1,016 research outputs found

    Towards Omnidirectional Immersion for ROV Teleoperation

    Get PDF
    [Abstract] The use of omnidirectional cameras underwater is enabling many new and exciting applications in multiple fields. Among them, it will allow Remotely Operated Underwater Vehicles (ROVs) to be piloted directly by means of the images captured by omnidirectional cameras through virtual reality (VR) headsets. This immersive experience will extend the pilot’s spatial awareness and reduce the usual orientation problems during missions. This paper presents this concept and illustrates it with the first experiments for achieving this purpose.This research was supported by the Spanish National Projects ARCHROV (Marine ARChaeology through HROV/AUV cooperation) under the agreement DPI2014-57746-C3-3-R and OMNIUS under the agreement CTM2013-46718-R, the Generalitat de Catalunya through the ACCIO/TecnioSpring program (TECSPR14-1-0050) (to N. Gracias), and "la Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya" (to J. Bosch)Generalitat de Catalunya; TECSPR14-1-0050https://doi.org/10.17979/spudc.978849749808

    Monitored And Controlled Underwater Scissor Arm Manipulator Using Pixy Camera

    Get PDF
    Underwater vehicle manipulator system (UVMS) generally consists of a camera unit and robotic manipulator. Its main function is to replace human work in underwater manipulation tasks. Most commercially available manipulators are not designed for autonomous underwater vehicle (AUV) because the vehicle does not have sufficient power supply to drive these manipulators which are electro-hydraulically driven. A proposed solution is to invest in development of low power underwater manipulator to deepen studies in AUV. Thus, this research has an objective of developing an underwater manipulator for small scale AUV. In this research, the manipulator is used in an object recovery task. An acrylic scissor arm which is electro-mechanically driven is used as manipulator in this research. Permanent magnets are used as its end effector. A Pixy CMUcam5 vision sensor is paired with this manipulator to navigate the AUV and control the manipulator. The usage of planar pressure housing helps in reducing light refraction effect of underwater environment that may affect the sensor’s accuracy. From the simulation done using Solid Works, it is found out that type 316L stainless steel is the best choice for the manipulator developed. To evaluate the performance of the UVMS developed, a series of tests are carried out. Based on the results obtained, it is known that the system has high speed and consistency with minimum time delay between input and output. As long as an object has distinct colour signature from its background and its surrounding is clear and well illuminated, the Pixy vision sensor can detect that object regardless of the distance between the sensor and the object

    Monitored and controlled underwater scissor arm manipulator using Pixy camera

    Get PDF
    1120-1131Underwater vehicle manipulator system (UVMS) generally consists of a camera unit and robotic manipulator. Its main function is to replace human work in underwater manipulation tasks. Most commercially available manipulators are not designed for autonomous underwater vehicle (AUV) because the vehicle does not have sufficient power supply to drive these manipulators which are electro-hydraulically driven. A proposed solution is to invest in development of low power underwater manipulator to deepen studies in AUV. Thus, this research has an objective of developing an underwater manipulator for small scale AUV. In this research, the manipulator is used in an object recovery task. An acrylic scissor arm which is electro-mechanically driven is used as manipulator in this research. Permanent magnets are used as its end effector. A Pixy CMUcam5 vision sensor is paired with this manipulator to navigate the AUV and control the manipulator. The usage of planar pressure housing helps in reducing light refraction effect of underwater environment that may affect the sensor’s accuracy. From the simulation done using Solid Works, it is found out that type 316L stainless steel is the best choice for the manipulator developed. To evaluate the performance of the UVMS developed, a series of tests are carried out. Based on the results obtained, it is known that the system has high speed and consistency with minimum time delay between input and output. As long as an object has distinct colour signature from its background and its surrounding is clear and well illuminated, the Pixy vision sensor can detect that object regardless of the distance between the sensor and the object

