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ABSTRACT 

Flow visualization is a method utilized to obtain information from flow data 

sets. Proper blood flow visualization can assist surgeons in treating the patients. 

However, the main problem in visualizing the blood flow inside the aorta is the 

unsteady blood flow rate. Thus, an unsteady flow visualization method is required to 

show the blood flow clearly. Unfortunately, streamlines cannot be used by time-

dependent flow visualization. This research aims to propose an improvement for the 

current streamline visualization technique and appearance by implementing an 

improved streamline generation method based on structured grid vector data to 

visualize the unsteady flow. The research methodology follows a comparative study 

method with the Evenly-Spaced Seed Point placement (ESSP) method as the 

benchmark. Magnitude-Based Seed Point placement (MBSP) and selective 

streamlines enhancement are introduced to produce longer, uniform, and clutter-free 

streamlines output. A total of 20 visualization results are produced with different 

streamlines separation distance. Results are then evaluated by comparing streamlines 

count and uniformity score. Subsequently, survey and expert reviews are carried out 

to strengthen the analysis. Survey questions are distributed to respondents that have 

data visualization knowledge background in order to get feedback related to 

streamlines uniformity and enhancement. In addition, experts review is conducted to 

get feedback based on current researches and techniques utilized in the related fields. 

Results indicate that streamlines count for MBSP are higher, but the differences are 

neglectable. Uniformity analysis shows good performance; with 80% of the MBSP 

results have better uniformity. Survey responses show 65% of respondents agreed 

MBSP results have better uniformity compared to ESSP. Majority of the respondents 

(92%) agreed that selective streamlines is a better approach.  Experts review highlights 

that MBSP can distribute streamlines better in 3-dimension space compared to ESSP. 

Two significant findings are identified in this research: magnitude is proven to be an 

important input to locate seed points; and selective streamlines enhancement is a more 

effective approach as compared to global streamlines enhancement. 
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ABSTRAK 

Visualisasi aliran adalah kaedah digunakan untuk mendapatkan maklumat dari 

data aliran. Visualisasi aliran darah yang betul dapat membantu pakar bedah dalam 

merawat pesakit. Namun, masalah utama dalam visualisasi aliran darah di dalam aorta 

adalah kadar aliran darah yang tidak stabil. Justeru, kaedah visualisasi aliran tidak tetap 

diperlukan untuk menunjukkan aliran darah dengan jelas. Malangnya, kaedah garis 

arus tidak dapat digunakan oleh visualisasi aliran bersandar masa. Tujuan penyelidikan 

ini adalah untuk mencadangkan penambahbaikan pada teknik visualisasi dan 

penampilan garis arus menggunakan kaedah penjanaan garis arus yang lebih baik 

berdasarkan data vektor grid berstruktur untuk memvisualisasikan aliran tidak stabil. 

Kaedah kajian perbandingan digunakan dalam kajian ini dengan teknik penempatan 

Titik Punca Sama Jarak (ESSP) sebagai penanda aras. Penempatan Titik Punca 

Berasaskan Magnitud (MBSP) dan panambahbaikan garis arus terpilih diperkenalkan 

untuk menghasilkan garis arus yang lebih panjang, seragam, dan kemas. Sejumlah 20 

visualisasi dihasilkan dengan jarak pemisahan yang berbeza. Hasil dinilai dengan 

membandingkan kiraan garis arus dan skor keseragaman. Tinjauan dan ulasan pakar 

dilakukan untuk memperkukuhkan analisis. Soalan tinjauan diedarkan kepada 

responden yang mempunyai latar belakang pengetahuan visualisasi data untuk 

mendapatkan maklum balas yang berkaitan dengan keseragaman dan penambahbaikan 

garis arus. Tinjauan pakar dilakukan untuk mendapatkan maklum balas berdasarkan 

penyelidikan dan teknik terkini yang digunakan dalam bidang yang berkaitan. Dapatan 

kajian mendapati kiraan garis arus untuk MBSP adalah lebih tinggi, tetapi 

perbezaannya tidak ketara. Analisis keseragaman menunjukkan prestasi yang baik, 

dengan 80% hasil visualisasi MBSP mempunyai keseragaman yang lebih baik. 

