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Abstract 

In this thesis, the design, analysis and application of recurrent neural net-
works (RNNs) are discussed. The design is motivated by the time-varying 
optimzation problems' real-time solution requirement. The analysis is mainly 
concentrated on the convergence property, which can be studied from the 
dynamic system viewpoint, and computational complexity. The analysis has 
twofold effects. First, it can show the solution capability of R N N s from the 
theoretical viewpoint; Second, it can show methodology of how to analysis 
analog neural networks, which is very important in analysis of the biological 
neural networks. The application part will show the applications in wide 
engineering areas. 

In the past half century, many research efforts have been put into the 
constrained optimization problem. And as the outcome, several efficient 
methods have been proposed, such as the simplex methods, active set meth-
ods, interior point methods and etc. They have been successfully applied 
to the static constrained optimization problems. In principle, they can also 
be used to tackle the time-varying constrained optimization problems. But 
the high computational burden prohibits their practical deployment in the 
complex circumstances. Usually the problems in these circumstances can 
be formulated as time-varying constrained optimization problems, such as 
in robot control, signal process, biomedical engineering, and etc. Because 
the real-time requirement always accompanies the time-varying constrained 
optimization problems, the discrete serial methods face many challenges. 

Recurrent neural networks have the property of high parallelism, adaptiv-
ity and analog VLSI implementability. These characteristics can be utilized 
to solve the time-varying constrained optimization problems. Remarkable ad-
vances have been made in the area of R N N during the past twenty years, both 
in theory and application aspects. As a new analog computing paradigm, 
Continuous-time Recurrent Neural Networks (CRNNs) have several advan-
tages compared with digital ones. It can handle analog inputs directly; It 
works in asynchronous mode; It can tackle large-scale and real-time applica-
tions; It is energy efficient. 

In this thesis, several C R N N models axe proposed for quadratic opti-
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mization. A simplified dual neural network suitable for solving time-varying 
convex linearly constrained quadratic programming (LCQP) problems is pro-
posed. This recurrent neural network's computational ability is analyzed 
from the perspectives of convergence and number of neurons. It is shown 
to be globally convergent to the exact optimal solutions. Compared with 
existing neural networks capable of solving Q P problems, the complexity of 
neural networks is reduced with the number of neurons is only equal to the 
number of inequality constraints. And two recurrent neural networks are 
investigated to solve the quadratically constrained quadratic programming 
(QCQP) problems. 

Their applications to engineering problems are also discussed. The I<-
winners-take-all (KWTA) operation is first converted to an equivalent quadratic 
optimization problem and then the neural network model is tailed to de-
sign the analog circuit to do the K W T A operation. In robotics, the redun-
dant robot arm path planning and control can be formulated as a equality 
constrained time-varying optimization problem with the joint angle velocity 
or the joint torque as the variables. Also the obstacle avoidance can also 
be incorporated into the time-varying optimization framework. It can be 
formulated as an time-varying inequality constraints. In the wireless com-
munication, the optimal multiuser detection is a NP-hard problem. After 
dedicated derivation and some practical hypothesis, it can be formulated as 
a time-varying quadratically constrained qudaratic programming problem. 
The details of the formualtions are discussed in the thesis. The simulation 
results show that C R N N can complete the time-varying on-line engineering 
optimization tasks in real-time. 
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摘要 

