure 7-10: Profile of PRESS1 using deep guards 
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Figure 7-11: Profile of PRESS1 using (non-terminating) flat guards 
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Figure 7-12: Profile of PRESS1 using (terminating) flat guards 
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Figure 7-13: Profile of PRESS2 using deep guards 
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Figure 7-14: Profile of PRESS2 using (non-terminating) flat guards 
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Figure 7-15: Profile of PRESS2 using (terminating) flat guards 
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Figure 7-16: Profile of PRESS3 using deep guards 
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Figure 7-17: Profile of PRESS3 using (non-terminating) flat guards 
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Figure 7-18: Profile of PRESS3 using (terminating) flat guards 
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The previous interpreters employed goal suspension and busy waiting. The 

previous reduction counter is closest to our new reduction counter using busy 

waiting and goal suspension. Table 7-4 compares the previous reduction 

counts with our new reduction counts. 

Comparing previous and new reduction measures 
Query 1 1 Previous New Busy-Goal Difference % Difference 
Using deep guards 
PRESS 1 142 988 846 596 
PRESS2 79 

T 
435 356 451 

PRESS3 284 1917 1633 575 
Using non-terminating flat guards 
PRESS1 337 1032 695 306 
PRESS2 140 445 305 318 
PRESS3 564 1704 1140 302 
Using terminating flat guards 
PRESS1 241 749 508 310 
PRESS2 126 370 244 294 
PRESS3 539 1583 1044 294 

Table 7-4: Comparing previous and new reduction measures 

Our new reduction count is higher than the previous count. Part of this 

difference can be attributed to system calls which are included as part of our 

reduction measures. The other effect, for deep guards, which compounds 

this difference is the modelling of OR-parallelism. The previous system 

attempts the clauses sequentially, committing to the first clause whose guard 

succeeds, whilst our system attempts each of the clauses and commits to the 

clauses with the shallowest guard evaluation. So the previous counter can 

only record reductions for those clauses attempted. Hence it may be the case 

that our new reduction counter is higher, especially if the clause committed 

to is textually near the top. 

This view is substantiated by considering the actual percentage differences. 

For the flat PARPRESS the increase is a constant 300 %. For deep guards 
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the difference is greatest for PRESS 1 and PRESS3 where the computation 

commits to the first-meta level axiom in solving the equation. 

The earlier interpreters counted only goal suspensions and used busy wait- 

ing, moreover some failed evaluations would be recorded as suspensions (see 

section 3.3). This previous counter is closest to our new suspension counters 

using busy waiting and goal suspension. Table 7-5 compares the previous 

suspension counter with our new suspension counter. 

Comparing previous and new suspension measures 
Query 1 1 Previous New Busy-Goal Difference % Difference 
Using deep guards 
PRESS 1 99 1110 1011 1020 
PRESS2 51 364 313 614 
PRESS3 218 2031 1813 832 

Using non-terminating flat guards 
PRESS1 213 1088 875 411 

PRESS2 97 380 283 292 

PRESS3 426 1736 1310 408 

Using terminating flat guards 
PRESS1 162 816 654 404 
PRESS2 90 302 212 336 
PRESS3 416 1605 1189 386 

Table 7-5: Comparing previous and new suspension measures 

Our new suspension count is higher than the previous counter. There are sev- 

eral components to this increase. Firstly, we model parallel AND-parallelism 

(see sections 3.3.3 and 3.4), hence some AND-parallel goals suspend for addi- 

tional cycles whilst bindings become available; either because deep guards 

are accounted for or because bindings are not generated as goals are pro- 

cessed. Secondly, we count the suspension of system calls. Finally, because 

we model parallel OR-parallelism, our suspension counter records the sus- 

pensions in each of the clauses not just the clauses attempted. This final 

point is reflected in the greatest increase in reductions occurring for the 

PRESS1 and PRESS3 examples using deep guards. 
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Table 7-6 compares the degree of parallelism (reductions/cycles obtained 

using our system and the previous system. For this comparison we use our 

reduction parameter employing goal suspensions, busy waiting and non- 

pruning, as this is closest to the previous reduction counter. 

Comparing previous and new measures for average parallelism 

1 1 

Previous 
1 1 

New Busy-Goal 
Query Reductions Cycles Parallelism Reductions Cycles Parallelism 
Using deep guards 
PRESS1 99 30 3.3 988 87 11.4 
PRESS2 51 17 3.0 435 40 10.9 
PRESS3 218 41 5.1 1917 130 14.8 
Using non-terminating flat guards 
PRESS1 213 42 5.1 1032 86 12.0 
PRESS2 97 24 4.0 445 44 10.1 
PRESS 3 426 71 6.0 1704 132 12.9 
Using terminating flat guard s 

PRESS 
1 

162 42 3.9 749 86 8.71 
PRESS2 

1 

90 

1 

24 3.8 370 44 8.41 
PRESS 3 416 71 5.9 1583 132 12.0 

Table 7-6: Comparing previous and new measures for average parallelism 

There are two points to note from this comparison. Firstly, our results 

give higher measures for the average degree of parallelism. This is due to 

our system recording the work done in the evaluation of system calls. Sec- 

ondly, comparing deep guards using non-pruning with non-terminating 

flat guards, we see that our results give more consistent figures for the av- 

erage parallelism. This should be expected as the flat implementation is 

obtained by translating OR-parallelism into AND-parallelism. This is not 

true of the previous evaluation data. 
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We now carry out an analysis, based on our new results, of the various Parallel 

PARPRESS systems. 

For the flat PARPRESSes there is little or no difference in the reduction 

counts using goal and clause suspensions (see Table 7-2). As suspensions 

do occur, we can conclude that these take place on head unification before 

any reductions in the guard can be performed. 

For the deep PARPRESS we see that there is a noticeable difference (see Ta- 

ble 7-2) in reduction counts for the PRESS3 example using goal and clause 

suspensions. To understand why there is a difference we must consider the 

evaluation of this example. The PRESS3 example involves changing the 

unknown of the equation; the equation in the new unknown is solved and 

this solution is substituted back to give solutions to the original unknown. 

In PRESS3 these three processes, change of unknown, solving for the new 

unknown and substituting back and solving, take place in parallel. The pur- 

pose in carrying out the three stages in parallel is that some precondition can 

fail on partially complete equations, so changing the unknown and solving 

the new equation may be more parallel. However, our results indicate that 

the preconditions perform some reductions and then suspend. So, if goal 

suspension is used these reductions will be repeated. 

Furthermore, the difference between busy and non-busy waiting indicates 

that these suspended meta-level preconditions only suspend once before they 

can be evaluated; the differences in reduction parameters, using the busy 

and non-busy waiting, is minimal. 

For the flat PARPRESSes there is little or no difference between the reduc- 

tion and suspension parameters using pruned and non-pruned evaluations. 

On the other hand, for DeepPARPRESS, pruning saves some reductions 

and suspensions. This is because pruning flat guards can only be of limited 

benefit. 
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If we now consider the benefit of pruning DeepPARPRESS we see that 

it differs for the various example queries. Table 7-7 summarises the saving 

that can be obtained by pruning deep guards for DeepPARPRESS. 

Comparing reductions 
pruned and non-pruned for DeepPARPRESS 

Busy waiting 
Goal Clause 

non- o non- o 

Query pruned pruned saving saving pruned pruned saving saving 
PRESS1 988 675 313 32 983 673 310 32 
PRESS2 435 339 96 22 433 339 94 22 
PRESS3 1917 1755 162 8 1657 1498 159 3.5 

(we only give this comparison for busy waiting because the reductions using busy 
and non-busy parameters are very similar). 

