720 research outputs found

    Advanced receivers and waveforms for UAV/Aircraft aeronautical communications

    Get PDF
    Nowadays, several studies are launched for the design of reliable and safe communications systems that introduce Unmanned Aerial Vehicle (UAV), this paves the way for UAV communication systems to play an important role in a lot of applications for non-segregated military and civil airspaces. Until today, rules for integrating commercial UAVs in airspace still need to be defined, the design of secure, highly reliable and cost effective communications systems still a challenging task. This thesis is part of this communication context. Motivated by the rapid growth of UAV quantities and by the new generations of UAVs controlled by satellite, the thesis aims to study the various possible UAV links which connect UAV/aircraft to other communication system components (satellite, terrestrial networks, etc.). Three main links are considered: the Forward link, the Return link and the Mission link. Due to spectrum scarcity and higher concentration in aircraft density, spectral efficiency becomes a crucial parameter for largescale deployment of UAVs. In order to set up a spectrally efficient UAV communication system, a good understanding of transmission channel for each link is indispensable, as well as a judicious choice of the waveform. This thesis begins to study propagation channels for each link: a mutipath channels through radio Line-of-Sight (LOS) links, in a context of using Meduim Altitude Long drones Endurance (MALE) UAVs. The objective of this thesis is to maximize the solutions and the algorithms used for signal reception such as channel estimation and channel equalization. These algorithms will be used to estimate and to equalize the existing muti-path propagation channels. Furthermore, the proposed methods depend on the choosen waveform. Because of the presence of satellite link, in this thesis, we consider two low-papr linear waveforms: classical Single-Carrier (SC) waveform and Extented Weighted Single-Carrier Orthogonal Frequency-Division Multiplexing (EW-SC-OFDM) waveform. channel estimation and channel equalization are performed in the time-domain (SC) or in the frequency-domain (EW-SC-OFDM). UAV architecture envisages the implantation of two antennas placed at wings. These two antennas can be used to increase diversity gain (channel matrix gain). In order to reduce channel equalization complexity, the EWSC- OFDM waveform is proposed and studied in a muti-antennas context, also for the purpose of enhancing UAV endurance and also increasing spectral efficiency, a new modulation technique is considered: Spatial Modulation (SM). In SM, transmit antennas are activated in an alternating manner. The use of EW-SC-OFDM waveform combined to SM technique allows us to propose new modified structures which exploit exces bandwidth to improve antenna bit protection and thus enhancing system performances

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    Synchronisation, détection et égalisation de modulation à phase continue dans des canaux sélectifs en temps et en fréquence

    Get PDF
    Si les drones militaires connaissent un développement important depuis une quinzaine d’année, suivi depuis quelques années par les drones civiles dont les usages ne font que se multiplier, en réalité les drones ont un siècle avec le premier vol d’un avion équipé d’un système de pilotage automatique sur une centaine de kilomètre en 1918. La question des règles d’usage des drones civiles sont en cours de développement malgré leur multiplication pour des usages allant de l’agriculture, à l’observation en passant par la livraison de colis. Ainsi, leur intégration dans l’espace aérien reste un enjeu important, ainsi que les standards de communication avec ces drones dans laquelle s’inscrit cette thèse. Cette thèse vise en effet à étudier et proposer des solutions pour les liens de communications des drones par satellite.L’intégration de ce lien de communication permet d’assurer la fiabilité des communications et particulièrement du lien de Commande et Contrôle partout dans le monde, en s’affranchissant des contraintes d’un réseau terrestre (comme les zones blanches). En raison de la rareté des ressources fréquentielles déjà allouées pour les futurs systèmes intégrant des drones, l’efficacité spectrale devient un paramètre important pour leur déploiement à grande échelle et le contexte spatiale demande l’utilisation d’un système de communication robuste aux non-linéarités. Les Modulations à Phase Continue permettent de répondre à ces problématiques. Cependant, ces dernières sont des modulations non-linéaire à mémoire entraînant une augmentation de la complexité des récepteurs. Du fait de la présence d’un canal multi-trajet (canal aéronautique par satellite), le principal objectif de cette thèse est de proposer des algorithmes d’égalisation (dans le domaine fréquentiel pour réduire leur complexité) et de synchronisation pour CPM adaptés à ce concept tout en essayant de proposer une complexité calculatoire raisonnable. Dans un premier temps, nous avons considéré uniquement des canaux sélectifs en fréquence et avons étudier les différents égaliseurs de la littérature. En étudiant leur similitudes et différences, nous avons pu développer un égaliseur dans le domaine fréquentiel qui proposant les mêmes performances a une complexité moindre. Nous proposons également des méthodes d’estimation canal et une méthode d’estimation conjointe du canal et de la fréquence porteuse. Dans un second temps nous avons montré comment étendre ces méthodes à des canaux sélectifs en temps et fréquence permettant ainsi de conserver une complexité calculatoire raisonnable

