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Model-Based Shape and Motion Analysis: Left Ventricle of a Heart

Abstract
The accurate and clinically useful estimation of the shape, motion, and deformation of the left ventricle of a
heart (LV) is an important yet open research problem. Recently, computer vision techniques for
reconstructing the 3-D shape and motion of the LV have been developed. The main drawback of these
techniques, however, is that their models are formulated in terms of either too many local parameters that
require non-trivial processing to be useful for close to real time diagnosis, or too few parameters to offer an
adequate approximation to the LV motion.

To address the problem, we present a new class of volumetric primitives for a compact and accurate LV shape
representation in which model parameters are functions. Lagrangian dynamics are employed to convert
geometric models into dynamic models that can deform according to the forces manifested in the data points.
It is thus possible to make a precise estimation of the deformation of the LV shape endocardial, epicardial and
anywhere in between with a small number of intuitive parameter functions.

We believe that the proposed technique has a wide range of potential applications. In this thesis, we
demonstrate the possibility by applying it to the 3-D LV shape and motion characterization from magnetic
tagging data (MRI-SPAMM). We show that the results of our experiments with normal and abnormal heart
data enable us to quantitatively verify the physicians' qualitative conception of the left ventricular wall motion.
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Abstract

MODEL�BASED SHAPE AND MOTION ANALYSIS�

LEFT VENTRICLE OF A HEART

Jinah Park

Dimitris Metaxas

The accurate and clinically useful estimation of the shape� motion� and deformation

of the left ventricle of a heart 	LV
 is an important yet open research problem� Recently�

computer vision techniques for reconstructing the �D shape and motion of the LV have

been developed� The main drawback of these techniques� however� is that their models are

formulated in terms of either too many local parameters that require non�trivial processing

to be useful for close to real time diagnosis� or too few parameters to o�er an adequate

approximation to the LV motion�

To address the problem� we present a new class of volumetric primitives for a com�

pact and accurate LV shape representation in which model parameters are functions� La�

grangian dynamics are employed to convert geometric models into dynamic models that

can deform according to the forces manifested in the data points� It is thus possible to

make a precise estimation of the deformation of the LV shape 	endocardial� epicardial and

anywhere in between
 with a small number of intuitive parameter functions�

We believe that the proposed technique has a wide range of potential applications� In

this thesis� we demonstrate the possibility by applying it to the ��D LV shape and motion

characterization from magnetic tagging data 	MRI�SPAMM
� We show that the results of

our experiments with normal and abnormal heart data enable us to quantitatively verify

the physicians� qualitative conception of the left ventricular wall motion�
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Chapter �

Introduction

��� Motivation

Alteration of heart wall motion is a sensitive indicator of heart disease such as ischemia �����

which is typically caused by occlusion of a coronary vessel� The local anemia caused by the

obstruction of the blood supply results in abnormal ventricular wall motion even before

any signi�cant change can be detected from the electrocardiogram or clinical symptoms

develop ����� Moreover� abnormalities in heart wall motion are taken very seriously by

clinicians because their extent can result in subsequent morbidity and mortality� However�

since a heart undergoes such a complex motion during its cycle � e�g�� the heart contracts�

bends� twists� rotates� and translates during its systole � a proper characterization of its

motion still remains an open and challenging research problem�

If we can derive the strain and stress distributions in myocardium from medical imaging

modalities� the knowledge would provide us with a valuable insight into normal ventricular

function� However� one of the main di�culties in assessing heart wall motion comes from

the limitation of conventional cardiac imaging methods of providing good data sets� The

obvious criterion for good image data is the signal�to�noise ratio� Although standard image

processing techniques used in computer vision have been adapted to the medical imaging

domain to improve the quality of the image� the gap between ideal image data and real

world data is still too large� Another important criterion� especially for motion analyses�

is the ability to obtain data correspondence between the images taken at subsequent time

�



phases� Recently� the introduction of a new technology in Magnetic Resonance Imaging

	MRI
 in conjunction with magnetic tagging ��� ���� has provided a potentially powerful

tool for the study of heart wall motion� The MR tagging method provides a means to non�

invasively mark and track a number of material points� and therefore provides a temporal

correspondence for the material points on featureless structures like the heart wall� Unfor�

tunately� the tagged MR images are not easily analyzed with simple qualitative viewing�

especially for the ��D motion� In addition� current quantitative analysis techniques are

not only time consuming but yield data that may not be easily interpreted for diagnoses�

This also leads us to the other main di�culty in assessing heart wall motion � the absence

of computational techniques for automatic extraction of the three dimensional 	��D
 heart

wall motion parameters in a way that is useful to physicians� A precise model that can

re�ect the mechanics of ventricular myocardium would provide a better understanding of

the complex regional changes under pathological conditions� Furthermore� it is also im�

portant that the model be constructed and analyzed in close to real�time to be useful in a

clinical setting�

The goal of this thesis is to develop computational techniques for automatic extraction

of the ��D heart wall motion parameters that are not only compact but also can give

accurate descriptions of ventricular function based on tagged MR images�

��� Problem Statement

Although there have been many computer vision and computer graphics techniques devel�

oped for reconstructing the ��D shape and motion of the left ventricle of a heart 	LV
�

from medical image data� they still have major limitations as described below�

�� They are formulated in terms of either many local parameters that require non�trivial

post�processing to be used by a physician or very few parameters that can o�er only

a gross approximation of the motion of a heart�

� They do not capture the twisting motion of the heart� known to occur during systole�

�LV represents the main cardiac chamber since it has major role in the cardiovascular system ����� and
it is where most e�ects of heart diseases appear�





�� Most of the techniques furnish only a surface model� while the heart muscle has a

signi�cant volume�

A natural approach to estimating the shape� motion� and deformations of an LV as

accurately as possible is the use of a ��D deformable model for the LV� The �nite element

representation is a popular choice� However� since it provides only a set of local measure�

ments� it does not directly lend itself to understanding the underlying kinematics in such a

way that is useful to physicians� i�e�� compact� accurate and intuitive� In order to be able

to describe the deformations of the LV in a way that is useful for clinical evaluation� we

have developed a new class of physics�based volumetric Deformable Models whose global

Parameters are Functions 	or DMPF
 ���� ���� In this way� the shape and complex motion

of the LV can be characterized with a few intuitive parameters such as the amount of

contraction and the amount of twisting across and throughout the myocardium� We have

utilized and further developed a physics�based framework for shape and motion analysis

originally developed by Metaxas and Terzopoulos ���� ���� where the volumetric primitives

are converted into models that deform due to forces exerted by the data points� In order

to capture the twisting motion of the LV� we have utilized the data obtained from the MR

tagging technique known as SPAMM 	SPAtial Modulation of Magnetization
 ���� This

fast� non�invasive technique promises to be very useful in the analysis of heart wall motion

because it provides temporal correspondence for material points within the heart wall�

The crucial advantage of using the proposed DMPF in conjunction with tagged MRI

data is that with a small number of parameters we will be able to characterize the shape

and deformation of the heart in a physically intuitive way� in close to real time� None

of the other current conventional imaging and modeling techniques can capture such ��D

motions� based on the above criteria�

��� Structure of the Dissertation

The thesis is presented in three parts� The �rst part discusses the main concepts and back�

ground of the thesis including model parameter functions� physics�based deformable models

and MRI�SPAMM 	Chapters ��
� The second part reviews the related prior work and

�



develops the proposed LV model in the physics�based framework 	Chapters ���
� Finally�

the third part describes the implementation of the thesis and the results from experiments

involving shape and motion analysis of the LV during systole from MRI�SPAMM 	Chapters

���
�

The following is a very short summary of each chapter�

Chapter � Introduction �

We provide the motivation of the present thesis�

Chapter � Model Parameters �

We introduce the concept of model parameter functions which provide a powerful

degrees of freedom in characterizing the shape of an object�

Chapter � Physics�Based Deformable Model �

We describe a general framework of physics�based modeling with Lagrangian dynam�

ics�

Chapter � MRI�SPAMM �

We study the methods of obtaining data for cardiac motion analysis including the

MRI�SPAMM data�

Chapter � Related Work on Heart Modeling �

We review various models of an LV developed by other researchers�

Chapter � Model Geometry �

We de�ne the geometry of the proposed volumetric deformable models with param�

eter functions 	DMPF
 as LV models�

Chapter � Model Dynamics �

We develop the relevant algorithms for computing forces from the MRI�SPAMM data

sets�

Chapter � Model Parameters �

We discuss in detail the interpretation for each parameter function of the DMPF�

�



Chapter 	 Feasibility Study �

We test our hypothesis that the complex LV motion can be described with a small

number of intuitive parameters�

Chapter �
 Experiments �

We describe the experimental results with normal and abnormal heart data�

Chapter �� Visualization �

We demonstrate visualization techniques for analyzing the motion of the LV�

Chapter �� Validation �

We perform various experiments with deformable gel phantom for validation of the

proposed technique�

Chapter �� Conclusion �

We provide the list of contribution of the present thesis�

�



Part I

Theoretical Underpinnings

�



Part Overview

Throughout the �rst part of the thesis� we build the terminologies which are necessary

to convey the main ideas of the dissertation� These include material coordinates� model

parameters� global and local deformations� generalized coordinates� SPAMM data and ma�

terial points� We �rst de�ne the novel concept of model parameter functions in Chapter �

and we present the general framework for the physics�based deformable models in Chap�

ter �� providing the chronology where the present thesis stands� Finally� MRI�SPAMM

biomedical image data for cardiac motion studies are introduced in Chapter ��

�



Chapter �

Model Parameters

�A representation is a formal system for making explicit certain entities or

types of information� together with a speci�cation of how the system does this�

And I shall call the result of using a representation to describe a given entity a

description of the entity in that representation�� 	����� p� �


��� Parameter Functions� A Simple Example

Consider Fig� ��	a
� It shows a circular shape with �ve �bumps�� In order to represent

it� one could simply take a collection of a su�cient number of points on the curve� The set

of sampled points as shown in Fig� ��	b
 will enable us to reconstruct the original shape

up to a certain degree� However� we can clearly see that it does not explicitly provide us

	a
 	b


Figure ��� Corolla

�



any interesting characteristics regarding the original shape�

We can instead view the shape as a deformed circle� and attempt to utilize the following

parametric equation�

p �

�
�� px	u


py	u


�
�� �

�
�� r	u
 cosu

r	u
 sin u

�
�� � 	��


and r	u
 � �� � cos	n u
� 	�


where �� � u � �� � � ����� and n � ��

We may call the primitive de�ned in 	��
 a generalized circle� r	u
 is the radius of

the generalized circle� While r	u
 can be arbitrary� the formulation in 	�
 shows that it

is considered to vary in a sinusoidal fashion dependent upon n and �� which specify the

number and the size of the ripples� respectively� For the shape in Fig� ��	a
� n is set to �

and � is set to ����� The value of n tells us that it has � bumps� and the value of � tells

us that the size of bumps is ��� of the radius of the undeformed circle�

When we build an object model� we create the representation that can be easily handled

and analyzed for certain tasks at hand� In this example� the intension was to capture the

�bumpiness� of the shape� Fig� � demonstrates a series of shapes from a pentagon to a

daisy� Such a family of curves can be obtained by varying � while keeping n � �� Inner

bumps are created from a �negative� radius when � � ���� If � � � � �� we can create

smooth�edged regular polygons 	e�g�� a triangle� a square� a pentagon� a hexagon� etc�
 by

increasing n as shown in Fig� ��� Fig� �� shows more examples of the shapes created by

varying the parameters�

��� Terminology �I�

In this thesis� vectors will be denoted by bold�faced letters like x or u� and scalars will be

denoted by italic letters like x or u�

�



����� Frame of Reference

The representation is given in an object�centered coordinate frame� so that the shape

description does not depend on where the object is placed in a world coordinate frame or

where it is viewed from�

� inertial frame of reference � three dimensional Cartesian space 	X� Y� Z


whose origin and orientation de�nes the world coordinate frame� In short� it is

called the inertial frame and and denoted by ��

� model frame of reference � three dimensional Cartesian space 	x� y� z


where the model is de�ned� We de�ne the model frame which is non�inertial�

and object�centered� It is denoted by ��

����� Material Coordinates

A model may be represented in a parameterized form ����� A parameterization is a map�

ping � � U �� � where U � �m is an open set and � � �n such that m � n and �

is di�erentiable� If m �  and n � �� for example� � is a mapping from a two dimen�

sional parameter space to a three dimensional Cartesian space� The following is such a

parameterization of a surface in a three dimensional space�

p � p	u� v
 �

�
�����
px	u� v


py	u� v


pz	u� v


�
����� � u �

�
�� u

v

�
�� � �� 	��


where the Cartesian coordinates p � 	px� py� pz
 of a surface point are di�erentiable func�

tions of u and v� We write the auxiliary variables� u and v into a vector u� and call them

material coordinates� In order to avoid potential problems concerning the parameteriza�

tion� we need a regular parameterization �����

�Inertial system is a frame of reference where an object remains in its state of rest or its velocity as
long as there is no external force� But for our application of shape recovery� we want to have a non�inertial
model frame so that once the forces are gone the object stops moving�deforming�

�Conventionally� they are called parameters� However� we avoid the term in order not to be confused
with the term 	model parameter
�

��



� material coordinates � intrinsic coordinates of a model� They are based

on the parameterization of the object� and denoted by u�

����� Model Parameter Function

Let�s consider a simple model of a sphere de�ned in its material coordinates 	u� v
 as shown

below�

s �

�
�����
R cosu cos v

R cos u sin v

R sin u

�
����� 	��


By setting the value for R� we can obtain the sphere with a speci�c radius� In fact� the

only thing we are allowed to tweak in this model is the value of R� Therefore� we say that

the model has � degree of freedom� namely via R which is a model parameter� If the model

parameter is allowed to vary along the material coordinates� it is called a model parameter

function ����� An example model parameter function is r	u
 in the equations 	��
 and

	�
 in the previous section�

� model parameters �or parameters � a set of variables used for the de��

nition of a model� Each value of the 	model
 parameters restricts or determines

the speci�c form of the model�

� model parameter function �or parameter function � the model pa�

rameter which is de�ned as a function of u�

Utilizing model parameters� we can extract global properties of the object in a compact

way� However� it may not have enough degrees of freedom to account for �ne details� By

carefully selecting a set of model parameter functions instead� we can capture the �ne

details of the shape more precisely without sacri�cing compactness� This thesis develops

such a technique applied to heart modeling�
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Chapter �

Physics�Based Deformable Model

�One may think of a physical system� changing as time goes on from one state

or con�guration to another� as progressing along a particular evolutionary path�

and ask� from this point of view� why it selects that particular path out of all

the paths imaginable� The answer is that the physical system sums the values

of its Lagrangian function for all the points along each imaginable path and

then selects that path with the smallest result� This answer suggests that the

Lagrangian function measures something analogous to increments of distance�

in which case one may say� in an abstract way� that physical systems always

take the shortest paths�� 	���� p� ��


��� Brief History of Deformable Models

The history of the shape modeling based on physical principles goes back to the classical

spline representation which is an abstraction of elasticity theory ����� Coming from the

Computer Vision discipline� the early work of Terzopoulos ���� ���� who employed varia�

tional models for visual surface reconstruction from visual constraints� has evolved into a

physics�based modeling framework where the objects are modeled as elastically deformable

bodies subject to continuum mechanical laws ����� In late �����s� together with other re�

searchers such as Barr� Fleischer� Kass� Platt and Witkin� they delivered the active model

� e�g�� �symmetry�seeking model� ���� which is initially motivated by the generalized

��



cylinder idea ����� and the �snakes� ��� which is an energy�minimizing spline � into the

Computer Vision community of the shape recovery and segmentation from image data�

Since the deformable models react to external forces and constraints� and are suitable

for representing natural shapes� they have also attracted attention from Computer Graphics

community where animation has been one of primary areas of research ������ However�

while the descriptive power of deformable models based on the generalized spline allows

the representation of natural objects with asymmetries and �ne details� it is very di�cult

to abstract the shape in a compact way�

Superellipsoid� which was �rst discovered by Peit Hein ����� was introduced to Computer

Graphics by Barr ��� in the early �����s� Barr further prescribed the hierarchical structure

for deformations of superquadric primitives based on Jacobian matrices ����� Superquadrics

are a very powerful family of shapes� and yield a variety of useful forms based on model

parameters� Starting in the late �����s� many researchers ��� ��� ��� ��� in Computer Vision

have utilized the superquadrics as primitives for shape representation�

In the early �����s� Metaxas and Terzopoulos ���� �� ��� developed a hybrid model

named �deformable superquadrics� which is a product of combining superquadric ellip�

soid subject to parameterized geometric bending and tapering with generalized splines

represented by �nite elements� While the local deformational degrees of freedom from

�nite elements allow one to render shape details� the global parameters in deformable

superquadrics may be utilized for abstracting gross approximation of the shape� Their

extended physics�based framework facilitates e�cient modeling of non�rigid multi�body

objects�

In this thesis� we have adapted the framework by Metaxas ���� where the geometric

models are converted into dynamic models that deform due to forces exerted from the data

points so as to conform to the given dataset� However� by proposing the formulation of

model parameter functions ����� we have provided a means for capturing the local details

in terms of a few parameters that can be utilized for shape and non�rigid motion analyses�

We have been� therefore� able to capture the shape detail precisely using only the global

parameter functions� without utilizing the large number of local parameters required for

free�form deformations in the hybrid model of Metaxas� This new class of models is called
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�deformable models with parameter functions� 	DMPF
� Furthermore� the DMPF has

been extended to a volumetric model from a surface model and applied to cardiac motion

analyses ����� Fig� ��� depicts the chronology related to the thesis�

��� Terminology �II�

����� Deformation

The motion of a deformable body can be classi�ed into two � rigid and non�rigid motion�

Suppose p represents the points of a single�body� object at an initial time� and p� the

corresponding points after experiencing some motion� where both p and p� are expressed

with respect to the object�centered coordinate frame of reference�

p� �M	p
 	���


When the body experiences only rigid motion� the p and the corresponding p� are exactly

the same and the distance of any two points of the body remains the same as that before

the motion� Therefore� the rigid�motion can be described solely based on the kinematics

of the local frame of reference� However� when the object undergoes a non�rigid motion�

the shape of the body �deforms� so that the distance of any two points in the body no

longer remains the same� In this case� the operationM will modify the coordinates of the

points in space� We can apply M either globally based on parameters� or locally without

imposing any constraints�

� rigid motion � shape invariant motion� These are translational and rota�

tional motion�

� deformation � an operation which explicitly modi�es the local coordinates

of the points of a body as a result of non�rigid motion�

� global deformation � constraint deformation which is inherited from pa�

rameterized geometry� 	e�g�� scaling� bending� tapering� twisting


� local deformation � free�form deformation
�In this thesis� we do not deal with multi�body systems�
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Figure ��� Geometry of a deformable model

����� Generalized Coordinates

Often the dynamics variables can be reduced to a set of a small number of independent

generalized coordinates� For example� the con�guration of a rigid�body can be completely

described with six independent coordinates � three coordinates qc for the location of the

origin of the body and three rotational coordinates q� for the orientation of the body with

respect to a �xed frame ����� For a deformable body we need deformation parameters qs

for non�rigid motion� in addition to qc and q� for rigid motion� These variables� written

symbolically as q � 	q�c �q
�
� �q

�
s 


� where � denotes transposition� are called the generalized

coordinates of the system�

� generalized coordinates � a set of variables which completely de�ne the

location and orientation of each body in the system� These are put into a

vector� denoted by q�

��� Geometry of Deformable Models

The geometry of a ��D deformable model is parametrically de�ned in the material coordi�

nates u � 	u� v� w
 in domain  � The positions of points on the model relative to an inertial

��



frame of reference � in ��D space are given by a vector�valued� time�varying function of u�

x	u� t
 �

�
�����
x	u� t


y	u� t


z	u� t


�
����� � 	��


In order to decouple the rigid motion and non�rigid motion in our single�body system� we

set up a non�inertial� model�centered reference frame � and express the position of a point

on a model as

x � c!Rs� 	���


where c	t
 is the translation of the model de�ned at the origin of � and R	t
 is the rotation

matrix which gives the orientation of � relative to �� s	u� t
 is the position of points on

the model relative to the model frame 	see Fig� ��
�

The above equation 	���
 is an adapted de�nition of the hybrid model developed by

Metaxas and Terzopoulos ���� ��� ����� In ����� the position of a point on the model relative

to the model frame� is expressed as the sum of a reference shape and a displacement

function� For the DMPF� however� the displacement function 	local deformations
 is not

necessary� since the reference shape is de�ned based on global parameter functions capable

of capturing the local variation of the shape of an object�

In general� the reference shape is de�ned geometrically as follows�

s � T	e	u� 	�� 	�� � � �
� 
�� 
�� � � �
� 	���


where e	u� 	�� 	�� � � �
 or e is a geometric primitive de�ned parametrically in u and param�

eterized by the variables 	i� The shape represented by e is subject to the deformation T

which depends on the deformation parameter functions 
i� Although generally nonlinear�

e and T are assumed to be di�erentiable so that we may compute the Jacobian of s� By

concatenating these parameters 	i and 
i into the vector qs

qs � 		�� 	�� � � � � 
�� 
�� � � �

�� 	���


we collect the degrees of freedom of the model with respect to the deformation parameters�

The Jacobian matrix is then computed as follows�

J �
�s

�qs
	���


�s in equation �����

��



T may be a composite sequence of primitive deformation functions

T	e
 � Tn	Tn��	� � �T�	T�	e



� 	���


When we apply multiple global deformations 	T�� � � � �Tn
 to a shape primitive e� it is

much easier to compute the Jacobian J based on the chain rules rather than to compute it

directly from complicated expressions of the shape s� We can rewrite qs in equation 	���


by grouping the parameters as follows�

qs � 	q�� �q
�
� 


�

� 	q�� �q
�
T�
�q�T�� � � � �q�Tn
� 	���


Let s� � e and sk � Tk	sk��
� where � � k � n� Then we can compute J in a modular

way using the following recurrence relations �����

J� � Je �
�e

�q�
	���


Jk �

�
�sk
�sk��

Jk�� !
�sk
�q�

j �sk
�qTk

�
	� � k � n
 	����


J � Jn� 	����


The parameters 	i and 
i of the DMPF are not constants ���� ����� but functions of u�

	i � 	i	u
�


i � 
i	u
� 	���


This de�nition allows us to generalize de�nitions of volumetric primitives 	e�g�� volumetric

superquadrics
 and parameterized deformations 	e�g�� twisting
� It will be shown in the

next part of the thesis and was demonstrated in ���� ����

��� Kinematics of System

From equation 	���
� the velocity of points "x � dx
dt
on the model is given by�

"x �
d	c!Rs


dt
	����


� "c! "Rs!R "s� 	����


�



"s� the time derivative of the shape primitive with respect to the model frame �� can be

written in terms of the model deformation parameters as follows�

"s �

�
�s

�qs

	
"qs � J "qs� 	����


where J is the Jacobian of the shape primitive�

In ����� Shabana showed that

"Rs � �R #s G "���� 	����


where ��� � 	� � � � �i� � � �
� is the quaternion representation ��� ��� of rotational coordinates
of the model� G� also expressed in terms of quaternion representation� is derived from the

time derivative of the angular velocity of the deformable model with respect to the model

frame �� and #s is the dual �	 � matrix of the position vector s�� Therefore� we can rewrite
	����
 as follows�

"x � "c !B "��� !R "s� 	����


where

B �

�
� � � � �	Rs


��i
� � � �

	
� �R #s G� 	���


The corresponding rotation matrix R to a quaternion ��� is given in 	B��
�

Finally� we can write 	����
 utilizing a matrix notation as follows�

"x � �I B RJ� "q

� L "q� 	���


where

q � 	q�c �q
�
� �q

�
s 


�� 	��


�Let ���  ���v�  ��� v�� v�� v��
� and s  �s�� s�� s��

�� Then

G  �

�
�v� � v� �v�

�v� �v� � v�

�v� v� �v� �

�
� ������

and

�s 

�
� �s� s�

s� � s�

�s� s� �

�
� ������

�



with qc � c and q� � ���� I is an identity matrix� Intuitively� L is the model Jacobian

matrix which maps the model�s parameter space into the ��D space�

The goal of �tting the model to data points is to recover the vector of degrees of

freedom q� This is achieved by carrying out the �tting procedure derived from Lagrangian

dynamics � where the traction forces from data points are applied to the surface of the

model ������

��	 Lagrangian Dynamics

When dealing with the dynamic problem of a system� we examine its dynamic parame�

ters specifying both the potential energy of the system 	which depends on the coordinates

of all its particle
 and the kinetic energy 	which depends on their velocities
� The La�

grangian dynamic formulation provides a means for deriving the equations of motion from

the di�erence between the kinetic energy and the potential energy of the system ����

The Lagrangian dynamics are expressed in terms of generalized coordinates q with

associated generalized force� For a deformable body� we can make the model dynamic in

q by introducing mass� damping� and a deformation strain energy� In general� the govern�

ing Lagrangian equations of motion� for a deformable body are second order di�erential

equations given as follows�

d

dt



�T
� "q

��
� d

dt



�T
�q

��
!

d

dt



�F
� "q

��
! �qE � fq 	���


where T is the kinetic energy of the deformable model� F is the kinetic energy dissipation�

E is the deformation strain energy of the model� and fq is the generalized force� Utilizing
a matrix notation� these equations can be written in the following form�

M$q!D "q!Kq � gq ! fq� 	���


where M� D and K are the mass� damping and sti�ness matrices� respectively� gq are

inertial forces arising from the dynamic coupling between the local and global degrees of

�The Lagrangian equations of motion are derived from the Newton
s second law� known as the law of
motion� which states that the force which acts on a particle and causes its motion is equal to the rate of
change of momentum of the particle �����





freedom� fq are the generalized external forces associated with the components of q� and

they are computed using the formula

fq �

Z
L�f du� 	���


where f is the ��D force distribution applied to the model� and L is the model Jacobian

matrix derived in 	���
� fq can be decomposed into 	fc� f�� fs
 where

fc �
Z
f du� 	���


f� �
Z
B�f du� 	���


fs �

Z
	RJ
�f du� 	���


As shown in ����� for the applications to vision problems� the equations of motion in

	���
 can be simpli�ed while preserving useful dynamics� By setting the mass density to

zero� we obtain the following equations which yield a model that has no inertia and comes

to rest as soon as all the applied forces equilibrate or vanish�

D "q!Kq � fq� 	���


In Chapter �� we will simplify the above equations of motion even further for our

application to cardiac motion estimation� and develop the relevant algorithms to compute

the forces f from the medical image data�

�



Chapter �

MRI�SPAMM

�In ��� Hamilton and Rompf sutured metal markers to the surface of the

ventricles of dogs and observed their movements �uoroscopically� Rushmer

and collaborators also sutured radiopaque objects to the heart and subsequently

cineradiographic studies permitted detailed analyses of the motion of individual

portions of the heart���� 	����� p� ���


��� Cardiac Motion Data Extraction

Characterization of heart wall motion on a regional level is required to understand cardiac

mechanics and the processes signifying a disease� In order to accurately measure heart wall

motion� a number of material points must be located and tracked� Methods of providing

intra�myocardial markers in the past have included�

�� the implantation of radiopaque markers ���� �� ��� ��� lead beads ����� or ultrasonic

crystals ���� �����

� use of naturally occurring landmarks ���� �� ���� ����� and

�� magnetic resonance 	MR
 tagging ����� �� ��� �� �� ����

Although the implantation methods ���� ��� �� ��� ���� ���� �� are widely used and

provide the most accurate localization� the invasive nature of the procedures does not allow

�



a su�cient number of markers to be implanted for an adequate reconstruction of the LV

geometry� Moreover� it poses potential problems of local myocardium property alteration

due to the introduction of foreign objects� On the other hand� the methods which utilize

naturally occurring landmarks� like bifurcations of coronary arteries ���� �� ���� ����� do

not require surgery and can potentially provide many markers� However� intra�coronary

injection of contrast medium is usually required to highlight the blood vessels in acquired

images� Moreover� when the blood supply is severely obstructed due to arterial occlusion�

the tracing of the feature points around the region can be very di�cult to achieve �����

MR tagging has its advantages over the aforementioned approaches because a large

number of material points may be marked and tracked during systole in a non�invasive

manner� By locally perturbing the magnetization in tissue� one can create spatially encoded

patterns such as star�bursts 	e�g�� ����� ��� �� ��
 or grids 	e�g�� ��� ���� ���
� Those

patterns or magnetization tags are seen as dark regions in subsequent images 	within a

certain relaxation time T�
� As magnetization moves with tissue� the magnetization tags

will move in the corresponding images� directly re�ecting the motion of the underlying

tissue� allowing us to follow the motion patterns within otherwise featureless structures

such as heart wall� One drawback of current MR tagging technique is that the tracking is

possible only during systole or diastole at one time 	i�e�� not for a complete heart cycle
�

due to decay of the magnetization signal over time��

Recently� curvature�based point correspondence recovery techniques have been pro�

posed by researchers as an alternative to the above methods� The method by Goldgof et

al� ���� ��� is based on the computation of the Gaussian curvature of a model that deforms

based on the assumption of conformal motion� The method by Amini and Duncan ��� ���

utilizes the potential energy of their bending and stretching model to estimate the curva�

ture� Shi et al� ���� combined curvature extraction with Phase Velocity MRI� in an attempt

to assess the transmural myocardial deformation in �D� Friboulet et al� ���� demonstrated

the stability of the Gaussian curvature computation in an experiment where the Gaussian

curvature was computed through an iterative relaxation scheme from voxel�based surface

rendering of CT left�ventricle volumetric data over a cardiac cycle� The derivation of point

�The weakening of the magnetization signal over time can be observed in Fig� ��� as well�
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end diastole early systole mid systole end systole

Figure ���� MRI�SPAMM images of a mid left ventricle during systole

correspondences based on curvature has promising potential� in the sense that it can be

widely used with data sets from many di�erent medical imaging modalities� and it can

provide point correspondence over an entire heart cycle�

��� Data Based on MRI�SPAMM

We propose to use a set of data from Magnetic Resonance Imaging with Spatial Modulation

of Magnetization 	SPAMM
 ���� an MR tagging method� as an input to the proposed model

for LV wall motion studies� The advantages of the SPAMM technique over the others

are that a number of material points can be marked in a very short time with a simple

procedure� and that they can be tracked during systole in a non�invasive setting� providing

temporal correspondence of the material points� SPAMM technique has been previously

used to demonstrate regional motion patterns during systole ��� ��� ����� and the methods

for estimating material deformation have been validated using deformable phantoms ������

Fig� ��� �courtesy of Dr� Leon Axel at the Radiology Department in the University of

Pennsylvania� shows MRI�SPAMM images of an LV from end�diastole to end�systole� We

can easily observe that these images reveal the underlying motion of the myocardium�

����� Terminology �III	

The SPAMM data collection technique is based on the application prior to imaging of a

saturation pulse sequence where the amplitude of the magnetization varies spatially� in

a sinusoidal�like fashion� This saturation pulse sequence forms the tagging planes� At

the minima of this sinusoidal�like variation of the magnetization� dark stripes appear in
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Figure ��� Tagging planes and image planes

the image plane which intersects the tagging planes� Note that the tagging planes are

orthogonal to the image plane as shown in Fig� ��� Those dark stripes on the image plane

are referred to as tagging lines� If we continue to image the tissue after the saturation

pulse sequence is applied� we can see those tagging lines move� allowing us to track the

motion of the underlying tissue� In order to track points instead of lines� another set of

saturation pulse sequences is applied to form a set of tagging planes orthogonal to the

previous set of tagging planes 	n� and n� in Fig� ��
� As a result� the grids appear in the

image plane� The SPAMM data points are de�ned by the intersections of the respective

tagging lines�

� SPAMM data points � intersections of the two orthogonal tagging lines

	dark stripes
 on an image plane� S	t
 denotes the location of a SPAMM data

point at time t�

� material points � speci�c points of the actual myocardium being imaged�

Sometimes we use the term to refer to the corresponding points on the heart

model� M	t
 denotes the location of a material point at time t�
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����� Time
Varying �
D Data

Given that every image plane is spatially �xed� while a heart being imaged moves� the

through�plane motion ���� ��� cannot be captured by the SPAMM data points on the

image plane� Fig� �� shows the location of a SPAMM data point S at two di�erent times

t� and t�� Initially� S	t�
 coincides with a material point M	t�
� However� the motion of

the SPAMM data point between these two time�instances corresponds to the components

on the image plane of the motion of the material point M� which lies somewhere along

the line where the tagging planes intersect at time t�� A possible position of the material

pointM at t� is marked in Fig� ���

Therefore� we can only obtain in�plane motion from SPAMM images acquired over

time� In order to assess the ��D motion of material points of the LV from the set of such

�D time�varying data� we need to combine� though a model�based approach� two sets of

data obtained from mutually orthogonal image planes 	see Figs� ���� and ���
�

����� SPAMM Data Point Extraction

As described above� each SPAMM data point is de�ned as the intersection of two tagging

lines� Young et al� ����� developed a method for extracting the intersection points of

tagged lines� The method can be summarized as follows� For each image sequence� the tag

stripes within the heart muscle are tracked semi�automatically using a �D active contour

model ���� In this procedure� each stripe is discretized into equally spaced points and is

modeled as a thin� �exible beam with a small inherent resistance to stretching and bending�

Stripes are connected at the intersection points and the entire mesh deforms to track the

corresponding intensity values in the image� Fig� ��� �courtesy of Dr� Alistair Young at

the University of Auckland in Auckland� New Zealand� shows an instance of tracking the

tagging grid� Bilinear interpolation of image intensity between pixels enables sub�pixel

resolution in stripe tracking� Only those points between the inner and outer boundaries

were in�uenced by the image� and the remaining inactive points of the grid were maintained

to provide a weak continuity for the structure and allowed points to move onto%o� the image

plane� Those active points are marked with a square and a dot in Fig� ���� For each time

frame� the �D locations of the intersection points where the stripes are connected 	i�e��
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Figure ���� Tracking SPAMM tag stripes
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SPAMM data points
 are saved for further motion analyses� This semi�automatic tracking

algorithm is incorporated into a software package SPAMMVU ��� ����� which is developed

at the Radiology Department of the University of Pennsylvania�

��� Image Space to Object Space

During the SPAMM acquisition process� the spatial location of each image plane is evalu�

ated based on the acquired spatial locations of the corners of each image plane so that we

can convert the �D coordinates of each data point in image space into ��D data points in

object space as follows�

Given � corners of the image plane PTLC� PTRC� PBLC and PBRC in mm� we de�ne x�

y and o as follows�

x �
	PTRC � PTLC


PSIZE
� 	���


y �
	PBLC � PTLC


PSIZE
� 	��


o �
PTLC
PSIZE

� 	���


where PSIZE is the pixel size of the image� Then the �D points d � 	dx� dy
 in image

