

An evolutionary approach for the motion planning of
redundant and hyper-redundant manipulators

Maria da Graça Marcos · J.A. Tenreiro Machado ·

T.-P. Azevedo-Perdicoúlis

Abstract The trajectory planning of redundant

robots is an important area of research and

efficient opti- mization algorithms are needed. The

pseudoinverse control is not repeatable, causing

drift in joint space which is undesirable for physical

control. This paper presents a new technique that

combines the closed- loop pseudoinverse method

with genetic algorithms, leading to an optimization

criterion for repeatable con- trol of redundant

manipulators, and avoiding the joint angle drift

problem. Computer simulations performed based on

redundant and hyper-redundant planar ma-

nipulators show that, when the end-effector traces a

closed path in the workspace, the robot returns to

its initial configuration. The solution is repeatable for

a workspace with and without obstacles in the

sense that, after executing several cycles, the initial

and fi- nal states of the manipulator are very close.

Keywords Redundant manipulators, Hyper-redundant,

manipulators, Robots, Kinematics, Genetic algorithms,

Trajectory planning

1 Introduction

Kinematic redundancy occurs when a manipulator

possesses more degrees of freedom than the

required to execute a given task. In this case the

inverse kine- matics admits an infinite number of

solutions, and a criterion to select one of them is

required. Most of the research on redundancy deals

with the use of these ex- tra degrees of freedom

and is referred to in the litera- ture as the

resolution of redundancy [1].

Many techniques for solving the kinematics of re-

dundant manipulators that have been suggested

con- trol the end-effector indirectly, through the

rates at which the joints are driven, using the

pseudoinverse of the Jacobian (see, for instance,

[2]). The pseudoin- verse of the Jacobian matrix

guarantees an optimal reconstruction of the desired

end-effector velocity— in the least-squares sense—

with the minimum-norm joint velocity. However,

even though the joint veloc- ities are

instantaneously minimized, there is no guar- antee

that the kinematic singularities are avoided [3].

Moreover, this method has the generally

undesirable property that repetitive end-effector

motions do not necessarily yield repetitive joint

motions. Klein and Huang [4] were the first to

observe this phenomenon for the case of the

pseudoinverse control of a pla- nar three-link

manipulator. A large volume of research

has been produced in the last few years in this topic

[5–8]. For example, Zhang et al. [9] solve the joint an-

gle drift problem by means of a dual-neural-

network based quadratic-programming approach.

Baillieul [10] proposed a modified Jacobian matrix

called the extended Jacobian matrix. The extended

Ja- cobian is a square matrix that contains the

additional information necessary to optimize a

certain function. The inverse kinematic solutions are

obtained through the inverse of the extended

Jacobian. The algorithms, based on the computation

of the extended Jacobian matrix, have a major

advantage over the pseudoinverse techniques,

because they are locally cyclic [11]. The

disadvantage of this approach is that, while

mechan- ical singularities may be avoided, typical

algorithmic singularities [12] arise from the way the

constraint re- stricts the motion of the mechanism

[13].

One optimization method that is gaining

popularity for solving complex problems in robotics

is the Ge- netic Algorithm (GA). GAs are population-

based sto- chastic and global search methods. Their

performance is superior to that revealed by classical

optimization techniques [14] and has been used

successfully in ro- bot path planning.

Parker et al. [15] used GAs to position the

end- effector of a robot at a target location,

while min- imizing the largest joint displacement.

This method has some shortcomings, such as the

lack of precision, and is affected by the values of the

weights. Arakawa et al. [16] proposed a virus-

evolutionary genetic algo- rithm, composed of a host

population and a virus pop- ulation with

subpopulations, for the trajectory genera- tion of

redundant manipulators without collision, that

optimize the total energy. The operators of

crossover, mutation, virus infection and selection

are executed in each subpopulation independently.