Table 7-7: Comparing pruned and non-pruned reductions for DeepPAR- 
PRESS 

Comparing pruned vs non-pruned reductions we note that pruning saves 

most reductions for the PRESS1 query. This indicates that the successful 

precondition, when solving this query, succeeds much sooner than the other 

precondition takes to fail. The precondition to solving PRESS1 is to check 

the equation is of the form A x B = 0. For the PRESS2 and PRESS3 

query the number of reductions saved is smaller. This indicates that the 

successful preconditions in solving these equations are more complex. In fact 

for PRESS3, pruning occurs twice, first in the precondition to solving the 

original equation (which is homogenisation) and again in solving the equation 

in a new unknown. These points are confirmed graphically in Figures 7-10; 

7 1 3; and 7-16. 

Figure 7-10 shows that pruning can take place very quickly in solving 

PRESS1. Figures 7-13 indicates that pruning for PRESS2 occurs after 

some number of cycles. Figure 7-16 shows that pruning occurs in two places 

in solving PRESS3. 
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Our profiling parameters should reflect the benefit of pruning or non- 

pruning the computation. In terms of meta-level inference this reflects 

the amount of computation that will be saved in fully evaluating the pre- 

conditions once one succeeds. The two techniques employed in flattening 

PARPRESS also aim to highlight the benefit of terminating or not termi- 

nating the evaluation of the preconditions once one succeeds. 

In fact our parameters using pruning for DeepPARPRESS, should 

be similar to the parameters for F1atPARPRESS-term, and our pa- 

rameters using non-pruning for DeepPARPRESS, should be similar 

to the parameters for F1atPARPRESS-nonterm. Table 7-8 compares 

the reduction parameters for DeepPARPRESS using non-pruning with 

F1atPARPRESS-nonterm. Table 7-9 compares the reduction parame- 

ters for DeepPARPRESS using pruning with F1atPARPRESS-term. 

Both tables show a high correlation in the reduction counts for deep and 

flat systems. 

Comparing reductions 
DeepPARPRESS non-pruning VS Flat PARPRESS-nonterm 

Busy waiting Non-busy waiting 
Goal Clause Goal Clause 

Query deep flat deep flat deep flat deep flat 
PRESS1 
PRESS2 
PRESS3 

988 

435 

1917 

1032 

445 

1704 

983 

433 

1657 

1022 

441 

1694 

983 

433 

1911 

1022 

441 

1694 

983 

433 

1657 

1022 

441 

1694 

Table 7-8: Comparing reductions: deep non-pruning and flat-nonterm 

Table 7-10 compares the suspension parameters for DeepPARPRESS us- 

ing non-pruning with F1atPARPRESS-nonterm and Table 7-11 com- 

pares the suspension parameters for DeepPARPRESS using pruning with 

F1atPARPRESS-term. 

Both tables show a high correlation in the suspension counts using goal 

suspensions. However, using clause suspension, the suspension count for 

F1atPARPRESS-term is always higher than the counter for DeepPAR- 
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Comparing reductions 
DeepPARPRESS pruning VS FlatPARPRESS-term 

Busy waiting Non-bus y waiting 
Goal Clause Goal Clause 

Query deep flat deep flat deep flat deep at 
PRESS1 
PRESS2 
PRESS3 

675 

339 

1755 

749 

370 

1583 

673 

339 

1498 

743 

370 

1579 

673 

339 

1752 

745 

370 

1579 

673 

339 

1498 

744 

370 

1577 

Table 7-9: Comparing reductions: deep pruning and flat terminating 

Comparing suspensions 
DeepPARPRESS non-pruning VS F1atPARPRESS-nonterm 

Busy waiting Non-busy waiting 
Goal Clause Goal Clause 

Query deep flat deep flat deep flat deep flat 
PRESS1 
PRESS2 
PRESS3 

1110 

364 
2031 

1088 

380 
1736 

1862 

760 
4924 

2957 

1172 

5227 

413 

136 

597 

409 

126 

614 

650 

236 
1017 

953 

338 
1509 

Table 7-10: Comparing suspensions: deep non-pruning and flat-nonterm 

PRESS. This is because each flat predicate called as part of the meta-level 

precondition requires one extra clause to support the possible termination 

message required for terminating the evaluation of the other preconditions'. 

'This need not be true of Flat PARPRESS-nonterm as it does not terminate the 

precondition evaluation. However, we use the same flat functions for both F1atPAR- 

PRESSes and only send the terminate message in Flat PARPRESS-term. 

Comparing suspensions 
DeepPARPRESS pruning VS Flat PARPRESS-term 

Busy waiting Non-busy waiting 
Goal Clause Goal Clause 

Query deep flat deep flat deep flat deep flat 
PRESS1 
PRESS2 
PRESS3 

837 

265 
1853 

816 

302 
1605 

1338 

513 
4464 

2034 

892 
4730 

292 

89 
575 

286 

86 
546 

441 

140 

968 

643 

231 
1328 

Table 7-11: Comparing suspensions: deep pruning and flat terminating 
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Comparing the minimum reductions to the actual reductions gives a mea- 

sure of the OR-parallelism (see section 4.3.4). As we have already noted 

there is little or no difference in the reduction counts for either of the Flat- 

PARPRESSes so we choose to use the reduction count using non-busy 

waiting, non-pruned guards and clause suspensions to obtain a measure 

for the OR-parallelism. For DeepPARPRESS we require two reduction 

parameters: pruned and non-pruned. Table 7-12 summarises the degree 

of OR-parallelism for the various Parallel PRESSes. 

OR-parallelism 
Query Reductions Minimum Reductions OR-parallelism 
DeepPARPRESS: non-pruned reduction 
PRESS1 333 988 2.97 
PRESS2 159 435 2.74 
PRESS3 631 1917 3.04 
DeepPARPRESS: pruned reduction 
PRESS1 333 675 2.03 
PRESS2 159 339 2.13 
PRESS3 631 1755 2.78 
F1atPARPRESS-nonterm 
PRESS1 802 1022 1.27 
PRESS2 332 441 1.33 
PRESS3 1289 1694 1.31 
F1atPARPRESS-term 
PRESSI 574 745 1.30 
PRESS2 275 370 1.35 
PRESS3 1187 1579 1.33 

Table 7-12: Degree of OR-parallelism for Parallel PRESSes 

As expected DeepPARPRESS not using non-pruning exhibits the most 

OR-parallelism; as the OR-search is not terminated. This is closely followed 

by DeepPARPRESS using pruning. Both F1atPARPRESS-term and 

F1atPARPRESS-nonterm exhibit minimal OR-parallelism; this is not 

surprising as flattening involves translating OR-parallel search into AND- 

parallel search. 
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As we give a cycle by cycle profile of our evaluation parameters we are able 

to see the maximum number of reductions and suspensions in a cycle using 

a given execution model. Table 7-13 summarises the maximum number of 

reductions that can be performed in a given cycle, some of this information 

is given graphically in Figures 7-10 to 7-18. As with obtaining measures 

for OR-parallelism (see Table 7-12) we only use a subset of the reduction 

parameters: F1atPARPRESSes using non-busy non-pruned and clause 

suspensions; and for DeepPARPRESS we use two parameters, pruned 

and non-pruned. 

