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Abstract The trajectory planning of redundant 

robots is an important area of research and 

efficient opti- mization algorithms are needed. The 

pseudoinverse control is not repeatable, causing 

drift in joint space which is undesirable for physical 

control. This paper presents a new technique that 

combines the closed- loop pseudoinverse method 

with genetic algorithms, leading to an optimization 

criterion for repeatable con- trol of redundant 

manipulators, and avoiding the joint angle drift 

problem. Computer simulations performed based on 

redundant and hyper-redundant planar ma- 

nipulators show that, when the end-effector traces a 

closed path in the workspace, the robot returns to 

its initial configuration. The solution is repeatable for 

a workspace with and without obstacles in the 

sense that, after executing several cycles, the initial 

and fi- nal states of the manipulator are very close. 
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1 Introduction 

Kinematic redundancy occurs when a manipulator 

possesses more degrees of freedom than the 

required to execute a given task. In this case the 

inverse kine- matics admits an infinite number of 

solutions, and a criterion to select one of them is 

required. Most of the research on redundancy deals 

with the use of these ex- tra degrees of freedom 

and is referred to in the litera- ture as the 

resolution of redundancy [1]. 

Many techniques for solving the kinematics of re- 

dundant manipulators that have been suggested 

con- trol the end-effector indirectly, through the 

rates at which the joints are driven, using the 

pseudoinverse of the Jacobian (see, for instance, 

[2]). The pseudoin- verse of the Jacobian matrix 

guarantees an optimal reconstruction of the desired 

end-effector velocity— in the least-squares sense—

with the minimum-norm joint velocity. However, 

even though the joint veloc- ities are 

instantaneously minimized, there is no guar- antee 

that the kinematic singularities are avoided [3]. 

Moreover, this method has the generally 

undesirable property that repetitive end-effector 

motions do not necessarily yield repetitive joint 

motions. Klein and Huang [4] were the first to 

observe this phenomenon for the case of the 

pseudoinverse control of a pla- nar three-link 

manipulator. A large volume of research 



 

 

has been produced in the last few years in this topic 

[5–8]. For example, Zhang et al. [9] solve the joint an- 

gle drift problem by means of a dual-neural-

network based quadratic-programming approach. 

Baillieul [10] proposed a modified Jacobian matrix 

called the extended Jacobian matrix. The extended 

Ja- cobian is a square matrix that contains the 

additional information necessary to optimize a 

certain function. The inverse kinematic solutions are 

obtained through the inverse of the extended 

Jacobian. The algorithms, based on the computation 

of the extended Jacobian matrix, have a major 

advantage over the pseudoinverse techniques, 

because they are locally cyclic [11]. The 

disadvantage of this approach is that, while 

mechan- ical singularities may be avoided, typical 

algorithmic singularities [12] arise from the way the 

constraint re- stricts the motion of the mechanism 

[13]. 

One optimization method that is gaining 

popularity for solving complex problems in robotics 

is the Ge- netic Algorithm (GA). GAs are population-

based sto- chastic and global search methods. Their 

performance is superior to that revealed by classical 

optimization techniques [14] and has been used 

successfully in ro- bot path planning. 

Parker et al. [15] used GAs to position the 

end- effector of a robot at a target location, 

while min- imizing the largest joint displacement. 

This method has some shortcomings, such as the 

lack of precision, and is affected by the values of the 

weights. Arakawa et al. [16] proposed a virus-

evolutionary genetic algo- rithm, composed of a host 

population and a virus pop- ulation with 

subpopulations, for the trajectory genera- tion of 

redundant manipulators without collision, that 

optimize the total energy. The operators of 

crossover, mutation, virus infection and selection 

are executed in each subpopulation independently. 

Kubota et al. [17] studied a hierarchical trajectory 

planning method for a redundant manipulator using 

a virus-evolutionary GA. This method runs, 

simultaneously, two processes. One process 

calculates some manipulator collision-free po- sitions 

and the other generates a collision-free trajec- tory 

by combining these intermediate positions. De la 

Cueva and Ramos [18] proposed a GA for planning 

paths without collisions for two robots, both redun- 

dant and non-redundant, sharing the same 

workspace. The GA works directly over the task space   

adopting 



 

 

proposed a motion planning method using an 

artifi- cial potential field and a GA for a hyper-

redundant manipulator whose workspace includes 

several obsta- cles. The motion planning is 

divided into two sub- problems. The first is the 

“Path planning” that gener- ates a trajectory 

leading the tip of manipulator to the goal without 

collisions, using the artificial potential field 

concept. The second consists in the “Collision- free 

sequence generation” that generates a sequence of 

movements by which distinct parts of the 

manipulator can avoid collisions with the obstacles. 

