210 research outputs found

    Continuous-time recurrent neural networks for quadratic programming: theory and engineering applications.

    Get PDF
    Liu Shubao.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 90-98).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.iiiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Time-Varying Quadratic Optimization --- p.1Chapter 1.2 --- Recurrent Neural Networks --- p.3Chapter 1.2.1 --- From Feedforward to Recurrent Networks --- p.3Chapter 1.2.2 --- Computational Power and Complexity --- p.6Chapter 1.2.3 --- Implementation Issues --- p.7Chapter 1.3 --- Thesis Organization --- p.9Chapter I --- Theory and Models --- p.11Chapter 2 --- Linearly Constrained QP --- p.13Chapter 2.1 --- Model Description --- p.14Chapter 2.2 --- Convergence Analysis --- p.17Chapter 3 --- Quadratically Constrained QP --- p.26Chapter 3.1 --- Problem Formulation --- p.26Chapter 3.2 --- Model Description --- p.27Chapter 3.2.1 --- Model 1 (Dual Model) --- p.28Chapter 3.2.2 --- Model 2 (Improved Dual Model) --- p.28Chapter II --- Engineering Applications --- p.29Chapter 4 --- KWTA Network Circuit Design --- p.31Chapter 4.1 --- Introduction --- p.31Chapter 4.2 --- Equivalent Reformulation --- p.32Chapter 4.3 --- KWTA Network Model --- p.36Chapter 4.4 --- Simulation Results --- p.40Chapter 4.5 --- Conclusions --- p.40Chapter 5 --- Dynamic Control of Manipulators --- p.43Chapter 5.1 --- Introduction --- p.43Chapter 5.2 --- Problem Formulation --- p.44Chapter 5.3 --- Simplified Dual Neural Network --- p.47Chapter 5.4 --- Simulation Results --- p.51Chapter 5.5 --- Concluding Remarks --- p.55Chapter 6 --- Robot Arm Obstacle Avoidance --- p.56Chapter 6.1 --- Introduction --- p.56Chapter 6.2 --- Obstacle Avoidance Scheme --- p.58Chapter 6.2.1 --- Equality Constrained Formulation --- p.58Chapter 6.2.2 --- Inequality Constrained Formulation --- p.60Chapter 6.3 --- Simplified Dual Neural Network Model --- p.64Chapter 6.3.1 --- Existing Approaches --- p.64Chapter 6.3.2 --- Model Derivation --- p.65Chapter 6.3.3 --- Convergence Analysis --- p.67Chapter 6.3.4 --- Model Comparision --- p.69Chapter 6.4 --- Simulation Results --- p.70Chapter 6.5 --- Concluding Remarks --- p.71Chapter 7 --- Multiuser Detection --- p.77Chapter 7.1 --- Introduction --- p.77Chapter 7.2 --- Problem Formulation --- p.78Chapter 7.3 --- Neural Network Architecture --- p.82Chapter 7.4 --- Simulation Results --- p.84Chapter 8 --- Conclusions and Future Works --- p.88Chapter 8.1 --- Concluding Remarks --- p.88Chapter 8.2 --- Future Prospects --- p.88Bibliography --- p.8

    Recurrent Neural Networks-Based Collision-Free Motion Planning for Dual Manipulators Under Multiple Constraints

    Get PDF
    Dual robotic manipulators are robotic systems that are developed to imitate human arms, which shows great potential in performing complex tasks. Collision-free motion planning in real time is still a challenging problem for controlling a dual robotic manipulator because of the overlap workspace. In this paper, a novel planning strategy under physical constraints of dual manipulators using dynamic neural networks is proposed, which can satisfy the collision avoidance and trajectory tracking. Particularly, the problem of collision avoidance is first formulated into a set of inequality formulas, whereas the robotic trajectory is then transformed into an equality constraint by introducing negative feedback in outer loop. The planning problem subsequently becomes a Quadratic Programming (QP) problem by considering the redundancy, the boundaries of joint angles and velocities of the system. The QP is solved using a convergent provable recurrent neural network that without calculating the pseudo-inversion of the Jacobian. Consequently, numerical experiments on 8-DoF modular robot and 14-DoF Baxter robot are conducted to show the superiority of the proposed strategy

    An evolutionary approach for the motion planning of redundant and hyper-redundant manipulators