Tinjauan juga menunjukkan 65% responden bersetuju hasil MBSP mempunyai 

keseragaman yang lebih baik berbanding ESSP. Majoriti responden (92%) bersetuju 

penambahbaikan garis arus terpilih adalah pendekatan yang lebih baik. Ulasan pakar 

mendapati MBSP dapat mengedarkan garis arus lebih baik dalam ruang 3 dimensi 

berbanding ESSP. Dua penemuan penting telah dikenal pasti dalam penyelidikan ini: 

magnitud adalah terbukti sebagai input penting untuk mencari titik punca; dan 

penambahbaikan garis arus terpilih adalah pendekatan yang lebih berkesan berbanding 

dengan penambahbaikan garis arus global. 
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CHAPTER 1  

 

 

INTRODUCTION 

Flow visualization is important in conveying information to viewers. There are 

many ways to get blood flow information from medical imaging techniques and 

simulation process (de Hoon et al., 2014). The current available techniques allow 

researchers and clinicians to get up in time-varying as well as field of volumetric 

vector. Although the trend of blood flow visualization focuses more on four 

dimensional visualization, these data are not yet analysed extensively because the 

normal procedures of inspection is not enough to extract useful information (Pelt and 

Vilanova, 2013). Past clinical research conducted by researchers and clinicians have 

proved that medical conditions are also affected by a distinctive blood flow. An 

irregular blood flow indicates that there is a possibility of changes in the nearby wall 

structure. Even a small change of tissues can affect the blood flow which leads to a 

worsening effect of the disease (Peiffer et al., 2013). 

It is important to have a strong foundation in a scientific visualization body of 

knowledge before going through the technical details of flow visualization. Figure 1.1 

shows the knowledge domain of scientific visualization extracted from the Association 

for Computing Machinery computing classification system. Scientific visualization 

which falls under computing methodologies can be derived into two categories, 

namely volume visualization and flow visualization. This research is focused on the 

flow visualization technique throughout the process of problem formulation up until 

research contribution.  

1.1 Problem Background 

Knowledge on blood flow has been used in the diagnosis and prognosis of the 

patients. It also has a decisive role in evaluating cardiovascular diseases, especially in 
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cardiac ischemic disease which is caused by a lack of blood supply to the heart muscle. 

Instead of using blood flow information, clinicians prefer to evaluate patients using 

medical image modalities acquired from Magnetic Resonance Imaging (MRI), 

Computed Tomography (CT), or Ultrasound (US) (Doost et al., 2016). These images 

can provide information related to the morphology of patient anatomy. Blood flow 

data from specific patients are normally not analysed since clinicians are more focused 

on the heart muscle activity.  

 

Figure 1.1 Knowledge domain of scientific visualization 

Current computer simulation and flow visualization techniques can provide 

time-varying blood flow velocity fields with remarkable quality. A combination of 

phase-contrast MRI and computational fluid dynamic knowledge can provide a 

velocity of volumetric data within the heartbeat cycles. Other research in blood flow 

visualization technique is evolving fast from two-dimensional to three-dimensional, 

and currently there are extensive studies in four-dimensional flow visualization (Markl 

et al., 2012). The results of these research allow clinicians to obtain more quantitative 

information and understand more complicated behaviours of blood flow.  

Currently, there are extensive studies on medical images that are able to 

produce more multidirectional blood flow and velocity data. But understanding the 

data seems to be a problematic task for the physicians since these data covers a large 

and complex blood flow field. The common routine of physicians in analysing the 
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blood flow is by mental reconstruction from the medical images, which require a lot 

of experience (van Pelt et al., 2009). This technique becomes more challenging when 

studying a complex structure, especially related to the heart anatomy. Accumulating 

additional flow features such as time and flow direction will increase the difficulties 

in analysing traditional visualization results. In other words, visualizing large 

information in a single result will reduce the viewer's understanding. 

Conveying too much information in a single visualization is not the best 

solution in minimizing the gap between information and the viewer (Ma, Wang, Shene, 

et al., 2013). Therefore, a complete and modest flow visualization is needed to allow 

the viewer to understand and simplify the analysis process in a short period of time. 

The use of glyphs and streamlines need to be balanced to avoid unnecessary elements 

in the flow visualization result. These distinctive characteristics are important, 

especially in the field of medical imaging. Time usage is very important for clinicians 

in treating the patients. The flow visualization needs to be immensely effective, 

allowing physicians to analyse the patient-specific result in a short period of time. 

One of the aims in visualization is to mimic the realism of the flow information. 

With the current available techniques such as velocity-encoded phase contrast MRI, 

blood flow information can be measured in multidirectional without the aid of contrast 

agents. It is recommended to be used for visualization of a large-scale flow pattern and 

analysing the flow for different cardiovascular segments. The drawback of using 

patient-specific data is that the MRI requires a longer time to obtain the information 

(Markl et al., 2012).  

There are many techniques available to visualize flow. Each person has their 

own preference in order to understand the flow (Tao et al., 2014). Forcing viewers to 

understand the flow using certain methods may reduce the information gathered from 

the visualization. Clinicians who are familiar with phase contrast MRI or Doppler 

ultrasound may have a different preference compared to experts in the scientific 

visualization area. The knowledge gap between visualization experts and clinicians 

needs to be reduced to allow clinicians to grasp the rich information in flow 

visualization.  
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Flow can be visualized with different techniques (van Wijk, 2002; Garth and 

Tricoche, 2005; McLoughlin et al., 2010). One of the conventional geometric-based 

techniques is to use streamlines to visualize flow. Streamlines are widely used to 

visualize any kind of flow from the provided vector dataset. The starting point of 

streamlines is basically called a seed point. The lines are generated based on the 

trajectories of the vector from the seed point. Thus, it is important to place the seed 

point at the correct location.  

