8,943 research outputs found

    Predictive modelling of human walking over a complete gait cycle

    Get PDF
    An inverse dynamics multi-segment model of the body was combined with optimisation techniques to simulate normal walking in the sagittal plane on level ground. Walking is formulated as an optimal motor task subject to multiple constraints with minimisation of mechanical energy expenditure over a complete gait cycle being the performance criterion. All segmental motions and ground reactions were predicted from only three simple gait descriptors (inputs): walking velocity, cycle period and double stance duration. Quantitative comparisons of the model predictions with gait measurements show that the model reproduced the significant characteristics of normal gait in the sagittal plane. The simulation results suggest that minimising energy expenditure is a primary control objective in normal walking. However, there is also some evidence for the existence of multiple concurrent performance objectives. Keywords: Gait prediction; Inverse dynamics; Optimisation; Optimal motor tas

    A Robust Model Predictive Control Approach for Autonomous Underwater Vehicles Operating in a Constrained workspace

    Full text link
    This paper presents a novel Nonlinear Model Predictive Control (NMPC) scheme for underwater robotic vehicles operating in a constrained workspace including static obstacles. The purpose of the controller is to guide the vehicle towards specific way points. Various limitations such as: obstacles, workspace boundary, thruster saturation and predefined desired upper bound of the vehicle velocity are captured as state and input constraints and are guaranteed during the control design. The proposed scheme incorporates the full dynamics of the vehicle in which the ocean currents are also involved. Hence, the control inputs calculated by the proposed scheme are formulated in a way that the vehicle will exploit the ocean currents, when these are in favor of the way-point tracking mission which results in reduced energy consumption by the thrusters. The performance of the proposed control strategy is experimentally verified using a 44 Degrees of Freedom (DoF) underwater robotic vehicle inside a constrained test tank with obstacles.Comment: IEEE International Conference on Robotics and Automation (ICRA-2018), Accepte

    Imprecise dynamic walking with time-projection control

    Get PDF
    We present a new walking foot-placement controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of the 3LP model, our proposed controller projects intermediate states of the biped back to the beginning of the phase for which a discrete LQR controller is designed. After the projection, a proper control policy is generated by this LQR controller and used at the intermediate time. This control paradigm reacts to disturbances immediately and includes rules to account for swing dynamics and leg-retraction. We apply it to a simulated Atlas robot in position-control, always commanded to perform in-place walking. The stance hip joint in our robot keeps the torso upright to let the robot naturally fall, and the swing hip joint tracks the desired footstep location. Combined with simple Center of Pressure (CoP) damping rules in the low-level controller, our foot-placement enables the robot to recover from strong pushes and produce periodic walking gaits when subject to persistent sources of disturbance, externally or internally. These gaits are imprecise, i.e., emergent from asymmetry sources rather than precisely imposing a desired velocity to the robot. Also in extreme conditions, restricting linearity assumptions of the 3LP model are often violated, but the system remains robust in our simulations. An extensive analysis of closed-loop eigenvalues, viable regions and sensitivity to push timings further demonstrate the strengths of our simple controller

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Reactive control of a two-body point absorber using reinforcement learning

    Get PDF
    In this article, reinforcement learning is used to obtain optimal reactive control of a two-body point absorber. In particular, the Q-learning algorithm is adopted for the maximization of the energy extraction in each sea state. The controller damping and stiffness coefficients are varied in steps, observing the associated reward, which corresponds to an increase in the absorbed power, or penalty, owing to large displacements. The generated power is averaged over a time horizon spanning several wave cycles due to the periodicity of ocean waves, discarding the transient effects at the start of each new episode. The model of a two-body point absorber is developed in order to validate the control strategy in both regular and irregular waves. In all analysed sea states, the controller learns the optimal damping and stiffness coefficients. Furthermore, the scheme is independent of internal models of the device response, which means that it can adapt to variations in the unit dynamics with time and does not suffer from modelling errors

    Series active variable geometry suspension application to comfort enhancement

    Get PDF
    This paper explores the potential of the Series Active Variable Geometry Suspension (SAVGS) for comfort and road holding enhancement. The SAVGS concept introduces significant nonlinearities associated with the rotation of the mechanical link that connects the chassis to the spring-damper unit. Although conventional linearization procedures implemented in multi-body software packages can deal with this configuration, they produce linear models of reduced applicability. To overcome this limitation, an alternative linearization approach based on energy conservation principles is proposed and successfully applied to one corner of the car, thus enabling the use of linear robust control techniques. An H∞ controller is synthesized for this simplified quarter-car linear model and tuned based on the singular value decomposition of the system's transfer matrix. The proposed control is thoroughly tested with one-corner and full-vehicle nonlinear multi-body models. In the SAVGS setup, the actuator appears in series with the passive spring-damper and therefore it would typically be categorized as a low bandwidth or slow active suspension. However, results presented in this paper for an SAVGS-retrofitted Grand Tourer show that this technology has the potential to also improve the high frequency suspension functions such as comfort and road holding

    Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions.