Kubota et al. [17] studied a hierarchical trajectory

planning method for a redundant manipulator using

a virus-evolutionary GA. This method runs,

simultaneously, two processes. One process

calculates some manipulator collision-free po- sitions

and the other generates a collision-free trajec- tory

by combining these intermediate positions. De la

Cueva and Ramos [18] proposed a GA for planning

paths without collisions for two robots, both redun-

dant and non-redundant, sharing the same

workspace. The GA works directly over the task space

adopting

proposed a motion planning method using an

artifi- cial potential field and a GA for a hyper-

redundant manipulator whose workspace includes

several obsta- cles. The motion planning is

divided into two sub- problems. The first is the

“Path planning” that gener- ates a trajectory

leading the tip of manipulator to the goal without

collisions, using the artificial potential field

concept. The second consists in the “Collision- free

sequence generation” that generates a sequence of

movements by which distinct parts of the

manipulator can avoid collisions with the obstacles.

McAvoy and Sangolola [20] proposed an approach

with GAs for optimal point-to-point motion

planning of kinemat- ically redundant

manipulators. Their approach com- bines B-spline

curves, for the generation of smooth trajectories,

with GAs, for obtaining the optimal so- lution.

Peng and Wei [21] presented the ASAGA tra-

jectory planning method of redundant

manipulators by combining a stochastic search

algorithm (simulated annealing algorithm) and a

GA. In the ASAGA the se- lection, crossover and

mutation operators are adjusted by using an

adaptive mechanism based on the fitness value.

Zhang et al. [22] proposed an algorithm to solve the

inverse kinematics of a flexible macro-micro ma-

nipulator system which combines a GA and a neural

network. Pires et al. [23] proposed a multi-objective

genetic algorithm, when considering up to five

simul- taneous objectives, to generate manipulator

trajecto- ries and for obstacle avoidance.

Having these ideas in mind, the paper is

organized as follows. Section 2 introduces the

fundamentals of the kinematics of redundant

manipulators. Based on these concepts, Sect. 3

presents the new closed- loop inverse kinematics

algorithm with genetic al- gorithms (CLGA) and the

open-loop genetic algo- rithm (OLGA). Section 4

presents the simulation re- sults in a workspace

without and with obstacles. For comparison

purposes some results for the closed-loop

pseudoinverse (CLP) method are also presented. Fi-

nally, Sect. 5 draws the main conclusions.

2 Kinematics and dynamics of redundant

manipulators

We consider a manipulator with n degrees of

freedom whose joint variables are denoted

by q = T
the direct kinematics. Each robot is associated
with

[q1, q2,...,

qn]

. We assume that the class of tasks

one population and each string of a population
rep-

we are interested in can be described by m variables, T

resents a complete robot path. Nishimura et al.
[19]

x = [x1, x2,..., xm] , m< n, and that the relation be-

⎥ ⎥

tween q and x is given by the direct kinematics:

x = f (q) (1)

Differential kinematics of robot manipulators was

introduced by Whitney [24] that proposed the use of

differential relationships to solve for the joint

motion from the Cartesian trajectory of the end-

effector. Dif- ferentiating (1) with respect to time

yields:

that maximizes the fitness or the cost function.

The GA modifies repeatedly the population of

individuals (possible solutions). At each step, the

genetic algo- rithm selects individuals at random,

from the current population, to be parents, and

uses them to produce the offspring for the next

generation. Over successive generations, the

population evolves towards an opti- mal solution.

The GAs can be applied to solve a vari- ety of

optimization problems that are not well suited

ẋ = J(q)q̇ (2) for standard optimization algorithms, including prob-

lems in which the objective function is discontinuous,

where ẋ ∈ Rm, q̇ ∈ Rn and J(q) = ∂f (q)/∂q ∈ Rm×n.
Hence, it is possible to calculate a path q(t) in
terms

of a prescribed trajectory x(t) in the operational
space.

Equation (2) can be inverted to provide a solution

in terms of the joint velocities:

not differentiable, stochastic, or highly nonlinear.

Bearing these facts in mind, in this paper we pro-

pose a new method that combines the CLP with a GA,

namely the closed-loop inverse kinematics algorithm

with genetic algorithms (CLGA).

q̇ = J#(q)ẋ (3)
In order to find an initial joint configuration of the

manipulator, another GA is used, adopting the direct

where J# is the Moore–Penrose generalized inverse

of the Jacobian J [2, 25].

3 Robot trajectory control

The Jacobian of an n-link planar manipulator (i.e.,

m = 2) has a simple recursive nature according to the
expressions:

kinematics, which is denoted as OLGA.

In both cases the optimal configuration is the one

that minimizes the fitness function according to

some specified criteria.