McAvoy and Sangolola [20] proposed an approach 

with GAs for optimal point-to-point motion 

planning of kinemat- ically redundant 

manipulators. Their approach com- bines B-spline 

curves, for the generation of smooth trajectories, 

with GAs, for obtaining the optimal so- lution. 

Peng and Wei [21] presented the ASAGA tra- 

jectory planning method of  redundant 

manipulators by combining a stochastic search 

algorithm (simulated annealing algorithm) and a 

GA. In the ASAGA the se- lection, crossover and 

mutation operators are adjusted by using an 

adaptive mechanism based on the fitness value. 

Zhang et al. [22] proposed an algorithm to solve the 

inverse kinematics of a flexible macro-micro ma- 

nipulator system which combines a GA and a neural 

network. Pires et al. [23] proposed a multi-objective 

genetic algorithm, when considering up to five 

simul- taneous objectives, to generate manipulator 

trajecto- ries and for obstacle avoidance. 

Having these ideas in mind, the paper is 

organized as follows. Section  2  introduces  the  

fundamentals of the kinematics of redundant 

manipulators. Based on these concepts, Sect. 3 

presents the new closed- loop inverse kinematics 

algorithm with genetic al- gorithms (CLGA) and the 

open-loop genetic algo- rithm (OLGA). Section 4 

presents the simulation re- sults in a workspace 

without and with obstacles. For comparison 

purposes some results for the closed-loop 

pseudoinverse (CLP) method are also presented. Fi- 

nally, Sect. 5 draws the main conclusions. 

 
2 Kinematics and dynamics of redundant 

manipulators 

 

We consider a manipulator with n degrees of 

freedom whose    joint    variables    are    denoted    

by    q   = T 
the direct kinematics. Each robot is associated     
with 

[q1, q2,..., 

qn] 

. We  assume that the class of    tasks 

one population and each string of a population 
rep- 

we are interested in can be described by m  variables, T 

resents a complete robot path. Nishimura et al.    
[19] 

x = [x1, x2,...,  xm] , m< n, and that the relation be- 



 

 

⎥ ⎥ 

tween q and x is given by the direct kinematics: 
 

x = f (q) (1) 

Differential kinematics of robot manipulators was 

introduced by Whitney [24] that proposed the use of 

differential relationships to solve for the joint 

motion from the Cartesian trajectory of the end-

effector. Dif- ferentiating (1) with respect to time 

yields: 

that maximizes the fitness or the cost function. 

The GA modifies repeatedly the population of 

individuals (possible solutions). At each step, the 

genetic algo- rithm selects individuals at random, 

from the current population, to be parents, and 

uses them to produce the offspring for the next 

generation. Over successive generations, the 

population evolves towards an opti- mal solution. 

The GAs can be applied to solve a vari- ety of 

optimization problems that are not well   suited 

ẋ = J(q)q̇ (2) for standard optimization algorithms, including prob- 

lems in which the objective function is discontinuous, 

where ẋ  ∈ Rm, q̇   ∈ Rn and J(q) = ∂f (q)/∂q ∈ Rm×n. 
Hence, it is possible to calculate a path q(t ) in  
terms 

of a prescribed trajectory x(t ) in the operational 
space. 

Equation (2) can be inverted to provide a solution 

in terms of the joint velocities: 

not differentiable, stochastic, or highly nonlinear. 

Bearing these facts in mind, in this paper we pro- 

pose a new method that combines the CLP with a GA, 

namely the closed-loop inverse kinematics algorithm 

with genetic algorithms (CLGA). 

q̇ = J#(q)ẋ (3) 
In order to find an initial joint configuration of the 

manipulator, another GA is used, adopting the  direct 

where J# is the Moore–Penrose generalized inverse 

of the Jacobian J [2, 25]. 

 

3 Robot trajectory control 
 

The Jacobian of an  n-link planar manipulator   (i.e., 

m = 2) has a simple recursive nature according to the 
expressions: 

kinematics, which is denoted as OLGA. 

In both cases the optimal configuration is the one 

that minimizes the fitness function according to 

some specified criteria. 

