242 research outputs found

    On d-graceful labelings

    Full text link
    In this paper we introduce a generalization of the well known concept of a graceful labeling. Given a graph G with e=dm edges, we call d-graceful labeling of G an injective function from V(G) to the set {0,1,2,..., d(m+1)-1} such that {|f(x)-f(y)| | [x,y]\in E(G)} ={1,2,3,...,d(m+1)-1}-{m+1,2(m+1),...,(d-1)(m+1)}. In the case of d=1 and of d=e we find the classical notion of a graceful labeling and of an odd graceful labeling, respectively. Also, we call d-graceful \alpha-labeling of a bipartite graph G a d-graceful labeling of G with the property that its maximum value on one of the two bipartite sets does not reach its minimum value on the other one. We show that these new concepts allow to obtain certain cyclic graph decompositions. We investigate the existence of d-graceful \alpha-labelings for several classes of bipartite graphs, completely solving the problem for paths and stars and giving partial results about cycles of even length and ladders.Comment: In press on Ars Combi

    On the Graceful Game

    Get PDF
    A graceful labeling of a graph GG with mm edges consists of labeling the vertices of GG with distinct integers from 00 to mm such that, when each edge is assigned as induced label the absolute difference of the labels of its endpoints, all induced edge labels are distinct. Rosa established two well known conjectures: all trees are graceful (1966) and all triangular cacti are graceful (1988). In order to contribute to both conjectures we study graceful labelings in the context of graph games. The Graceful game was introduced by Tuza in 2017 as a two-players game on a connected graph in which the players Alice and Bob take turns labeling the vertices with distinct integers from 0 to mm. Alice's goal is to gracefully label the graph as Bob's goal is to prevent it from happening. In this work, we study winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars, prisms, wheels, helms, webs, gear graphs, hypercubes and some powers of paths

    metodologi terapan

    Get PDF
    • …
    corecore