    Identification of high-level functional/system requirements for future civil transports

    Get PDF
    In order to accommodate the rapid growth in commercial aviation throughout the remainder of this century, the Federal Aviation Administration (FAA) is faced with a formidable challenge to upgrade and/or modernize the National Airspace System (NAS) without compromising safety or efficiency. A recurring theme in both the Aviation System Capital Investment Plan (CIP), which has replaced the NAS Plan, and the new FAA Plan for Research, Engineering, and Development (RE&D) rely on the application of new technologies and a greater use of automation. Identifying the high-level functional and system impacts of such modernization efforts on future civil transport operational requirements, particularly in terms of cockpit functionality and information transfer, was the primary objective of this project. The FAA planning documents for the NAS of the 2005 era and beyond were surveyed; major aircraft functional capabilities and system components required for such an operating environment were identified. A hierarchical structured analysis of the information processing and flows emanating from such functional/system components were conducted and the results documented in graphical form depicting the relationships between functions and systems

    Improving the system capacity of broadband services using multiple high-altitude platforms

    Get PDF
    A method of significantly improving the capacity of high-altitude platform (HAP) communications networks operating in the millimeter-wave bands is presented. It is shown how constellations of HAPs can share a common frequency allocation by exploiting the directionality of the user antenna. The system capacity of such constellations is critically affected by the minimum angular separation of the HAPs and the sidelobe level of the user antenna. For typical antenna beamwidths of approximately 5/spl deg/ an inter-HAP spacing of 4 km is sufficient to deliver optimum performance. The aggregate bandwidth efficiency is evaluated, both theoretically using the Shannon equation, and using practical modulation and coding schemes, for multiple HAP configurations delivering either single or multiple cells. For the user antenna beamwidths used, it is shown that capacity increases are commensurate with the increase in the number of platforms, up to 10 HAPs. For increases beyond this the choice of constellation strategy becomes increasingly important

    C-Band Airport Surface Communications System Standards Development, Phase I

    Get PDF
    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." The proposed future C-band (5091- to 5150-MHz) airport surface communication system, referred to as the Aeronautical Mobile Airport Communications System (AeroMACS), is anticipated to increase overall air-to-ground data communications systems capacity by using a new spectrum (i.e., not very high frequency (VHF)). Although some critical services could be supported, AeroMACS will also target noncritical services, such as weather advisory and aeronautical information services as part of an airborne System Wide Information Management (SWIM) program. AeroMACS is to be designed and implemented in a manner that will not disrupt other services operating in the C-band. This report defines the AeroMACS concepts of use, high-level system requirements, and architecture; the performance of supporting system analyses; the development of AeroMACS test and demonstration plans; and the establishment of an operational AeroMACS capability in support of C-band aeronautical data communications standards to be advanced in both international (International Civil Aviation Organization, ICAO) and national (RTCA) forums. This includes the development of system parameter profile recommendations for AeroMACS based on existing Institute of Electrical and Electronics Engineering (IEEE) 802.16e- 2009 standard
    • …
    corecore