 
3.1 The CLGA formulation 

 
The CLGA adopts the closed-loop structure without 

requiring the calculation of the pseudoinverse.     The n×n 1 
−l1S1 − · · ·  − lnS1...n . . .   −lnS1...n 

l 

(4)
 CLGA uses an extended Jacobian matrix, J∗ ∈ R , 

J 
l1C1 + · · ·  + lnC 

 
1...
n 

. . . lnC  
1...
n 

and an extended vector, .6.x∗ ∈ Rn, as a way to limit 
the joint configurations for a given end-effector posi- 

where li is the length of link i, qi...k = qi + · · ·  + qk , 

Si...k = Sin(qi...k ) and Ci...k = Cos(qi...k ), i, k ∈ N. 
In the closed-loop pseudoinverse (CLP) method 

the 
joint positions can be computed through the time 

inte- gration of the expression: 

tion. 
The definition of J∗ and .6.x∗ take the form: 

⎡
−l1S1 − · · ·  − lnS1...n . . .   −lnS1...n 

⎤
 

⎢ l1C1 + · · ·  + lnC1...n . . .  lnC1...n  ⎥ 

⎢ ⎥ 
.6.q = J#(q).6.x (5) J∗ = 

⎢ − − − − − − − − − − − − − −  −− ⎥ 
,
 ⎢ 

j(m+1)1 . . .  j(m+1)n  
⎥
 ⎢ 

. . .  . . .  . . .  
⎥
 

where .6.x = xref − x and xref is the vector of refer- 
ence position in the operational space. Nevertheless, 

in a previous study, addressing the CLP method [26],  
it 
was concluded that this method leads to 
unpredictable, 

⎣ 

⎡ 
.6.x1 

⎢ .6.x2 

jn
1 

⎤ 

⎥ 

⎦ 
. . . jnn 

 
(6) 

not repeatable arm configurations and reveals 

proper- ties resembling those that occur in chaotic 

systems. 

= 



 

 

⎥ ⎥ 
⎥ 

. 
⎥ 

⎢ 
.6.xm+1 

⎥
 

.6.x∗ = 
⎢ ⎥

 ⎢ − − −  ⎥ 
Genetic algorithms (GAs) comprise a method for 

solving both constrained and unconstrained 

optimiza- tion problems, based on the mechanics of 

natural ge- netics and selection, first introduced by 

Holland [27]. A GA allows a population composed of 

many individ- uals to evolve under specified selection 

rules to a state 

⎢ 
.. 

⎥ 
⎣ ⎦ 

.6.xn 

where   the   matrix   elements   jik   and   .6.xi ,   i  = 
m + 1 , . . .,n and k = 1,...,  n, are values generated by 

the GA, satisfying the additional imposed constraints. 
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Fig. 1 Procedure for the 

CLGA 

 
    

 

 
 

 
  

  

 

 

 

 

 

 

3.1.1 Representation and operators in the CLGA 
 

An  initial  population  of  strings,  with  dimension 
nP = N , is constructed at random and the search is 
then carried out among this population. Each 
chro- mosome (string) is implemented by a matrix of 
nV = (n − m) × (n + 1) values (genes), with jdk and 
.6.xd , d = 1 , .. . ,n − m, k = 1,...,  n, consisting in 
floating- point numbers initialized in the range 
[varmin, varmax]. For the generation T , the ith 
chromosome of the pop- 

ulation is represented as: 

are randomly grouped into pairs and a crossover 
point is randomly selected for each one of the n − m 
lines of the parent. Then crossover is performed 
among pairs. 

Finally, for the mutation operator, one variable 

value from the nV values of the chromosome is 

replaced with a new random one. 

The CLGA procedure is shown in Fig. 1, where xref 
is the vector of reference position in the operational 
space and xini is a vector representing the position 

of the end-effector in the operational space. 
 

3.1.2 Optimization criteria 

r
J(T 

,i)....6.x 

where 

(T 

,i)l 

 
(7) 

 
The fitness function minimizes the joint 

displacement between the current joint position and 

the initial joint position, through the following 

function: 

J(T ,i) = 
r
j (T ,i)l ∈ R(n−m)×n

 an

d 

  
q     q   

 T  
q     q   

 
 

dk 

.6.x(T ,i) = 
r
.6.x(T ,i)l ∈ Rn−m. 

f1 = Aq̇ Tq̇ + B 
−  0 
.6.t 

−  0 
.6.t 

(8) 

 The three different operators used in the genetic al- 



 

 

gorithm are reproduction, crossover and mutation. 