There are also problems regarding most of the seed point placement method. 

The initial seed point is placed randomly in the flow field which may neglect important 

flow information (Jobard and Lefer, 1997; Mebarki et al., 2005). There are researcher 

studies on the method of placing the seed point to get more information from the same 

data (McLoughlin et al., 2010). There are no major problems in plotting streamlines 

based on the seed point and velocity. The issue on this matter arises when the 

streamline technique is implemented to the unsteady flow since the velocity data 

changes over time.  

Streamlines are known with features that are able to visualize flow patterns 

globally (Laidlaw et al., 2001). It is the preferable method compared to image-based 

and texture-based because this method is easier to calculate and render at an interactive 

frame rate with different resolutions (Ma, Wang and Shene, 2013). The flow pattern is 

still and consistent when this method is applied in a steady flow. There are no extra 

frames in a steady flow since the vector data is the same throughout the time frame, 

but streamlines are not suitable to be used for an unsteady flow. An unsteady flow data 

consist of several frames, containing related vector information across the frames 

(Jobard and Lefer, 2000). Generally, streamlines can visualize any flow pattern 

provided by the vector data. But streamlines are not able to show the transition between 

time frames. The flow pattern for each time frame is different since the unsteady flow 

produces different vector data for each frame. This problem increases the difficulty for 

viewers to identify and analyze the information from an unsteady flow. 

Seed point placement plays an important role in generating streamlines. 

Choosing a proper seed point in the flow is the first step before the integration process 
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can be done. Several seed point algorithms such as farthest seed point (Mebarki et al., 

2005) or evenly spaced seeding (Jobard and Lefer, 1997) can be used to place and 

generate the streamlines based on viewer preference. These algorithms are suitable to 

be used with a steady flow field. Finding the correlated seed point between frames in 

an unsteady flow field is the main problem in streamlines. This is a major problem that 

can cause visual artefacts if it is not placed at the correct location.  

There are three important criteria that need to be considered when using 

streamlines to produce a flow visualization result which are coverage, uniformity and 

continuity (Verma et al., 2000; Rosanwo et al., 2009). It is difficult to achieve all three 

criteria in a single result because there is a trade-off between those criteria. The current 

research challenge is to balance those criteria by generating enough streamlines to 

cover the visualization domain, even spaces between streamlines, and able to produce 

long streamlines in the visualization result (Hongfeng Yu et al., 2012). This is crucial 

to ensure the visualization result is able to convey as much information as possible.  

Apart from seed point placement, visual appearance plays an important role in 

providing additional information other than the streamlines flow pattern. Colours and 

glyphs are able to provide additional information which are not suitable to be conveyed 

by streamlines especially when related to scalar data. There are issues that require 

glyph usage in flow visualization results. A user study on flow visualization result 

shows that viewers have difficulties in identifying flow direction (Martin et al., 2008). 

Thus, a solution is needed to incorporate streamlines and glyphs together to improve 

the direction information accuracy. 

Colour usage has a significant impact in visualization results. It can be used to 

increase the attribute value in the visualization (Healey and Enns, 1999). Colour 

selection is important so that it is linearly separable when used on streamlines. The 

total number of base colours also contributes to the accuracy of the provided 

information. There are issues regarding colour usage in flow visualization. A wide 

range of similar attributes on a nearby focus area increases the time taken to identify 

the underlying information (Healey and Enns, 2012). This issue is more severe 
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especially with uniform streamlines width. It also increases the time taken for visual 

search process map with the colour legend (Netzel et al., 2017). 

1.2 Problem Statement 

Seed point placement gives a huge impact on the final output of flow 

visualization using streamlines (McLoughlin et al., 2010; Lawonn et al., 2018). Most 

of the methods (Turk and Banks, 1996; Jobard and Lefer, 2000; Garth and Tricoche, 

2005; Liu et al., 2006) place the initial seed point randomly at first before applying the 

proposed method of placing the seed point. The initial process of choosing the seed 

point location is very important to highlight the critical point in the vector field 

domain. Other methods may place the seed point during their algorithm execution, but 

this may limit the streamlines length based on the streamline stopping rules as there 

are streamlines generated from past iterations. Using a template to place the seed point 

in a critical point area is able to produce uniform streamline patterns but it cannot 

produce evenly spaced streamlines caused by the seeding placement template. Tracing 

streamlines is also one of the on-going issues in flow visualization especially in an 

unsteady flow where flow patterns changes over time. Dense streamline placement 

produces rich information results but increases in difficulty to trace streamlines. On 

the other hand, sparse streamline placement allows easier streamlines tracing, but the 

visualization results may not be able to provide detailed information about the flow 

field. Colour and glyph usage also need to be analysed to avoid unnecessary 

enhancement in the visualization results. It is important to carefully choose and 

enhance the streamlines presentation to overcome these problems. Streamline 

candidates can be obtained from the initial seed point because of its importance and 

criteria. Thus, an improved seed point placement is needed to solve the initial seed 

point placement issues as well as streamline selection for streamline enhancement for 

blood flow visualization. 