Maximum number of reductions in a given cycle 
Query 1 1 Max reduction Cycle number 
DeepPARPRESS: non-pruned reduction 
PRESSI 44 7 

PRESS2 46 7 

PRESS3 64 45 
DeepPARPRESS: pruned reduction 
PRESSI 33 35 
PRESS2 46 7 

PRESS3 64 45 
Flat PARPRESS-nonterm 
PRESS1 37 8 

PRESS2 46 7 

PRESS3 50 44 

Flat PARPRESS-term 
PRESSI 35 34 
PRESS2 46 7 

PRESS3 50 44 

Table 7-13: Maximum reductions in a given cycle for Parallel PRESSes 

There are two points to note from this table. Firstly, there is a differ- 

ence in maximum number of reductions for the PRESSI example using 

pruning and non-pruning. If pruning is employed then some evaluation 

of the other preconditions can be prevented. Secondly, there is a strong 

correlation in the maxima for DeepPARPRESS using non-pruning and 

F1atPARPRESS-nonterm and DeepPARPRESS using pruning and 
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Flat PARP RES S-t erm. This agrees with the general comparison of re- 

ductions given in Tables 7-8 and 7-9. 

Table 7-14 summarises the maximum number of suspensions that can occur 

in a given cycle. As with the reduction tables, Table 7-8, 7-9 and 7-13, 

we present pruned and non-pruned data for DeepPARPRESS and only 

non-pruned for the F1atPARPRESSes. This information provides an 

indication of the maximum size of the various suspension queues that will 

be needed for the different suspension mechanisms and scheduling policies, 

this is given by the busy waiting suspension parameters. It also indicates 

the maximum number of suspensions that will occur in a cycle. This is given 

by the non-busy waiting suspension parameters. 

Maximum number of suspensions in a given cycle 
Busy waiting Non-busy waiting 

Goal Clause Goal Clause 
Query Max Cycle Max Cycle Max Cycle Max yc e 
DeepPA RPRESS: non-pruned 
PRESSI 43 10 53 18 22 10 39 10 
PRESS2 24 18 50 20 14 18 25 18 
PRESS3 53 64 142 64 21 12 38 12 
DeepPA RPRESS: pruned 
PRESS1 28 44 49 44 18 42 28 42 
PRESS2 24 8 37 8 13 6 20 6 
PRESS3 47 46 135 47 21 12 38 12 

F1atPARPRESS-nonterm 
PRESS1 41 11 110 11 24 11 53 11 

PRESS2 29 24 78 24 17 24 36 24 
PRESS3 39 15 134 15 21 12 49 12 

F1atPARPRESS-term 
PRESS1 26 43 66 43 14 43 30 43 

PRESS2 23 8 71 8 12 6 32 6 
PRESS3 39 15 134 15 21 12 49 12 

Table 7-14: Maximum suspensions in a given cycle for Parallel PRESSes 

As with the maximum reductions, given in Table 7-13, this table shows a 

high correlation in maxima for DeepPARPRESS using non-pruning and 
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F1atPARPRESS-nonterm and DeepPARPRESS using pruning and 

F1atPARPRESS-term. 

The difference between suspensions using goal and clause suspension mech- 

anisms highlights the number of clauses that each goal could be reduced by 

in the dynamic query (see section 4.5.3.1). Table 7-15 summarises the ratio 

of clause to goal suspensions using busy and non-busy waiting schedul- 

ing for DeepPARPRESS, using pruned and non-pruned models and 

FIatPARPRESS-nonterm and FIatPARPRESS-term. 

Busy waiting Non-busy waiting 
Query Goal Clause Ratio 1 1 Goal Clause Ratio 
DeepPARPRESS: non-pruned 
PRESS 1 1110 1862 1.68 413 650 1.57 
PRESS2 364 760 2.09 136 236 1.74 
PRESS3 2031 4924 2.42 597 1017 1.70 

DeepPARPRESS: pruned 
PRESSI 837 1338 1.60 292 441 1.51 
PRESS2 265 513 1.94 86 140 1.63 

PRESS3 1853 4464 2.41 575 968 1.68 

FIatPARPRESS-nonterm 
PRESS1 1088 2953 2.71 409 953 2.33 
PRESS2 380 1172 3.08 129 338 2.60 
PRESS3 1736 5227 3.01 614 1509 2.45 
F1atPARPRESS-term 
PRESS1 819 2034 2.48 286 643 2.24 
PRESS2 302 892 2.95 86 231 2.68 
PRESS3 1605 4730 2.95 546 1328 2.43 

Table 7-15: Clause/Goal suspension ratios for Parallel PRESSes 

The only point to note is that the flattened code incurs a high clause to 

goal suspension ratio. This is because additional clauses are required to sup- 

port the termination of those goals in the conjunction, which are essentially 

performing the guarded search. 

The difference between busy waiting and non-busy waiting suspensions in- 

dicates the benefit of tagging suspended executions to variables (see section 
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4.2.2). It also indicates how long suspended executions remain suspended. 

Table 7-16 summarises the ratios of busy and non-busy waiting suspen- 

sion using goal and clause suspension mechanisms, for DeepPARPRESS 

using pruned and non-pruned models, FIatPARPRESS-nonterm and 

FIatPARPRESS-term. 

11 Goal suspension 
' 

Clause suspension 
Program I l Busy Non-busy Ratio Busy Non-busy Ratio 
DeepPARPRESS: non-pruned 
PRESS1 1110 413 2.69 1862 650 2.86 
PRESS2 364 136 2.68 760 236 3.22 
PRESS3 2031 597 3.40 4924 1017 4.84 

DeepPARPRESS: pruned 
PRESSI 837 292 2.87 1338 441 3.03 
PRESS2 265 86 3.08 513 140 3.66 
PRESS3 1853 575 3.22 4464 968 4.61 

FIatPARPRESS-nonterm 
PRESS1 1088 409 2.66 2953 953 3.10 
PRESS2 380 129 2.95 1172 338 3.47 
PRESS3 1736 614 2.83 5227 1509 3.46 
F1atPARPRESS-term 
PRESS1 819 286 2.86 2034 643 3.16 

PRESS2 302 86 3.51 892 231 3.86 
PRESS3 1605 546 2.94 4730 1328 3.56 

Table 7-16: Busy/Non-busy suspension ratios for Parallel PRESSes 

There are two points to note from this data. Firstly, for the FIatPAR- 

PRESS most processes suspend for about 3 cycles on average. Secondly, 

for DeepPARPRESS, PRESS1 and PRESS2 also result in evaluations 

suspending for about 3 cycles. However, for PRESS3, suspended clause 

evaluations suspend for about 4.75 cycles. It is difficult to reason about 

exactly what is happening in this final comparison. It is known that the 

PRESS3 example has a deep guarded consumer process (the precondi- 

tions) which suspend. In such circumstances our system is known to give 

an exaggerated value for clause suspensions using busy waiting (see section 

4.6). 
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7.8 Synopsis of analysis 

In this section we consolidate some of the results given in our analysis. 

Our re-evaluation of the Parallel PRESS systems gives similar raw data to 

that given in [Sterling & Codish 87). However, we feel that their analysis of 

this data is mis-leading and incomplete. We re-analyse the raw data, the 

basic cycle, reductions and suspensions. The evaluation is enhanced by 

the fact that we consider flat implementations which employ termination 

and do not employ termination of the meta-level precondition. 

We then present our new measurements and perform an in depth analysis 

of this data. Our new data indicates the benefits in using pruning if deep 

guards are employed. 

The data for the DeepPARPRESS evaluation strongly indicates the sav- 

ing in both reductions and suspensions if the flat implementations employ 

termination techniques. 

The results also show that the overall parallelism remains unchanged for 

deep and flat implementations. Whilst the contribution of AND and OR- 

parallelism vary for the deep and flat implementations, the flat implemen- 

tations have little or no OR-parallelism. 