In what concerns the reproduction operator, the 

succes- sive generations of new strings are 

generated on the basis of their fitness function. In 

this case, it is used a rank weighting to select the 

strings from the old to the new population. For the 

crossover operator, the strings 

where A, B ∈ R+ denotes weighting factors,  q0  and 

q represent the initial and current joint 
configurations, respectively, and .6.t is a step time 
increment. 

 
3.2  The OLGA formulation 

 
The OLGA trajectory planning adopts a simple open- 

loop structure, as we can see in Fig. 2. An initial pop- 
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                                                                                  Without lack of generality, in the following experi- 

ments are adopted arms having identical link 

lengths, l1 = l2 = · · ·  = ln. 

The experiments consist in the analysis of the kine- 

matic performance of a planar manipulator with n   = 
{3, 4, 5, 6, 7} rotational joints, denoted as nR-robot, 
that is required to repeat a circular motion in the 
oper- ational space with frequency ω0 = 7.0 rad 

sec−1, cen- 
ter at r = (x2 + x2)1/2, radius ρ = 0.5 and a step time 

1 
increment of .6.t 

2 
= 10−3  sec. The goal here is to  po- 

 
 

 
 

 

 
 

 
 

 
 

Fig. 2   Procedure for the 
OLGA 

sition the end-effector of the nR-robot at a target   lo- 

cation while minimizing the joint angle drift using the 

fitness function f1 with A = B = 1. The initial joint 

configuration is obtained using the OLGA with the fit- 

ness function f2. 

The average of the positional error for nC cycles is 

given by the expression: 

 

ulation of strings, with dimension nP = N , is con- 

structed at random and the search is then carried 
out among this population. Each chromosome is  
defined 

 
P error 
= 

i=1 Perror 
(11)

 
k 

through an array of nV = n values, qi,i = 1,...,  n, 
represented as floating-point numbers initialized in 
the range [qmin, qmax]. For the generation T , the 

ith chro- mosome of the population is represented 
as: 

where k is the number of sampling points which is de- 
fined as: 

  2π  

k = 
ω .6.t 

nC (12) 

q(T ,i) = 
(
q(T 

,i) 
(T ,i) The average of the total joint displacement for the nR- 

1 , . . . ,  qn 
) 

(9) 

The end-effector position, x(T ,i), for each   
configura- 

 
robot is given by the expression: 

tion, q(T ,i), is easily calculated using the direct   kine-    I.6.qI 

matics. .6.q = (13) 
n 

 
3.2.1  Optimization criteria 

 
The evaluation function is defined based on the 

posi- tional error of the end-effector: 

I 

where .6.q = qf − q0 is the vector of the joint dis- 
placement between the final, qf, and the initial, 
q0, joint configurations, and I · I  represents the 
Euclidean norm. 

The CLGA algorithm adopts crossover    probabil- 

Perror 

= 

(xc − xf)2 + (yc − yf)2 (10) ities of  pc  = 0.5  for  n = {3, 4, 5, 6, 7} and muta- 

tion probabilities of pm  = 0.5 and pm  = 0.3 for n   = 

where xc = (xc, yc) and xf = (xf, yf) are vectors rep- 
resenting the end-effector current position and the 
de- 

sired final position, respectively. Therefore, the algo- 

rithm minimizes the function f2 = Perror. 



 

 

 
4 Simulation results 

 
In this section we start by analyzing the 

performance of the CLGA for a free workspace and 

then we study the effect of including several types of 

obstacles in the working environment. 

{3, 4} and n = {5, 6, 7}, respectively. The string  pop- 

ulation  is  nP  = {200, 400, 800, 1200, 1600} for  n = 
{3, 4, 5, 6, 7}, respectively, and the results are 
obtained for nG = 200 consecutive generations. Each 
variable value is initialized in the range [−1, 1]. 

The OLGA algorithm adopts crossover and muta- 
tion probabilities of pc = 0.5 and pm = 0.5, respec- 
tively, a string population of nP = 1600, and the re- 
sults are obtained for nG = 200 consecutive genera- 
tions. Each variable value is initialized in the range 
[−2π, 2π ]. 