��



t=1 t=N

t=1 t=N

sampled 2D data

SPAMM
MRI-

sampled 2D data
in image space in 3D space

over time over time

estimate
3D motion

parameters
model 

visualize and
quantify

3D motion

input output

model fitting
over time

DMPF
volumetric

Figure ���� Input and output of the proposed method

plane coordinates can be expressed as ��D points p with respect to the center of the MRI

scanner where the image data are obtained�

p � 	o! 	
dx

XDIM

 
 x! 	 dy

YDIM

 
 y
	 PSIZE 	���


where XDIM and YDIM are the dimensions of the image� Since the ��D coordinates of

the data points are expressed in mm� we may obtain measurements like length or volume

in physical dimensions�

��� Data Flow

These ��D data points will be used as an input to the proposed apparatus for the left

ventricular wall motion studies as shown in Fig� ���� In addition to the SPAMM data

points� boundary data points from the inner and outer LV walls are also extracted using

active contour models and manual initialization� and converted into ��D data points using

the same formula given in 	���
� To summarize the preparation steps�

�� acquire MRI�SPAMM images

� extract SPAMM data points and boundary data points from the images 	�D data

points


�� convert the �D data in image space into ��D data based on the locations of the

image plane with respect to the center of the scanner�
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For a close�to�real time analysis of the LV motion� it would be desirable if we can

minimize the preparation steps� and automate the process as much as possible� � However�

the fully automatic extraction of both the SPAMM and the boundary data is beyond the

scope of the present thesis� This thesis develops a systematic method in retrieving the

��D motion based on the time�varying �D data sets� Part II of the thesis discusses the

volumetric DMPF� the main block in Fig� ���� in full detail� The output of the main block

is the parameter functions which abstract the motion of the LV� Part III illustrates the

experimental results as well as some visualization techniques�

�An alternative method is to use image potential information directly without extracting data points�
It is left as future work�
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Part II

Volumetric Deformable Models

with Parameter Functions
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Part Overview

The second part of the thesis develops a new class of physics�based volumetric deformable

models whose global parameters are functions 	DMPF
 which allows the de�nition of new

parameterized primitives and parameterized global deformations� While these new shape

primitives can be used in many applications� the technique for shape and motion estimation

of the left ventricle 	LV
 of a heart is demonstrated�

We �rst review� in Chapter �� related LV modeling work by other researchers to un�

derstand what the main limitations of existing models are� and show how we overcome

the limitations in our new framework DMPF� Chapter � describes the geometry of DMPF

for LV wall motion studies and Chapter � develops the adapted physics�based framework

applied to MRI�SPAMM data�

Through the proposed technique we can estimate the deformation of an LV during

systole in terms of a few global parameter functions ����� The complex motion of the heart

is thus characterized by the same small number of parameters� which vary from region to

region� We can� therefore� capture the shape and motion of the LV walls 	endocardium�

epicardium and anywhere in between
 based on the parameters of the DMPF� Furthermore�

these parameters are intuitive and can be readily used by a physician without further

complex processing� In Chapter �� we study the parameter functions of the proposed LV

model in detail�
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Chapter �

Related Work on Heart Modeling

�Very little is currently known about the change in constitutive law param�

eters in the diseased heart� Since a major reason for developing continuum

models of the heart is the potential clinical application� the problems of ex�

tracting quantitative information from clinically available diagnostic tools such

as X�ray� NMR or other imaging techniques is another very important and chal�

lenging task� Moreover� the enormous potential of theses highly sophisticated

	and expensive devices will only be realized by their use in conjunction with

continuum models�� 	����� p� ���


The common method in Medical Imaging for visualizing an organ or a structure is

to perform either surface or volume renderings of segmented image data represented as

voxels ���� ���� It is not surprising that it is also the case in cardiac imaging� The most

common practice for viewing the motion of a heart in its cycle is to display a series of �D

slices in a cine mode� Surface and volume rendering techniques have also been utilized in

an attempt to view the ��D motion of a pumping heart� Although the renderings of voxel�

based image data throughout the cardiac cycle would give a good qualitative visualization

of the LV� it does not provide any means for a quantitative analysis of the motion� In order

to quantify the complicated motion of a left ventricle 	LV
 and to interpret its measured

deformation� it is necessary to represent the LV by constructing some kind of geometric

model�

��



Simple analytical shapes like spheres� ellipsoids or cylinders are often used to approxi�

mate the shape and motion of an LV� For example� Beyar and Sideman ���� constructed a

mechanical model where the LV is viewed as a nested�shell spheroidal geometry to explain

the e�ect of twisting motion� Arts et al� ��� used a thick�walled cylinder composed of eight

concentric cylinder shells to describe LV deformation� Kim et al� ���� used a thick�walled

ellipsoidal model for computation of the wall stress� and a truncated ellipsoidal model for

simulation of regional stress� Azhari et al� ��� used a hollow conical shell 	with a constant

shear modulus
 to characterize transmural twist motion� and Arts et al� �� �� developed

a kinematic model combining the modes from spherical� prolate ellipsoidal and cylindrical

models�

However� the shape of an LV is neither spherical nor cylindrical� Even a prolate ellipsoid

is a gross simpli�cation of the shape of an LV� Therefore� as Guccione and McCulloch ����

pointed out� the analyses made by these models are based on simplifying assumptions

about the material behavior of the heart muscle and the governing equations of motion�

With deformable ��D models� one can improve the shape representing an LV more closely

at any phase during its cycle� But it is important to keep in mind that our purpose of

constructing a heart model is not to create only a visually appealing model but a clinically

useful one which allows us to perform quantitative motion analyses�

	�� Surface Models

Recently� ��D surface models and associated computer vision or graphics techniques have

been developed to capture the shape and motion of the inner or outer walls of an LV from

medical image data� These models are constructed with �nite element meshes derived from

polyhedron surface reconstruction from a stack of cross sections ��� ���� physics�based

elastic models ��� ��� ��� ��� ���� bending and stretching models ��� ���� or augmenting

local details to an axisymmetrical geometric model ���� ���� The techniques are brie�y

described below�

� McInerney and Terzopoulos ���� developed the ��D deformable balloon model ���

composed of triangular C� �nite elements based on the framework developed by
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Metaxas and Terzopoulos ����� They applied it to CT data consisting of �� volume

images of a canine heart during one cardiac cycle� The reconstruction of the LV

shape at each time frame looks realistic� but it seems that the motion tracking is

possible only from observation of the �tted models� No explicit motion parameters

are provided from the model�

� Pentland et al� ���� ��� ��� developed a model� based on the modal analysis� which

can decompose the motion into deformable modes� and applied the technique to re�

covering the non�rigid motion of a heart from �D X�ray images� Their LV model was

de�ned using �� deformable modes� Following their work� Nastar and Ayache ����

performed spectrum analysis in modal space for various LVs from Nuclear Medicine

to classify non�rigid motion from �� modes� Although the technique might provide

a means for discriminating abnormal hearts from normal hearts based on the modal

parameter spectrums� those parameters do not have any anatomical signi�cance and

localization properties 	because they are based on vibration of a mesh model
� there�

fore� the modal analysis technique does not provide an intuitive parameterization for

a better understanding of the heart wall motion�

� Amini and Duncan ��� developed bending and stretching thin�plate models which
allow point matching based on bending energy for motion tracking of the left ventricle

wall� and Shi et al� ���� presented results of the shape�based technique applied to

MRI data showing motion trajectories of selected endocardial points�

� Friboulet et al� ���� constructed a polyhedral model from the set of cross sections in

slices of a volume of MRI data� The motion of the model was approximated by an

a�ne transformation with translation� rotation� and dilation motion parameters�

� Huang and Goldgof ���� developed a spring�mass� adaptive�size mesh model and
applied it to CT data of a canine heart during one cardiac cycle to track the node

correspondence in a cardiac cycle� No explicit motion parameters are provided except

local displacement trajectories of the nodes�

� Bardinet et al� ���� re�ned the shape of a model applying the technique of free�form
deformations ���� to underlying global shape de�ned by superquadrics ���� The

��



�tting results are very impressive� However� since it is hard to correlate the control

nodes with anatomical parts of the LV� the technique is no more clinically useful

than simple geometric models�

The main limitation of these techniques is that they do not provide intuitive motion

parameters to describe the rigid and non�rigid motion of the LV� Most of the techniques ���

�� �� ��� ��� ��� ��� provide only local displacement vectors so that either they require

non�trivial post�processing to be useful to a physician or they are good only for qualitative

visualization� On the other hand� models like ���� ��� are formulated in terms of very

few parameters that can o�er only a gross approximation to the motion of the LV� There

are some attempts to characterize the motion with a fair number of parameters ���� ����

but their parameterizations cannot provide anatomical or intuitive meanings for a better

understanding of LV motion� Moreover� most techniques ��� ��� ��� ��� ��� ��� ��� ���

ignore the twisting or wringing motion of the LV known to occur during systole�

To overcome the problems of the above techniques in terms of accurately estimating

the LV surface shape and motion and in order to extract parameters that can be easily

interpreted by physicians� we previously developed a new class of deformable primitives

whose global parameters are functions 	DMPF
 ���� ���� This new DMPF can capture

and quantify the axial twisting� bending� and contraction of the LV surface� The input to

these models were data points sampled from the mid�wall of the ��D �nite element model

of Young and Axel ����� 	discussed in the following section
� which estimates the LV shape

and motion from MRI�SPAMM��

	�� Volumetric Models

The LV motion cannot be captured entirely with surface models alone because the endo�

cardial and epicardial motions are su�ciently di�erent� To be able to capture the LV shape

and motion throughout the volume� we need a volumetric model� Recently� techniques for

analyzing the motion from a volumetric representation of the LV have also been developed

by coupling epicardial and endocardial surfaces ���� ���� ��� ��� ���

�The experimental results from the surface DMPF are discussed in Chapter ��
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Unlike the techniques used for surface models that are discussed in the previous section�

the techniques for recovering ��D LV motion using volumetric models are motivated to

overcome the limitation of current medical imaging modalities where true time�varying

��D data points useful for motion studies cannot be provided explicitly due to �through�

plane� motion� The translation of the deforming heart through the �xed image planes puts

a di�erent cross section of myocardium into the image plane at each time point� Therefore

the imaging techniques provide only time�varying �D data at best�

Volumetric models used for LV wall motion analysis are mostly reconstructed from

tagged MR data which provides temporal correspondences of individual data points� The

models constructed from other medical image data provide only global measures like

ejection�fraction and wall�thickening 	e�g�� ����
� The following describes how other re�

searchers tracked the ��D motion with volumetric model�based approach�

� Young and Axel ����� ���� developed a �nite element based method for reconstructing
the three�dimensional motion and deformation from MRI�SPAMM images in two

orthogonal views during systole� The data points are collected from � parallel short�

axis image planes along the long axis� of an LV� and � parallel evenly spaced long�axis

image planes�

Initially� the �nite element models are created by �tting to contours de�ning inner

and outer walls of the LV at each time frame from end�diastole 	t��
 to end�systole

one by one� Since the SPAMM data points at t �� provide displacement information

	because the projections of their initial positions on the image planes are known
�

those models �tted to data at t �� are deformed to t�� state based on the displace�

ment information provided by SPAMM data recovering the through�plane motion�

The deformation was found with a linear least squares �t� This results in a number

of models representing the LV at t��� To compute the strain from end�diastole to

end�systole� the initial model at t�� is now deformed to all states at t �� using the

through�plane motion estimated in the previous stage together with in�plane motion�

The model has �� bicubic Hermite �nite elements�

�Long axis of an LV is its base�apex line�
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� To solve the through�plane motion problem� Moore et al� ���� developed a ��D ma�

terial point�tracking algorithm from biplanar tagged MR images� Data were taken

from � evenly spaced short�axis image planes perpendicular to the long axis of an LV�

and � radial planes intersecting with the short�axis image stack along the long axis

of the LV� Data used in the tracking algorithm are the endocardial and epicardial

endpoints of the tag segments 	or tag points
� Their algorithm works as follows�

First� locate 	x� y� z
 coordinates from a short�axis image tag point� Second� use

appropriate long�axis tag points to �nd z motion in region of heart de�ned by 	x� y


by locating the tag points on long axis tag surface and �tting their z coordinate with

a smooth periodic cubic spline as a function of the angle about their common centroid

	x� y
� Then calculate the angle of the previous 	x� y
 position of the material point�

The angle is used to �nd its revised z position from the spline� And interpolate x

and y with those on the short�axis image planes at the level of the new z value of the

material point� Repeat the second step procedure until the changed in z position is

negligible� In their model� �� volume elements were de�ned for strain analysis�

� O�Dell et al� ���� proposed a method that uses parallel planar tags to image the ��D
displacement �eld of the myocardium� The data is composed of two sets of short�

axis images along the long axis of an LV� and one consists of long�axis images taken

radially� In oder to compute strain� dense displacement measurements were achieved

by Denney and Prince ��� who developed a multidimensional stochastic model under

Fisher estimate frame work to reconstruct the displacement �eld on a regular ��D

lattice�

Finite element modeling ���� ��� ��� ��� ��� ��� ���� ��� is a typical choice for volumetric

motion analysis since it provides strain analysis throughout the ventricular wall� Most �nite

element models are� unfortunately� prone to an incorrect analysis due to the inappropriate

assumption of homogeneous material properties of myocardium� Recently� Guccione et

al� ���� developed the �nite element model for continuum analysis by incorporating muscle

�ber orientation�

Although �nite element modeling promises extensive strain and stress analysis ����� its

��



representation does not directly lend itself to an understanding of the underlying kinemat�

ics in an intuitive way� The parameters of the model are nodal displacements� resulting

in a relatively large number of parameters� the physical interpretation of which can be

di�cult� The three�dimensional strain tensor� for example� has three normal components

and three shear components� each of which may vary with position in the wall� In order to

understand the complex relationship between these components and other motion param�

eters� it is desirable to characterize the motion in terms of a few physical parameters that

o�er su�cient accuracy� In the rest of the thesis� we will demonstrate how it is achieved

by the proposed volumetric DMPF�

	�� Summary

In this chapter� we reviewed various models for a left ventricle 	LV
 utilized and developed

by other researchers to study the complex motion of a heart� The results of motion

analyses from traditional approaches are grossly simpli�ed because the shape of an LV was

approximated using simple analytical shapes like spheres� ellipsoids or cylinders� Recently�

��D models and associated computer vision or graphics techniques have been developed

to capture the shape and motion of the inner or outer walls of an LV from medical image

data� However� the main limitation of these techniques is that they do not provide intuitive

motion parameters to describe the rigid and non�rigid motion of the LV� Moreover� most of

them furnish only a surface model� Finite element models are most common for volumetric

��D LV motion studies since they provide a good local strain analysis� However� the

parameters of the �nite element model are nodal displacements� resulting in a relatively

large number of parameters which require non�trivial post�processing� and therefore the

physical interpretation of which can be di�cult�
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Chapter �

Model Geometry

In Section ���� we have brie�y introduced the geometry of the new class of deformable

models whose global parameters are functions 	DMPF
� In this chapter� we extend the

de�nition for an application to modeling the left ventricle 	LV
 of a heart�

Fig� ��� demonstrates how the non�uniform shape detail can be captured by utilizing

the global parameter functions without any local parameters� Fig� ���	a
 is an example

of the volumetric model with constant parameters� and Fig� ���	b
 are two examples of a

volumetric model whose parameters are functions�

	a
 with constant parameters 	b
 with parameter functions

Figure ���� Volumetric deformable models


�� Reference Shape

The technique for creating primitives with parameter functions can be applied to any

parametric primitive� by replacing its constant parameters with di�erentiable parameter

�



functions� For example� to create a volumetric model for the LV� a generalized primitive

e � 	e�� e�� e�

� is de�ned as follows�

e � e	u� a�� a�	u
� a�	u
� a�	u

 	���


� a�w

�
BBBB

a�	u
 cosu cos v

a�	u
 cosu sin v

a�	u
 sin u

�
CCCCA � 	��


where u�	u� v� w
 are the material coordinates with �� � u � ��� �� � v � �� w � ��

a� � �� and � � a�	u
� a�	u
� a�	u
 � �� This primitive is created from an ellipsoid

primitive ee

ee � a�w

�
BBBB

a� cosu cos v

a� cosu sin v

a� sin u

�
CCCCA � 	���


where �� � u � �� �� � v � �� w � �� a� � �� and � � a�� a�� a� � �� by replacing
its constant parameters with parameter functions� a� is a scale parameter and a�� a� and

a� are the aspect ratio parameters along the x�� y� and z�axis� respectively� Note that the

ranges of the u and v parameters for the generalized primitive 	��
 are restricted to a

subset of those for an ellipsoid primitive de�ned by 	���
� in order to construct an open�

parameterized primitive�


�� Deformation

The shape represented by e is subject to the deformation T which depends on the defor�

mation parameter functions� While we can apply many deformation operations� we found

that the parameterized twisting and axis o�set deformations are suitable for the LV motion

capturing�

�not closed� but more like a cup
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����� Twisting

Given the above de�ned primitive e � 	e�� e�� e�

�� the parameterized twisting is de�ned

along the model axis z� which results in the global shape st � 	st� � st� � st�

��

st � Tt	e� �	u

 	���


�

�
BBBB

e� cos	�	u

� e� sin	�	u



e� sin	�	u

 ! e� cos	�	u



e�

�
CCCCA � 	���


where �	u
 is the twisting parameter function along the axis z�

����� Axis O�set Deformation

Through the use of appropriate parameterization the axes of our new deformable primitives

can be curved� This is a major generalization compared to parameterized primitives such as

superquadrics� cylinders and cubes� commonly used in the vision literature� Furthermore�

generalized cylinders ���� ��� ���� even though they allow shapes with curved axes� do not

o�er shape representation in terms of a few parameters�

The o�set deformations are de�ned to allow the axis to be non�straight in the x and

y directions� In this way the LV shape can be recovered more accurately� The resulting

reference shape s � so � 	so� � so� � so�

� is expressed as follows�

s � To	Tt	e� �	u

� e�o	u
� e�o	u

 	���


� To	st� e�o	u
� e�o	u

 	���


�

�
BBBB

st� ! e�o	u


st� ! e�o	u


st�

�
CCCCA � 	���


where e�o	u
 and e�o	u
 are axis�o�set parameter functions in the x and y directions�

respectively�
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�� Model Parameters