It is worth noting that our model for including the contribution of deep 

guards into the overall evaluation appears reasonable, e.g. the overall cy- 

cle measures for the evaluations are similar for the various Parallel PRESS 

systems. 

Using deep guards is more natural for the meta-level of PRESS where pre- 

conditions for a given meta-rule become user defined guarded goals. In 
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flattening the meta-level of PRESS, or for that matter any code with deep 

guards, various alternatives techniques can be applied. The simplest and 

most basic is to translate each precondition, the guard, into an AND-goal. If 

the precondition succeeds a continuation flag is set and the solution method 

selected is committed to. An alternative and more complex translation is 

to generate flat code which employs early termination. The evaluation of 

the alternative meta-rule preconditions can be terminated as soon as one 

precondition succeeds rather than being fully evaluated. This enhancement 

is applicable if the amount of computation that can be prevented by early 

termination is significant. This is where there is a dilemma - how do we 

know how much computation can be saved if we do not translate the code 

to both terminating and non-terminating flat code? 

The use of the profiletool in this context is very informative. Our results 

indicate that there is a very strong correlation between the results for the 

deep guarded version when executing without pruning and the flat guarded 

version not employing termination and the deep guarded version when ex- 

ecuting with pruning and the flat guarded version employing termination. 

So, by first implementing the more natural deep guarded version and then 

using the profiletool we are able to select the most appropriate flattening 

technique. 

7.9 Summary 

In this chapter the following have been presented and discussed: 

PRESS - a PRolog Equation Solving System and how it provides a set of 

meta-level axioms for solving symbolic equation. 

How the meta-level axioms of PRESS can be realised in terms of Prolog 

clauses, known as meta-rules. 
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How these meta-rules can be directly mapped into CCND languages which 

allow deep guards. 

How the deep guarded version of PRESS can be flattened. The resulting 

flat code can either terminate the evaluation of the other meta-rules should 

one rule succeed or allow all the rules to execute to completion. 

The re-evaluation of these Parallel PRESSes on both the basic evaluation 

system and our new system. The results indicate that: 

- our system provides a more accurate picture of the execution of the 

parallel PRESSes; 

- our system also allows us to consider the benefits of the various trans- 

lation options between deep and flat code by analysing the behaviour 

of the deep implementation; 

- it is worth employing pruning in the implementation of the system to 

evaluate PRESS using deep guards; and 

- it is worth the programmer employing termination techniques in the 

mapping of the meta-level of PRESS to flat guards. 
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Chapter 8 

Conclusions 

8.1 Overall Contribution of the Thesis 

In this thesis, the following contributions are made to the task of understanding 

and evaluating the execution behaviour of the CCND languages with regard to AI 

applications: 

We develop a model of execution which allows us to obtain measures for the 

inherent parallelism available in the evaluation of CCND programs. 

The evaluation system developed also allows us to observe the effects of vary- 

ing several implementation parameters, such as the suspension mechanism, 

the scheduling of suspended evaluations and the pruning (termination) of 

competing guarded evaluations on commitment. 

We then focus on three aspects of these languages - how they support search, 

the benefits in using safe or unsafe languages and the benefits in using deep 

or flat guards. These reflect questions about how these languages should be 

used and implemented. 
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We test these aspects of the languages by choosing Al type applications 

which we have implemented across the various language classifications. 

These various systems are evaluated and the results analysed. 

The study shows the significant improvement our evaluation system gives in 

terms of both measuring the inherent features of the algorithm and under- 

standing the dynamic behaviour of the execution. 

Our analysis of Al applications highlights several interesting points relating 

to the behaviour of programs which make use of given language features. 

These points are summarised in the following sections. 

8.1.1 Inherent parallelism 

The CCND languages provide a model of computation which supports both lim- 

ited OR-parallelism and concurrent goal evaluation. In this work we consider the 

inherent parallelism that is available in the evaluation of programs implemented 

in the CCND languages. A measure of the inherent parallelism provides a the- 

oretical measure of the parallelism against which particular implementations can 

be gauged. Without a theoretical measure it is difficult to consider the actual per- 

formance improvements of various implementations. The inherent parallelism also 

provides information for programmers on the relative merits of various program- 

ming techniques regardless of the particular implementation. Finally a theoretical 

model of the parallel execution of these languages allows implementors of the lan- 

guages to consider the possible benefits of alternative implementation issues like 

suspensions, pruning and scheduling. 

To obtain a measure of the inherent parallelism available in program execution 

we adopt a breadth-first execution model on an unlimited number of processors. 

Previous systems used for evaluating and comparing programming techniques and 

applications suffer from two main limitations. The first is that the parameters 

quoted in the evaluations of a program do not reflect possible alternatives open 
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to language implementors, like scheduling policy. The second is that although 

these interpreters claimed to execute the object code (CCND program) breadth- 

first (hence allowing the inherent parallel features to be measured) the actual 

evaluation models used make several approximations. This results in misleading 

and distorted measurements. 

In this work we have considered the measurements that should be collected 

to capture the nature of a CCND computation. The new system comprises two 

stages: an AND/OR-interpreter, which evaluates the program breadth-first pro- 

ducing a dump file and an analyser program which reconstructs a parallel view of 

the program execution. The statistics obtained are more accurate in two respects. 

The first is in the modelling of a parallel AND/OR execution, this allows us to 

measure the inherent parallel features of our algorithm. The second is in iden- 

tifying the nature of the execution: pruned or non-pruned guard evaluations; 

busy or non-busy waiting; and goal or clause suspension. 

8.1.2 Search - committed choice 

The CCND languages are committed choice, as such they cannot be used to di- 

rectly implement general search algorithms. To carry out search in these languages 

requires some means of translating the non-determinism in the search algorithm 

into a deterministic algorithm. 

We evaluate three models for translating search algorithms into deterministic 

algorithms: 

Continuation based compilation; 

Stream based compilation; and 

Layered streams. 

These three techniques were chosen because they had already been evaluated on an 

earlier evaluation system [Okumura & Matsumoto 87]. We revaluate the n-queens 
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example for 4-queens and 6-queens using our basic Parlog interpreter. The results 

obtained agree with the previous evaluations. 

We then re-evaluate the 4-queens and 6-queens on our new evaluation system. 

The results given by our system differ in several respects to those obtained on our 

basic Parlog interpreter. Our analysis of the results highlights how our evaluation 

gives a picture of the program behaviour and the relative merits of the various 

programming techniques. 

Previous results for the all-solutions programming techniques indicated that 

Layered Streams required only half the reductions that Continuation based com- 

pilation required. Also the results highlighted the greater increase in the available 

parallelism for large problems using Layered streams. This is due to solutions be- 

ing generated bottom-up and hence large problems tend to have more parallelism 

if explored bottom-up. 

Our re-evaluation gives a slightly different picture. Layered Streams does re- 

quire less reductions than Continuation based compilation but the difference is 

only 5%. Layered streams also results in the continual exploration of incomplete 

solutions, ie. incomplete solutions are continually tested against each incrementa- 

tion in the generation of the solution. For larger problems this over generation may 

result in more reductions being performed for Layered Streams. So, our results 

show that Layered Streams is not as good as was previously supposed. However, 

the overall number of cycles required for Layered Streams is considerably less 

than for either of the other two methods, so this technique is the most inherently 

parallel. 

