15,492 research outputs found

    Globally Optimal Energy-Efficient Power Control and Receiver Design in Wireless Networks

    Full text link
    The characterization of the global maximum of energy efficiency (EE) problems in wireless networks is a challenging problem due to the non-convex nature of investigated problems in interference channels. The aim of this work is to develop a new and general framework to achieve globally optimal solutions. First, the hidden monotonic structure of the most common EE maximization problems is exploited jointly with fractional programming theory to obtain globally optimal solutions with exponential complexity in the number of network links. To overcome this issue, we also propose a framework to compute suboptimal power control strategies characterized by affordable complexity. This is achieved by merging fractional programming and sequential optimization. The proposed monotonic framework is used to shed light on the ultimate performance of wireless networks in terms of EE and also to benchmark the performance of the lower-complexity framework based on sequential programming. Numerical evidence is provided to show that the sequential fractional programming framework achieves global optimality in several practical communication scenarios.Comment: Accepted for publication in the IEEE Transactions on Signal Processin

    Computing Optimal Designs of multiresponse Experiments reduces to Second-Order Cone Programming

    Full text link
    Elfving's Theorem is a major result in the theory of optimal experimental design, which gives a geometrical characterization of cc-optimality. In this paper, we extend this theorem to the case of multiresponse experiments, and we show that when the number of experiments is finite, c,A,Tc-,A-,T- and DD-optimal design of multiresponse experiments can be computed by Second-Order Cone Programming (SOCP). Moreover, our SOCP approach can deal with design problems in which the variable is subject to several linear constraints. We give two proofs of this generalization of Elfving's theorem. One is based on Lagrangian dualization techniques and relies on the fact that the semidefinite programming (SDP) formulation of the multiresponse cc-optimal design always has a solution which is a matrix of rank 11. Therefore, the complexity of this problem fades. We also investigate a \emph{model robust} generalization of cc-optimality, for which an Elfving-type theorem was established by Dette (1993). We show with the same Lagrangian approach that these model robust designs can be computed efficiently by minimizing a geometric mean under some norm constraints. Moreover, we show that the optimality conditions of this geometric programming problem yield an extension of Dette's theorem to the case of multiresponse experiments. When the number of unknown parameters is small, or when the number of linear functions of the parameters to be estimated is small, we show by numerical examples that our approach can be between 10 and 1000 times faster than the classic, state-of-the-art algorithms

    Local Optimality Certificates for LP Decoding of Tanner Codes

    Full text link
    We present a new combinatorial characterization for local optimality of a codeword in an irregular Tanner code. The main novelty in this characterization is that it is based on a linear combination of subtrees in the computation trees. These subtrees may have any degree in the local code nodes and may have any height (even greater than the girth). We expect this new characterization to lead to improvements in bounds for successful decoding. We prove that local optimality in this new characterization implies ML-optimality and LP-optimality, as one would expect. Finally, we show that is possible to compute efficiently a certificate for the local optimality of a codeword given an LLR vector

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    Inverse polynomial optimization

    Full text link
    We consider the inverse optimization problem associated with the polynomial program f^*=\min \{f(x): x\in K\}andagivencurrentfeasiblesolution and a given current feasible solution y\in K.Weprovideasystematicnumericalschemetocomputeaninverseoptimalsolution.Thatis,wecomputeapolynomial. We provide a systematic numerical scheme to compute an inverse optimal solution. That is, we compute a polynomial \tilde{f}(whichmaybeofsamedegreeas (which may be of same degree as fifdesired)withthefollowingproperties:(a) if desired) with the following properties: (a) yisaglobalminimizerof is a global minimizer of \tilde{f}on on KwithaPutinarscertificatewithanaprioridegreebound with a Putinar's certificate with an a priori degree bound dfixed,and(b), fixed, and (b), \tilde{f}minimizes minimizes \Vert f-\tilde{f}\Vert(whichcanbethe (which can be the \ell_1,, \ell_2or or \ell_\inftynormofthecoefficients)overallpolynomialswithsuchproperties.Computing-norm of the coefficients) over all polynomials with such properties. Computing \tilde{f}_dreducestosolvingasemidefiniteprogramwhoseoptimalvaluealsoprovidesaboundonhowfaris reduces to solving a semidefinite program whose optimal value also provides a bound on how far is f(\y)fromtheunknownoptimalvalue from the unknown optimal value f^*.Thesizeofthesemidefiniteprogramcanbeadaptedtothecomputationalcapabilitiesavailable.Moreover,ifoneusesthe. The size of the semidefinite program can be adapted to the computational capabilities available. Moreover, if one uses the \ell_1norm,then-norm, then \tilde{f}$ takes a simple and explicit canonical form. Some variations are also discussed.Comment: 25 pages; to appear in Math. Oper. Res; Rapport LAAS no. 1114
    corecore