3.1 The CLGA formulation

The CLGA adopts the closed-loop structure without

requiring the calculation of the pseudoinverse. The n×n 1
−l1S1 − · · · − lnS1...n . . . −lnS1...n

l

(4)
 CLGA uses an extended Jacobian matrix, J∗ ∈ R ,

J
l1C1 + · · · + lnC

1...
n

. . . lnC
1...
n

and an extended vector, .6.x∗ ∈ Rn, as a way to limit
the joint configurations for a given end-effector posi-

where li is the length of link i, qi...k = qi + · · · + qk ,

Si...k = Sin(qi...k) and Ci...k = Cos(qi...k), i, k ∈ N.
In the closed-loop pseudoinverse (CLP) method

the
joint positions can be computed through the time

inte- gration of the expression:

tion.
The definition of J∗ and .6.x∗ take the form:

⎡
−l1S1 − · · · − lnS1...n . . . −lnS1...n

⎤

⎢ l1C1 + · · · + lnC1...n . . . lnC1...n ⎥

⎢ ⎥
.6.q = J#(q).6.x (5) J∗ =

⎢ − − − − − − − − − − − − − − −− ⎥
,
 ⎢

j(m+1)1 . . . j(m+1)n
⎥
 ⎢

.
⎥

where .6.x = xref − x and xref is the vector of refer-
ence position in the operational space. Nevertheless,

in a previous study, addressing the CLP method [26],
it
was concluded that this method leads to
unpredictable,

⎣

⎡
.6.x1

⎢ .6.x2

jn
1

⎤

⎥

⎦
. . . jnn

(6)

not repeatable arm configurations and reveals

proper- ties resembling those that occur in chaotic

systems.

=

⎥ ⎥
⎥

.
⎥

⎢
.6.xm+1

⎥

.6.x∗ =
⎢ ⎥

 ⎢ − − − ⎥
Genetic algorithms (GAs) comprise a method for

solving both constrained and unconstrained

optimiza- tion problems, based on the mechanics of

natural ge- netics and selection, first introduced by

Holland [27]. A GA allows a population composed of

many individ- uals to evolve under specified selection

rules to a state

⎢
..

⎥
⎣ ⎦

.6.xn

where the matrix elements jik and .6.xi , i =
m + 1 , . . .,n and k = 1,..., n, are values generated by

the GA, satisfying the additional imposed constraints.

d

Fig. 1 Procedure for the

CLGA

3.1.1 Representation and operators in the CLGA

An initial population of strings, with dimension
nP = N , is constructed at random and the search is
then carried out among this population. Each
chro- mosome (string) is implemented by a matrix of
nV = (n − m) × (n + 1) values (genes), with jdk and
.6.xd , d = 1 , .. . ,n − m, k = 1,..., n, consisting in
floating- point numbers initialized in the range
[varmin, varmax]. For the generation T , the ith
chromosome of the pop-

ulation is represented as:

are randomly grouped into pairs and a crossover
point is randomly selected for each one of the n − m
lines of the parent. Then crossover is performed
among pairs.

Finally, for the mutation operator, one variable

value from the nV values of the chromosome is

replaced with a new random one.

The CLGA procedure is shown in Fig. 1, where xref
is the vector of reference position in the operational
space and xini is a vector representing the position

of the end-effector in the operational space.

3.1.2 Optimization criteria

r
J(T

,i)....6.x

where

(T

,i)l

(7)

The fitness function minimizes the joint

displacement between the current joint position and

the initial joint position, through the following

function:

J(T ,i) =
r
j (T ,i)l ∈ R(n−m)×n

 an

d

q q

 T
q q

dk

.6.x(T ,i) =
r
.6.x(T ,i)l ∈ Rn−m.

f1 = Aq̇ Tq̇ + B
− 0
.6.t

− 0
.6.t

(8)

 The three different operators used in the genetic al-

gorithm are reproduction, crossover and mutation.

In what concerns the reproduction operator, the

succes- sive generations of new strings are

generated on the basis of their fitness function. In

this case, it is used a rank weighting to select the

strings from the old to the new population. For the

crossover operator, the strings

where A, B ∈ R+ denotes weighting factors, q0 and

q represent the initial and current joint
configurations, respectively, and .6.t is a step time
increment.