8.1.3 Shared data structures - safe/unsafe 

The question of how shared data structures are supported in the CCND languages 

is an important one for Al. Several current Al paradigms which require several 

different forms of expertise, like blackboard systems, require a common communi- 
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cation medium which each expert can see and update. Also, parallelising existing 

sequential algorithms often results in several solvers performing similar tasks on 

different parts of the same data; this is particularly the case if the parallelisa- 

tion involves replacing a sequential control mechanism like a scheduler for parallel 

functioning solvers, as in parallelising a chart parser. 

Whilst all the CCND languages and their subsets allow several processes to 

read the same data structure; one-to-many communication, it has been noted 

by several researchers that only unsafe languages directly support many-to-one 

communication on a single variable; several writers to the same data. Whilst 

the safe languages cannot directly support many-to-one type communication, one 

important case of multiple writers, multiple writers to a stream, can be modelled 

by the use of merge processes. Each writer that wishes to update some shared 

stream, binds a local stream. The local streams for each writer are then merged 

together to form the final shared stream. 

The general use of multiple writers to any structure, not just a stream, can be 

then indirectly supported by creating a process which manages the structure. Mul- 

tiple processes that wish to write to the structure make write requests to this man- 

ager process. The write requests from the writer processes are merged together to 

form a request stream. This technique has been used in several applications which 

require multiple writers to a shared resource [Davison 87] [Trehan & Wilk 88]. The 

general feature of this use of streams is to combine requests from many sources to 

one final stream, which we call the resultant stream. 

System extensions to support resultant streams have been considered by us and 

other researchers. If the system knows that a given variable, or list, is a resultant 

stream it can keep a pointer to its tail, which can be used to add elements to this 

stream in unit time. We consider two basic primitives: the first identifies a stream 

as a resultant stream; the second directly adds an element to this resultant stream. 

The stream addition primitive has to be atomic. 

We have implemented several chart parsers using three styles of language: safe; 
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unsafe; and safe+system streams (where the resultant stream is supported by 

the system). The chart parsers allow several processes which pick different active 

edges from the AET (active edge table), process them in parallel, and update the 

chart (records of the active edges undertakes and the parses found) by adding any 

new active edges to the AET and any sub-strings to the WFST (parses found). 

The approach requires that testing if an active edge is new and its addition to the 

AET to be an atomic step. In an unsafe language the shared data structure, the 

chart, can be directly supported. In a safe language the shared data structure, 

the chart, can only be supported by a manager process and writer processes which 

make requests for updates. The basic mechanism employed by the manager is 

"sifting" which is a generalisation of a prime number generator program. In the 

safe+system streams language the shared data structure, the chart, must also 

be supported by a manager process. Writer processes make update requests to 

this manager. However, unlike in a pure safe language, these requests need not 

make explicit use of merge processes as streams are supported by the system. 

Our evaluation of these chart parsers indicates that: 

there are significant overheads introduced by networks of merge processes, 

in the safe languages; 

the unsafe languages also introduce some delays in supporting shared data, 

in that the data structure has to be traversed to find the next free position, 

in the case of shared streams the unbound tail; 

the dynamic behaviour of the manipulation of shared data structures de- 

pends on which processes access the data, when they access the data and 

how often they access the data; 

in the chart parsers the dynamic considerations result in the difference, in 

terms of cycles, between unsafe and safe chart parsers not being as high as 

first expected; 
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there are benefits from supporting multiple writers to a stream by the system, 

in terms of suspension overheads, available parallelism and total number of 

cycles required. 

8.1.4 Meta-level inference - deep/flat 

The question of whether guards should be deep (any user defined goals are allowed 

in the guards) or flat (only system calls are allowed in the guards), is interesting 

and controversial. Deep guards appear to be more expressive and flat guards 

more efficiently implemented. One proposal to get the best from both worlds 

is to write deep guarded code and then have this code translated to flat code 

which is executed. In the translation from deep to flat code there are several 

alternative models that can be employed. For example, should the flattened 

code be correct or should it also mimic possible efficiency options open to deep 

guarded evaluations, like that of pruning guarded evaluations on the commitment 

to one clause. 

To compare deep guards with flat guards and the possible effects of mimic- 

ing pruning we consider the behaviour of a program implemented using several 

different flavours of language. The application considered is known as PRESS - a 

Prolog Equation Solving System. A subset of this system was initially translated to 

Concurrent Prolog and FCP in [Sterling & Codish 87] the resulting system being 

known as CONPRESS. We take their basic translation and reconstruct it for Par- 

log, which results in PARPRESS. The translation to Parlog is essentially the same 

as the translation to Concurrent Prolog. The translation of PARPRESS into flat 

code required us to adopt slightly different translation techniques [Gregory 87]. 

As a result we have several Parallel PRESS systems which we could have 

evaluated and we chose to consider one aspect of PRESS and meta-level inference. 

This is how the execution of the meta-level differs using deep and flat guards, 

where the flat meta-levels may or may not employ termination techniques. The 

systems evaluated are: 
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DeepPARPRESS - Parallel PRESS implemented in Parlog, employing deep 

guards just for the meta-level axioms; 

F1atPARPRESS-nonterm - Parallel PRESS implemented in Parlog, employing 

flat guards. On successful termination of one of the preconditions (to a 

meta-level axiom) the other preconditions are not terminated. 

F1atPARPRESS-term - Parallel PRESS implemented in Parlog, employing flat 

guards. On successful termination of one of the preconditions (to a meta- 

level axiom) the other preconditions are terminated. 

Our new evaluation indicates the benefits in using pruning if deep guards 

are employed. Moreover, the data for the DeepPARPRESS evaluation strongly 

indicates the saving in both reductions and suspensions if the flat implementations 

employ termination techniques. 

The results also show that the overall parallelism remains unchanged for deep 

and flat implementations. Whilst the contribution of AND and OR-parallelism 

varies for the deep and flat implementations, the flat implementations have little 

or no OR-parallelism. 

Finally, it is worth noting that our model for including the contribution of 

deep guards into the overall evaluation appears reasonable, e.g. the overall cycle 

measures for the evaluations are similar for the various Parallel PRESS systems. 

8.1.5 Summary of Contribution 

In this section we summarise the contribution of this work. The main contribution 

of this work can be classed in two ways. Firstly in the approach. This work aims to 

present an applications viewpoint of the possible direction that the CCND imple- 

mentors may take. To this end we have implemented an improved interpreter for 

collecting more meaningful information; proposed and collect an improved set of 

profiling parameters, which reflect the effect of alternative model of execution and 
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and developed several applications which allow us to compare language features. 

Secondly the actual results of our evaluations. The three different application 

areas and language features investigated in this work provide a large number of 

interesting points for both users of these languages as well as language implemen- 

tors. The following points aim to provide some general messages that result from 

this work: 

Language design and execution models has been governed by implementation 

considerations. The resulting languages appear to have flat guards and 

adopt non-busy waiting scheduling policy. There is still some discussion on 

whether the languages should be safe or unsafe. Our work aims to place 

some applications rationale for the design of language features and their 

usage. Applications input is important because the classes of application 

that language implementors aim to support and the models of execution 

that they provide make not be those required by applications programmers. 

For example, the results for our evaluation of Layered Streams indicates 

that this programming technique could employ a busy waiting scheduling 

policy. Busy waiting scheduling policy is easier to implement than non- 

busy waiting. However, most implementations do not offer busy waiting 

scheduling as it is assumed not to be applicable for real programs. 