本論文初步探討了遞歸/回饋神經網絡的設計、分析和應用。設計是建立 

在時變優化問題的實時求解的需求之上的。分析主要集中在動態系統的穩定 

性和計算複雜度兩點。分析部分有兩層意義’ 一可以得出所設計神經網絡的 

求解能力；二可以爲分析普遍意義上的模擬神經網絡提供方法基礎°應用部 

分則介紹了如何將工程上的問題轉化到時變優化問題上來。 

從原理上講，傳統的串行數値方法也可以求解時變約束優化問題，但是 

巨大的運算量和實時性要求使其在複雜的現實應用（如機器人控制、信號處 

理、生物醫學影像等）中是基本不可行的。遞歸/回饋神經網絡具有高度並行 

性、自適應性、可模擬大規模集成電路實現等特點。這些特點可以充分利用 

來設計特定的網絡結構以求解時變信號的處理問題。 

本論文針對約束二次優化提出了幾種遞歸神經網絡模型。適於求解線形 

不等約束二次優化問題的簡化對偶神經網絡是基於對偶神經網絡提出來的。 

此網絡在保留了全局收斂性的基礎上簡化了神經網絡的結構，使得神經元和 

突觸連接的數目得到了大幅減少°簡化神經網絡的神經元的個數丨合好等於不 

等約束的個數。兩個針對二次不等約束二次優化問題的兩個神經網絡模型也 

已經提出。 

神經網絡在工程上的應用在本論文中也作了大量探討° K W T A運算首先 

被轉化爲一個離散時變二次優化問題’之後又進一步被轉化爲連續時變二次 

優化問題。基於前面建立的網絡模型提出了 KWTA的一個電路實現°在機器 

人領域，自由度冗餘機械臂的軌跡規劃和控制能夠被轉化爲關於關節角速度 

和力矩的等式約束時變優化問題；避障問題則可轉化爲一個不等約束時變問 

題。在無線通訊中’最優多用戶檢測問題本身是一個NP-hard問題，在經過 

了嚴密推演和近似假設後’能夠轉化爲一個時變二次約束二次優化問題。這 

個問題的解就是多用戶檢測問題的一個近似解。其中的轉化細節在文中都作 

了細緻探討。通過仿真實驗，遞歸神經網絡能夠實時可靠地處理各種工程問 

題。 
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Chapter 1 

Introduction 

Summary 

In this chapter, the motivations of this research are first described. 
With the rapid industry development, more and more procedures 
are needed to be optimized for economical reasons. Many of these 
optimization problems are not static problems, they are inherently 
dynamic, i.e., time-varying. The parameters of the processes are 
changing from time to time. The real-time optimization of this 
dynamic process constitutes a major challenge for the traditional 

• serial optimization methods. Recurrent neural networks have good 
properties that can be utilized to effectively solve the problem. This 
chapter mainly answers the "Why?" problems. W h y does the se-
rial methods face challenges? W h y the R N N is effective? Is the 
R N N capable of real-time solution in principles? Is the R N N im-
plementable? 

1.1 Time-Varying Quadratic Optimization 
Constrained optimization is concerned with optimizing an objective function 
over a domain. The domain can be described by a group of equality ancl/or 
inequality constraints. With mathematical notations, it can be written as 

minimize f(x) 
subject to x E fl. 

where x G Rn. 
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If the objective and/or domains are not static, they can be described as 
having a list of parameters, and these parameters are time-varying. Then 
the optimization problem is called a time-varying quadratic optimization 
problem. 

minimize f(x, 9(t)) 
subject to x E n � . 

where 9{t) and Cl(t) are time-varying parameters and domain. 
If the objective function is also convex quadratic and the domain is a con-

vex set, the optimization problem is often called as a quadratic optimization 
(or quadratic programming) problem. 

minimize \xTW{t)x + c(t)T x, 
subject to A(t)x — b(t), 

l(t) < Ex < h(t). 

where W(t) is a symmetric positive definite matrix. 
This paper deals with time-varying convex quadratic programming prob-

lems with equality and inequality constraints by recurrent neural networks. 
The interest in such problems comes from two facts. First, many engineering 
problems can be formulated as time-varying quadratic optimization prob-
lems. For example, in the root control, desired position is changing with 
time, the obstacle is moving. In wireless communication, the channel is un-
der rapid change because of environment and user signals. They can all be 
incorporated in a time-varying quadratic optimization framework. In Part II, 
you will see some detailed descriptions of these application problems. In some . 
sense, if the dynamic problem is to be optimized locally, they can usually be 
formulated as a time-varying optimization problem. Second, in many algo-
rithms for general nonlinear programming, a search direction is determined 
at each iteration as a solution of a quadratic problem. 

There are a lot of publications devoted to quadratic programming, see 
e.g. [3], such as prime and dual simplex method, active set method, interior 
point method, and etc. All these methods are a collection of various detailed 
methods. The prime and dual simplex methods can only deal with bounded 
inequality constraints. The active set method proceeds by partitioning the 
inequality constraints into two sets: active and inactive. Here active means 
the equality holds. The inactive constraints are ignored during the iteration. 
Then, the new value is generated by moving on the surface defined by the 
working set. Contrary to the active set method, the interior point method 
achieves optimization by moving through the middle of the region defined 
by the problem rather than around its surface as the active method. The 
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interior-point method was developed in the 1980s to solve linear programming 
problems. Later it was found that it can be used to solve convex optimization 
problems as well. These new methods allow us to solve certain new classes 
of convex optimization problems, such as semidefinite programs and second-
order cone programs, almost as eaxilier as linear programs. 

All these serial numerical methods have been successfully applied to the 
static constrained optimization problems. In principle, they can also be used 
to tackle the time-varying constrained optimization problems. But the high 
computational burden prohibits their practical deployment in the complex 
circumstances. Usually the problems in these circumstances can be formu-
lated as time-varying constrained optimization problems, such as in robot 
control, signal process, biomedical engineering, and etc. Because the real-
time solution requirement always accompanies the time-varying constrained 
optimization problems, the discrete serial methods face many challenges. 

1.2 Recurrent Neural Networks 

1.2.1 From Feedforward to Recurrent Networks 
Neural networks have become a very popular research field in computer sci-
ence, engineering, cognitive science and mathematics. They represent a broacl 
range of information processsing models which mimic the information pro-
cessing of the biological neural networks. Often the "neural network" is 
characterized by a assemblies of weighted interconnected (connections are 
called weights or synaptics) simple processing components (the components 
are called neurons). By embedding a vast number of simple neurons in an 
interacting system, it is possible to provide computational power for very 
sophisticated information processing. Usually the neural networks have the 
adaptive and parallel processing characters. 

There are two streams of neural networks research, one considering neu-
ral networks as a model to help understand the neural systems/brain, the 
other considering neural networks as a powerful family of nonlinear statisti-
cal model and analog computing paradigm. Historically, the neural network 
was first proposed to study the brain theory, but the application potentials 
have shifted the balance with the developments of computer technology. Cur-
rently this field is experiencing rapid development because of its applications. 
The applications include robotics, pattern recognition (for speech and vision 
systems), and understanding human brain-mind processes. 