3.2 The OLGA formulation

The OLGA trajectory planning adopts a simple open-

loop structure, as we can see in Fig. 2. An initial pop-

},k

0

 Without lack of generality, in the following experi-

ments are adopted arms having identical link

lengths, l1 = l2 = · · · = ln.

The experiments consist in the analysis of the kine-

matic performance of a planar manipulator with n =
{3, 4, 5, 6, 7} rotational joints, denoted as nR-robot,
that is required to repeat a circular motion in the
oper- ational space with frequency ω0 = 7.0 rad

sec−1, cen-
ter at r = (x2 + x2)1/2, radius ρ = 0.5 and a step time

1
increment of .6.t

2
= 10−3 sec. The goal here is to po-

Fig. 2 Procedure for the
OLGA

sition the end-effector of the nR-robot at a target lo-

cation while minimizing the joint angle drift using the

fitness function f1 with A = B = 1. The initial joint

configuration is obtained using the OLGA with the fit-

ness function f2.

The average of the positional error for nC cycles is

given by the expression:

ulation of strings, with dimension nP = N , is con-

structed at random and the search is then carried
out among this population. Each chromosome is
defined

P error
=

i=1 Perror
(11)

k

through an array of nV = n values, qi,i = 1,..., n,
represented as floating-point numbers initialized in
the range [qmin, qmax]. For the generation T , the

ith chro- mosome of the population is represented
as:

where k is the number of sampling points which is de-
fined as:

 2π

k =
ω .6.t

nC (12)

q(T ,i) =
(
q(T

,i)
(T ,i) The average of the total joint displacement for the nR-

1 , . . . , qn
)

(9)

The end-effector position, x(T ,i), for each
configura-

robot is given by the expression:

tion, q(T ,i), is easily calculated using the direct kine- I.6.qI

matics. .6.q = (13)
n

3.2.1 Optimization criteria

The evaluation function is defined based on the

posi- tional error of the end-effector:

I

where .6.q = qf − q0 is the vector of the joint dis-
placement between the final, qf, and the initial,
q0, joint configurations, and I · I represents the
Euclidean norm.

The CLGA algorithm adopts crossover probabil-

Perror

=

(xc − xf)2 + (yc − yf)2 (10) ities of pc = 0.5 for n = {3, 4, 5, 6, 7} and muta-

tion probabilities of pm = 0.5 and pm = 0.3 for n =

where xc = (xc, yc) and xf = (xf, yf) are vectors rep-
resenting the end-effector current position and the
de-

sired final position, respectively. Therefore, the algo-

rithm minimizes the function f2 = Perror.

4 Simulation results

In this section we start by analyzing the

performance of the CLGA for a free workspace and

then we study the effect of including several types of

obstacles in the working environment.

{3, 4} and n = {5, 6, 7}, respectively. The string pop-

ulation is nP = {200, 400, 800, 1200, 1600} for n =
{3, 4, 5, 6, 7}, respectively, and the results are
obtained for nG = 200 consecutive generations. Each
variable value is initialized in the range [−1, 1].

The OLGA algorithm adopts crossover and muta-
tion probabilities of pc = 0.5 and pm = 0.5, respec-
tively, a string population of nP = 1600, and the re-
sults are obtained for nG = 200 consecutive genera-
tions. Each variable value is initialized in the range
[−2π, 2π].

4.1 The CLGA performance in a workspace without

obstacles

The average of the positional error, P error, for n
=

{3, 4, 5, 6, 7} rotational joints, nC = 50 cycles and ra-

dial distance r = {0.7, 1.0, 2.0}, is depicted in Fig. 3.
We observe that:

(i) the CLGA gives good precision in the task of po-

sitioning the end-effector at the target position;

(ii) in general, we get better results for the radial
dis- tance r = 2.0 and worse results for the radial
dis- tance r = 0.7;

(iii) in general, the positional error gets worse when

the number of joints increases.

Figures 4–5 show successive robot

configurations, for n = {3, 7} rotational joints and r =

2.0, during the 1st and 50th cycles, respectively. As

we can see, the joint configurations are very similar,

for both cycles,

revealing that the joint positions are repetitive. For

comparison purposes, Figs. 6–7 show successive ro-

bot configurations, for n = {3, 7} rotational joints and

r = 2.0, during the 1st and 50th cycles, respectively,

for the CLP method. As we can see, the joint configu-

rations are very different, revealing that the joint

posi- tions are not repetitive.