Other language features, or rather additions, being provided by implemen- 

tors, like supporting streams in the system results in more efficient programs 

because the heavy overhead in maintaining and using merge processes is al- 

leviated. Our results indicate that while the programs that use systems 

streams may be less declarative the programs tend to have more predictable 

behaviours. Because the exact structure of the merge network, for safe 

languages, or the manipulation of a shared data structure, for unsafe lan- 

guages, is not an issue if additions to the shared streams are supported by 

the system. So, the behaviour of an application is not dependent on how the 
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worker processes are interconnected by merge processes, but rather on the 

global behaviour of the worker processes. 

Finally, we note the use of tools, like our profiletool, can provide a great 

deal of insight into the dynamic properties of an application program. Such 

insight is useful if a programmer intends to modify or improve their program. 

For example, deep guards are easier to use for certain algorithms. However, 

implementations are unlikely to offer such language features. This will re- 

quire translating to flat code, or using flat guards in the first place. There 

are many alternative options in mimicking the partial search capabilities of 

deep guards in a flat system. For example, the benefits of using a technique 

which not only produce correct code but also allows the early termination 

may be limited. Our profiletool provides such information without having 

to translate to flat code. 

8.2 Research assumptions 

This work is limited to some extent by the idealisations made, a large number of 

which give directions for future work. These come in several classes: 

Those associated with the evaluation system. 

Those associated with the applications chosen. 

Those associated with our evaluations. 

Those associated with this general approach. 

8.2.1 The evaluation system 

We adopt a fixed cost model, that is the various components of the evaluation, 

like head unification, have been assigned fixed costs (in terms of cycles). However, 
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the actual costs of a given operation may depend on several factors, eg. the cost 

of a head unification will depend on the number of arguments and the complexity 

of these arguments. It would be better to adopt a functional cost model, where 

the cost of an operation is calculated based on its complexity. 

We assume that, in a cycle, a goal can only use bindings available to it at 

the start of the cycle. This is an improvement over the previous interpreters, 

in modelling the inherent parallelism, a fully accurate model would be able to 

determine exactly when a goal makes a binding, how long it would take for this 

binding to reach another goal and whether this would be in time for the goal to 

use it in the current cycle. 

Although we are able to vary several parameters in our evaluation system to 

reflect different implementation alternatives we do not consider the effects of a 

finite number of processors and the resulting scheduling issues like bounded depth 

first-search. Our focus from the start has been to provide measures of the inherent 

parallelism which we obtain by using an infinite processor model. Simulating the 

evaluation on a finite processor model would have been relatively straightforward 

for flat code, but is non-trivial for deep guarded evaluation. 

There are several questions that our system is not designed to answer, for 

example the following questions relating to memory usage: 

the relative costs of the different suspension mechanisms (goal and clause); 

the overhead in creating tag suspension lists to support non-busy waiting; 

the different data types (temporary variables; streams, state holding, etc.) 

and their frequency of occurrence. 

We are sure there are countless other limitations in this method of obtaining 

a measure of the inherent parallelism. However, we feel that there is a significant 

improvement in our evaluation system over the original and currently widely used 

evaluation systems. 
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8.2.2 The applications 

In evaluating these languages for Al type processing we could only hope to open a 

"can of worms" rather than answer all the questions relating to the behaviour of Al 

programs and Concurrent Logic Languages. We have tried to motivate our choice 

of applications and programming technique to answer questions which relate to the 

design and possible implementation of these languages. However, such knowledge 

really comes not from one set of example programs but from the analysis of many 

programs which then allow the generic features to be distilled. We do not intend 

to, or attempt to, provide a list of possible extensions to our existing applications 

or propose other suitable applications which would either enhance or complicate 

the conclusions we draw in this thesis. 

8.2.3 The evaluations 

The evaluations performed using the raw data extracted by our system tend to be 

complex exercises. There are main two limitations we wish to note: 

We do not give a step by step guide to the analysis of raw data. In our 

evaluations we compare a given parameter with another to get a measure of 

a particular property of the execution. For example, reductions and cycles 

gives average parallelism. However, in some cases we perform an in depth 

comparison, eg. comparing all the busy waiting parameters with all the 

non-busy parameters and other times we do not, as we can see that there 

is no difference in the individual counters. The outcome is that although we 

are able to perform this analysis the skill has not been abstracted. 

Secondly, we only compare total figures for given parameters rather than the 

profile curves. It is possible to obtain measures of the correlation between 

two curves or the scaling factor that will produce the best coefficient of 

correlation. This is likely to be more conclusive than just comparing totals 

and would be more akin to the interactive use of the profiletool. 
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8.2.4 The approach 

Finally, we should also question this approach to evaluating these languages and in 

particular the emphasis on AI applications and programming techniques. Several 

questions spring to mind: 

Are AI applications and programming techniques any different from conven- 

tional programs as far as the CCND languages are concerned? If not, then 

we could just analyse conventional programs, possibly even theoretically, and 

then apply the results to executing all programs. There is no fixed answer 

to this question, unless you have a vested interest in the outcome. We do 

however feel that the demands made on current computer architecture and 

languages by AI applications are a good indication that there are likely to 

be differences between executing a CCND language as a conventional pro- 

gramming language (e.g. for system programming) and as an AI language, 

(e.g. to support co-operating problem solvers). 

Does the inherent parallelism as measured by our system really provide 

any useful information about the execution of the programs on real multi- 

processor architectures? Again this question is difficult to answer. The only 

justified statement we can make is that it appears to be an improvement over 

the previous systems being used to compare the executions of applications 

and programming techniques. We have carefully tried to mimic the execu- 

tion of these languages on an infinite number of processors and we attempt 

to consider different implementation alternatives. 

Finally, the programs evaluated attempt to focus on given features of the 

languages, providing a means to consider the benefits of these feature for 

programmers and the possible implementation of these features for language 

implementors. It could be claimed that the approach taken does neither, as 

the programs were implemented to highlight the differences that we drew 

conclusions about. It may have been more appropriate to just implement 
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and evaluate programs and only then draw conclusions on the effects of the 

various features used in the programs and the resulting execution behaviour. 

The problem with this approach is that it is not scientific, as the search space 

of application areas is vast, and on drawing conclusions the classic "what if" 

questions arises; that is "what if I had implemented this program like this"? 

8.3 Future work 

There are many directions for future work that are either extensions of our work 

or should complement our work. 

The evaluation could be enhanced by adopting a functional, rather than 

fixed, cost model, although an elaborate model of cost would tend to be to 

be implementation dependent. 

Additional measures could be considered, for example memory usage for the 

various suspension mechanisms. 

The interpreter could be extended to consider the effects of a finite number 

of processors and the resulting scheduling issues. 

An extended evaluation tool could be implemented that performed the vari- 

ous alternative analysis of the raw data and helped spot particular patterns 

in the results. 

Finally, further applications could be considered. This would eventually 

allow more generic features of applications to be abstracted away from the 

specific results that can only be obtained for a small number of applications. 

The correlation of our results with measurements obtained from parallel 

implementations. 
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The analysis of Al programs and languages is an important area if we are to 

better support Al applications in terms of hardware and software. 
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Appendix A 

Effect of alternative execution models 

In this appendix we consider the alterntaive evaluations of the program and query 

in figure i$-1. 

A.1 Busy waiting, non-pruning, goal suspen- 

sion 

Here the execution model is: suspended evaluations are immediately rescheduled 

for evaluation; on commitment to one clause the other OR-clauses are not termi- 

nated; and the suspension of an evaluation involves suspending the parent goal. 