The strength of application-driven neural networks hinges upon three 
main characteristics: 
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Adaptiveness and self-organization: It offers robust and adaptive pro-
cessing capabilities by adopting adaptive learning or self-organizing 
rules or recurrent feeback. 

Nonlinear network processing: By utilizing the nonlinear behavior of 
natural phenomena, like the exponential increase of current with volt-
age in silicon transistors, it enhances the networks' computational ca-
pability. 

Parallel processing: It usuall}̂  employs a large number of procesisng cells 

enhanced by a extensive interconnectivity. 

Historically, neural implementations have focused on feed-forward net-
works which is composed of layers of neurons, with information following 
from the input layer through the hidden layer to the output layer. There 
is no feedback mechanism within this network itself (although in the train-
ing period, the error information can be propagated backwards.) This is in 
distinct contrast to biological neural networks, which has no training period 
and no particular back-propagation mechanism. They are inherently recur-
rent. The reasons for this preference of feed-forward networks are manifold, 
including the difficulty in understanding and control of the highly nonlin-
ear complex recurrent behaviors. The other reason is that the feed-forward 
networks have showed adequate performance in many engineering applica-
tions, such as data processing, pattern recognition, and robot control. For 
example, neural network researchers often exploit the following easy and suc-
cessful strategy. Given a problem currently solved with a standard algorithm, 
interpret computations performed by the algorithm as a parameterized map-
ping from an input to an output, and call this mapping a neural network; 
then adapt the parameters using the available data samples so as to produce 
another mapping that solves the task better. 

But the most biologically plausible of these, which has just recently be-
come feasible and attract many interests, is the recurrent neural networks, 
which we would like to discuss in the context of constrained optimization. 

In recurrent neural network, some of the signals come from the environ-
ment, acting as the input to the NN, while other signals go out of the N N 
to the environment, encoding the end result of the computation, acting as 
output, just as shown in Fig. 1.1. 

The status of the weights, whether unknown parameters or fixed con-
stants, prompts two different working mode of neural networks. When 
the weights are considered unknown parameters, the network is a semi-
parametric statistical model, able to approximate input-output relations by 
means of parameter estimation. While the weights are considered constant 
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Figure 1.1: Recurrent Neural Network General Model 

after or without a process of adaptation, the network can perform exact 
computations rather than mere approximations. 

Different from most feedforward neural networks, which operate on dis-
crete time, synchronous mode, and have layered structure, the continuous 
neural network operate on continuous time, asynchronous mode and have 
interconnected structure. Traditional neural networks are described by the 
difference equations, while the continuous neural network is described by or-
dinary differential equations. So the traditional neural network is studied 
by the arithmetic methods, while the continuous neural network should be 
studied by the ordinary differential equation theory. From the system theory 
viewpoint, C R N N can be regarded as a continuous dynamic system. From 
this viewpoint, we can investigate its stability property. The curious qual-
ity of recurrent neural networks is that they retain traces of the previous 
inputs, and in this sense incorporate context. The previous states have an 
impact on the current states, even without additional learning algorithms. 
What exactly is being represented, or how it is being represented, is largely 
unknown. The representations must be drawn from the features that are fed 
as input, and temporally, these must be short-term memories of some kind. 
It turns out that this is exactly what we need in time-varying optimization: 
short-term memory. Metaphorically we can think of this short-term track-
ing as 'catching the thread' of time-varying trends. Indeed, recurrent neural 
networks seems to be one of the most promising methods for resolving the 
hard problem. 

The reason why we study continuous-time neural network, not discrete 
or digital neural network can be partly explained by the following quote. 

"We first note that the assumption of continuit}'' may be benefi-
cial, even when the hardware is digital. A prime example is the 
linear programming problem with its polyhedral structure of so-
lutions. A search in the space of vertices by the simplex algorithm 
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has exponential worst case behavior. On the other hand, interior 
point algorithms, such as Karmarkar's algorithm, approach the 
solution from the inside of the continuous polytope and require 
polynomial time only. This exemplifies the speedup gain from 
considering a continuous phase space." [18] 

As we have pointed out, the continuous recurrent neural network can be 
seen as a dynamical system. The state a dynamical system settles into is 
called an attractors. Dynamical systems are called dissipative if their dy-
namics converge to attractors when a, dissipative system has an energy (Lya-
punov) functional, the attractors are fixed points; otherwise, more complex 
attractors may appear. If we want use the continuous recurrent neural net-
work to clo computation, we can use the settled down state. This computing 
paradigm is called computing with attractors. 

As a special case of computing with attractors, continuous recurrent neu-
ral network works on continuous time and asynchronous mode. The advan-
tages of this paradigm can be summarized as: 

• it handles analog input directly; 

• it works in asynchronous mode, i.e. without global clock to synchronize 

all the processes; 

• its computing complexity is very low and it has large computing density 

for some parallelizable problems; 

• it is fault tolerant and robust; 

• it is energy efficient compared with digital computing. 