Fig. 3 P error of the
nR-robot during nC =
50 cycles for n = {3, 4,
5, 6, 7}
and r = {0.7, 1.0, 2.0}

Fig. 4 CLGA successive
robot configurations

of the 3R-robot for
the 1st and
50th cycles,
respectively, and r = 2.0

Fig. 5 CLGA successive

robot configurations
of the 7R-robot for
the 1st and 50th

cycles, respectively,
and r = 2.0

Fig. 7 CLP successive

robot configurations

of the 7R-robot for
the 1st and 50th
cycles, respectively,
and r = 2.0

Table 1 CLGA and CLP average of the total joint displacement, .6.q, of the nR-robot, r = {0.7, 1.0, 2.0} and after nC
= 50 cycles

CLGA r = 0.7 r = 1.0 r = 2.0 CLP r = 0.7 r = 1.0 r = 2.0

3R 9.96E−04 8.84E−04 1.08E−03 3R 1.35E+01 6.41E+00 5.80E−01
4R 7.12E−04 7.38E−04 5.70E−04 4R 8.2E+00 4.4E+00 5.8E−01
5R 6.73E−04 5.42E−04 6.15E−04 5R 7.2E+00 2.2E+00 4.4E−01
6R 5.98E−04 4.81E−04 8.57E−04 6R 5.4E+00 4.9E+00 3.0E−01
7R 1.26E−03 5.44E−04 5.39E−04 7R 4.2E+00 2.4E+00 2.0E−01

In order to evaluate the joint angle drift after

ex- ecuting nC = 50 cycles, Table 1 shows the aver-

age of the total joint displacement, .6.q, when n

=

{3, 4, 5, 6, 7} and r = {0.7, 1.0, 2.0}, for the CLGA
and the CLP methods. We verify that for the CLGA

we get some drift in joint positions, but the values

are very similar for all the manipulators and for all of

the radial distances. For the CLP we get a high drift

in the joint positions revealing that this method

leads to unpredictable arm configurations.

Figures 8–9 show the joint positions and the Fourier

transform of the robot joint velocities for the 1st joint

and nC = 50, n = {3, 7} and r = {0.7, 2.0}, with the

Fig. 6 CLP successive

robot configurations of the

3R-robot for the 1st and

50th cycles, respectively,

and r = 2.0

CLGA and the CLP methods. For the other joints

the results are similar to those of the 1st joint.

For the CLGA, we conclude that:

(i) repetitive trajectories in the operational

space lead to periodic trajectories in the joint

space;

(ii) the initial and final joint positions, for each of

the cycles, are very close;

(iii) the signal energy is concentrated essentially

in the fundamental and multiple higher

harmonics.

For the CLP, we conclude that the results

depend on the circle being executed. Besides the

position drifts, unpredictable motions with

severe variations

Fig. 8 The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t)}| vs. ω/ω0 during nC = 50 cycles for r = 0.7
and (a) CLGA, (b) CLP

occur that lead to high joint transients. Moreover,

for r = 0.7 we verify that a large part of the

energy is distributed along several sub-harmonics,

revealing

properties similar to those that occur in chaotic sys-

tems.

We verify that the CLGA has a good performance

in repetitive motion tasks because we get not only a

good positioning but also a repetitive behavior.

4.2 The CLGA performance in a workspace with

obstacles

This section presents the results of several simulations,

when considering two obstacles in the workspace. At

the end of the section, some examples in a workspace

with three obstacles are presented. When, for a

given joint configuration, some part of the

manipulator is inside an obstacle, the CLGA

simply rejects the configuration and generates a

new population ele- ment.

4.2.1 The CLGA performance in a workspace

with two obstacles

In the experiments, the position of the obstacles
in the workspace depends on the radial

distance. Fig- ures 10–12 represent the positions
of the obstacles in the workspace for each radial

distance, O(r; i), for
r = {0.7, 1.0, 2.0} and i = 1, 2, 3.