 

 

4.1 The CLGA performance in a workspace without 

obstacles 

 

  
The average of the positional error, P error, for n 
= 

{3, 4, 5, 6, 7} rotational joints, nC  = 50 cycles and ra- 

dial distance r = {0.7, 1.0, 2.0}, is depicted in Fig. 3. 
We observe that: 

 
(i) the CLGA gives good precision in the task of po- 

sitioning the end-effector at the target position; 

(ii) in general, we get better results for the radial 
dis- tance r = 2.0 and worse results for the radial 
dis- tance r = 0.7; 

(iii) in general, the positional error gets worse when 

the number of joints increases. 

Figures 4–5 show successive robot 

configurations, for n = {3, 7} rotational joints and r = 

2.0, during the 1st and 50th cycles, respectively. As 

we can see, the joint configurations are very similar, 

for both  cycles, 

revealing that the joint positions are repetitive. For 

comparison purposes, Figs. 6–7 show successive ro- 

bot configurations, for n = {3, 7} rotational joints and 

r = 2.0, during the 1st and 50th cycles,  respectively, 

for the CLP method. As we can see, the joint configu- 

rations are very different, revealing that the joint 

posi- tions are not repetitive. 

 

  
Fig. 3   P error of the 
nR-robot during nC = 
50 cycles for n = {3, 4, 
5, 6, 7} 
and r = {0.7, 1.0, 2.0} 

 
 
 
 

Fig. 4 CLGA successive 
robot configurations 

of the 3R-robot for 
the 1st and 
50th cycles, 
respectively, and r = 2.0 

 
 
 
 
 
 
 
 

Fig. 5 CLGA successive 

robot configurations 
of the 7R-robot for 
the 1st and 50th 

cycles, respectively, 
and r = 2.0 



 

 

 

 

 

Fig. 7 CLP successive 

robot configurations 

of the 7R-robot for 
the 1st and 50th 
cycles, respectively, 
and r = 2.0 

 
 
 
 
 
 
 
 

  
Table 1  CLGA and CLP average of the total joint displacement, .6.q, of the nR-robot, r = {0.7, 1.0, 2.0} and after nC 
= 50 cycles 

 

CLGA r = 0.7 r = 1.0 r = 2.0 CLP r = 0.7 r = 1.0 r = 2.0 

3R 9.96E−04 8.84E−04 1.08E−03 3R 1.35E+01 6.41E+00 5.80E−01 
4R 7.12E−04 7.38E−04 5.70E−04 4R 8.2E+00 4.4E+00 5.8E−01 
5R 6.73E−04 5.42E−04 6.15E−04 5R 7.2E+00 2.2E+00 4.4E−01 
6R 5.98E−04 4.81E−04 8.57E−04 6R 5.4E+00 4.9E+00 3.0E−01 
7R 1.26E−03 5.44E−04 5.39E−04 7R 4.2E+00 2.4E+00 2.0E−01 

 
 

In order to evaluate the joint angle drift after 

ex- ecuting nC = 50 cycles, Table  1  shows  the  aver- 

age of the total joint displacement, .6.q, when n 

= 

{3, 4, 5, 6, 7} and r = {0.7, 1.0, 2.0}, for the CLGA 
and the CLP methods. We verify that for the CLGA 

we get some drift in joint positions, but the values 

are very similar for all the manipulators and for all of 

the radial distances. For the CLP we get a high drift 

in the joint positions revealing that this method 

leads to unpredictable arm configurations. 

Figures 8–9 show the joint positions and the Fourier 

transform of the robot joint velocities for the 1st joint 

and nC  = 50, n = {3, 7} and r = {0.7, 2.0}, with   the 

Fig. 6   CLP successive 

robot configurations of the 

3R-robot for the 1st and 

50th cycles, respectively, 

and r = 2.0 



 

 

CLGA and the CLP methods. For the other joints 

the results are similar to those of the 1st joint. 

For the CLGA, we conclude that: 

(i) repetitive trajectories in the operational 

space lead to periodic trajectories in the joint 

space; 

(ii) the initial and final joint positions, for each of 

the cycles, are very close; 

(iii) the signal energy is concentrated essentially 

in the fundamental and multiple higher 

harmonics. 