    Automated soil hardness testing machine

    Get PDF
    This paper describes the design and performance of a mechatronic system for controlling a standard drop-hammer mechanism that is commonly used in performing outdoor soil or ground hardness tests. A low-cost microcontroller is used to control a hydraulic actuator to repeatedly lift and drop a standard free-falling weight that strikes a pipe (sampler) which is pushed deeper into the ground with each impact. The depth of the sampler pipe and position of the hydraulic cylinder are constantly monitored and the number of drops, soil penetration data and other variables are recorded in a database for future analysis. This device, known as the “EVH Trip Hammer”, allows the full automation and faster completion of what is typically a very labour-intensive and slow testing process that can involve human error and the risk of human injuries

    Vision applications in agriculture

    Get PDF
    From early beginnings in work on the visual guidance of tractors, the National Centre for Engineering in Agriculture has built up a portfolio of projects in which machine vision plays a prominent part. This presentation traces the history of this research, including some highly unusual topics

    The use of machine vision for assessment of fodder quality

    Get PDF
    At present fodder is assessed subjectively. The evaluation depends greatly on a personal opinion and there can be large variations in assessments. The project has investigated the use of machine vision in several ways, to provide measures of fodder quality that will be ojective and independent of the assessor. Growers will be able to quote a quality measure that buyers can trust. The research includes the possibility of discerning colour differences that are beyond the capability of the human eye, while still using equipment that is of relatively modest cost

    Bovine intelligence for training horses

    Get PDF
    A rail-mounted model of a small cow is to be used in the training of horses for camp-drafting contests. The paper concerns the addition of sensors and a strategy to enable the machine to respond to the proximity of the horse in a manner that will represent the behaviour of a live calf

    Design and implementation of a multi-octave-band audio camera for realtime diagnosis

    Full text link
    Noise pollution investigation takes advantage of two common methods of diagnosis: measurement using a Sound Level Meter and acoustical imaging. The former enables a detailed analysis of the surrounding noise spectrum whereas the latter is rather used for source localization. Both approaches complete each other, and merging them into a unique system, working in realtime, would offer new possibilities of dynamic diagnosis. This paper describes the design of a complete system for this purpose: imaging in realtime the acoustic field at different octave bands, with a convenient device. The acoustic field is sampled in time and space using an array of MEMS microphones. This recent technology enables a compact and fully digital design of the system. However, performing realtime imaging with resource-intensive algorithm on a large amount of measured data confronts with a technical challenge. This is overcome by executing the whole process on a Graphic Processing Unit, which has recently become an attractive device for parallel computing

    Recording, Analysis and Playback of Spatial Sound Field using Novel Design Methods of Transducer Arrays

    Get PDF
    Nowadays, a growing interest in the recording and reproduction of spatial audio has been observed. With virtual and augmented reality technologies spreading fast thanks to entertainment and video game industries, also the professional opportunities in the field of engineering are evolving. However, despite many microphone arrays are reaching the market, most of them is not optimized for engineering or diagnostic use and remains mainly confined to voice and music recordings. In this thesis, the design of two new systems for recording and analysing the spatial distribution of sound energy, employing arrays of transducers and cameras, is discussed. Both acoustic and visual spatial information is recorded and combined together to produce static and dynamic colour maps, with a specially designed software and employing Ambisonics and Spatial PCM Sampling (SPS), two common spatial audio formats, for signals processing. The first solution consists in a microphone array made of 32 capsules and a circular array of eight cameras, optimized for low frequencies. The size of the array is designed accordingly to the frequency range of interest for automotive Noise, Vibration & Harshness (NVH) applications. The second system is an underwater probe with four hydrophones and a panoramic camera, with which it is possible to monitor the effects of underwater noise produced by human activities on marine species. Finite Elements Method (FEM) simulations have been used to calculate the array response, thus deriving the filtering matrix and performing theoretical evaluation of the spatial performance. Field tests of the proposed solutions are presented in comparison with the current state-of-the-art equipment. The faithful reproduction of the spatial sound field arouses equally interest. Hence, a method to playback panoramic video with spatial audio is presented, making use of Virtual Reality (VR) technology, spatial audio, individualized Head Related Transfer Functions (HRTFs) and personalized headphones equalization. The work in its entirety presents a complete methodology for recording, analysing and reproducing the spatial information of soundscapes
    • …
    corecore