By putting all deformation parameters together� the vector qs� which refers to the degrees

of freedom of the model with respect to the deformation parameters� is created for the LV

model as follows�

qs � 	a�� a�	u
� a�	u
� a�	u
� �	u
� e�o	u
� e�o	u


�� 	���


Note that the scaling parameter a� remains as a constant parameter� Fig� ��� demonstrates

the e�ect of changing the value of each parameter function at a particular point ui along

u� !& and �& denote an increase or a decrease� respectively� in the value of the relevant

parameter function at ui� The dotted lines denote the initial shape of the deformable

model at ui� while the solid line denotes its shape after the value of the relevant parameter

function is changed�

For our applications we assume that the parameter functions are piecewise linear along

u� so we do not impose any shape continuity constraints on the LV shape and motion�

In other words� the model will deform based on the motion dictated by the dataset and

not on the imposition of constraints such as arti�cial elastic properties� Fig� �� shows an

example of a piecewise linear function of u� where it has the following form�

f �
cn � cm
un � um

	u� un
 ! cn� um � u � un� 	����
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�� Jacobians

The Jacobian of the shape primitive s can be computed in a modular way using a chain

rule as given in equations 	���
�	����
� where s� � st and s� � sn � so� From the equations

	��
� 	���
 and 	���
� we may compute the following directly�

J� � Je �
�e

�q�
�

�
�����

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�e�
�a�

�
����� 	����


�s�
�s�

�
�st
�e

�

�
�����

�st�
�e�

�st�
�e�

�st�
�e�

�st�
�e�

�st�
�e�

�st�
�e�

�st�
�e�

�st�
�e�

�st�
�e�

�
����� �

�st
�qTt

�

�
�����

�st�
��

�st�
��

�st�
��

�
����� 	���


�s�
�s�

�
�so
�st

�

�
�����

�so�
�st�

�so�
�st�

�so�
�st�

�so�
�st�

�so�
�st�

�so�
�st�

�so�
�st�

�so�
�st�

�so�
�st�

�
����� �

�so
�qTo

�

�
�����

�so�
�e�o

�so�
�e�o

�so�
�e�o

�so�
�e�o

�so�
�e�o

�so�
�e�o

�
����� 	����


�st
�q�

�
�so
�q�

� 
� 	����


Non�zero terms in 	����
�	����
 are�

�e�
�a�

� w a�	u
 cosu cos v 	����


�e�
�a�

� w a� cosu cos v 	����


�e�
�a�

� w a�	u
 cosu sin v 	����


�e�
�a�

� w a� cosu sin v 	����


�e�
�a�

� w a�	u
 sin u 	����


�e�
�a�

� w a� sin u 	���


�st�
�e�

� cos �	u
 	���


�st�
�e�

� � sin �	u
 	��
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�st�
�e�

� sin �	u
 	���


�st�
�e�

� cos �	u
 	���


�st�
�e�

� � 	���


�st�
��

� �e� sin �	u
� e� cos �	u
 	���


�st�
��

� e� cos �	u
� e� sin �	u
 	���


�so�
�st�

� � 	���


�so�
�st�

� � 	���


�so�
�st�

� � 	����


�so�
�e�o

� � 	����


�so�
�e�o

� � 	���


Then� we apply chain rule to compute� for example� �st
�a�

as follows�

�st
�a�

�
�st
�e�

	 �e�
�a�

!
�st
�e�

	 �e�
�a�

!
�st
�e�

	 �e�
�a�

� 	����



�	 Volumetric Model Assembly

In order to create the volumetric model� we �rst create volumetric meshes in the material

coordinate space  where umin � u � umax� �� � v � � and � � wmin � w � wmax�

The meshes are uniformly tessellated based on the dimensions 	usize� vsize� wsize
 which

are speci�ed by a user� umin is set to ��
� !

�umax�umin�
usize

and umax is set to
�
� �  is �folded

up� ���� in such a way that the node at 	ui���� wk
 meets with the node at 	ui� �� wk
�

where � � i � usize and � � k � wsize� Then wsize number of �south� poles are created at

upole � ��
� so that those nodes at 	umin� vj � wk
� where � � j � vsize and � � k � wsize�

are merged into the pole at wk� This folding operation � will produce an open ellipsoidal

model as shown in Fig� ���� The rectangular face on w�iso�surface is also triangulated so

that the model is discretized based on prismatic volume elements as shown in Fig� ����

As de�ned in 	���
� the positions of nodes on the model s in model frame � is given by
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x which is expressed with respect to the inertial frame � as follows�

x	u� t
 �

�
�����
x	u� v� w� t


y	u� v� w� t


z	u� v� w� t


�
����� � 	����


This representation reveals the dynamic behavior of the model� Each node is free to move

in ��D space within the shape constraints ����� � e�g�� the inner layer of the model is always

inside of the outer layer�


�
 Summary

The primitives with parameter functions can be created by replacing its constant parame�

ters with di�erentiable parameter functions� For the application to LV modeling� we have

de�ned the volumetric primitive with parameter functions from a generalized ellipsoid�

with a parameterized twisting and axis�o�set deformations� The parameter functions are

assumed to be piecewise linear functions� The model degrees of freedom vector qs as a

part of the generalized coordinates and the Jacobians of the shape primitive are derived�

The dynamics of the model involving qs will be discussed in the following chapter�
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Chapter �

Model Dynamics

��� Adaptation of the Framework

The proposed model is based on extensions to the framework developed by Metaxas and

Terzopoulos ���� ��� which provides deformable models along with robust techniques for

modeling and estimating the shape� material properties and motion of non�rigid objects�

The modeling primitives are provided through a mathematical approach that allows the

combination of global and local deformations� The salient shape features of natural parts

	e�g�� gross length and width� whether the model is bent� tapered� twisted� etc�
 are

represented by global deformation parameters� while shape details are captured by local

deformation parameters� Their physics�based framework provides a systematic approach

based on Lagrangian dynamics to converting the geometric parameters of the primitives to

dynamic degrees of freedom ����� We will be using and further developing the physics�based

framework of Metaxas ���� in order to achieve a real time performance for the application

to heart wall motion analysis�

As de�ned in the previous chapter� the new class of proposed deformable models is

unique in the sense that the modeling primitives are de�ned with only global parameters

that are capable of capturing local deformation�� Therefore� it allows not only compact

�See Fig� ����c� which shows an example of the new family of volumetric deformable primitives with
parameter functions� used in estimating the volumetric shape of the LV�
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but also accurate representation and description of the shape and deformation� By in�

corporating the geometric de�nition of the models into the physics�based framework� we

create dynamic models that deform due to forces exerted from MRI�SPAMM data points

and conform to the given dataset�

��� Simpli�ed Lagrange Equations

We have de�ned the Lagrangian equations of motion in Section ���� where we make the

model dynamic in q by introducing mass� damping� and a deformation strain energy� The

governing Lagrange equations of motion are second order di�erential equations given in

	���
� In applications to shape recovery problems� it makes sense to simplify the motion

equations while preserving useful dynamics by setting the mass density to zero so that the

resulting equations yield a model that has no inertia and comes to rest as soon as all the

applied forces equilibrate� These equations� which are given in 	���
� have damping and

sti�ness matrices�

Given that the localization and tracking of SPAMM data points is relatively accurate�

and in order to avoid undesired smoothness in the solution caused by the incorporation

of incorrect elasticity in the model� we assume a zero sti�ness matrix� so that there is no

resistance to deformation� The resulting equation of motion is�

D "q � fq� 	���


where q is the vector of the model�s degrees of freedom� D is the damping matrix used as

a stabilizing factor� and fq are the associated generalized forces�

In most cases� D is diagonal and constant over time� Therefore� we can simply write

the governing equations of motion for our system as�

"q � fq� 	��


�While we use the above de�ned deformations� �nite elements are often used as an alternative� to model
deformations� Possible errors from using �nite elements to model the heart wall elasticity arise due to
the incorrect computation of the material sti�ness matrix when the elasticity of the myocardium which
varies spatially is not known� Simplifying assumptions for the elasticity of the myocardium have been
attempted� For example� in the work of Janz and Waldron ����� the myocardium was approximated with
a homogeneous� isotropic and incompressible material� and in the work of Ghista and Hamid ����� the
isoparametric elements are utilized�
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For fast interactive response� a �rst�order Euler�s method� is employed to integrate equation

	��
�

��� Model Force Computation

The generalized forces fq are computed from the �D force distribution� f � applied to the

model based on the equation 	���
� In computing the correct forces from the data the

algorithm exploits the geometry of the motion of the SPAMM data points over time� Once

these forces are computed� we use a Lagrangian dynamics formulation to estimate the

model parameters�

As brie�y introduced in Section ���� we utilize two kinds of data sets � SPAMM data

points and boundary data points � extracted from MRI images� From these data� we

compute the corresponding forces on the model depending on their type� Boundary data

provide forces for the estimation of the LV shape� while SPAMM data points provide forces

for the estimation of the volumetric motion of the LV� The following subsections describe

the algorithms for extracting and distributing forces from the given data set� Note that

the model is discretized based on prismatic volume elements as shown in Fig� ��� with its

triangular faces at each layers� of the LV model��

����� Force Computation from Boundary Data

Boundary data simply constrain the shape of the inner and outer walls of the LV and

provide no correspondence of points over time� There are two kinds of boundary data �

inner boundary data for endocardium and outer boundary data for epicardium� Each set

of boundary data exerts forces only to its corresponding layer of the model� The forces

from each boundary data point z to the corresponding model wall 	inner or outer
 are

�The formula for the Euler
s method is

yn��  yn � h f
��xn� yn� �����

which advances a solution from xn to xn��  xn � h� Practical interpretation of the Euler
s method is to
add small increments to the functions corresponding to derivatives multiplied by a small step�size �����

�The term layer refers to w�iso�surface of the model� For example the inner�most layer is the endo�
cardium and the outer�most layer is the epicardium�

�The resolution of discretization of the volume of the myocardium depends on how dense the SPAMM
data points are distributed throughout the volume�
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computed as follows�

First� the closest point from z to the corresponding layer of the model is computed

based on the algorithm given in Table ���� Let p be the closest point� and xa� xb and

xc be the nodes of the triangular face where p belongs� In the process of �nding p� the

barycentric coordinates ����m� 	ma� mb� mc
 of p with respect to the nodes of the triangle

xaxbxc are also computed�

maxa !mbxb !mcxc � p� ma !mb !mc � �� 	���


Then the force that z exerts on the model is computed from

fz � ��	z� p
� 	���


where �� is the strength of the force� The force fz is linearly distributed to the nodes xa�

xb� and xc of the associated triangular face based on the values of m� 	ma� mb� mc
�

fxi � mi fz � i � fa� b� cg� 	���


Since mi�s are computed from the solution of the linear system in 	���
� 	see Appendix C
�

the following equation is also true�

X
i

mifz � fz � 	���


Intuitively� each of the mi�s is a weight given to each node of the triangular face and the

vector p is the location of the center of mass of the face�

�If all three xi
s lie on a straight line� or any xi is �������� the linear system does not have a unique
solution� But we do not encounter either situation in our case� since xi
s are the positions of nodes of a
triangle� and they are all located away from the origin ��������
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Let xi 	i � � � � ��
 be position vectors for the nodes of a triangular
face of a volume element� To �nd the closest triangular face on a
respective layer of the model from a data point z�

�� Find the triangular face on the respective layer which gives the small�
est sum of distances from each node of the triangular face to the data
point z�

min
�X

i	�

	xi � z
�

The triangle satisfying the above equation is the initial guess�
� Mark the triangle�
�� Project z onto the plane de�ned by the triangle� Let p be the pro�

jected point on the plane�
�� Test if p falls inside of the triangle�

Solve for barycentric coordinates mi�s of p with respect to the
triangle 	see Appendix C
� If all three mi are non�negative� p falls
inside of the triangle�

�� If p is not inside the triangle� look for the nearby triangle� which is
not marked� based on the values of mi�s and repeat step � 	Note�
If there is no more eligible triangle� compute and return the nearest
node instead of closest triangle�


�� If p falls inside of the triangle� the triangle is the closest one from
the data point z�

Table ���� Algorithm� Find the closest triangular face from a point z
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����� Force Computation from SPAMM Data

As opposed to the boundary data� SPAMM data provide correspondence over time of the

associated SPAMM points� Initially we assume that the SPAMM data points and the

model material points coincide� Let M	t�
 be the material point which initially coincides

with a SPAMM data point S	t�
 at time t� 	see Fig� ��
� Let also S	t�
 and S	t�
 be the

corresponding SPAMM data points to the point S	t�
 at the next two time frames� Then

the force onM	t�
 from S	t�
 is computed as

fS�t�� � �� �	�S	t�
�M	t�
� � n�
 n� ! 	�S	t�
�M	t�
� � n�
 n��� 	���


where �� is the strength of the force and n��n� are the unit normals of the corresponding

initial 	i�e�� at time t�
 tagging planes as shown in Fig� ��� The force fS�t�� from S	t�
 to

M	t�
 will cause the material point at M	t�
 to move to a new position M	t�
� Subse�

quently� the force fS�t�� on M	t�
 from S	t�
 will be computed in a similar fashion and it

is shown in Fig� ���

The SPAMM forces fS�ti� or fS are always parallel to the corresponding image plane

and orthogonal to the initial tagging plane of the SPAMM data point� These forces are

spring�like forces and are not computed as a result of imposing hard�constraints on the

projected motion of a material point� Therefore� when the through�plane motion of a

material point is large� the projection of the material point�s location on the image plane

��



�� Find the nearest node of the model from the data point M�

min	xi �M
��

Let the node xi satisfying the above equation be xnear �
� Select one volume element whose node is the nearest node xnear�
�� Perform which�side�of�plane tests with the triangular faces along w

to determine where in w range M lies as shown in Fig� ���	a
�
�� Perform which�side�of�plane tests with the bottom rectangular faces

of the volume elements along u to determine where in u rangeM lies
as shown in Fig� ���	b
�

�� Perform which�side�of�plane tests with the side rectangular faces of
the volume elements along v to determine where in v range M lies
as shown in Fig� ���	c
�

�� Perform a which�side�of�plane test with the slant rectangular face of
the volume elements to determine in which of two volume elements
M lies as shown in Fig� ���	d
� Now we have found the volume
element which encloses the SPAMM data point M�

Table ��� Algorithm� Find the enclosed volume element forM

may not exactly coincide with the location of the corresponding SPAMM data point� This

is desirable� since in such a case this type of location correspondence is not necessarily

valid�

Once we compute the SPAMM forces from each SPAMM data point S� we distribute

each force fS to the nodes of the prism 	i�e�� the volume element
 within which the corre�

sponding material point M lies� These nodal forces of the model will cause the dynamic

model to deform by estimating the model parameters in Lagrangian dynamics formulation

de�ned in 	��
�

In order to distribute� at any time frame ti� the computed force fS to the nodes of the

deformable model� we �rst determine the enclosed volume element nA�nB�nC�nA�nB�nC�

for each SPAMM data point at initial time 	which coincides with the corresponding ma�

terial point M
 by performing a series of which�side�of�plane�test to determine which side

of a given plane the point lies 	see Appendix D
� If two adjacent planes give the answers

with opposite signs to each other� we know that the point is in�between these two planes�
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The algorithm is given in Table ���

Based on the �nite element theory� we compute a triangle ABC 	see Fig� ���	e

 in

which M lies such that

r �
A� nA�
nA� � nA�

�
B� nB�

nB� � nB�
�

C� nC�
nC� � nC�

� 	���


where r is a scalar� To compute r� we solve the following cubic scalar equation using the

Newton�Raphson method

	M�A
 � 		C�A
	 	B�A

 � �� 	����


where A�B�C are computed with respect to r from equation 	���
�

The force fS is then extrapolated to the nodes of triangle ABC based on the same

algorithm we used for the force computation from boundary data� The scalars mA� mB

and mC correspond to the barycentric coordinates of M with respect to the nodes A� B

and C� Then the nodal shape functions for the volume element nA�nB�nC�nA�nB�nC� or

n�n�n�n�n�n� as in Fig� ��� become
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N� � r mA 	����


N� � r mB 	���


N� � r mC 	����


N� � 	�� r
 mA 	����


N� � 	�� r
 mB 	����


N� � 	�� r
 mC � 	����


Then the forces on the nodes of the volume element n�n�n�n�n�n� are computed based

on the nodal shape functions as follows�

fSn � NnfS 	����


where n � � � � �� 	see Fig� ���
�
The computation of r and m � 	mA� mB� mC
� which determine the location of the

corresponding material point to a SPAMM data point� is only done once at the beginning

of the LV motion estimation� It is the correspondence of SPAMM data points over time

that allows us to estimate the twisting motion of the LV� In addition� by combining forces

from two orthogonal sets of SPAMM data points we estimate the full �D shape and motion

of the LV�
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make model ()                   % assemble meshes

compute net applied force and torque ()
compute translation and rotation ()

while (!done) {

clear forces ()
compute forces from datapoints ()

compute model ()              % compute node position

compute deformation ()

compute model ()

display model ()