    Get PDF
    Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke. The main question we addressed was whether driving a subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facilitates generation of accurate walking predictions compared to a model driven by muscle activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, we developed a subject-specific neuromusculoskeletal model of a single high-functioning hemiparetic subject using instrumented treadmill walking data collected at the subject's self-selected speed of 0.5 m/s. The model included subject-specific representations of lower-body kinematic structure, foot-ground contact behavior, electromyography-driven muscle force generation, and neural control limitations and remaining capabilities. Using direct collocation optimal control and the subject-specific model, we evaluated the ability of the three control approaches to predict the subject's walking kinematics and kinetics at two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. We also evaluated whether synergy controls could predict a physically realistic gait period at one speed (1.1 m/s) for which no experimental data were available. All three control approaches predicted the subject's walking kinematics and kinetics (including ground reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation and synergy controls could predict the subject's walking kinematics and kinetics well for the faster non-calibration speed of 0.8 m/s, with synergy controls predicting the new gait period the most accurately. When used to predict how the subject would walk at 1.1 m/s, synergy controls predicted a gait period close to that estimated from the linear relationship between gait speed and stride length. These findings suggest that our neuromusculoskeletal simulation framework may be able to bridge the gap between patient-specific muscle synergy information and resulting functional capabilities and limitations

    Development of a real-time latching control algorithm based on wave force prediction

    Get PDF
    Optimal wave energy control is noncausal as the control command is optimized based on incoming wave force. Therefore, implementation of wave energy control requires forecasting of future wave force. A real-time latching control algorithm based on short-term wave force prediction is developed in this study to tackle such noncausality. The future wave forces are forecasted using a gray model. The receding horizon strategy is used to optimize the control command online, over the prediction horizon interval. Based on the predicted wave forces, the power extraction is maximized by locking and releasing the buoy alternately according to the optimized control command. Simulation results show that the power extraction is increased substantially with implementation of the developed real-time latching control algorithm, even if the future wave forces are predicted. Effects of prediction length and prediction error on the energy conversion are examined. It is found that more wave energy is harvested when a long prediction length is employed while prediction error decreases the control efficiency. The extreme load of power takeoff system increases when the wave energy control is implemented although its travel distance is hardly varied

    Optimal Vehicle Motion Control to Mitigate Secondary Crashes after an Initial Impact.

    Full text link
    Statistical data of road traffic fatalities show that fatalities in multiple-event crashes are higher than in single-event crashes. Most vehicle safety systems were developed to mitigate first crash events. Few active safety systems can deal with subsequent crash events. After a first crash event, drivers may not react in a timely or correct manner, which can have devastating consequences. Production active safety systems such as Electronic Stability Control (ESC) may not react to a first crash event properly unless such events are within their design specifications. The goal of this thesis is to propose control strategies that bring the vehicle state back to regions where drivers and ESC can easily take over the control, so that the severity of possible subsequent (secondary) crashes can be reduced. Because the most contributing causes of fatal secondary crashes are large lateral deviations and heading angle changes, the proposed algorithms consider both lateral displacement and heading of the vehicle. To characterize the vehicle motion after a crash event, a collision force estimation method and a vehicle motion prediction scheme are proposed. The model-based algorithm uses sensing information from the early stage of a collision process, so that the collision force can be predicted and the desired vehicle state can be determined promptly. The final heading angles are determined off-line and results are stored in a look-up table for faster implementation. Linear Time Varying Model Predictive Control (LTV-MPC) method is used to obtain the control signals, with the key tire nonlinearities captured through linearization. This algorithm considers tire force constraints based on the combined-slip tire model. The computed high-level control signals are realized through a control allocation problem which maps vehicle motion commands to tire braking forces. For real-time implementation, a rule-based control strategy is obtained. Several rules were constructed, and results under the rule-based control are similar to those under the optimal control (LTV-MPC) method while avoiding heavy on-board computations. Lastly, this thesis proposes a preemptive steering control concept. By assessing the expected strength of an imminent collision force from another vehicle, a preemptive steering control is applied to mitigate the imminent impact.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111343/1/bjukim_1.pd
    • …
    corecore