The average of the positional error, P error, for n
=

{3, 4, 5, 6, 7}, nC = 50 cycles and O(r; i) for r =

Fig. 9 The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t)}| vs. ω/ω0 during nC = 50 cycles for r = 2.0
and (a) CLGA, (b) CLP

Fig. 10 Workspaces for O(0.7; i), i = 1, 2, 3

{0.7, 1.0, 2.0}, i = 1, 2, 3, is presented in Figs. 13–15,
respectively.

We observe that:

(i) the CLGA gives good precision in the task of po-

sitioning the end-effector at the target

position, while avoiding the obstacles in the

workspace;

Fig. 11 Workspaces for O(1.0; i), i = 1, 2, 3

Fig. 12 Workspaces for O(2.0; i), i = 1, 2, 3

Fig. 13 P error of the
nR-robot during nC = 50
cycles for O(0.7; i),
i = 1, 2, 3

Fig. 14 P error of the
nR-robot during nC = 50
cycles for O(1.0; i),
i = 1, 2, 3

Fig. 16 Successive robot configurations of the 3R-robot for the 1st and 50th cycles, respectively, and O(2.0; i), i =
1, 2, 3

(ii) in general, we get better results for the radial

dis- tance r = 2.0 and worse results for r = 0.7;

(iii) in general, the positional error, P error, gets

worse when the number of joints increases.

Figures 16–17 show successive robot configura-
tions, for n = {3, 7} and O(2.0; i), i = 1, 2, 3, during
the 1st and 50th cycles, respectively, revealing that

the motion is repetitive.
Table 2 shows the average of the joint displace-

ment, .6.q, for n = {3, 4, 5, 6, 7}, and O(r; i), r =

{0.7, 1.0, 2.0}, i = 1, 2, 3. We conclude that the results

Fig. 15 P error of the

nR-robot during nC = 50

cycles for O(2.0; i),

i = 1, 2, 3

are consistent with those we obtained in a

workspace without obstacles.

Figures 18–20 show the joint positions and the

Fourier transform of the robot joint velocities for

the 1st joint and nC = 50 cycles, n = {3, 7},

O(2.0; i),

i = 1, 2, 3. For the others joints the results are simi-
lar to the verified ones for the 1st joint.

We conclude that:

(i) repetitive trajectories in the operational space

lead to periodic trajectories in the joint space;

Fig. 17 Successive robot configurations of the 7R-robot for the 1st and 50th cycles, respectively, and O(2.0; i), i =
1, 2, 3

Table 2 The average of the joint displacement of the nR-robot, .6.q, after nC = 50 cycles for O(r; i), r = {0.7, 1.0,

2.0}, i = 1, 2, 3

 O(0.7; 1) O(0.7; 2) O(0.7; 3) O(1.0; 1) O(1.0; 2) O(1.0; 3) O(2.0; 1) O(2.0; 2) O(2.0; 3)

3R 8.63E−04 1.11E−03 1.02E−03 7.57E−04 7.63E−04 8.02E−04 6.15E−04 6.64E−04 6.51E−04
4R 6.16E−04 6.86E−04 5.98E−04 6.07E−04 7.39E−04 6.85E−04 4.29E−04 4.19E−04 4.22E−04
5R 7.31E−04 7.04E−04 5.40E−04 5.63E−04 4.63E−04 4.74E−04 3.56E−04 4.16E−04 7.14E−04
6R 4.66E−04 6.28E−04 5.92E−04 4.67E−04 3.45E−04 6.23E−04 2.38E−04 2.96E−04 7.33E−04

1R 5.16E−04 3.75E−04 3.95E−04 4.63E−04 5.39E−04 2.95E−04 7.07E−04 3.94E−04 1.96E−03

(ii) the initial and final joint positions for each one

of the cycles are very close;

(iii) the signal energy is concentrated essentially in

the fundamental and multiple higher

harmonics.

We observe also that the results are consistent

with those of the previous section and that the

presence of obstacles does not present an additional

complexity for the CLGA to reach a repetitive

solution.

4.2.2 The CLGA performance in a workspace with

three obstacles

One of the problems that occur when we use the re-

peatability criterion is that, if the initial joint configu-

ration of the manipulator is not well adjusted for

the task, then ‘jumps’ of the robot structure will

occur to prevent the collision with the obstacles.

In the experi- ments the trajectory is repetitive

and, therefore, these jumps may occur during

several cycles.