}

Figure ���� Algorithm� in main	
 function

��� Rigid Motion Recovery

In order to decouple the rigid motion of the deformable model from the non�rigid motion�

we compute translational and rotational motion before we recover non�rigid motion 	i�e�

deformation
� After we compute the forces from all data points as described in Section ����

we sum up the nodal forces as well as the nodal torque to compute the translation and

rotation of the model frame with respect to the inertial frame as follows�

ftranslate �
X
l

fl � 	����


frotate �
X
l

sl 	 fl� 	����


where ftranslate is the net applied force� frotate is the net applied torque� fl is the nodal

force where l is the index for a node of the model� and sl is the position vector of the node

expressed in model frame�

��	 Implementation

Fig� ��� summarizes the overall steps for the shape recovery from the data points� We �rst

construct volumetric meshes and compute the node positions of undeformed LV model

based on the de�nition of the geometry de�ned in the previous chapter� In order to

��



recover the shape and motion of the LV model from the data points� we implement �rst�

order Euler�s method
 	Section ��
 to di�erentiate the governing dynamics equations�

From 	��
 and 	���
 we can write

"q �

Z
L�f du� 	���


The forces from data points are computed as described in Section ���� We then compute

the net applied force and torque to compute the rigid motion� The model Jacobians allow

us to �distribute� the appropriate forces to the model parameter space� With a new set of

parameter values� we compute the updated position of the nodes of the model�

�It is the while�loop in Fig� ����

�



Chapter �

Model Parameters

The parameters of the LV model that are estimated during the �tting process re�ect the

shape changes during systole� The deformable model has six parameter functions in qs

as de�ned in 	���
�� which can be interpreted intuitively without complex post�processing

as summarized in Table ���� In addition� the model has global translation qc and global

rotation q� parameters 	see 	��

�

Parameters Representation

a�� a� Radial contractions
a� Longitudinal contraction
� Twisting about the long axis

e�o � e�o Long axis deformation

Table ���� Model parameters

�� Orientation of Model

The initial orientation of the model is important in order to understand the role of each

parameter� As depicted in Fig� ���� the short and long axis views initially coincide with

the xy� and yz� planes in the model frame of reference� The center of the model is chosen

at the centroid of the LV with the y�axis pointing towards the right ventricle 	RV
� The

�There are seven model parameters altogether in qs� However� the scaling parameter a� is used only
at the initial shape recovery and remains constant during motion estimation� Therefore� the remaining six
parameters will provide the degrees of freedom of the model with respect to the deformation parameters�
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material coordinates are u � 	u� v� w
� where u runs from the apex to the base of the LV� v

starts and ends at the point where the septum is located� and w is used for the de�nition of

model points between the inner and outer walls of the deformable model� The parameter

functions we use are functions of u� so that we can model accurately the local variation

throughout the LV� As we demonstrate in the following sections� the variation of those

parameters with respect to u� v� and w is chosen so that they are mutually independent�

In the following section� we present in detail the interpretation and use of each of the

model�s parameters� Table ��� summarizes what each parameter function captures during

the �D shape and wall motion estimation of the LV�

�� Deformation Parameters

����� Radial Contraction

Since the short axis views coincide initially with the xy�plane�� the parameter functions a�

and a� 	which are the aspect ratios along the x� and y�axes of the LV model� respectively


will capture the radial contraction motion� Since the y�axis points towards the septum

of the heart� the a� parameter captures the motion of the constrained wall� while the a�

parameter captures the motion of the free wall as shown in Figs� ��	a�b
� For each time

frame t� we estimate the values of a�	u� w
 and a�	u� w
� and compute the percentage of the

�The xy�plane does deviate over time from the short axis view due to the global rotation of the LV� but
not signi�cantly�
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Figure ��� Parameters for radial contraction

change with respect to their values at end�diastole 	ED
 which corresponds to the initial

time frame 	or tED
� For example� the graphs shown in Fig� �����	a
 are the plot of a�

computed as follows�
a�	t
� a�	tED


a�	tED

	 ����

We may combine parameters a�	u� w
 and a�	u� w
� as one parameter 		u� v� w
 to

model the radial contraction of the LV 	see Fig� ��	c

� In this way we can also capture

the circumferential variation 	i�e�� along v
 of the radial contraction� In this case� the

generalized primitive e� � 	e��� e
�
�� e

�
�

�� which is previously given as e in 	��
� will become

e� � e�	u� a�� 		u
� a�	u

 	���


� a�w

�
BBBB

		u
 cosu cos v

		u
 cos u sin v

a�	u
 sin u

�
CCCCA � 	��


and the �nal geometric de�nition of the reference shape s� will become

s� � Tt	e
�� �	u

 	���


�

�
BBBB

e�� cos	�	u

� e�� sin	�	u



e�� sin	�	u

 ! e�� cos	�	u



e��

�
CCCCA � 	���


Note that in this case the axis o�set deformation To� given in 	���
� will not be applied in

order to maintain the parameter independence�
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����� Longitudinal Contraction and Global Translation

time T

time T+1

(c)(a) (b)

Figure ���� Parameters for longitudinal contraction and global translation

Since the long axis views coincide with the yz�plane� the parameter function a� 	which is

the aspect ratio along z�axis
 will capture the longitudinal contraction motion� However�

since we do not have enough time frames over the heart cycle� the estimation of the global

translation in the z direction of the model frame can be arbitrary 	the two parameters

can�t be independently estimated
 and may result in the false estimation of the longitudinal

deformation parameters 	the global translation in the x and the y directions of the model

frame is negligible
� Consider the case shown in Fig� ���	a
� It is a typical motion of the

LV observed at two subsequent time instances 	T and T !�
� which shows that the motion

at the apex of the LV is relatively small� Suppose that the length of the LV is ��cm and

�cm� at times T and T ! �� respectively� If the origin of the model frame at time T is at

the half way along the LV� the origin would globally translate �cm at time T !�� Yet this

amount of translation is arbitrary because it depends on where the origin is� Moreover�

in this case we would capture a relatively uniform longitudinal contraction from apex to

base as shown in Fig� ���	b
� This has the result that� even though the combination of

translation and longitudinal contraction would give the correct �D motion of the LV� the

longitudinal contraction would lose its intuitive meaning� However� as mentioned above

this is an artifact of the sparse sampling over time�

Due to the above sparse sampling� and the fact that we could not observe a signi�cant

overall translation of the model in all our datasets� we kept the global translation constant

during the �tting process for the subsequent time frames� We therefore capture the LV
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Figure ���� Twisting and long axis deformations

longitudinal motion as a deformation based on a� 	see Fig� ���	c

� In our experiments�

we compute the actual displacement based on the a� parameter as follows�

a�d � a�	t
 sin	u
� a�	tED
 sin	u
�

We plot the percentage of the changes with respect to the initial length of the LV in order to

compare the amount among di�erent LVs� For example� the graphs shown in Fig� �����	c


are the plot of a� computed as follows�

a�d
length of the LV

	 ����

In a pathological case where the LV translates 	globally
 signi�cantly along the z axis

in addition to contracting� we can very easily estimate this global translation by simply

subtracting from a�d the common least amount of deformation from apex to base� However�

it is not clear that such knowledge of the global translation is clinically useful�

����� Twisting and Global Rotation

The twisting parameter function �	u� v� w
 captures the twisting about the long axis of

the LV as shown in Fig� ���	b
� For each location w� and for each location u� we allow

the parameter to vary along v in order to obtain the variation of twisting as a function of

circumferential position as well� The average of the twisting values at all the circumferential

positions for each location u is plotted in Fig� ����� and Fig� ������ In this way we quantify

the twisting motion from the apex to the base of each LV�

At each subsequent time frame� we �rst estimate the global rotation of the model before

��



estimating the deformation parameters� This allows us to subtract the global rotation from

the twisting deformation� and therefore estimate the overall tilting of the LV�

The global rotation of our model is expressed as a quaternion� This results in a numer�

ically more robust estimation of global rotation during model �tting to the data ����� In

addition� from the quaternion we can compute very e�ciently the corresponding rotation

matrix R 	see Appendix B
 that is used to compute the nodal positions x from equation

	���
�

����� Long Axis Deformation

By having the axis�o�set parameters e�o	u� w
 and e�o	u� w
� we allow the centroid of each

cross section at a di�erent location along the long�axis of the LV to displace globally in the

xy�plane 	see Fig� ���	c

� In this way we can capture the shape of the LV accurately� and

at the same time observe the bending of the LV� if any� without using any special function

for the bending�

�� Global Measures and Other Parameters

����� Ejection Fraction

By adapting Gauss�s theorem ��� we can accurately calculate over time the volume of the

blood pool� and therefore compute ejection fraction� In order to compute the volume of

the cavity� we �rst �nd the centroid of the base of LV and close the cavity with triangular

faces whose common node is the centroid as shown in Fig� ���� Then the blood pool can

be represented by a closed polyhedron of k triangular faces� Let F� � � �Fn be the triangular
faces of the polyhedron� and Ni be the unit normal vector of Fi 	i � � � � �n
� Furthermore�

let Pi� � Pi� and Pi� be the position vectors for the nodes of face Fi in counter�clockwise

order� According to Gauss�s theorem� the volume of the polyhedron is computed as follows�

Volume	polyhedron
 �
�

�

�����
X
i

	Pi� �Ni
 Area	Fi


����� � 	���


��
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Figure ���� Blood pool volume

where the area of each face is

Area	Si
 �
�



�����Ni � 	
X

k	����

Pik 	Pik��


����� � 	���


The ejection fraction 	EF
 is then the ratio of the volume at end�systole to the volume

at end�diastole�

EF �
Volume	blood pool at tES


Volume	blood pool at tED

	 ���� 	���


����� Wall Thickening

We can also compute the change in thickness of the ventricular wall which is extensively

used by clinicians from 	 parameter 	see equation 	��

� The thickness of a wall at a

particular cross�sectional location uo and vo is

wall thickness at 	uo� vo
 � wmax		uo� vo� wmax
� wmin		uo� vo� wmin
� 	���


where wmax and wmin refer to the w coordinates of outer most layer and the inner most

layer� respectively� of the model� Then the wall thickening 	WT
 at any cross�sectional

location can be computed as follows�

WT	u� v
 �
wall thickness at 	uo� vo
 at tES
wall thickness at 	uo� vo
 at tED

� 	���


����� Other Parameters

It is also very important to note that our technique for constructing these deformable

models is general and we can therefore add other global deformations such as bending

��



and shearing� However� for the experiments we have conducted� the parameters that were

described above were adequate� If needed� it is also possible to do strain analysis based on

the extracted model parameters� Once we recover the model parameters� we can always

go back and compute the nodal positions� xi� of the volume elements from equation 	���
�

Then we may apply the standard strain computation procedure as in ������
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Part III

Experiments� Visualization� and

Validation
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Part Overview

The third part of the thesis focuses the experiments with the proposed technique�

We have �rst conducted feasibility studies by de�ning the surface deformable model with

parameter functions and applying it to the ��D tagged data sets� which are sampled at

the LV mid�wall from already constructed �nite element models� The results are provided

in Chapter �� In Chapters �� and ��� we provide the implementation of the proposed

volumetric models as well as the experiments with MRI�SPAMM data from normal and

abnormal heart� We describe the error analyses and validation studies in Chapter ��

�



Chapter �

Feasibility Study

��� ��D Tagged Data

Before we develop the apparatus for cardiac motion studies based on MRI�SPAMM� we

have tested the modeling paradigm with parameter functions using processed ��D tagged

data points 	courtesy of Dr� Alistair Young who was with the Radiology Department at the

University of Pennsylvania� and currently with the University of Auckland in New Zealand
�

The main goal was to test the hypothesis that there are a small number of geometrically

meaningful parameters which can describe the left ventricular wall motion in an intuitive

way� We have veri�ed the hypothesis based on the surface DMPF� which is brie�y described

in Section �� and was presented in ���� ���� The present thesis is the extension of the

technique which also works on the �raw� MRI�SPAMM data themselves ���� ����

The most popular LV models are the �nite element model 	see Section ��
� However�

the �nite element model results in a large number of model parameters which must be post�

processed to provide meaningful geometric information on the nature of the deformation�

For the studies in this chapter� the �nite element model was used simply to provide a set

of material points over time� The set of ��D tagged material points from the �nite element

model was then used as an input to our technique�

In the following sections� we �rst de�ne of the surface model utilized in this feasibility

study� explain how the data points are obtained� and �nally present the experimental results
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from LV data sets of healthy volunteers and patients with hypertrophic cardiomyopathy�

��� Surface Model De�nition

The class of DMPF allows the use of global parameters that can characterize an object�s

shape in terms of a few parameter functions� The LV model utilized for the feasibility

study is a �D surface� whose material coordinates u � 	u� v
� and the reference shape is

de�ned by seven model parameters 	a�� a�� a�� a�� � � e�o � e�o
 as follows�

s �

�
BBBB

e� cos	�	u

� e� sin	�	u

 ! e�o	u


e� sin	�	u

 ! e� cos	�	u

 ! e�o	u


e�

�
CCCCA 	���


where e� � a� a��u� cos u cos v�

e� � a� a��u� cos u sin v

and e� � a� a��u� sinu�

The model parameters have the same meanings as described in Table �� We have also

experimented with deformations such as oblique 	non�planar
 bending 	see ����
� but did

not �nd them clinically relevant� Note that the above de�ned parameters are carefully

chosen so that they represent independent degrees of freedom�

By incorporating the geometric de�nition of the models into the physics�based frame�

work 	see Chapter �
� we create dynamic models that deform due to forces exerted from

data points and conform to the given data set� The forces are computed based on the

similar algorithm given in Section ����� for the shape recovery from the data representing

the undeformed LV 	i�e�� at end diastole
� During the �tting of subsequent time frames� the

forces are computed based on the displacements between the current position of a material

point and the position of the corresponding data point at the immediately following time

phase� Since the tagged dataset provides correspondence over time of individual ��D ma�

terial points� we apply the force distribution algorithm 	see 	���

 only once for the initial

frame� In subsequent frames� the corresponding points will exert a force to the same point

on the model as computed in the �rst time frame� Once these forces are computed we use
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Figure ���� Interpretation of parameter graphs

a Lagrangian dynamics formulation to estimate the model parameters� The parameters

of the LV model that are estimated during the �tting process directly re�ect the shape

changes during systole�

As we can see from the de�nition in 	���
� the parameter functions for the LV model

are functions of u � i�e�� varying along the long axis of the LV�� Fig� ��� depicts how we

plot the parameter functions in the graphs shown in Fig� ��� and Fig� ���� The parameter

values are plotted as a function of u� which varies from the apex to the base of an LV� for

each time frame t 	t � � � � ��
� In this way� we can observe their variation along the long
axis of the LV 	u
 for each time frame� As an example� in Fig� ��� we show how to observe

the parameter value changes during systole at the long axis location u � c�

��� Experimental Results

The datasets used in the current study comprised ��� material points each� whose position

described the geometry and motion of the mid�wall surface of the LV during systole� The

mid�wall data was obtained from �D reconstructions of the geometry and motion of the LV

from a high�order �nite�element model� based on a least�squares based approach �performed

�The model coordinate systems are the same as shown in Fig� ��� except that the surface model has one
layer of w�
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time � 	ED
 time  time � time � time � 	ES


Figure ��� ��D tagged data sampled at the mid�wall of FEM

by Young et al� ����� ���� ���� 	see Section ��
�� The mid�wall surface of the model was

sampled to provide a set of material points equally spaced around the surface� This data

set 	see Fig� ��
 was then used as input for the experiments presented below�

The proposed technique was applied to the LV mid�wall data sets from two healthy

volunteers 	V�� V
 and two patients with hypertrophic cardiomyopathy 	P�� P
�

���� Normal LVs in Systole

Fig� ��� shows two di�erent views of the model �tting results to data from a normal

heart taken over � time sequences during systole 	from end�diastole 	t � �
 to end�systole

	t � �

� We can easily observe the contraction as well as twisting of the model� The non�

rigid motion of the LV are fully described by the set of model the parameter functions�

Futhermore� based on the model parameter functions without any complex post�processing�

we can quantify the observed variations along the long axis of the LV over time�

In Fig� ��� we plot some of the extracted model parameter functions over the �ve time

frames for the normal heart� Figs� ���	a
 and 	b
 show the plots of the model�s parameter

functions a�	u
 and a�	u
� which are associated with its length in the x and y directions�

respectively� For each frame we plot the percentage of change in each parameter function

during frame t � ����� with respect to its value at the initial frame 	t � �
� Fig� ���	c


shows plots of the displacement of the length along the z direction computed from the

parameter function a�	u
� Fig� ���	d
 shows plots of the model�s twisting parameter func�

tion �	u
� Finally� Figs� ���	e
 and 	f
 show plots of the model�s long axis deformation
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�a� time � �ED� �b� time � �c� time � �d� time � �e� time 	 �ES�

Figure ���� Model �tted to SPAMM data 	LV mid�wall
 from a normal heart during systole

parameters e�o	u
 and e�o	u
� respectively�

From these graphs� we can quantify the shape and motion of the LV during its systole�

For example� by studying the graphs of a�	u
 and a�	u
 	Figs� ���	a�b

� we can conclude

that the magnitude of contraction in the radial direction 	i�e�� along the x� and y�axes


during systole is approximately ����� While the graph of a� shows uniform contraction

along the long axis of the LV� the graph of a� shows less contraction towards the base of the