For the CLP, we conclude that the results 

depend on the circle being executed. Besides the 

position drifts,  unpredictable  motions  with  

severe variations 





 

 

  
 

  

 
 
 
 
 
 
 
 

 
  

 
 

 

  

 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 8   The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t )}| vs. ω/ω0  during nC  = 50 cycles for r = 0.7 
and (a) CLGA, (b) CLP 

 
 

occur that lead to high joint transients. Moreover, 

for r = 0.7 we  verify  that  a  large  part  of  the 

energy is distributed along several sub-harmonics,  

revealing 

properties similar to those that occur in chaotic sys- 

tems. 

We verify that the CLGA has a good performance 

in repetitive motion tasks because we get not only a 

good positioning but also a repetitive behavior. 

 
4.2 The CLGA performance in a workspace with 

obstacles 

 
This section presents the results of several simulations, 

when considering two obstacles in the workspace. At 

the end of the section, some examples in a workspace 



 

 

with three obstacles are presented. When, for a 

given joint configuration,  some  part  of  the  

manipulator is inside an obstacle, the CLGA 

simply rejects the configuration and generates a 

new population ele- ment. 

 
4.2.1 The CLGA performance in a workspace 

with two obstacles 

 
In the experiments, the position of the obstacles 
in the workspace depends on the radial 

distance. Fig- ures 10–12 represent the positions 
of the obstacles in the workspace for each radial 

distance, O(r; i),     for 
r = {0.7, 1.0, 2.0} and i = 1, 2, 3.             

The average of the positional error, P error, for n 
= 

{3, 4, 5, 6, 7}, nC  = 50 cycles and O(r; i) for r   = 



 

 

  
 

  

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 9   The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t )}| vs. ω/ω0  during nC  = 50 cycles for r = 2.0 
and (a) CLGA, (b) CLP 

 
 

  

 

 

Fig. 10   Workspaces for O(0.7; i), i = 1, 2, 3 
 

 

{0.7, 1.0, 2.0}, i = 1, 2, 3, is presented in Figs. 13–15, 
respectively. 

We observe that: 

 
(i) the CLGA gives good precision in the task of po- 

sitioning the end-effector at the target 

position, while avoiding the obstacles in the 

workspace; 



 

 

 

  

 

 

Fig. 11   Workspaces for O(1.0; i), i = 1, 2, 3 
 
 

 

  

 

 

Fig. 12   Workspaces for O(2.0; i), i = 1, 2, 3 
 
 

  
Fig. 13   P error of the 
nR-robot during nC = 50 
cycles for O(0.7; i), 
i = 1, 2, 3 

 
 
 
 
 
 
 
 
 
  

Fig. 14   P error of the 
nR-robot during nC = 50 
cycles for O(1.0; i), 
i = 1, 2, 3 



 

 

 

 

 
 

 

 

Fig. 16  Successive robot configurations of the 3R-robot for the 1st and 50th cycles, respectively, and O(2.0; i), i = 
1, 2, 3 

 

(ii) in general, we get better results for the radial 

dis- tance r = 2.0 and worse results for r = 0.7; 

(iii) in general, the positional error, P error, gets 

worse when the number of joints increases. 

Figures 16–17 show successive robot configura- 
tions, for n = {3, 7} and O(2.0; i), i = 1, 2, 3, during 
the 1st and 50th cycles, respectively, revealing that 

the motion is repetitive. 
Table 2 shows the average of the joint displace- 

ment, .6.q, for n = {3, 4, 5, 6, 7}, and O(r; i), r  = 

{0.7, 1.0, 2.0}, i = 1, 2, 3. We conclude that the results 

Fig. 15   P error  of the 

nR-robot during nC  = 50 

cycles for O(2.0; i), 

i = 1, 2, 3 



 

 

 
are consistent with those we obtained in a 

workspace without obstacles. 

Figures 18–20 show the joint positions and the 

Fourier transform of the robot joint velocities for 

the 1st joint and nC  = 50 cycles, n = {3, 7}, 

O(2.0; i), 

i = 1, 2, 3. For the others joints the results are   simi- 
lar to the verified ones for the 1st joint. 