There is a large class of problems that are at best poorly solved. These 
problems involve the transformation of data across the boundary between 
the real world and the digital world. And they occur whenever a computer 
is sampling and/or acting on real world data, These are difficult problems to 
solve on a computer, since they require the computer to find complex struc-
tures and relationships in massive quantities of low precision, ambiguous, 
noisy data. Analog recurrent neural networks meet with these challenges 
and requirements. 

1.2.2 Computational Power and Complexity 
Although neural networks are based on continuous operations, as computing 
machines, we still need analyze their computational power using the compu-
tational complexity theory. 
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Traditional computational complexity deals with the concept of com-
putability. Historically, each computational class of functions was associated 
with an automaton. The most popular automaton is the Turing machine. It 
is neither the weakest nor the strongest, but it is the mathematical equiva-
lent of the modern computer . It is shown the the analog recurrent neural 
network is more powerful than Turing machine, although their upper limit 
is unknown [18]. 

The prime historic computational computability of neural networks re-
search is Minsky and Papert's 1969 study of the computational limitations 
of single-layer perceptions, which has played a major role in driving the 
researchers away from the neural network research. 

The modern theory of computational complexity does not deal only with 
the ultimate power of a machine, but also with its expressive power under 
constraints on resources, such as time and space. One of the basic problems 
of the neural networks in the computational complexity is their scalability. 
Early research has show that they work adequately good enough on small 
problems, but when they are scaled up to larger problems they often need 
more neurons than possible with current technology. In thiscase the resources 
needed to scaled up grow up too rapidly, i.e., the model does not scale up 
well. If they grow too fast (usually we consider the number of resources 
grow up faster than log-linear as too fast), it may be not feasible to expect 
that advances in technology can keep pace. Here the resources for neural 
computation may include number of neurons, number of connections, and 
convergence time. [17] 

"The prime contribution of neural networks is not their mode of computa-
tion, but the capability for efficient computation of certain problems." That 
means, for some certain problems, neural networks' computational complex-
ity is lower compared with digital computer. For example, the time-varying 
signal processing elements like integrator can be easily implemented using 
current silicon technology, while for digital technology, it means a hard com-
putational burdern by numerical integration. 

1.2.3 Implementation Issues 
The rapid developing technology of very large scale integrated (VLSI) circuits 
have given us a medium to fabricate thousands of millions of transistors 
interconnected on a single silicon wafer. "The Integrated-circuit fabrication 
has evolved to the point where systems of the scale of small, but identifiable, 
parts of the nervous system can be emulated on a single piece of silicon. W e 
are not limited by the constraints inherent in our fabrication technology; we 
are limited by the paucity of our understanding." [13] 
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"To create silicon structures for emulating biologically inspired comput-
ing, we need a better understanding of biological computing models, and we 
need VLSI design techniques that emulate these models efficiently. W e also 
need to identify those aspects of computational neurobiology which are nec-
essary and which are not. For example, analog computation has advantage 
in low precision computations and low power applications, and impressive 
computational density. However, analog computation also has disadvantages 
in stability, temperature sensitivity, communication, and ease of design. And 
it is not clear that analog's computational density is an advantage in sparsely 
activated, sparsely connected networks. 

Digital technology is less area efficient, especially for certain types of 
functionality (e.g., leaky integration). It is also power intensive, and the 
representation of time tends to be more complicated (events are typically 
synchronized to a global clock). But digital allows for the efficient multiplex-
ing of scarce computational and communication resources." [9] Hybrid, ana-
log/digital or "mixed-signal" techniques may be the optimum design point. 

But usually two critics for the implementability of recurrent neural net-
works argue that 

1. Because the analog circuits and analog signals are easy to be corrupted 

by noise, the precision of computation will not be guaranteed. 

2. It is difficult to implement a highly connected neural network for cur-

rent technology. Because the current VLSI circuits lies on 2 dimensional 

plane, whether there are 3 or 4 layers of plane. 

Certainly analog neural networks face these shortcomings. But when 
we analyze these two questions deeply, you can see that the conclusion is 
not correct. First, the easy corruption problem can be easily overcome by 
redundancy. W e can observe that the biological neural network is resistent to 
noise even to failures. Their robustness conies from the highly redundancy of 
connections and neurons. In the contrary, we can expect that systems with 
extraordinary reliability and robustness will result; so much so that useful 
integration at the scale of a complete wafer is feasible. Secondly, the highly 
connection can be implemented by hybrid models. 

Of these, connectivity is one of the most important characteristics of 
biological neural structures. Unfortunately, connectivity is perhaps the one 
area where silicon is significantly less robust than biology. Communication in 
silicon is generally limited to a two-dimensional plane (though with several 
levels, 6-8 with today's semiconductor technologies). It is still one of the 
most important problems as we consider scaling to very large models. 
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Concurrently, Carver Mead's group at Caltech and others developed "Ad-
dress Event Representation" or A R R communication [10] [11]. The address-
event technique has also been expanded into a hierarchical structure by Laz-
zaro and Wawrznyk [12]. When analog computation is used, signals can 
be represented by action-potential-like "spike' (generally a neuron unit ex-
ceeding its threshold). These signal "packets" or “pulses" are transmitted 
asynchronously at the most they occur, by sending the originating unit's 
address on a single multiplexed bus. This “ pseudo-digital" representation 
allows multiplexing of the bus and retention of temporal information, if con-
tention for the units sharing the bus is minimal. 

