948 research outputs found

    ANALYSIS AND VISUALIZATION OF FLOW FIELDS USING INFORMATION-THEORETIC TECHNIQUES AND GRAPH-BASED REPRESENTATIONS

    Get PDF
    Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms

    Smart Surrogate Widgets for Direct Volume Manipulation

    Get PDF
    Interaction is an essential aspect in volume visualization, yet common manipulation tools such as bounding boxes or clipping plane widgets provide rather crude tools as they neglect the complex structure of the underlying data. In this paper, we introduce a novel volume interaction approach based on smart widgets that are automatically placed directly into the data in a visibility-driven manner. By adapting to what the user actually sees, they act as proxies that allow for goal-oriented modifications while still providing an intuitive set of simple operations that is easy to control. In particular, our method is well-suited for direct manipulation scenarios such as touch screens, where traditional user interface elements commonly exhibit limited utility. To evaluate out approach we conducted a qualitative user study with nine participants with various backgrounds.acceptedVersio

    Model-Based Shape and Motion Analysis: Left Ventricle of a Heart

    Get PDF
    The accurate and clinically useful estimation of the shape, motion, and deformation of the left ventricle of a heart (LV) is an important yet open research problem. Recently, computer vision techniques for reconstructing the 3-D shape and motion of the LV have been developed. The main drawback of these techniques, however, is that their models are formulated in terms of either too many local parameters that require non-trivial processing to be useful for close to real time diagnosis, or too few parameters to offer an adequate approximation to the LV motion. To address the problem, we present a new class of volumetric primitives for a compact and accurate LV shape representation in which model parameters are functions. Lagrangian dynamics are employed to convert geometric models into dynamic models that can deform according to the forces manifested in the data points. It is thus possible to make a precise estimation of the deformation of the LV shape endocardial, epicardial and anywhere in between with a small number of intuitive parameter functions. We believe that the proposed technique has a wide range of potential applications. In this thesis, we demonstrate the possibility by applying it to the 3-D LV shape and motion characterization from magnetic tagging data (MRI-SPAMM). We show that the results of our experiments with normal and abnormal heart data enable us to quantitatively verify the physicians\u27 qualitative conception of the left ventricular wall motion

    Magnitude-based streamlines seed point selection for unsteady flow visualization

    Get PDF
    Flow visualization is a method utilized to obtain information from flow data sets. Proper blood flow visualization can assist surgeons in treating the patients. However, the main problem in visualizing the blood flow inside the aorta is the unsteady blood flow rate. Thus, an unsteady flow visualization method is required to show the blood flow clearly. Unfortunately, streamlines cannot be used by time-dependent flow visualization. This research aims to propose an improvement for the current streamline visualization technique and appearance by implementing an improved streamline generation method based on structured grid vector data to visualize the unsteady flow. The research methodology follows a comparative study method with the Evenly-Spaced Seed Point placement (ESSP) method as the benchmark. Magnitude-Based Seed Point placement (MBSP) and selective streamlines enhancement are introduced to produce longer, uniform, and clutter-free streamlines output. A total of 20 visualization results are produced with different streamlines separation distance. Results are then evaluated by comparing streamlines count and uniformity score. Subsequently, survey and expert reviews are carried out to strengthen the analysis. Survey questions are distributed to respondents that have data visualization knowledge background in order to get feedback related to streamlines uniformity and enhancement. In addition, experts review is conducted to get feedback based on current researches and techniques utilized in the related fields. Results indicate that streamlines count for MBSP are higher, but the differences are neglectable. Uniformity analysis shows good performance; with 80% of the MBSP results have better uniformity. Survey responses show 65% of respondents agreed MBSP results have better uniformity compared to ESSP. Majority of the respondents (92%) agreed that selective streamlines is a better approach. Experts review highlights that MBSP can distribute streamlines better in 3-dimension space compared to ESSP. Two significant findings are identified in this research: magnitude is proven to be an important input to locate seed points; and selective streamlines enhancement is a more effective approach as compared to global streamlines enhancement

    Developing Virtual Reality Visualizations for Unsteady Flow Analysis of Dinosaur Track Formation using Scientific Sketching

    Get PDF
    We present the results of a two-year design study to developing virtual reality (VR) flow visualization tools for the analysis of dinosaur track creation in a malleable substrate. Using Scientific Sketching methodology, we combined input from illustration artists, visualization experts, and domain scientists to create novel visualization methods. By iteratively improving visualization concepts at multiple levels of abstraction we helped domain scientists to gain insights into the relationship between dinosaur foot movements and substrate deformations. We involved over 20 art and computer science students from a VR design course in a rapid visualization sketching cycle, guided by our paleontologist collaborators through multiple critique sessions. This allowed us to explore a wide range of potential visualization methods and select the most promising methods for actual implementation. Our resulting visualization methods provide paleontologists with effective tools to analyze their data through particle, pathline and time surface visualizations. We also introduce a set of visual metaphors to compare foot motion in relation to substrate deformation by using pathsurfaces. This is one of the first large-scale projects using Scientific Sketching as a development methodology. We discuss how the research questions of our collaborators have evolved during the sketching and prototyping phases. Finally, we provide lessons learned and usage considerations for Scientific Sketching based on the experiences gathered during this project

    Large Model Visualization : Techniques and Applications

    Get PDF
    The size of datasets in scientific computing is rapidly increasing. This increase is caused by a boost of processing power in the past years, which in turn was invested in an increase of the accuracy and the size of the models. A similar trend enabled a significant improvement of medical scanners; more than 1000 slices of a resolution of 512x512 can be generated by modern scanners in daily practice. Even in computer-aided engineering typical models eas-ily contain several million polygons. Unfortunately, the data complexity is growing faster than the rendering performance of modern computer systems. This is not only due to the slower growing graphics performance of the graphics subsystems, but in particular because of the significantly slower growing memory bandwidth for the transfer of the geometry and image data from the main memory to the graphics accelerator. Large model visualization addresses this growing divide between data complexity and rendering performance. Most methods focus on the reduction of the geometric or pixel complexity, and hence also the memory bandwidth requirements are reduced. In this dissertation, we discuss new approaches from three different research areas. All approaches target at the reduction of the processing complexity to achieve an interactive visualization of large datasets. In the second part, we introduce applications of the presented ap-proaches. Specifically, we introduce the new VIVENDI system for the interactive virtual endoscopy and other applications from mechanical engineering, scientific computing, and architecture.The size of datasets in scientific computing is rapidly increasing. This increase is caused by a boost of processing power in the past years, which in turn was invested in an increase of the accuracy and the size of the models. A similar trend enabled a significant improvement of medical scanners; more than 1000 slices of a resolution of 512x512 can be generated by modern scanners in daily practice. Even in computer-aided engineering typical models eas-ily contain several million polygons. Unfortunately, the data complexity is growing faster than the rendering performance of modern computer systems. This is not only due to the slower growing graphics performance of the graphics subsystems, but in particular because of the significantly slower growing memory bandwidth for the transfer of the geometry and image data from the main memory to the graphics accelerator. Large model visualization addresses this growing divide between data complexity and rendering performance. Most methods focus on the reduction of the geometric or pixel complexity, and hence also the memory bandwidth requirements are reduced. In this dissertation, we discuss new approaches from three different research areas. All approaches target at the reduction of the processing complexity to achieve an interactive visualization of large datasets. In the second part, we introduce applications of the presented ap-proaches. Specifically, we introduce the new VIVENDI system for the interactive virtual endoscopy and other applications from mechanical engineering, scientific computing, and architecture
    corecore