LV making the base look more elliptical� This result supports clinical study �ndings where

more stress is exerted at the apex during the LV motion� and also there is an increased

similarity of the LV base shape to an ellipse� during systole� We measure from the graph

shown in Fig� ���	c
� that the total displacement along the z�axis� which corresponds to

contraction along the z�axis� is approximately �� mm� where the length of the LV is

approximately �� mm� Therefore� the contraction along the z�axis known as longitudinal

contraction is approximately �� for this LV� From the graph in Fig� ���	d
� we can

quantify the twisting motion of the LV during systole to approximately �� degrees� The

graph shows that there is a small amount of twisting in early systole with gradual increases

towards end�systole� Finally� from the long axis deformation parameters 	or axis o�set

parameters
 shown in Figs� ���	e�f
� we observe that there are only slight deformations

and most of the deformation appears towards its apex and base� capturing a bending
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Figure ���� Extracted model parameters as functions of u for the normal heart
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�a� time � �ED� �b� time � �c� time � �d� time � �e� time 	 �ES�

Figure ���� Model �tted to SPAMM data from an abnormal heart during systole

motion of the long axis� By having the graphs of the parameter functions plotted next to

the animation� we can quantify and easily characterize a detailed motion of the deforming

model along its long�axis and over time�

We applied our technique to another normal LV to verify the result and we found

that the extracted parameter functions were very similar to those shown in Fig� ���� The

overall contraction was approximately ��� Like in the other normal LV� there was less

contraction 	de�ned by a�
 along the y�axis towards the base of the LV compared with

the contraction towards the apex� The second normal heart was known to have greater

twisting motion during systole� Surprisingly� we found that the LV underwent greater

global rotational motion initially� before twisting� Fig� ���	a
 shows the twisting parameters

at the end�systole for both normal LVs� The twisting angle during systole was quanti�ed

to be approximately � degrees�

���� Abnormal LVs in Systole

To further evaluate our model �tting technique� we also �t our model to abnormal heart

data from two patients with hypertrophic cardiomyopathy� Abnormal hearts with hyper�

trophic cardiomyopathy are generally bigger in size� but do not pump as well as normal

hearts do� While the results were similar for these two abnormal hearts� they were di�erent
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Figure ���� Extracted model parameters as functions of u for the abnormal heart
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Figure ���� Models �tted to four subjects

from those we obtained for the normal hearts� Fig� ��� shows the �tted models to one of

the abnormal heart data� while Fig� ��� shows graphs of the model�s parameter functions

which may be compared with the normal heart�s model parameter functions� shown in

Fig� ���� The radial contraction of the abnormal heart is approximately ��� ��� and the
longitudinal contraction is approximately ���� Note that the overall contraction decreases

signi�cantly towards the apex� The twisting motion during its systole is approximately �

degrees� Finally� from the graphs shown in Figs� ���	e�f
� we observe that there is greater

long axis deformation compared with the normal LVs�

���� Comparing Normal and Abnormal LV Parameters

The top row of Fig� ��� shows � �tted models� at the end�diastole� the �rst two are

of healthy volunteers 	V� and V
� and the other two are of patients with hypertrophic

�Total displacement along the z�axis is approximately � mm where the normalized length of the LV is
��� mm�

�Note that all the model �tting results are within an acceptable error bound� since RMS errors are less
than ��� mm� where the length of the hearts is approximately ��� mm�
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cardiomyopathy 	P� and P
� The second row of Fig� ��� shows the corresponding LV at

the end�systole� As shown in the �gure� the LVs with hypertrophic cardiomyopathy are

bigger in size than the normal LVs� Fig� ��� and Fig� ��� show plots of extracted parameters

at end�systole for two normal� and two abnormal LVs� The extracted parameter functions

a�	u
 	shown in Fig� ���
� where the radial contraction of a heart is captured� show that

the abnormal hearts contract much less than the normal hearts� especially towards the

apex� The extracted twisting parameter functions 	shown in Fig� ���
� however� show that

the abnormal hearts twist more than the normal hearts� It seems that the abnormal hearts

twist more� perhaps to compensate for their inability to contract as much as a normal heart�

As we plotted the graphs of extracted parameters from the �tting process� not only can

we observe the results qualitatively� but also we can measure the changes quantitatively�

Therefore� we are able to quantitatively verify a result about the above abnormal hearts

that was qualitatively evident to physicians�

��� Summary

The signi�cant aspect of DMPF is that their global parameters are functions allowing the

representation of complex shapes with a few intuitive parameters� In this feasibility study�

we were able to eliminate the need for calculation of local deformation parameters that

require nontrivial processing to provide a compact and intuitive representation of shape�

Using this new family of primitives which are de�ned based on parameter functions� we

were able to capture and quantify the LV motion and shape changes in an intuitive way�

In particular� the applicability of the technique was demonstrated to the shape and motion

analysis of the mid�wall of the LV for normal and abnormal hearts during systole� from ��D

tagged data� In the following chapter� the experimental results with volumetric DMPF

applied to MRI�SPAMM data is presented�
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Chapter �	

Experiments

���� MRI�SPAMM Imaging Protocol

We present experiments where we used magnetic tagging 	MRI�SPAMM
 to acquire data

points from the LV during systole� As discussed in Chapter �� we can obtain only the

in�plane motion from MRI�SPAMM images acquired over time� In order to assess the ��D

motion of material points of the LV from the set of such �D time�varying data� we need

to combine� through a model�based approach� two sets of data obtained from mutually

orthogonal image planes�

We have applied the proposed approach to MRI�SPAMM image data pre�acquired at

the Hospital of University of Pennsylvania under the supervision of Dr� Leon Axel� The

spin�echo techniques� which averages �� beats per image� were utilized in acquiring the

y

x

short-axis view

y

z

long-axis view

Figure ����� Imaging protocol
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	a
 Short�axis 	SA
 view 	b
 Long�axis 	LA
 view

Figure ���� Two orthogonal image planes

images�� The images are obtained in a series of �ve parallel short�axis 	SA
 slices and an

orthogonal series of �ve long�axis 	LA
 slices� with ����� mm spacing 	see Fig� ����
� The

thickness of each slice was � mm� As described in ����� the long axis of the LV was chosen

to pass through a point at the left of the aortic root and the most anterior left point on

the LV apex as seen in an initial scout series of coronal images� The short�axis view was

taken to be perpendicular to the long axis of the LV� The centers of SA and LV slices

are approximately at mid�ventricle� � images were acquired at each location at di�erent

phases of systole from end�diastole 	ED
 to end�systole 	ES
� End�diastole was determined

by detecting the rising R wave of the electrocardiogram� and end�systole was de�ned as

the instant when the the cavity area in the mid�ventricle is the smallest� The SPAMM

tagging pulse sequences was applied at end�diastole� which last during systole� having �

mm stripe spacing with approximately  mm stripe width�

As described in Chapter �� SPAMM data points� which are de�ned as the intersection

of the grids� are extracted semi�automatically using active�contours 	see Section ����


from each �� image planes� which span the spatial extent of an LV� Fig� ��� shows two

orthogonal images 	SA and LA
 where the extracted SPAMM data points within the LV

�In this thesis� we have not used the recently acquired data with the �breath�hold� technique�
�We have �ve short�axis view planes� and another �ve long�axis view planes� For each image plane�

we have datasets over �ve time sequences during systole� Therefore� we have �� � �� � �  �� data sets
altogether�
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	a
 SPAMM data points from short�axis view image planes

	b
 SPAMM data points from long�axis view image planes

Figure ����� SPAMM data sets

myocardium are marked with white square dots� It is important to mention that the

SPAMM data points in the two orthogonal sets of image planes do not correspond to the

same material points� but to di�erent material points� In addition to the SPAMM data

points� boundary data points from the inner and outer LV walls are also extracted using

active contour models and manual initialization 	from a custom�made software SPAM�

MVU ��� ����
�

Fig� ���� and Fig� ���� show a set of SPAMM data points for � time phases during

systole and a set of boundary data points at end�diastole� respectively� Since some of the

SPAMM data points on the image plane disappear and%or reappear at subsequent times�

we use at every time frame only those points which have a corresponding point at the

previous time frame�

���� Implementation

The implementation dmpf of the present thesis is written in the C programming language�

utilizing the OpenGLTM graphics system and the OSFMotifTM user interface� The initial

model is created by inputting to the computer program dmpf a con�guration �le where the

number of volume elements and initial parameter values are speci�ed by a user� A sample
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	a
 Outer wall 	a
 Inner wall

Figure ����� Boundary data sets

con�guration �le is shown in Table ������ The simple volumetric model 	e�g�� a volumetric

ellipsoid
 is assembled as described in Section ��� and then placed at the center of inertial

frame�

������ Fitting Procedure

Once the boundary and SPAMM data at end diastole 	this is the undeformed state of the

LV
 are loaded� we may proceed with the �tting process� For e�cient and e�ective model

�tting� we come up with the following �tting schedule�

�� Estimate the orientation of the model frame based on the boundary data at the

initial time� i� e�� end�diastole� The model frame is �rst translated to the center of

mass of the data points� The forces from the data points acting on the model will

cause it to translate and to rotate to �nd a suitable position and orientation� Since

the initial model is symmetric about its long axis� sometimes the �nal orientation

is not suitable� The model has markers to indicate where the septum should be� as

shown in red dots in Fig� ������ so that we can adjust the orientation by rotating the

model about its long axis� for correct interpretation of the parameter variations� The

initial model has constant parameter functions� in particular� a�	u
 � c�� a�	u
 � c��

�Note that the initial values for the deformation parameters �e�g�� �� which are not shown in the con�
�guration �le are initially set to ��

�The inertial frame of reference and the model frame are displayed on the left and at the center of the
canvas� respectively� White dot markers are places on the model in order to locate the septum area of the
heart in image data� and therefore aid in placing the model in a suitable orientation�
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 Model type �ellipsoid �� superquadric �� cylinder ��

�


 Dimension �usize� vsize� wsize� uportion� vdivision� num of poles�

�� �� � ���� � �


 Initial w �inner outer�

��� ���


 Initial parameter values �a�� a�� a��

��� ��� ���


 Squareness parameters for a superquadric ���� ���

��� ���


 Euler step

�������


 Translation �x� y� z�

��� ��� ���


 Orientation ��ag��� q�w� q�x� q�y� q�z �ag�� angle� axis x�y�z�

� ���� ��� ��� ���


 Boundary and SPAMM data �lenames �number of time� normalizing factor�

� ����
data%lv�%boundary��pts data%lv�%tagged��
data%lv�%boundary�pts data%lv�%tagged�
data%lv�%boundary��pts data%lv�%tagged��
data%lv�%boundary��pts data%lv�%tagged��
data%lv�%boundary��pts data%lv�%tagged��

Table ����� A sample con�guration �le � lv�con�g
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Figure ����� Computer implementation 	program main panel


a�	u
 � c� and �	u
 � �� where � � c�� c�� c� � �� for all u � 	u� v� w
� While �nding

its optimal location for the model center in the reference frame� c�� c� and c� are also

estimated� Fig� ����	a
 shows that the model which is shown in white mesh is pulled

at the centroid of inner and outer boundary data points 	darker gray dots are the

outer boundary data
�

� Then based on the computation of boundary forces 	as described in Section �����


the nodes on the inner and outer walls of the model are pulled towards the inner and

outer boundary data points� respectively� We �rst estimate the value of the material

coordinate w for the inner 	win
 and outer 	wout
 walls at this stage� Fig� ����	b


shows the model at the end of this step�

If the volumetric model is tessellated across the walls as well 	i�e�� wsize� 
� as

shown in Fig� ���
� the material coordinate wi for each layer is computed from the

values of win and wout� For example� w value of mid�wall is computed as follows�

wmid �
wout � win


�

�� Once the �tting of the model in the �rst step is completed and we have estimated w

for the inner and outer walls� the a�� a� and a� parameters are allowed to vary with

respect to w only� so that we can recover the wall thickness more accurately� See

Fig� ����	c
�

��
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Figure ����� Initial shape recovery

�� Finally� the parameters are allowed to vary also in u to estimate the non�symmetrical

shape of the LV� We �rst estimate the parameter functions a�	u� w
� a�	u� w
 and

a�	u� w
� Note that the twist parameter � is activated when the data points from

next time frame 	time 
 are loaded� See Fig� ����	d
�

�� After the model �ts the initial boundary data at end�diastole 	ED
� we use it to �t

data from subsequent time frames till end�systole 	ES
� We �rst read in the SPAMM

data points at ED in order to register the locations of SPAMM data points which

coincide with material points� For each SPAMM data point� we �nd the volume

element which encloses the data point 	as described in Table ��
� and compute

its relative location on the model with respect to the enclosed volume element 	as

described in Section ����
� The purpose of this step to �mark� the material points�

which corresponds to the SPAMM data points� on the model� Note that once we

compute r and m as previously described� we can always locate the material point

regardless of how the volume element is deformed�

�� The boundary and SPAMM data points at the next time frame 	e�g�� t � 
 are

loaded onto the previously �tted model 	e�g�� t � �
� Based on the distance between

these data points and the mode we compute a new set of forces� Based on these forces

we �rst estimate the rigid motion using boundary data points before estimating the

deformation of the model�

�� The model deforms due to the SPAMM data forces computed within the volume

element as described in Section ����� The combination of forces from the SPAMM

data points in two orthogonal sets allow us to recover the deformation of the model

��



Figure ����� Fitting scheduler

in all three components� e�ectively recovering the missing through�plane motion�

�� When all applied forces equilibrate or vanish� the model comes to rest� Then� the

SPAMM data points at t � � are loaded onto the �tted model of t � � And we repeat

steps � and � for up to end�systole� The deformation from ED to ES is captured in

the parameter functions�

The �tting stage is displayed on and controlled from the �Model Fitting� panel of the

computer program as shown in Fig� ����� By simply clicking on �Next� button� one can

walk through each �tting process� The �Auto Fitting� check�box allows to automate the

�tting process� so that when the error of �t 	the distance between a data point and the

model surface
 falls within an acceptable tolerance speci�ed by the user� each �tting step

will roll over to the following �tting step based on the scheduler� Note that the �tting

process for each time frame takes approximately �� seconds on a Silicon Graphics R����

Indigo workstation�

������ Flow Chart

Going back to the diagram in Section ���� the �tting procedure in previous section covers

the main block in Fig� ���� The Fig� ���� shows the overall �ow chart of the proposed

method for LV motion analysis� The blocks B� and B in Fig� ���� correspond to the

preparation steps 	the �rst two blocks in Fig� ���
� The initial shape recovery steps 	Steps

'��'� from the previous section
 is the block b��� The blocks b�� b�� and b� correspond

to Step '�� '� and '�� respectively� The block B� will be discussed in the next chapter�

��
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Figure ����� Flow chart of the proposed apparatus for LV motion studies
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���� Experimental Results �Normal LV�

The combination of computed forces from the SPAMM data points from two orthogonal

planes allows us to recover the deformation of the model in �D� Fig� ���� shows model

�tting results for a normal LV over � time frames from end�diastole 	ED
 to end�systole

	ES
� The top row shows a view from the base of the LV of the �tted model� The twisting

of the inner wall 	shown in white
 is obvious� The middle row shows a side view of the

model� while the last row is similar to the �rst row and shows a view of the model from the

apex� We can easily observe the longitudinal contraction as well as the radial contraction�

Fig� ����� shows the �tted model superimposed to the SPAMM data points over �

time frames� SPAMM data points are denoted with black dots� while the corresponding

model material points are denoted with white dots� Initially� the SPAMM data points

coincide with the material points on the model 	therefore� only black dots are shown in the

Fig� �����	a

� The �rst two rows show the model with superimposed short�axis SPAMM

data points 	Fig� ����	a

� and long�axis SPAMM data points 	Fig� ����	b

� respectively�

The last row shows both sets of SPAMM data points� We can observe that the material

points move in �D space� thus recovering the through�plane motion� while the image planes

	where black dots are located in Fig� �����
 are stationary�

���� Recovery of Through�Plane Motion

Fig� ����� shows a top portion of the model from end diastole 	ED
 to end systole 	ES
�

The red dots 	darker gray dots in non�color print
 on the model at ED indicate the SPAMM

data points� at end�diastole� which coincide with the corresponding material points� The

yellow dots 	lighter gray dots on the same image plane
 on the model in subsequent time

are the SPAMM data points� The motion paths of SPAMM points over time are shown

in green 	darker gray lines
� The light blue dots 	gray dots o� the image plane
 are the

corresponding material points at each time� The motion paths of the material points during

systole are shown in white� Notice that at every instant the projection of the material point

location on the image plane approximately coincides with the location of the SPAMM data

�It is a subset of SPAMM data points from a short�axis view image plane�

��



Looking down from the base

Looking from the side

Looking at the apex

time �	ED
 time  time � time � time � 	ES


Figure ����� Fitted models during systole

��



	a
 time � 	ED
 	b
 time  	c
 time � 	d
 time � 	d
 time � 	ES


Figure ������ Fitted models during systole with SPAMM data points and material points

point� We can clearly see that the material points are moved in �D� while the SPAMM

data points provide only in�plane motion�

���	 Normal vs� Abnormal

In the following experiments we present our LV shape and motion analysis results from

MRI�SPAMM for normal and abnormal LVs with hypertrophic cardiomyopathy 	htcm
�

Fig� ���� shows two �tted models to LV data sets from 	a
 a healthy volunteer and

	b
 a patient with hypertrophic cardiomyopathy� We can observe �D deformation � radial

contraction� longitudinal contraction� twisting and bending � of each LV during systole�

We have found that the abnormal heart does not contract as much as the normal heart

	especially towards the apex
� but twists more� and has a bigger long axis deformation����

����

The advantage of having our model is that these deformations can be described with