We conclude that: 
 

(i) repetitive trajectories in the operational space 

lead to periodic trajectories in the joint space; 



 

 

 

 

 

Fig. 17  Successive robot configurations of the 7R-robot for the 1st and 50th cycles, respectively, and O(2.0; i), i = 
1, 2, 3 

 
Table 2  The average of the joint displacement of the nR-robot, .6.q, after nC = 50 cycles for O(r; i), r = {0.7, 1.0, 

2.0}, i = 1, 2, 3 

 

 O(0.7; 1) O(0.7; 2) O(0.7; 3) O(1.0; 1) O(1.0; 2) O(1.0; 3) O(2.0; 1) O(2.0; 2) O(2.0; 3) 

3R 8.63E−04 1.11E−03 1.02E−03 7.57E−04 7.63E−04 8.02E−04 6.15E−04 6.64E−04 6.51E−04 
4R 6.16E−04 6.86E−04 5.98E−04 6.07E−04 7.39E−04 6.85E−04 4.29E−04 4.19E−04 4.22E−04 
5R 7.31E−04 7.04E−04 5.40E−04 5.63E−04 4.63E−04 4.74E−04 3.56E−04 4.16E−04 7.14E−04 
6R 4.66E−04 6.28E−04 5.92E−04 4.67E−04 3.45E−04 6.23E−04 2.38E−04 2.96E−04 7.33E−04 

1R 5.16E−04 3.75E−04 3.95E−04 4.63E−04 5.39E−04 2.95E−04 7.07E−04 3.94E−04 1.96E−03 
 

(ii) the initial and final joint positions for each one 

of the cycles are very close; 

(iii) the signal energy is concentrated essentially in 

the fundamental and multiple higher 

harmonics. 

We observe also that the results are consistent 

with those of the previous section and that the 

presence of obstacles does not present an additional 

complexity for the CLGA to reach a repetitive 

solution. 

4.2.2 The CLGA performance in a workspace with 

three obstacles 

One of the problems that occur when we use the re- 

peatability criterion is that, if the initial joint configu- 



 

 

ration of the manipulator is not well adjusted for 

the task, then ‘jumps’ of the robot structure will 

occur to prevent the collision with the obstacles. 

In the experi- ments the trajectory is repetitive 

and, therefore, these jumps may occur during 

several cycles. 

In Figs. 21–22 we use a workspace with three 
ob- stacles. For n = 3, after two different executions 
of the algorithm, we obtained two different initial 
joint con- 

figurations with distinct consequences, in terms of 
the positional error and performance in the 

execution of the task. However, if we use a 
manipulator with n = 7 rotational joints, there is 
no problem to find a good solution for the initial 

positions. Anyway, the  manip- 



 

 

  
 

  

 
 
 
 
 
 
 
 
 
 
 

Fig. 18   The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t )}| vs. ω/ω0  during nC  = 50 cycles for O(2.0; 1) 

 

 

  

 
 
 
 
 
 
 
 
 
 

 

Fig. 19   The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t )}| vs. ω/ω0  during nC  = 50 cycles for O(2.0; 2) 

 
 

  

 
 
 
 
 
 
 
 
 
 



 

 

 

Fig. 20   The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t )}| vs. ω/ω0  during nC  = 50 cycles for O(2.0; 3) 



 

 

 

 

 

Fig. 22 Successive robot 

configurations of the 

7R-robot for the 1st 
and 2nd cycles, 
respectively, for a 
workspace with three 
obstacles and r = 2.0 

 
 
 
 
 
 
 
 

 

ulator motion is always repeatable and the drift in 

the joint positions is similar to the one we obtained 

in the previous experiments. 

 

 
5 Conclusions 

 
A CLGA algorithm that combines the CLP with a GA 

scheme was presented. Several experiments were 

de- veloped to study the performance of the CLGA 

when the manipulator is required to repeat a circular 

motion in the operational space, while satisfying an 

optimiza- 

Fig. 21   Successive robot 

configurations of the 

3R-robot for the 1st and 
2nd cycles, respectively, 
for a workspace with three 

obstacles and r = 2.0, with 
two different initial joint 

configurations 



 

 

tion criterion, in a workspace without and with 

obsta- cles. 

The results show that the CLGA gives good 

results in the perspective of the positional error 

and the re- peatability of the joint positions. In 

what concerns the drift in the joint angles, there is 

no zero-drift but the re- sults seem to be acceptable 

for all manipulators under analysis. 

It is shown that the presence of obstacles does 

not present an additional complexity for the CLGA. 

How- ever, the initial configuration of the 

manipulator plays an important role in the 

performance of the   manipu- 



 

 

lator in a workspace with obstacles. In fact, if the 

ini- tial configuration is not adjusted adequately for 

the re- quired task, then jumps may occur in the 

joint posi- tions to prevent the collision with the 

obstacles. 
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