We now consider the evaluation of the two query goals given in figure 4-1: 

goal 1: This goal (on_either(a, [1,2,3,a,b] , [1,2,a,b] ,Output)) evaluation 

results in two sets of guarded systems, member(a, [1,2,3,a,b]) and 

member (a, [1, 2, a, b]) . The first of these will require 8 reductions to reduce 

to true; that is the guard test takes 1 reduction for each element and the 
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commitment another 1. Similarly the second (guard) member(a, [1,2,a,b] ) 

goal requires 6 reductions. 

As this execution model uses non-pruning both these guards will be eval- 

uated fully. So, the total number of reductions performed in the evaluation 

of this goal is 16 (8 in evaluating the first guard, 6 in the second guard, 1 for 

the commitment to the body goals and finally 1 for the output unification). 

The total number of cycles that this evaluation takes is 4. That is the 

evaluation commits to the second, on-either/4, clause after 3 cycles and it 

takes 1 cycle to carry out the output unification. So the binding made to 

the shared variable "Output" will be seen by the other AND-parallel goals 

in cycle 5. 

goal 2: The second goal (on_either(b,Output, [11 Output] ,Outputl)) eval- 

uation results in two sets of guarded goals, member(b,Output) and 

member(b, [11 Output] ). The first of these could be evaluated via two 

clauses, however these both suspend on head unification. As we are us- 

ing goal suspension the evaluation of the first guarded goal suspends. The 

second (guard) is able to perform 2 reductions (the guard test and the com- 

mitment to member(b,Output)). The resulting goal could be evaluated via 

two clauses but both of these suspend on head unification. This results in 

the suspension of the second guarded goal. Now both sets of guarded goals 

have suspended the evaluation of the second query goal suspends, giving a 

total of 3 goal suspensions and 2 reductions. The second query goal suspends 

after 2 cycles. 

Using busy waiting this top-level goal will be retried in cycle 3. In cycle 3 

the variable "Output" will still be unbound, so the rescheduled evaluation 

'This is because we count system calls as reductions, see section 3.5. 
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will perform the same 2 reductions and then suspend again. The goal will 

next be tried in cycle 5. 

In cycle 5 the shared variable "Output" will be bound, so the sec- 

ond query goal becomes on_either(b, [1,2,a,b] , [1,1,2,a,b] ,Outputs). 

This goal invokes two guarded systems, member (b , [1, 2 , a, b]) and 

member(b,[1,1,2,a,b]). The first of these will require 8 reductions to 

reduce to true. Similarly the second guard requires 10 reductions. 

As the execution uses non-pruning both these guards will be evaluated 

fully. Hence the final attempt at evaluating this goal results in 20 reductions 

(8 in the first guard, 10 in the second, 1 for the commitment to the body goals 

and finally 1 for the output unification). The total number of cycles that this 

evaluation takes is 5. That is the evaluation commits to the first OR-clause 

after 4 cycles and it takes 1 cycle to carry out the output unification. 

So, the evaluation of the query using this execution model takes: 10 cycles; 40 

reductions (16 for the first goal, 4 for the second goal before suspension, and 20 

for the final evaluation of the second goal); 6 goal suspensions (1 suspension for 

the first guarded goal, member (b , L) , 1 suspension for the second guarded goal, 

member (b, [1IL]), and 1 suspension for the query goal, these suspensions occur 

twice because of the busy waiting). 

A.2 Busy waiting, non-pruning, clause suspen- 

sion 

Here the execution model is: suspended evaluations are immediately rescheduled 

for evaluation; on commitment to one clause the other OR-clauses are not termi- 

nated; and the suspension of an evaluation involves suspending the clauses. 

We now consider the evaluation of the two query goals given in figure 4-1: 
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goal 1: The evaluation of this goal will be as given in section A.1, as this goal 

evaluation incurs no suspensions and so an alternative suspension mechanism 

makes no difference. 

goal 2: The evaluation of the second goal results in two guarded systems, 

member (b, Output) and member (b , [110utput]) . The first (guard) could 

be evaluated via two clauses. Both clause evaluations suspend on head 

unification. Using clause suspension and busy waiting these 2 suspended 

evaluations will be attempted every cycle until cycle 5, when the variable 

"Output" becomes bound; a total of 8 suspensions. The second (guard) 

is able to perform 2 reductions (the guard test and the commitment to 

member(b,Output)). The resulting goal could be evaluated via two clauses 

but again both evaluations suspend on head unification. These two sus- 

pended evaluations will also be tried every cycle until cycle 5, resulting in 6 

suspensions. 

In cycle 5 the shared variable "Output" will be bound, so the 4 suspended 

clause evaluations will now be evaluated. These will reduce to true in 16 

reductions. Hence the total number of reductions performed in the evalua- 

tion of this goal is 20 (8 in the first guard, 10 in the second (2 before the 

suspension and 8 when the variable "Output" becomes bound), 1 for the 

commitment to the body goal and finally 1 for the output unification). The 

total number of cycles that this evaluation takes is 5. 

So, the evaluation of the query using this execution model takes: 10 cycles; 36 

reductions (16 for the first goal, and 20 for the second goal); 14 suspensions (8 

for suspending the two clauses of the first guarded goal, 6 for suspending the two 

clauses of the second guarded goal). 

Note: that 4 reductions can be prevented by using clause rather than goal 

suspension; although the suspension counts are the same the nature of the suspen- 

266 



sions are different. Clause suspension will incur some overheads in maintaining a 

suspension tree, see section 4.2.2. 

A.3 Busy waiting, pruning, goal suspension 

Here the execution model is: suspended evaluations are immediately rescheduled 

for evaluation; on commitment to one clause the other OR-clauses are terminated; 

and the suspension of an evaluation involves suspending the goal. 

We now consider the evaluation of the two query goals given in figure 4-1: 

goal 1: The evaluation of the first goal of the query will invoke two guarded 

systems member (a, [1,2,3,a,b]) and member (a, [1,2,a,b]). The first of 

these requires 8 reductions to reduce to true, and evaluates in 4 cycles. The 

second (guarded) goal requires 6 reductions and evaluates in 3 cycles. 

This execution model uses pruning, so on commitment to the second clause 

the system will be able to prevent 2 reductions being performed2 in the 

evaluation of the first guard. Hence the total number of reductions performed 

in the evaluation of this goal is 14 (6 in the first guard (when it is pruned), 

6 in the second guard (when it commits), 1 for the commitment to the body 

goals and finally 1 for the output unification). The binding of the variable 

"Output" will be available to the other goals in cycle 5. 

goal 2: The evaluation of the second goal results in the same number of suspen- 

sions as the evaluation given in section A.1, as the pruning of OR-clauses 

will not prevent any suspensions and both use busy waiting and goal sus- 

pension. 

2That is two reductions at best, ie. assuming that pruning can happen immediately. 
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In cycle 5 the shared variable "Output" will be bound, so the sus- 

pended goal becomes on_either(b,[1,2,a,b],[1,1,2,a,b],Outputl). 
This goal results in two guarded systems, member(b,[1,2,a,b]) and 

member (b , [ 1,1, 2 , a, b]) . The first of these will require 8 reductions to re- 

duce to true which takes 4 cycles. Similarly the second (guard) goal requires 

10 reductions which take 5 cycles. 

As this execution model uses pruning, 2 reductions will be prevented in 

the evaluation of the second guard. Hence the total number of reductions 

performed in the evaluation of this goal is 18 (8 in the first guard (to commit), 

8 in the second (before it is pruned), 1 for the commitment to the body goals 

and finally 1 for the output unification). 

So, the evaluation of the query using this execution model takes: 10 cycles; 38 

reductions (16 for the first goal, 4 to suspend the second goal twice, and 18 for 

the second goal); and 6 suspensions. 