��



ED �
�


�

ES

Figure ������ Motion paths of SPAMM points and corresponding material points during
systole
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	a
 Normal LV

	b
 Abnormal LV

time � 	ED
 time  	c
 time � 	d
 time � time � 	ES


Figure ����� Fitted models during systole

the model parameter functions which comprise an intelligent grouping of the many local

parameters that are necessary to analyze the LV motion into a small number of sets� Based

on these parameter functions� we can perform a quantitative analysis of the motion�

Fig� ����� shows graphs of the extracted model parameters as functions of u 	i�e�� vary�

ing along the long axis of the LV
 at the inner and outer walls� In general� the contraction

and the twisting deformation are more signi�cant on the inner LV wall 	Figs� �����	g�j



compared to the outer wall 	Figs� �����	a�d

� The di�erence in the corresponding param�

eter values is obvious� The graphs allow us to quantify the motion and shape changes of

the LV during systole� For example� by studying the graphs in Figs� �����	a�b
� we can

conclude that the overall percent changes of the magnitude of radial contraction of the

outer wall during systole is approximately �� � ��� However� towards the base of the
LV the contraction along the y axis 	it is approximately ��� from Fig� �����	b

 is less

than the contraction along the x axis 	it is approximately ��� from Fig� �����	a

 making

the base look more elliptical� From Fig� �����	d
 we can quantify the twisting motion of

the outer wall during systole to approximately �� degrees total from base to apex� The

graph shows a small amount of global rotation before the twisting occurs�� It is not easy

�Compare the changes in the parameter values in Figs� ������d�j� from time � to time � with the changes
from time � to time ��

��
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Figure ������ Extracted model parameters as functions of u 	normal LV
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Figure ������ Extracted model parameters as functions of u 	abnormal LV
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to see this kind of subtle motion when one watches the model contract and twist on the

monitor� Figs� �����	e� f� k� l
 show the estimation results for the long axis deformation�

which represent small changes and are not signi�cant� By having the graphs of the pa�

rameter functions plotted in conjunction with the animation� we can quantify and easily

characterize the detailed motion of the deforming model over time�

In Fig� ����� we show �tting results to SPAMM data from an abnormal LV with

hypertrophic cardiomyopathy 	htcm
� By comparing the corresponding graphs we can

observe that the abnormal heart does not contract as much as the normal heart 	especially

towards the apex
� but twists more� and has a bigger long axis deformation� This latter

deformation corresponds to a spatial bending of the LV�

Based on Gauss�s theorem 	see Section �����
� we also calculated the volume of the

blood pool over time to compute ejection�fraction� The ejection�fraction of the normal LV

was ��� ��� while for the abnormal it was �� ���

���
 Comparisons with Clinical Data

We have compiled from literatures the clinical �ndings regarding the left ventricular wall

motion� Palmon et al� ���� reported the results on intramural myocardial shortening and

the mid�wall long�axis shortening from D analyses based on tagged MR images� They

compared the data from normal subjects with the data from the patients of hypertensive

left ventricular hypertrophy� Young et al� ����� also reported extensive strain analyses�

based on �D �nite element models� where the data from normal subjects and the data

from patients with hypertrophic cardiomyopathy� In their studies� the measure of torsion

was reported as well as the radial and longitudinal contractions�

The comparisons between their �ndings and our results in Fig� ����� and Fig� �����

are summarized in Table ���� Table ����� and Table ����� It is very encouraging that

the results obtained from the proposed models agree with the clinical �ndings previously

reported� One limitation with our model is that we were not able to capture the regional

di�erences between anterior� lateral� septal and posterior sites due to the fact that the

parameters for radial contraction do not vary circumferentially� 	We marked a question

���



mark 	(
 at the respective entries in the tables�
 In the future studies� we plan to allow

such variations by combing a�	u� w
 and a�	u� w
 parameters into one parameter� namely

		u� v� w
� as de�ned in equation 	��
 and described in Section ����� There were no

clinical data available for us to compare our regional twist variations at the �ne level�

Short�Axis Deformation �

source Results reported in the literature Our Results Agreed(

���� The average circumferential shortening 	CS

in the normal subjects at the endocardium
was ��� ���

Fig� �����	g

p

���� The average CS in the normal subjects at the
epicardium was �� ���

Fig� �����	a

p

���� The average CS in the hypertensive subjects
	htcm patients
 at the endocardium was ��
���

Fig� �����	g

p

���� The average CS in htcm patients at the epi�
cardium was ��� ���

Fig� �����	a

p

���� The transmural gradient in percent shorten�
ing from endocardium to epicardium in both
normal subjects and htcm patients were the
same� The endocardial shortening exceeds the
epicardial shortening by �� ratio�

Fig� �����	a
�	g
�
Fig� �����	a
�	g


p

���� In normal subjects� no regional di�erences in
the CS were observed between anterior� lat�
eral� septal� and inferoposterior sites� But in
htcm patients� the CS were not uniform 	sig�
ni�cantly higher at the lateral wall sites
�

( (

���� In normal subjects� a base�to�apex gradient
in the CS was observed 	with greater apical
shortening
�

Fig� �����	h

p

���� No signi�cant base�to�apex gradient was
found in htcm patients�

Fig� �����	h
 



 We see a reverse base�to�apex gradient in htcm patients�

Table ���� Comparisons with clinical data� Circumferential shortening

���



Long�Axis Deformation �

source Results reported in the literature Our Results Agreed(

���� The longtudinal shortening 	LS
 was uni�
formly depressed in htcm patients compare
to that in normal subjects�

Fig� �����	c
�	i
�
Fig� �����	c
�	i


p

���� The septal LS across the wall showed no dif�
ference at the endocardium� midwall and epi�
cardium for both groups�

Fig� �����	c
�	i
�
Fig� �����	c
�	i


p
(�

���� In the free wall� LS was higher at the endo�
cardial sites for both groups�

( (

����� The logitudinal displacement 	LD
 of the base
toward the apex was markedly reduced in
htcm patients�

Fig� �����	c
�	i
�
Fig� �����	c
�	i


p

����� The LDs in normal subjects were �������mm

at the apex� ���� ���mm at the mid�ventricle
and ���� ��mm at the base�

Fig� �����	c
�	i

p

����� The LDs in htcm patients were ��� ���mm
at the apex� ���� ���mm at the mid�ventricle
and ���� ��mm at the base�

Fig� �����	i

p

� We see no di�erence in normal subjects� but some di�erences in htcm patients�

Table ����� Comparisons with clinical data� Longitudinal displacement

��



Twist �Torsion �

source Results reported in the literature Our Results Agreed(

����� The LV torsion 	twist of the apex about long
axis relative to the base
 was increased in
htcm patients�

Fig� �����	d
�	j
�
Fig� �����	d
�	j


p

����� The torsion in normal subjects was ��������
at the mid�wall�

Fig� �����	d
�	j

p

����� The torsion in htcm patients was ����� ���
at the mid�wall�

Fig� �����	d
�	j

p

����� The angle of rotation about the central axis
was greatest at the apex for both groups�

Fig� �����	d
�	j

p 	

����� The angle of rotation was counter�clockwise at
the apex� and clockwise at the base for both
groups�

Fig� �����	d
�	j
�
Fig� �����	d
�	j


p p

����� The rotation magnitude was higher at the en�
docardium than that at the epicardium for
both groups�

Fig� �����	d
�	j
�
Fig� �����	d
�	j


p p

����� In normal subjects� the apical and basal rota�
tions at epicardium were �� � �� and � � ���
respectively� and at endocardium were �����
and � �� respectively�

Fig� �����	d
�	j

p

����� In htcm patients� the apical and basal rota�
tions at epicardium were �� � �� and � � ���
respectively� and at endocardium were �����
and �� �� in htcm patients�

Fig� �����	d
�	j
 	

	 The greater rotation in htcm patients was at the base� not at the apex�

Table ����� Comparisons with clinical data� Twist

���



Chapter ��

Visualization

In this chapter� we emphasize the visualization techniques based on the implementation

of dmpf which utilizes the OpenGLTM graphics library and the OSFMotifTM user in�

terface in order to create a user�friendly and interactive program for visualizing and ma�

nipulating three�dimensional objects� Note that a virtual track ball or an arc�ball ���� is

implemented for a convenient viewing manipulation� Furthermore� utilizing alpha source

blending functions in GL� a user may make certain layers of the model transparent for an

easier observation�

���� Parameter Value

The program allows to view 	and to adjust if necessary
 values of each individual parameter

function at any location of the model through the �Parameter Functions� panel as shown in

Fig� ����� When the �show nodes� check�box is checked� the selected location of the model

will be highlighted for easier referencing�

���� Parameter Graphs

As demonstrated in Section ����� the main advantage of the proposed technique over other

techniques for modeling LV is that the shape and motion of the model can be completely de�

scribed by the global parameter functions which do not require a complex post�processing�

���



Figure ����� Panel� parameter functions

Since the semantics of each of the model parameters are intuitive� we can directly plot

each parameter function for comparison purposes and visualization� For example� since u

varies from the apex to the base of an LV 	Fig� ���	b

� by plotting extracted parameters

as functions of u we can compare and quantify the motion variation from the apex to the

base� Fig� ���	a
 shows plots of a� parameter 	which captures radial contraction along

the constrained direction
 at the endocardium 	win
 for each time phase 	t � � � � ��
 where
�time�� refers to end�systole� We can quantify that the overall percent changes of the

magnitude of radial contraction of the inner wall during systole is approximately ���� and

the contractions at the apex and at the base are approximately ��� and �� respectively�

By plotting the parameter for each time phase� we can observe the progression of the de�

formation during systole� Fig� ���	b
 shows parameter � 	which captures twisting about

the long axis of the LV
 at the endocardium for each time phase as in 	a
� The graph

shows a small amount of global rotation before the twisting occurs� Compare the changes

in the parameter values from t � � to t �  with the changes from t �  to t � �� It is not

easy to see this kind of subtle motion when one watches the model contract and twist on

the monitor� yet we are able to observe it through the use of the parameter graphs�

���
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Figure ���� Extracted model parameters as functions of u 	normal LV
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Figure ����� Radial contraction at end�systole

Fig� ����	a
 shows parameter a� estimated at the inner and outer walls of the normal

LV at end�systole� We can observe that the contraction at the endocardium is much greater

compared with the contraction at the epicardium 	which is approximately ��
� We may

also plot the graphs for both the normal and the abnormal heart for comparison purposes�

Fig� ����	b
 shows the same parameter function at the endocardium� at end�systole� We

can observe that the abnormal LV does not contract as much as the normal LV does�

especially towards the apex� The abnormal LV contracts only approximately ��� of the

amount for the normal LV�� For a complete list of graphs of other parameters� please refer

to �����

������

���
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Figure ����� Color scales

for each node
evaluate the VALUE for the selected parameter
initial color triplet is set to ����� ���� ����

if VALUE is positive
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color triplet is set to �RATE� ���
RATE� ����

if VALUE is negative
RATE � 
VALUE	MAX
color triplet is set to ����� ���
RATE� RATE�

Figure ����� Color mapping algorithm

���� Color Mapping

The parameter graphs provide an overall analysis of the LV motion� In order to visualize

and localize the behavior of motion� we employ a color�coding scheme where the maximum

variations are in red and blue as shown in Fig� ����� The undeformed state is depicted in

white� positive deformation 	e�g�� dilation� clockwise twisting� bending in a positive axis

direction
 varies from yellow to red� and negative deformation 	e�g�� contraction� counter�

clockwise twisting� bending in a negative axis direction
 varies from green to blue�

For each parameter function� its value is evaluated at each node of the model� Then

the value is used to compute a triplet for the corresponding hue 	as given in Fig� ����
�

which is then used to render the model�

Fig� ���� shows such renderings of the model for parameter � estimated for the normal

LV during systole� White� red and blue correspond to zero twist� !�� degree twist and ���
degree twist� respectively� We can clearly observe that the LV has undergone a wringing

motion during systole� While we observe progressive counter�clockwise twist at the apex

���
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Figure ����� Twist parameter 	normal LV
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 	b


Figure ����� Twist parameter at ED 	normal vs� abnormal


	white � green � light blue � blue
� we observe a small amount of counter�clockwise

twist initially and then clockwise twist 	white � green � yellow � orange
 at the base

of the LV� The traces of the positions of nodes over time are drawn in red lines and blue

dots in the �gure as well�

Fig� ���� illustrates the twisting motion on the inner and outer walls at end�systole for

the normal and the abnormal LVs� For both LVs� we can easily observe that the inner wall

twists more than the outer wall does 	i�e�� we see more red�ness and blue�ness on the inner

walls
� It also becomes clear that the abnormal LV twists more and its twisting motion is

more non�uniform�

The visualization program also allows users to look at the cross sections of the model�

Fig� ���� shows two short axis views 	A and B
 and one long axis view 	C
 of both normal

and abnormal LVs at end�systole� Note that we can also observe that both LVs twist more

towards the free�wall 	negative y direction
�

Fig� ����	a
 shows the loci of the nodes of the model �tted to a normal heart data from

ED to ES� The meshes represent the model at ED and the shaded outer surface 	according

���



Normal Abnormal

A B A B

C C

Figure ����� Twist parameter 	cross sections


to the twist parameter function
 is the model at ES� Fig� ����	b
 is the same �gure as 	a


except that the model at ED is not overlaid� The white dots are the node positions at each

time frame during systole� Fig� ����	c
 also shows the loci of the nodes of the outer surface

of the model �tted to an abnormal heart data over its systole� The wringing motion of the

left ventricles are quite apparent in these �gures�

A user can choose any other parameter function for visualization based on the color

mapping to the model� If requested� we can also plot and use color mapping techniques to

visualize the LV strains� given that we know the �D location of every point on the model�

���� Summary

We have presented a comprehensive model�based approach for visualizing the shape and

nonrigid motion of the left ventricle 	LV
 during systole� Our visualization methods used

the set of extracted model parameters and the recovered �D LV model and its motion

during systole� Based on our visualization tools we showed that it is possible to visualize

aspects of the complex LV motion that were not possible previously� In addition� we have

presented in a clinically useful way our analysis results and were able to compare normal

and abnormal hearts�
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Figure ����� Motion paths of nodes
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Chapter ��

Validation

We have performed the following experiments with a deformable gel phantom in order to

verify the accuracy and reliability of the proposed shape and motion estimation technique�

�� Reproducibility � Run several experiments on the same data set to measure the

sensitivity of the initial orientation and the dimensions of the model� and the �tting

scheduler�

� Fitting error measurement � Project each material point of the model at the

deformed state onto the image plane� where its corresponding SPAMM data point is

located� in order to get a visual idea of the magnitude of the errors�

�� Comparison with physical data � Compare the wall thickening measure from the

proposed model to the value obtained from actual measurement�

���� Gel Phantom Data

������ Gel Phantom Description

We have used one of the phantoms created by Daniel Bloomgarden in the Radiology

Department at the University of Pennsylvania� The phantoms were built from silicone gel

material that was molded into cylinders of varying radii� The silicone gel material has been

utilized in phantom studies ��� since� �
 it has high signal intensity and long T� times

���
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Figure ���� Gel experiment setup

in MR imaging� 
 its elastic material properties can be controlled by the mixture of its

constituent parts� and �
 it can be molded into any desired shape� There are two liquid

components 	Dow Corning
 � the resin 	part A
 and the catalyst 	part B
 � for the gel�

When these two components are combined in any ratio A�B ranging from ��� to ���� they

solidify into a homogeneous gel� The ratio determines its elastic properties��

For the study presented in this chapter� we used the thick walled cylindrical gel phantom

which was molded from the mixture of part A and part B with the ratio of ������ Its

approximate dimensions are� � mm inner diameter� � mm outer diameter� and �� mm

height�

������ Experimental Setup and Imaging Protocols

The gel was placed between two lucite plates 	see Fig� ���
� The top plate had a hole in

the center through which we can attach the tube where we can pour water in and out to

deform the gel� The tube was attached to a computer driven piston pump 	UHDC
 which

was programmed to pump forward at a speci�ed rate for ��� msec� pause during imaging

	��� msec
� then withdraw at a slower rate 	 seconds
� The same amount of �uid was

pumped out� Prior to the attachment of the tube to the phantom� the phantom cavity was

�lled with water and the phantom was also immersed in water to eliminate any pressure

di�erences within the cavity due to a hydrostatic pressure�

�An increase in the ratio A�B produces a sti�er gel�

��



The gel was imaged using a single shot gradient�echo pulse sequence with SPAMM MR

tagging� Each image slice has ��	 �� dimensions with �� mm thickness� The SPAMM

stripes were separated by ��� pixels � ����� mm and were angled at �� degree to the

horizontal dimension in order to obtain equivalent stripe resolution in all directions� 

long axis images 	� axial� � sagittal
� and for � short axis images 	coronal
 were obtained

at � mlsec �ow rate for  time phases � one at resting 	time �
� and the other at the

maximum �ow rate 	time 
� The imaging timing was synchronized with the pumping

based on the ECG simulator connected to the setup�

Figs� ��	a�b
 show long axis and short axis images at two time instances� The SPAMM

data points and boundary data points are extracted using SPAMMVU as described in

Section ����� The radial expansion is apparent from Fig� ��	c
 where the displacements

of individual SPAMM data points from time � to time  are overlaid onto the short axis

image at time  	square dots are the points at time 
�

���� Gel Phantom Model

We de�ne the reference shape ec of the cylindrical gel phantom as follows�

ec � ec	u� a�� 		u
� a�	u

 	���


� a�w

�
BBBB

		u
 cos v

		u
 sin v

a�	u


�
CCCCA � 	��


where �� � u � �� �� � v � �� w � �� a� � �� and � � 		u
� a�	u
 � �� We also allow

the twisting deformation as de�ned in equation 	���
� Therefore� the degrees of freedom of

the gel model are�

qs � 	a�� 		u
�a�	u
� �	u

� 	���


where a� is the scaling parameter that remains constant� 		u� v� w
 and a�	u� w
 will

capture the radial expansion and the longitudinal variation of the gel� respectively� and