In Figs. 21–22 we use a workspace with three
ob- stacles. For n = 3, after two different executions
of the algorithm, we obtained two different initial
joint con-

figurations with distinct consequences, in terms of
the positional error and performance in the

execution of the task. However, if we use a
manipulator with n = 7 rotational joints, there is
no problem to find a good solution for the initial

positions. Anyway, the manip-

Fig. 18 The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t)}| vs. ω/ω0 during nC = 50 cycles for O(2.0; 1)

Fig. 19 The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t)}| vs. ω/ω0 during nC = 50 cycles for O(2.0; 2)

Fig. 20 The {3, 7} R-robot 1st joint positions vs. time and |F {q̇1(t)}| vs. ω/ω0 during nC = 50 cycles for O(2.0; 3)

Fig. 22 Successive robot

configurations of the

7R-robot for the 1st
and 2nd cycles,
respectively, for a
workspace with three
obstacles and r = 2.0

ulator motion is always repeatable and the drift in

the joint positions is similar to the one we obtained

in the previous experiments.

5 Conclusions

A CLGA algorithm that combines the CLP with a GA

scheme was presented. Several experiments were

de- veloped to study the performance of the CLGA

when the manipulator is required to repeat a circular

motion in the operational space, while satisfying an

optimiza-

Fig. 21 Successive robot

configurations of the

3R-robot for the 1st and
2nd cycles, respectively,
for a workspace with three

obstacles and r = 2.0, with
two different initial joint

configurations

tion criterion, in a workspace without and with

obsta- cles.

The results show that the CLGA gives good

results in the perspective of the positional error

and the re- peatability of the joint positions. In

what concerns the drift in the joint angles, there is

no zero-drift but the re- sults seem to be acceptable

for all manipulators under analysis.

It is shown that the presence of obstacles does

not present an additional complexity for the CLGA.

How- ever, the initial configuration of the

manipulator plays an important role in the

performance of the manipu-

lator in a workspace with obstacles. In fact, if the

ini- tial configuration is not adjusted adequately for

the re- quired task, then jumps may occur in the

joint posi- tions to prevent the collision with the

obstacles.

References

1. Nenchev, D.N., Tsumaki, Y.: Motion analysis of a

kine- matically redundant seven-DOF
manipulator under the singularity-consistent
method. In: Proc. of the 2003 IEEE Int. Conf. on
Robotics and Automation, pp. 2760–2765
(2003)

2. Doty, K.L., Melchiorri, C., Bonivento, C.: A theory
of gen- eralized inverses applied to robotics. Int.
J. Robotics Res. 12, 1–19 (1993)

3. Baillieul, J., Hollerbach, J., Brockett, R.:
Programming and control of kinematically
redundant manipulators. In: Proc. of the 23rd
IEEE Conf. on Decision and Control, pp. 768– 774
(1984)

4. Klein, C.A., Huang, C.-H.: Review of
pseudoinverse con- trol for use with
kinematically redundant manipulators. IEEE
Trans. Syst. Man Cybern. 13(3), 245–250 (1983)

5. Roberts, R.G., Maciejewski, A.: Repeatable
generalized in- verse control strategies for
kinematically redundant ma- nipulators. IEEE
Trans. Autom. Control 38(5), 689–699 (1993)

6. Klein, C.A., Ahmed, S.: Repeatable pseudoinverse
con- trol for planar kinematically redundant
manipulators. IEEE Trans. Syst. Man Cybern.
25(12), 1657–1662 (1995)

7. Zhang, Y., Zhu, H., Lv, X., Li, K.: Joint angle drift
problem of PUMA560 robot arm solved by a
simplified LVI-based primal-dual neural network.
In: Proc. of the IEEE Int. Conf. on Industrial
Technology, pp. 1–26 (2008)

8. Zhang, Y., Lv, X., Li, Z., Yang, Z., Zhu, H.: Effective
neural remedy for drift phenomenon of planar
three-link robot arm using quadratic
performance index. Electron. Lett. 44(6), 436–
437 (2008). doi:10.1049/el:20080455

9. Zhang, Y., Tan, Z., Yang, Z., Lv, X.: A dual neural
network applied to drift-free resolution of five-
link planar robot arm. In: Proc. of the 2008 IEEE
International Conference on In- formation and
Automation, pp. 1274–1279 (2008)