"Perhaps the most rewarding aspect of analog computation is the extent 
to which elementary computational primitives are a direct consequence of 
fundamental laws of physics." 

“It is essential to recognize that neural systems evolved without the slight-
est notion of mathematics or engineering analysis. Nature knew nothing of 
bits, Boolean algebra, or linear system theory. But evolution had access to a 
vast array of physical phenomena that implemented important functions. It 
is evident that the resulting computational metaphor has a range of capabil-
ities that exceeds by many orders of magnitude the capabilities of the most 
powerful digital computers." 

1.3 Thesis Organization 
This thesis begins with the introduction chapter. In this chapter, we intro-
duce the elements of constraints optimization and recurrent neural networks, 
from the perspectives of the differences of feedforward and recurrent neural 
networks, the computational power and complexity of RNN, and the imple-
mentation issues, especially the analog implementation. W e have emphasized 
the challenges that motivate this research and showed the characteristics of 
R N N which is useful for the challenge. 

Then comes Part I on theory and models of RNN. In this section, the 
development history of R N N for optimization is firstly reviewed. Then the 
linearly constrained quadratic optimization and the quadratically constrained 
quadratic optimization are respectively studied in terms of design procedure, 
analysis of convergence and complexity and validation by numerical simula-
tions. 

Engineering applications are discussed in Part II. There you will find 
applications in circuit design, robotics and wireless communication. More 
detailedly, Chapter 4 discusses the K W T A circuit design through steadily 
reformulating the K W T A problem into a L C Q P problem. Chapters 5 and 
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6 discuss the applications in robotics, respectively on dynamics control and 
obstacle avoidance. The multiuser detection in wireless communication is 
tackled in Chapter 7. 

At last, the conclusions and future works to be done is described in Chap-
ter 8. M y personal view of the prospect of R N N is also discussed in Chapter 
8 . ‘ 

• End of chapter. 
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Theory and Models 

i i 
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Summary 

A continuous recurrent neural network model is proposed to solve 
the linearly constrained quadratic programming problems and is 
proven to be globally convergent to the exact solution. And two 
continous recurrent neural network models are proposed to solve 
the quadratic constrained quadratic programming problems and its 
convergence behavior are being investigated. 



Chapter 2 

Linearly Constrained QP 

A strictly convex quadratic program (QP) is an optimization problem whose 
objective function is strictly convex quadratic, and the constraint functions 
are affine. In QP, a convex quadratic function is minimized over a polyhedron. 

Quadratic program problems arise in many fields such as signal process-
ing, robot control, machine learning, economic analysis, transport planning 
and etc [1][54][84] [89] [95]. A number of numerical algorithms have been pro-
posed to solve the problem. But the computational complexity of these serial 
algorithms may limit their applications in large-scale ancl/or online optimiza-
tion applications, such as in on-line learning(classification), fluid dynamics 
and robotics path planning, etc. In the above fields the ability to solve 
large-scale ancl/or on-line optimization problems is essential. 

In the past nearly two decades, the parallel computing abilities of re-
current neural networks, known as natural computing, is recognized by re-
searchers in many disciplines [89] [95] [54] [84]. The essence of the neural com-
puting is that a dynamic system can be designed to be globally convergent to 
the solution of the desired problem. And the dynamic system can be easily 
implemented by the electronic circuits or more recently by analog or digital 
VLSI circuits technologies. The good property of this computing paradigm 
is that it can tackle large-scale problems and time-varying problems without 
great efforts. 

Tank and Hopfield proposed the first working recurrent neural network 
implemented on analogue circuits [26] [27], which opened the avenue of solv-
ing optimization problems by neural computing. These years, various neural 
network models have been developed for solving the quadratic program prob-
lems. According to their design method, these neural network can be cate-
gorized as the penalty-parameter NN[28], the Lagrange NN[29], the primal-
dual[31] and the dual N N [32] [49] [53]. It is known that the neural network 
model [28] contains finite penalty parameters and generate approximate so-

ii 
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lutions only. The Lagrangian neural network is not suitable for solving the 
inequality constrained optimization problems. In addition, the dimension-
altiy of Lagrange network is much larger than that of original problems, due 
to the introduction of slack and surplus variables. As a much flexible tool 
for exactly solving quadratic program problems, the primal-dual neural net-
work [31] was developed with the feature that it handles the primal quadratic 
program and its dual problem simultaneously by minimizing the duality gap 
with Karush-Kuhn-Tacker condition (KKT-condition) and using the gradient 
method. Unfortunately, the dynamic equations of the primal-dual neural net-
work are usually complicated, and may contain high-order nonlinear terms. 
Moreover, the network size are usually larger than the dimensionality of the 
primal quadratic program plus its dual problem. In [32] [49], a neural net-
work called dual neural network is presented to solve the convex quadratic 
problem utilizing only the dual variables. Its dynamic equation is piecewise 
linear. In this chapter, we will give out a new neural network called improved 
dual neural network based on dual neural network to solve the quadratic pro-
gram problem. It can further eliminate the architecture complexity of neural 
network. 