 

7 

1.3 Research Question 

The research questions can be derived from the problem statement in this 

research. 

(a) How to place the initial seed point to improve uniformity in the visualization 

result? 

(b) How to enhance the streamlines visual presentation in both 2D and 3D flow 

visualization? 

(c) How to incorporate an improved seed point placement with streamline 

enhancement in 3D blood flow visualization? 

1.4 Aim of Research 

To propose an improvement for the current streamline visualization technique 

by implementing an improved seed point placement with enhanced streamlines 

presentation to visualize unsteady blood flow in the aorta. 

1.5 Aim of Research 

To achieve the aim, the following research objectives are formulated: 

(a) To define a new selection scheme in locating the initial seed point for the 

streamlines. 

(b) To propose a streamline enhancement method based on colour, size, and glyph 

properties. 

(c) To visualize the proposed method with animation in time series data for an 

unsteady flow visualization. 
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1.6 Research Scope 

There are several scopes defined in this research. The scopes are divided into 

data, tools and software. The first scope is the type of medical images used in this 

research. Patient information meta data in the medical images were stripped off to 

avoid any information breach. Medical images were obtained from a CT-scan 

procedure which focused on the torso region of the patient. The structure of the aorta 

and aneurysm should be included in the CT scan result. The second scope is the tools 

used in this research. Several tools were used in this research to conduct specific tasks 

which are not covered in this research. The first tool is SimVascular. It is used for 

surface extraction and to conduct flow simulation. The second tool used is Paraview 

which is specialized for scientific visualization. The last scope is software. The 

software used in this research are for vector generation and algorithm implementation. 

Wolfram Mathematica and MathWorks MATLAB are chosen for these tasks as they 

provide built-in functions for complex mathematical operations. 

1.7 Significance of Research 

A new seed point selection scheme will produce longer streamlines, allowing 

viewers to observe flow patterns at a specific area. This will help researchers to 

understand the behaviour of blood flow inside an aorta with the presence of aneurysm. 

Location with a high flow velocity will display longer streamlines as new schemes will 

be developed based on the magnitude. Visual enhancement will produce distinctive 

streamlines which highlight more information at important regions in the visualization 

results. 

Animating streamlines feature is very important to visualize an unsteady flow. 

Realizing this feature will allow researchers to observe and study the transition of 

blood flow inside the aorta at full length rather than study the flow progress by frames 

using the pathlines or streaklines method. Fusing these two features will be able to 

improve the flow visualization result as more information can be obtained in a short 

amount of time. 
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1.8 Thesis Structure 

This thesis consists of seven chapters. The first chapter allows the reader to 

grasp the basic idea about the research problems, aim and objectives. Chapter 2 focuses 

on the literature review that covers fundamental knowledge on flow visualization, 

medical image modalities, and recent research findings related to the research. Chapter 

3 describes the research methodology used in this research to achieve the objectives. 

Chapter 4 explains the approach and implementation of seed point placement. Chapter 

5 elaborates on the approach to enhance the streamline presentation. Chapter 6 details 

the evaluation and analysis of the proposed technique, and comparison between the 

proposed technique with the current available technique. The last chapter concludes 

the thesis content and contribution, proposed algorithm limitation, and future research 

work and direction. 

1.9 Summary 

Visualization in the medical area has been assisting humans a lot in studying 

the causes of diseases. This research aims to improve the visualization method by 

introducing new seed point placement, enhance streamline presentation, and animate 

the streamlines method to visualize unsteady blood flow. A computer-generated visual 

representing the aorta will be produced with blood flow visualization. 3D visualization 

will allow doctors and surgeons to study the blood flow inside the aorta in an effective 

way, helping them to plan for further steps in treating patients. 

Themes and styles also help keep your document coordinated. When you click 

Design and choose a new Theme, the pictures, charts, and SmartArt graphics change 

to match your new theme. When you apply styles, your headings change to match the 

new theme. Save time in Word with new buttons that show up where you need them. 

To change the way a picture fits in your document, click it and a button for layout 

options appears next to it. When you work on a table, click where you want to add a 

row or a column, and then click the plus sign.
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