10. Baillieul, J.: Kinematic programming alternatives

for re- dundant manipulators. In: Proc. of the IEEE
Int. Conf. on Robotics and Automation, pp. 722–
728 (1985)

11. Baker, D.R., Wampler II, C.W.: On the inverse
kinematics of redundant manipulators. Int. J.
Robotics Res. 7(211), 3– 21 (1988)

12. Park, K.-C., Chang, P.-H., Lee, S.: A new kind of
singular- ity in redundant manipulation: semi-
algorithmic singular- ity. In: Proc. of the IEEE Int.
Conf. on Robotics and Au- tomation, vol. 2, pp.
1979–1984 (2002)

13. Park, J., Chung, W.-K., Youm, Y.: Characteristics of
op- timal solutions in kinematics resolutions of
redundancy. IEEE Trans. Robotics Autom. 12(3),
471–478 (1996)

14. Goldenberg, D.E.: Genetic Algorithms in Search

Opti- mization, and Machine Learning. Addison-

Wesley, Read- ing (1989)

15. Parker, J.K., Khoogar, A.R., Goldberg, D.E.:

Inverse kine- matics of redundant robots using

genetic algorithms. In: Proc. of the 1989 IEEE

Int. Conf. on Robotics and Automa- tion, pp.

271–276 (1989)

16. Arakawa, T., Kubota, N., Fukuda, T.: Virus-

evolutionary genetic algorithm with

subpopulations: application to tra- jectory

generation of redundant manipulator through

en- ergy optimization. In: Proc. of the 1996

IEEE Int. Conf. on Systems, Man, and

Cybernetics, pp. 14–17 (1996)

17. Kubota, N., Arakawa, T., Fukuda, T., Shimojima,

K.: Tra- jectory generation for redundant

manipulator using virus evolutionary genetic

algorithm. In: Proc. of the IEEE Int. Conf. on

Robotics and Automation, pp. 205–210 (1997)

18. de la Cueva, V., Ramos, F.: Cooperative genetic

algorithms: a new approach to solve the path

planning problem for cooperative robotic

manipulators sharing the same work space. In:

Proc. of the IEEE/RSJ Int. Conference on Intelli-

gent Robots and Systems, pp. 267–272 (1998)

19. Nishimura, T., Sugawara, K., Yoshihara, I., Abe,

K.: A mo- tion planning method for a hyper

multi-joint manipulator using genetic

algorithm. In: Proc. of the IEEE Int. Conf. on

Systems, Man, and Cybernetics, pp. 645–650

(1999)

20. McAvoy, B., Sangolola, B.: Optimal trajectory

generation for redundant planar manipulators.

In: Proc. of the IEEE Int. Conf. on Systems,

Man, and Cybernetics, pp. 3241– 3246 (2000)

21. Peng, Y., Wei, W.: A new trajectory planning

method of re- dundant manipulator based on

adaptive simulated anneal- ing genetic

algorithm (ASAGA). In: Proc. of the IEEE Int.

Conf. on Computational Intelligence and

Security, pp. 262– 265 (2006)

22. Zhang, Y., Sun, Z., Yang, T.: Optimal motion

generation of a flexible macro–micro

manipulator system using genetic algorithm

and neural network. In: Proc. of the 2006 IEEE

Conf. on Robotics, Automation and

Mechatronics, pp. 1–6 (2006)

23. Pires, E.J.S., Machado, J.A.T., Oliveira, P.B.M.:

Manipula- tor trajectory planning using a MOEA.

Appl. Soft Comput. J. 7(3), 659–667 (2007)

24. Whitney, D.E.: Resolved motion rate control of

manipula- tors and human prostheses. IEEE

Trans. Man Mach. Syst. 10(2), 47–53 (1969)

25. Siciliano, B.: Kinematic control of redundant

robot manip- ulators: a tutorial. J. Intell. Robotic

Syst. 3, 201–212 (1990)

26. Marcos, M.G., Duarte, F.B., Machado, J.A.T.:

Complex dy- namics in the trajectory control of

redundant manipulators. Trans. Nonlinear Sci.

Complex. (World Scientific) 1, 134– 143 (2007)

27. Holland, J.H.: Adaptation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor

(1992) (2nd edn.: MIT Press, Cambridge)