2.1 Model Description 
A general time-varying convex quadratic programming problem can be ex-
pressed as 

I 
minimize -xTW{t)x + c(t)x 

subject to A{t)x = 6, (2.1) 

I < E(t)x < h, 

where a: G E
n is the variable, W{t) e S!^ 1

, c{t) e R n
, A{t) e E

m x n
, 

b(t) G E m
 (m < n), E(t) e E p x n

, /, h e E p
. I and h can respectively be -oo 

and oo, which corresponds to one-side inequality or no inequality constraint. 
From now on, we simply denote W(t) as W, b(t) as b, and so on. Here, 

for simplicity, suppose A is a full rank matrix (i.e., rank(^4) 二 m) without 
loss of generality. When rank(A) = m' < m (i.e., not full rank), we can 
find a maximum linearly independent subset of row vectors of A. The subset 
vectors constitute a row matrix A' (rank(A') = m) with the corresponding 
new vector b'. Then the equality constraint is equivalent to 

尤t = b\ 

1 Here, W(t) G means that W(t) is symmetric and positive definite. 
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where A' is a full rank matrix. 
Consider (2.1) as the primal problem, its dual problem is 

maximize bTy 一 ]-xTWx + lTv - hTw . 
Zj 、Z. Z J 

subject to Wx + c — ATy - ETv + ETw = 0， 

where y G R m
, v, ru e IRP

 are dual variables. 
Define u := v — w, the equality constraint in (2.2) becomes 

I/Fx + c — ATy - EtU = 0. 

According to the Karush-Kuhn-Tucker (KI<T) conditions for convex opti-
mization [1], the following set of equations have the same solution as problem 
P 

+ c — ATy - ETu = 0， 

Ax = b, 
I(Ex)i = /, if u{ > 0， 

(Ex)i = h, if Ui < 0， 

I < {Ex)i < h, if Ui = 0. 
That is, 

14々 t + c-ATy- EtU 二 0’ （2.3) 

A t - b, (2.4) 

Ex = g{Ex-u), (2.5) 

where g(z) is a piecewise linear function, defined as 

(I, if Zi < /, 

而’ if / < ^ < /z, ？: = 1，..-

h, if Z{ > h. 

If I = —oo, g(zi) degenerates to 

= I Z“ if Zi ̂  

) h , otherwise, i = 1, - • • 

If h = oo, g(zi) degenerates to 

夕卜）二 I if A > I, 
)/, otherwise, z = 1, • • • ,p 
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Ifr = 一oo, h = oo, g(zi) degenerates to a linear function 

9{zi) = Zi. 

From equation (2.3), because W is invertible, we can get 

x = W~\ATy^ETu-c). (2.6) 

Substitute (2.6) into (2.4), 

AW-\ATy + ETu-c) = b. 

Because rank(yl) = m and VF is invertible, then AW~lAT is invertible. So y 
can be explicitly expressed by u as 

y = (AW- lA T)~ l [~AW~ lETu + /IW—ic + b] • (2.7) 

Based on (2.5)，（2.6)，(2.7), by the projection theorem, the dynamic equation 
of the neural network for solving the primal problem (2.1) can be designed . 
as 

• State equation 
du 

^ = ~Ex + g{Ex-u): (2.8) 

• Output equation 

V = [-AW-'E TU + + EL] ’  1  J  

where u e Rp is the state vector, e > 0 is a scaling parameter that controls 
the convergence rate of the neural network. It can be rewritten in the more 
compact and explicit form as 

• State equation 

du 
E-j^ = - E M E t U + g(EMETu — u + Es) 一 Es, (2.10) 

• Output equation 

CC = ME
t

U + S, (2.11) 
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a(-) s _ 

1 1 E ；; 

Figure 2.1: Block diagram of the simplified dual neural network. 

where M := W~1{I-ATG), s := W~\ATh-c), G ：= [AW~lAT)~\AW~l), 
h \= (AW~lAT)~l(AW~1c-\- b). Because the analytic expression of A, W, F 
can be obtained in the design stage, the analytic expressions of M and s can 
be computed beforehand. In view of this, though expression (2.10) appears 
complicated, it is not computationally complex. 

The block diagram of the neural network is shown in Fig. 2.1. 
In this neural network, u is the state variable, x is the output of the neural 

network, and the time-varying parameters \V, b, c, E, I, h are the inputs. In 
the circuit implementation, u is electrical signal, which operates on ns — /J,S 
time scale, while the time-varing parameters usually work in ms—s time scale. 
So for the neural network, the time-varying optimization problem can be seen 
as static problems. This is the rational why we can use the electronic neural 
network to solve the time-varying optimization problem. There are several 
advantages compared with traditional serial digital methods. (1) It is a 
parallel solution, compared with traditional methods. With the parallelizable 
ability, it can tackle large scale problems; (2) With the global convergence 
property, the neural network solution is stable no matter how the inputs 
change; (3) It can be implemented by analog VLSI which means that the 
neural network can tackle practical problems directly without A/C converteer 
with high speed to ensure online operations and produce continuous outputs. 