A.4 Busy waiting, pruning, clause suspension 

Here the execution model is: suspended evaluations are immediately rescheduled 

for evaluation; on commitment to one clause the other OR-clauses are terminated; 

and the suspension of an evaluation involves suspending the clauses. 

We now consider the evaluation of the two query goals given in figure 4-1: 

goal 1: The evaluation of the first goal of the query will be the same as in section 

A.3, as both execution models use pruning and the evaluation of this goal 

incurs no suspensions. 

goal 2: This goal will have the same suspension count as the evaluation in sec- 

tion A.2, as pruning does not prevent any suspensions and both execution 

models use busy waiting with clause suspension. 
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In cycle 5 the shared variable "Output" will be bound, so the 4 suspended 

clause evaluations can now be evaluated. These evaluations reduce to true 

in 16 reductions; no reductions will be preventable by pruning. So, the 

total number of reductions performed in the evaluation of this goal is 20 

(8 in the first guard, 10 in the second (2 before suspension and 8 after 

suspension), 1 for the commitment to the body goal and finally 1 for the 

output unification). The total number of cycles that this evaluation takes is 

5. That is the evaluation commits to the first OR-clause after 4 cycles and 

it takes 1 cycle to carry out the output unification. 

So, the evaluation of the query using this execution model takes: 10 cycles; 34 

reductions (14 for the first goal, 2 to suspend the second goal, and 18 to evaluate 

the second goal); 14 suspensions. 

A.5 Non-busy waiting, non-pruning, goal sus- 

pension 

Here the execution model is: suspended evaluations are tagged to the variables 

which must be bound before the evaluation can proceed; on commitment to one 

clause the other OR-clauses are not terminated; and the suspension of an evalua- 

tion involves suspending the goal. 

We now consider the evaluation of the two query goals given in figure 4-1: 

goal 1: The evaluation of the first goal will be the same as in section A.1, as both 

execution models use non-pruning and the evaluation of this goal involves 

no suspensions. 

goal 2: The evaluation of the second goal will initially be as in section A.1. How- 

ever, once this top-level goal suspends it will not be rescheduled as in section 
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A.1 because we employ non-busy waiting. So this goal evaluation suspends 

awaiting the variable "Output" to be bound. The initial suspension requires 

3 suspensions and 2 reductions. 

In cycle 5 the shared variable "Output" will be bound. So the suspended eval- 

uation becomes on_either(b, [1,2,a,b] , [1,1,2,a,b] ,Outputl). This is 

now rescheduled and will be evaluated as in section A.1. The total num- 

ber of reductions performed in the evaluation of this goal, after "Output" is 

bound, is 20 (8 in the first guard, 10 in the second, 1 for the commitment to 

the body goals and finally 1 for the output unification). 

So, the evaluation of the query using this execution model takes: 10 cycles; 

38 reductions (16 for the first goal, 2 in suspending the second goal, and 20 for 

evaluating the second goal); 3 goal suspensions. 

A.6 Non-busy waiting, non-pruning, clause 

suspension 

Here the execution model is: suspended evaluations are tagged to the variables 

which must be bound before the evaluation can proceed; on commitment to one 

clause the other OR-clauses are not terminated; and the suspension of an evalua- 

tion involves suspending the clauses. 

We now consider the evaluation of the two query goals given in figure 4-1: 

goal 1: The evaluation of the first goal will be the same as in section A.1. 

goal 2: The second goal will invoke two guarded systems, member(b,Output) 

and member(b, [11Output] ). The first (guard) could be evaluated via two 

clauses. However, both evaluations suspend on head unification. These sus- 

pended clause evaluations are tagged to the variable "Output". The second 
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(guard) is able to perform 2 reductions (the guard test and the commit- 

ment to member (b, Output)). This resulting goal could be evaluated via 

two clauses but again both evaluations suspend on head unification. The 

two suspended clause evaluations are again tagged to variable "Output". 

In cycle 5 the shared variable "Output" will be bound, so the 4 suspended 

clause evaluations will be rescheduled and evaluated. These will reduce to 

true in 16 reductions. Hence the total number of reductions performed in 

the evaluation of this goal is 20 (8 in the first guard, 10 in the second (2 

before suspension and 8 after suspension), 1 for the commitment to the body 

goal and finally 1 for the output unification). 

As this execution model uses non-pruning all the reductions and suspensions 

will be counted fully. Therefore the evaluation of the query using this execution 

model takes: 10 cycles; 36 reductions (16 for the first goal, and 20 for the second 

goal); 4 suspensions. 

A.7 Non-busy waiting, pruning, goal suspen- 

sion 

Here the execution model is: suspended evaluations are tagged to the variables 

which must be bound before the evaluation can proceed; on commitment to one 

clause the other OR-clauses are terminated; and the suspension of an evaluation 

involves suspending the goal. 

We now consider the evaluation of the two query goals given in figure 4-1: 

goal 1: The evaluation of the first goal will be the same as in section A.3. 

goal 2: The evaluation of the second goal will initially be as in section A.3. How- 

ever, once this top-level goal suspends it will not be rescheduled as in section 
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A.3 because we employ non-busy waiting. So this goal evaluation suspends 

awaiting the variable "Output" to be bound. The initial suspension requires 

3 suspensions and 2 reductions. 

In cycle 5 the shared variable "Output" will be bound. So the suspended 

evaluation becomes on_either(b, [1,2,a,b] , [1,1,2,a,b] ,Output 1) this 

is rescheduled. As no further suspensions occur this will be evaluated as in 

section A.3. The total number of reductions performed in the evaluation 

of this goal, after "Output" is bound, is 18 (8 in the first guard (when it 

commits), 8 in the second guard (before it is pruned), 1 for the commitment 

to the body goals and finally 1 for the output unification). 

So, the evaluation of the query using this execution model takes: 10 cycles; 34 

reductions (14 for the first goal, 2 before suspending the second goal, and 18 for 

evaluating the second goal); 3 suspensions. 

A.8 Non-busy waiting, pruning, clause suspen- 

sion 

Here the execution model is: suspended evaluations are tagged to the variables 

which must be bound before the evaluation can proceed; on commitment to one 

clause the other OR-clauses are not terminated; and the suspension of an evalua- 

tion involves suspending the clauses. 

We now consider the evaluation of the two query goals given in figure 4-1: 

goal 1: The evaluation of the first goal will be the same as in section A.3. 

goal 2: The second goal will invoke two guarded systems, member(b,Output) 

and member (b, [11 Output] ). The first (guard) could be evaluated via two 

272 



clauses. However, both evaluations suspend on head unification. These sus- 

pended clause evaluations are tagged to the variable "Output". The second 

(guard) is able to perform 2 reductions (the guard test and the commit- 

ment to member(b,Output)). This resulting goal could be evaluated via 

two clauses but again both evaluations suspend on head unification. The 

two suspended clause evaluations are again tagged to variable "Output". 

In cycle 5 the shared variable "Output" will be bound, so the 4 suspended 

clause evaluations will now be evaluated. These will reduce to true in 16 

reductions. Hence the total number of reductions performed in the evalua- 

tion of this goal is 20 (8 in the first guard, 10 in the second (2 before the 

suspensions and 8 after the suspensions), 1 for the commitment to the body 

goal and finally 1 for the output unification). No pruning can take place, 

although the guards are different depths the evaluation of the deeper guard 

(via second clause) is able to perform some evaluation while the first guard 

is suspended. 

So the evaluation of the query using this execution model takes: 10 cycles; 34 

reductions (14 for the first goal, and 20 for the second goal); 4 suspensions. 
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