�	u� v� w
 will capture twisting motion if there is any�

The �tting procedure described in Section ����� was adapted for gel shape and motion

recovery� From the boundary data at the initial time 	time �
� the undeformed shape of the
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	a
 long axis view

	b
 short axis view

	c
 displacements of SPAMM points from time� to time 

Figure ��� Gel phantom
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Figure ���� Gel phantom model

gel was recovered� Then the SPAMM data points at the initial time are registered into the

model to identify the corresponding material points on the model� Finally� the SPAMM

data points at deformed state 	time 
 was read into the system� and the deformation of

the gel was estimated based on its model parameter functions in equation 	���
�

The orientation of the gel model is shown at the top of Fig� ���� where u coordinate

varies along the long axis 	or the central axis
 of the cylinder� v coordinate varies circularly�

and w varies across the wall� The dimensions 	usize� vsize� wsize
 of the gel model were

� 	 � 	 �� As we can see from the experimental setup described in Section ����� the

top and bottom of the gel was �xed in space� However� we did not impose the constraint

in the model during the �tting process� Instead� the usize is selected rather large� and we

analyze the data in the mid�portion� where the data points are present� Fig� ���	a
 shows

the model �tted to the boundary data 	white dots
 at time �� shown with meshes� The

mid�wall� was created in the half way from both inner and outer walls� Fig� ���	b
 shows

�Let us label the u�layer of the model as u� � � �uusize� Then the mid�portion in this particular experiment
refers to u� � u � u� while u ranges from u� to u��

�The inner�wall� mid�wall and outer�wall are the iso�surface layer of w�� w� and w�� respectively�

���



the deformed gel model at time  without meshes� The white lines in the �gure correspond

to initial MR tagging lines of the image� The SPAMM data points at time � are located

at the cross�sections of the grids� The white and gray dots are the SPAMM data points

and the material points at time � respectively�

Fig� ��� shows the evolution of the model during its �tting process of time  from time

�� We are showing only the lower portion of the gel phantom model� Again� the SPAMM

data and the material points at time � are located at the cross sections of the white lines�

The white and black dots are the the SPAMM data points and the material points at time

� respectively� Fig� ���	a
 shows the model right after reading the SPAMM data points

of time � We can observe that the material points 	black dots
 are moving towards the

SPAMM data points 	white dots
 at time � as a result of deforming each volume elements

of the model based on the nodal forces computation described in Chapter ��

������ Parameter Functions

The resulting parameter functions are plotted in Fig� ���� Fig� ���	a
 shows radial

deformation parameter 		u� v� w
� at each layer of the wall 	inner� mid� outer
 at three

locations of u where the short�axis image planes located 	SA�� SA� SA�
� as a function

of v which varies �� to �� The numbers on the abscissa refer to the indices of v� where

v� � �� and v� � �� We can see that there is no signi�cant circumferential variation 	i�e��

along v
 of the radial deformation� But we can also see that the inner wall is expanded�

much more than the outer wall 	�� vs� ��
� The radial expansion averaged over v is

provided in Fig� ���	a
�

Fig� ���	b
 shows plots of a�	u� w
 parameter 	for longitudinal contraction
 at three

locations along the long axis as a function of w� We can observe that there were no

longitudinal motion at the central u location 	SA
 while there were minor 	approximately

�� maximum
 longitudinal contraction� at the other two u locations 	SA�� SA�
 and

more signi�cantly towards the inner wall 	w�
� We plot the averages of the longitudinal

�The positive sign of the value indicates a radial expansion� while the negative sign indicates the
contraction�

�The negative sign indicates the portion of the gell moved towards center� while positive sign indicates
the motion away from the center�
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Figure ���� Gel model �tting
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contraction in Figs� ���	b�c
�

Fig� ���	c
� which is the plot of � parameter as a function of v� shows that there

was some regional twist motion 	approximately  degrees maximum for some area
� The

average twist plots with error bars in Figs� ���	d�e
 also reveal that the estimated twist

values are not random noise� At �rst we could not explain why the gel has undergone twist

motion while expanding� However� we have realized that the water �ow was not centered

properly with respect to the gel cavity during our experiments 	see Fig� ��	a
 where we

can see the tube
� We can also observe from the MRI�SPAMM image in Fig� ��	c
 that

the expanding motion is not solely radial�

������ Error Analysis

Reproducibility

We ran �� experiments with the same data set and compared the values of recovered model

parameter functions� Table ��� shows the inter�experiments variablility is very small� For

each parameter� the standard deviation 	STDEV
 of the estimated value at each location

of the model 	u� v� w
 are computed from �� experiments� The overall average standard

deviation for 	 parameter is ������ where the value of 	 is on the order of ����� and the

overall average standard deviation for � parameter is ������ where the value of � is on the

order of ���� Finally� the overall average standard deviation for a� parameter is ������

where the value of a� is on the order of ��
���

We ran another � experiments with the model having various dimensions� � experiments

with the model having only inner and outer walls 	i�e�� wsize �  vs� �
� and � experiments

with the model which is more �nely descritized circumferentially 	e�g�� vsize � �� vs� �
�

The results were still very similiar to the previous �� experiments�

Discrepancy Error

For all �� experiments described in the previous section� we projected each material points

to the image plane where its corresponding SPAMM data point is located� and computed

the distances between the recovered position of a material point at the deformed state and

���
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STDEV� �		u� v� w
� �		u� v� w
� � � � � ��		u� v� w
 �
v� v� v� v	 v�� v�� average

�u���� w�� ������ ������ ������ ������ ������ ������ ������
�u���� w�� ������ ������ ������ ������ ������ ������ ������
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average ������ ������ ������ ������ ������ ������ ������

	a
 inter�experiments variation of 		u� v� w


STDEV� ��	u� v� w
� ��	u� v� w
� � � � � ���	u� v� w
�
v� v� v� v� v
 v�� average
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�u���� w�� ������ ������ ������ ������ ������ ������ ������
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�
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Table ���� Test for reproducibility of the results
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RMS Mean Max Min
������ � ������ mm ������ � ������ mm ������ � ������ mm �����	 � ������ mm

Table ��� Projection error statistics for the gel phantom model

inner boundary outer boundary both
������ � ������ mm �����	 � ������ mm ���		� � ����	� mm

Table ���� RMS error against the boundary data at time 

the position of the corresponding SPAMM data point� The mean RMS error was ���� �
���� mm� Since the pixel size of the images is ���� mm� the error was smaller than ���

pixel� Table �� shows the error statistics�

Accuracy

The shape of the gel model at time  are recovered solely based on the SPAMM data

points� and we purposely did not use the boundary data set extracted from MRI�SPAMM

images at time � Instead� we compared the observed boundaries from the MRI data and

the boundaries of the model at the deformed state 	time 
� The RMS errors 	in mm


are given in Table ���� The mean RMS error was ���� � ��� mm� Although the error

is almost ��� pixel size in this case� it is still acceptable considering that it also includes

discretization error of the model�� We can observe that the error at the inner wall is smaller

than the error at the outer wall� and we postulate that it is due to the fact that the inner

wall has smaller radius which reduces the discretization error�

Comparison with physical data

In the short axis 	SA
 images� the direction of greatest stretch is approximately radial in all

regions� Therefore� the maximum stretch is associated with wall�thickening� We computed

the wall�thickening 	WT
 of the gel using the formula in 	���
� and compared it with the

actual measurement of the gel as shown in Table ���� The wall�thickness is computed

�The circular cross section of the gel is approximated by a ���sided polygon�

�



inner wall radius �mm� outer wall radius �mm� wall thickness �mm�
time � �

SA� ������� � ������ ������� � ������ ������� � ������
SA� ������� � ������ ������� � ������ ������� � ������
SA� ������� � ������ ������� � ������ ������� � ������

time � �
SA� ������� � ������ ������� � ������ ������� � ������
SA� ������� � ������ ������� � ������ ������� � ������
SA� ������� � ������ ������� � ������ ������� � ������

Table ���� Actual wall thickness measurement of the gel phantom

wall thickness computed from model �mm� WT �wall thickening�
time � time � from model from actual measurement

SA� ������� � ������� ������� � ������ ������� � ������� �������
SA� ������� � ������� ������� � ������ ������� � ������� �������
SA� ������� � ������� ������� � ������ ������� � ������� �������

Table ���� Comparison of wall thickening 	WT
 parameter

from the average radii around inner and outer walls of the cylindrical gel�

The results of the comparison between the wall thickening 	WT
 parameters of the

model and the actual measurement are summarized in Table ���� The last two columns

of the table shows that WT from the model is very close to the physical measurements�

���� Problems and Future Work

Through the validation studies with the deformable gel phantom� we were able to verify the

accuracy of the proposed technique� However� the currect experiment setup described in

Section ��� did not provide us with the full ��D deformation where missing through�plane

motion becomes potential caveat� Moreover� the deformation of the phantom was not

entriely under our control 	for example� we did not expect to have any twisting motion
�

In near future� we plan to perform another series of validation studies with a calibrated

deformable phantom in a more controlled environment� The phantom will be designed

so that we can apply constrained deformations which can be solved analytically for the

given phantom� Then these analytic solutions 	to be veri�ed with optically measured

deformation
 will be compared with the results obtained from the proposed technique�

��



We will perform the similar error analysis on LV models themselves� In particular� we

will verify the reproducibility of the results as well as the predictability by experimenting

with an arbitrary subset of SPAMM data points to predict the excluded data points from

the model� The discrepancy error at each image plane will be visualized so that we have

a better idea of error distribution pertaining to the degree of through�plane motion�

We also plan to conduct systematically more experiments with more data to show the

clinical usefulness� Any evaluation of the e�ect of disease or treatment requires a baseline

reference to normal values and variation� Therefore� we will �rst apply the proposed

technique to broad samples of normal subjects previously acquired at the Hospital of the

University of Pennsylvania in order to de�ne the normal patterns of cardiac motion� Then

we will apply it to previously acquired data on patients with cardiac disease in order to

link the LV motion with a particular illness in a quantitative way�

��



Chapter ��

Conclusion

The main focus of this dissertation is on the development of techniques for modeling and

characterizing the heart wall motion with a small set of intuitive and clinically useful

parameters� The speci�c contributions are as follows�

�� We have presented a new class of deformable model whose global parameters are

functions 	DMPF
� It allows us to capture the local variations in a compact� accurate

and intuitive way�

� We have further developed the volumetric DMPF for the ��D left ventricular wall

motion analysis from MRI�SPAMM� In order to perform the proposed analysis�

	a
 We have identi�ed those parameters that are su�cient to capture the original

shape and the subsequent deformations of the LV�

	b
 We have developed techniques for calculating and distributing forces manifasted

in MRI�SPAMM data� and

	c
 We have adapted the physics�based framework to shape and motion analysis

based on the model parameters�

With the volumetric model� we were not only able to compare endocardial defor�

mation to epicardial deformation� but also to quantify the deformation anywhere

in�between endocardium and epicardium�

��



�� We have applied the proposed technique to samples of normal subjects previously

acquired at the Hospital of the University of Pennsylvania in order to de�ne the

normal patterns of cardiac motion�

�� We have also applied it to previously acquired patients� data in order to link the

LV motion with a particular heart disease 	e�g� hypertrophic cardiomyopathy
 in a

quantitative way�

�� We have developed visualization techniques for user�friendly processing of the anal�

ysis results� and �nally

�� we have validated our methods by conducting studies with deformable phantoms and

by performing error analyses�
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Appendix A

Nomenclature

� inertial frame of reference

� model frame of reference

u material coordinates u � 	u� v� w


q generalized coordinates

fq generalized forces

x position of a point on a deformable model wrt an inertial frame �

s position of a point on a deformable model wrt a model frame �

c position of the origin of the model frame in �

R rotation matrix which gives orientation of � relative to �

J Jacobian matrix of the shape primitive

L model Jacobian matrix

D damping matrix

K sti�ness matrix

S SPAMM data point

M material point

m barycentric coordinates 	ma� mb� mc
 with respect to a triangle xaxbxc

r w location of a material point within a volume element

fS force from a SPAMM data point

fz force from a boundary data point

f ��D force distribution from data points

��



Appendix B

Quaternions

Quaternion algebra� which is originally worked out by Hamilton and Cayley in �����s ����

provides a coherent structure for rotations� A quaternion is a ��tuple which is represented

by
q � ��� v�� v�� v���

The interpretation given to a quaternion is a scalar and a ��D vector� so that it may be

written as�
q � ���v��

where v � 	v�� v�� v�
�� Let q� � ����v�� and q� � ����v��� Then some basic quaternion

algebra is given as follows�

addition � q� ! q� � ��� ! ���v�! v��

multiplication � q�q� � ����� � v� � v�� ��v� ! ��v� ! v� 	 v��

norm � kqk � �� ! v � v
conjugate � q� � ����v�
inverse � q�� � q�

kqk

identity � qq�� � ��� �� �� ��

A unit quaternion is a symbol of the form � ! v�i! v�j! v�k where �� v�� v�� and v�

are real numbers satisfying

�� ! v�� ! v�� ! v�� � ��

with

i� � j� � k� � ijk � ���

��



If q� and q� are unit quaternions� then kq�k � kq�k � �� kq�q�k � �� and q��� � q���

Many properties of quaternions can be found in work by Shoemake ��� ���� where unit

quaternions are thought of as points on the unit sphere in ��D�

Rotation by angle � about the unit vector v � 	v�� v�� v�

� corresponds to the quater�

nion

cos



�



�
! v� sin



�



�
i ! v� sin



�



�
j ! v� sin



�



�
k�

Let q � ���v� be a unit quaternion� To perform a roation on a vector using a quaternion�

we compute

q ���p� q���

which produces a quaternion whose scalar part is zero and whose vector part represents a

rotation of p about the direction v with angle � �  cos�� �� The magnitude of v becomes

sin �
� from the unit quaternion formulation� Therefore� performing successive rotations

corresponds to multiplying quaternions 	i�e�� the combination of rotation by q� followed

by q� is given by its mutiplication q � q�q�

�� The corresponding rotation matrix R can

be written in terms of � and v as follows�

R �

�
��������

�� 	v�� ! v�
�
 	v�v� � �v�
 	v�v� ! �v�
 �

	v�v� ! �v�
 �� 	v�� ! v�
�
 	v�v� � �v�
 �

	v�v� � �v�
 	v�v� ! �v�
 �� 	v�� ! v�
�
 �

� � � �

�
��������

	B��


θ
p

v

o

q [0,p] q -1

Figure B��� Rotation by angle � about the axis of rotation v

�

q��q����p�q
��
� �q���  �q�q�����p��q�q��

��  q���p�q��
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Appendix C

Barycentric Coordinates

x b

x a

am 
bm 

cm 
x c

p

Barycentric combinations are weighted sums of points where the weights sum to one �����

Consider a triangle with vertices xa� xb and xc� and a point p on the same plane where

the triangle lies� It is always possible to write p in terms of xa� xb and xc as a barycentric

combination as follows�

p � maxa !mbxb !mcxc� ma !mb !mc � �� 	C��


m� 	ma� mb� mc
 are called barycentric coordinates of p with respect to xa� xb and xc��
�����

j j j
xa xb xc

j j j

�
�����

�
�����
ma

mb

mc

�
����� �

�
�����
j
p

j

�
����� 	C�


We can write 	C�
 as�

X M � P

Therefore�

M � X��P� 	C��


���



Solving the linear system in 	C�
 for m� when � points xa� xb� xc� p are given� is

analogous to applying Cramer�s rule as follows�

ma �
area	p�xb�xc


area	xa�xb�xc

�

mb �
area	xa�p�xc


area	xa�xb�xc

� 	C��


mc �
area	xa�xb�p


area	xa�xb�xc

�

In order for the equations in 	C��
 to be well de�ned� the area	xa�xb�xc
 must be non�zero�

i�e�� in order for X in 	C��
 to be invertible� xa� xb and xc should not be collinear�

Barycentric coordinates are a�nely invariant so that if p have barycentric coordinates

m with respect to xi where i � a� b� c� )p has the same barycentric coordinates m with

respect to )xi where ) is an a�ne map�

a
m  >0b
m  >0c

m  <0b

m  <0a

m  <0a

m  <0b

m  <0c

m  <0c
m  <0b

m  <0a

x

m  >0

a

(0,1,0)

x b

x c

m  <0c

(0,0,1)

c

b

m  =0

m  =0

am  =0

(1,0,0)

Figure C��� Barycentric coordinates 	ma� mb� mc
 with respect to xa� xb and xc

The triangle xa� xb� and xc de�nes a coordinate system in the plane� Based on the

barycentric coordinates ma� mb and mc we can identify where the point p lies with respect

to the triangle as shown in Fig� C��� For example� if ma � �� mb � � and mc � �� p lies

inside of the triangle�

���



Appendix D

Signed Distance from Point to

Plane

which�side�of�plane test

In order to test which side the point P is located with respect to a given plane whose

normal vector is N� we compute the signed distance from the point to the plane ���� as

follows� Choose any point R on the plane as shown in Fig� D� Then the signed distance d

Q

P

R
N

is computed as

d � N � 	P�R
� 	D��


If d is positive� the point P lies on the same side of the plane as its normal N� If d is

negative� P lies backside of the plane� Finally� if d is zero� P is on the plane� Based on d�

we can compute the projected point Q on the plane as follows�

Q � P� dN�

��
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