In the simplified dual neural network, the number of neurons is equal 
to the number of inequality constraints, whereas the number of neurons is 
equal to the number of equality and inequality constraints in the original 
dual neural network [32] [49]. A complete comparison with several neural 
networks for solving the quadratic program problem (2.1) is shown in Table 
2.1. 

2.2 Convergence Analysis 
A neural network is said to be globally convergent if starting from any initial 

point taken in a given domain of the whole state space, any trajectory of 
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Neural Network Type Number of Neurons Reference 

Simplified Dual Neural Network p this paper 

Lagrange Neural Network n + m + [29] 

Prime-Dual Neural Network n + m + 2p [31] 

Dual Neural Network m + p [49] 

Table 2.1: Comparison of architecture complexity among various neural net-
works 

the corresponding dynamic system converges to an equilibrium point that 
depends on the initial state of the trajectory. 

To analyze the convergence of the simplified dual neural network, three 
lemmas are first introduced. 

Lemma 1 [2] As sum,e that the set Q c Rm is a closed convex set, then the 
following two inequalities hold 

(Pn(a) - p) T(a - Pn(a)) T
 > 0, Va G R m,/3 G fi; 

\\Pn(P)-P^)\\ < II/?-at Va，"eiT， 

where /¾ : Rm — Q is a projection operator defined as P^(7) = min^GQ ||7 — 
CII-

Remark 1 It is clear that the set fl := {u E Rp
|/ <u<h} and g(u) satisfy 

the above projection property. 

Lemma 2 For 八=(^^"{入丄’ A2，. • • ’ An} with Aj > 0 (¾ = 1,2, • • • , n); P G 
RmX7' (m < n), rank(P) = m, the following matrix inequality holds 

A-PT{PA-1P)-lPh02 

Proof Denote P = [pi p2 … p m ] , we can find n — m column vectors 

pi,p2, • • • ,Pn-m, such that 

p J ^ P i = 0. 

Define P := \px p2 …pn-m]-

P A 1P] — 0(n-m)xm 

4 (PA~'PT)T = 0m><(n_m) 

^ P k 1PT = 0mx(n-m)' 

2Here, H >z0 means matrix H is positive semi-definite. 
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Because A = diag{Ai, A2, • • •，An} is full rank and rank(P) = m, then 
Pi, 7)2，•. • ,Pm,Pi,P2,' • •，Pn-m a r e

 linearly independent vectors. Define: Q := 
‘P 1 

p G R n x n, then Q is invertible. For \/y, we have 

yT ky 

=yTQT(QT)-l(A~lrlQ-1Qy 
=(Qy)Tm~lQTrl(Qy) 

p 1 「p"l r 1 P 

= ( p V)T[ p A-1 [ PT P ^ n p y) 
'PyY \ PA~lPT Pk_xPT 1 I" Py " 

Py Pk-XPT PA-lPT Py 
—'Py ]\ P^~lPT omx(n_m) 1 “1 [" Py " 

一 -Py • 0 { n _ m ) x m PA~lPT J [ Py\ 
“Py' •(尸A-1")-1 0mx(n—m) ]「作_ 

Py J [ 0 ( n _ m ) x r n (PA-lPT)-1 \ [Py 
=yTPT(PK~lPT)-lPy + yTPT{PA-1PT)-lPy 

Move yTPT{P\-lPT)~lPy to the left side, 

yTky — yTPT(PA-1PT)~1Py = yT PT(PA~1 PT)~l Py. (2.12) 

Because A
- 1
 >： 0, 

PA~1Pt h 0. 
Then 

PT{PA-1PT)-1P h 0. 

That is, 

yTPT{PA-lPT)-lPy>0, \fy G Rn. (2.13) 

From (2.12) and (2.13), 

yTAy - yTPT(PA-lPT)~lPy > 0，Wy G Rn. 

i.e., 
A - P

t
( P A -

1
P ) -

1
P ^ 0 . 

The proof is complete • 

Lemma 3 Let W G G E m x n , F e Rpxn{m < n), then 

FiW'1 — W-lAT{AW-lAT)-lAW~1)FT h 0 
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Proof By the matrix spectrum theorem, because W G + , it can be 
decomposed as 

VF = T A T T (2.14) 

where A = cliag {Ai, A2, • • • ’ A n} with 入i > 0 (i = 1,2, - • • ,n) the eigenvalue 
of VV and T is an orthogonal matrix. Then, take the inverse of both side of 
(2.14) 

W
1
 sTA""

1
!^ (2.15) 

Define P := AT e R m x n (m < n), by Lemma (2)， 

A-P T{PA~ lP T)~ lPyO. 

A"
1
 >- 0, so 

/ - P
t
(P A -

1
P

t
) -

1
P A "

1
 匕 0. 

Furthermore, 

A~ l{I - T TA T{AT\- 1T TA T)- 1ATA~ 1)T T >Z 0. 

In view of the equation (2.15), we can get 

VF"
1
 - W - l A r

{ A W -
l
A

T
) -

l
A W

l >i 0. 