    Get PDF
    The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close

    Self-motion control of kinematically redundant robot manipulators

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 88-92)Text in English; Abstract: Turkish and Englishxvi,92 leavesRedundancy in general provides space for optimization in robotics. Redundancy can be defined as sensor/actuator redundancy or kinematic redundancy. The redundancy considered in this thesis is the kinematic redundancy where the total degrees-of-freedom of the robot is more than the total degrees-of-freedom required for the task to be executed. This provides infinite number of solutions to perform the same task, thus, various subtasks can be carried out during the main-task execution. This work utilizes the property of self-motion for kinematically redundant robot manipulators by designing the general subtask controller that controls the joint motion in the null-space of the Jacobian matrix. The general subtask controller is implemented for various subtasks in this thesis. Minimizing the total joint motion, singularity avoidance, posture optimization for static impact force objectives, which include maximizing/minimizing the static impact force magnitude, and static and moving obstacle (point to point) collision avoidance are the subtasks considered in this thesis. New control architecture is developed to accomplish both the main-task and the previously mentioned subtasks. In this architecture, objective function for each subtask is formed. Then, the gradient of the objective function is used in the subtask controller to execute subtask objective while tracking a given end-effector trajectory. The tracking of the end-effector is called main-task. The SCHUNK LWA4-Arm robot arm with seven degrees-of-freedom is developed first in SolidWorks® as a computer-aided-design (CAD) model. Then, the CAD model is converted to MATLAB® Simulink model using SimMechanics CAD translator to be used in the simulation tests of the controller. Kinematics and dynamics equations of the robot are derived to be used in the controllers. Simulation test results are presented for the kinematically redundant robot manipulator operating in 3D space carrying out the main-task and the selected subtasks for this study. The simulation test results indicate that the developed controller’s performance is successful for all the main-task and subtask objectives

    Experimental Results for Set-based Control within theSingularity-robust Multiple Task-priority Inverse KinematicsFramework

    Get PDF
    Inverse kinematics algorithms are commonly used in robotic systems to achieve desired behavior, and several methods exist to ensure the achievement of numerous tasks simultaneously. The multiple task-priority inverse kinematics framework allows a consideration of tasks in a prioritized order by projecting task velocities through the null-spaces of higher priority tasks. Recent results have extended this framework from equality tasks to also handling set-based tasks, i.e. tasks that have an interval of valid values. The purpose of this paper is to further investigate and experimentally validate this algorithm and its properties. In particular, this paper presents experimental results where a number of both set-based and equality tasks have been implemented on the 6 Degree of Freedom UR5 which is an industrial robotic arm from Universal Robots. The experiments validate the theoretical results.(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Simultaneous Obstacle Avoidance and Target Tracking of Multiple Wheeled Mobile Robots With Certified Safety

    Get PDF
    Collision avoidance plays a major part in the control of the wheeled mobile robot (WMR). Most existing collision-avoidance methods mainly focus on a single WMR and environmental obstacles. There are few products that cast light on the collision-avoidance between multiple WMRs (MWMRs). In this article, the problem of simultaneous collision-avoidance and target tracking is investigated for MWMRs working in the shared environment from the perspective of optimization. The collision-avoidance strategy is formulated as an inequality constraint, which has proven to be collision free between the MWMRs. The designed MWMRs control scheme integrates path following, collision-avoidance, and WMR velocity compliance, in which the path following task is chosen as the secondary task, and collision-avoidance is the primary task so that safety can be guaranteed in advance. A Lagrangian-based dynamic controller is constructed for the dominating behavior of the MWMRs. Combining theoretical analyses and experiments, the feasibility of the designed control scheme for the MWMRs is substantiated. Experimental results show that if obstacles do not threaten the safety of the WMR, the top priority in the control task is the target track task. All robots move along the desired trajectory. Once the collision criterion is satisfied, the collision-avoidance mechanism is activated and prominent in the controller. Under the proposed scheme, all robots achieve the target tracking on the premise of being collision free

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    A New Noise-Tolerant Obstacle Avoidance Scheme for Motion Planning of Redundant Robot Manipulators

    Get PDF
    Avoiding obstacle(s) is a challenging issue in the research of redundant robot manipulators. In addition, noise from truncation, rounding, and model uncertainty is an important factor that affects greatly the obstacle avoidance scheme. In this paper, based on the neural dynamics design formula, a new scheme with the pseudoinverse-type formulation is proposed for obstacle avoidance of redundant robot manipulators in a noisy environment. Such a scheme has the capability of suppressing constant and bounded time-varying noises, and it is thus termed as the noise-tolerant obstacle avoidance (NTOA) scheme in this paper. Theoretical results are also given to show the excellent property of the proposed NTOA scheme (particularly in noise situation). Based on a PA10 robot manipulator with point and window-shaped obstacles, computer simulation results are presented to further substantiate the efficacy and superiority of the proposed NTOA scheme for motion planning of redundant robot manipulators

    Evolutionary Computation Based Real-time Robot Arm Path-planning Using Beetle Antennae Search

    Get PDF
    corecore