The proof is complete. • 

Theorem 1 The simplified dual neural network (2.10) is globally convergent 
to an equilibrium, point u*. 

Proof At u*, we have the following inequality 

{z — EX*) TU* > 0, W Z E N , N {u e Ep
|/ <u< h}, (2.16) 

which can be obtained by considering the following three cases: 

• If for some i e {1,2,--- u* 二 0’ Z— g [Ex*]i < h, then — 

[Ex^)ul = 0; 

• If for some j G {1,2,--- u* > 0’ [Ex*]j = I and I < Zj < /?,，then 

zj - [Ex*]j > 0 and thus (¾ — [Ex*]j)u] > 0; 

• If for some /c e {1,2, • • • < 0, [Ex*]k = h and I < Zk < h, then 
zk — [Ex% < 0 and thus (¾ — [Ex%)u*k > 0. 



CHAPTER 2. LINEARLY CONSTRAINED QP 21 

Therefore, by subsituting z = g(EMETu -j- Es — we can get from (2.16) 

[g{EMETu + Es-u)~ {EMETu* + £;s)]
T
 w* > 0. (2.17) 

On the other hand, from Lemma 1，it follows that, Vii G R P  

[g{EMETu + Es-u)- (EMETu* + Es)]T 

[(EMETu + Es-u)~ g{EMETu + Es - w)] > 0. ‘ 

Combining (2.17) and (2.18)，we have 

[g(EMETu + Es-u)~ (EMETu* + Es)]T 

[n* + (EMETu + Es-u)~ g(EMETu ^ Es - u)] > 0. 

Define g := g(EMETu + Es-u)~ (EMETu + Es), (2.19) becomes 

[G + EMEt{U - u*)]T [(w. — u*) + < 0. (2.20) 

From (2.20)，we can get 

(u - u*)T~g + gTEMET(u - u*) < 2 

-ll^ll2 -{u- u*)TEMET{u - u*). [ ‘ ' 

And 
EMET = EW~l(I - ATG)ET 

=E{W~ L - W~ LA T{AW- LA TY LAW- L)E T. 

According to Lemma, 2, EMET is positive semidefinite，i.e., 

(U — U*)tEMEt{U — A*) > 0. (2.22) 

From (2.21) and (2.22)，we get 

(u — u*)Tg + gTEMET{u - u*) < 0， (2.23) 

and if and only if u = u*, the equality holds. 
Now choose the following radially unbounded Lyapunov functional can-

didate 

V(u(t)) = lj\Q(u(t)-un\\l (2.24) 

where Q is a symmetric and positive definite matrix with Q2 = (J + EMET). 
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Then from (2.23), we get 

芸 = ( u - u * ) T Q 2 u 
= {u-u*)T(I + EMET)~g (2.25) 

=(u — u*)Tg + gTEMET(u - u*) 
< 0. 

By the Lyapunov stability theorem, the simplified dual neural network is 
globally stable. 

The proof is complete. • 

Theorem 2 x* = METu* + s is an optimal solution to the quadratic pro-
gramming problem (2.1), where u* is an equilibrium point of dynamic equa-
tion (2.10). 

Proof Since u* is an equilibrium point of the dynamic equation (2.10), 

g(EMEu* + Es- u*) - (EMETu* + Es) = 0. 

By x* = METu* + s, 
g{Ex* - u*) = Ex\ (2.26) 

Define if := Gu* + h, then 

rc* 二 METu* + s 
=W~1{AT{Gu* + h) + ETu* — c) (2.27) 

= W-l{ATy* + ETu*-c). 

That is, 

+ c — A TXF — E TVT - 0. (2.28) 

Substituting G and h into the expression of y*, we have 

y* = {AW-lATYl[{-AW-lET)u* + + b}. 

AW~lA7 is invertible, then 

AW~ LATy* = {-AW~ 1Et)U* + ⑷ V 一
1
c + b. 

Leaving only b on the right side, 

AW~lATif + AW~lETu* - AW^c = b. 
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i.e., 

AW~ L{ATy* + E TU* -C) = b. 

In view of x* in equation (2.27), we have 
Ar* = b. (2.29) 

Equations (2.26)，(2.28), (2.29) constitute the K K T conditions (2.3)，(2.4)， 
(2.5) of the problem (2.1). So x* = METu* + s is the optimal solution to 
the quadratic programming problem (2.1). 

The proof is complete. • 

From Theorems 1 and 2，we can conclude that the simplified dual neural 
network in (2.10)，(2.11) is globally convergent to the exact optimal solution 
of problem (2.1). 

To show the convergence behavior of the neural network, let's consider a 
simple numerical example. 

minimize 3rcf + 3x1 + + + 3rcia;2 + 

X2X4 — ll.Ti — 5.T4 
subject to 3rci — 3rc2 — 2a;3 + X4 = 0, 

4xi + x2 - xs - 2x4 = 0, 
+ 工2 < - 1 , 

—2 < 3a；! + < 4. 

Written in the standard form, the corresponding parameters are 

"6 3 5 0 1 � - n _ 

TT, 3 6 0 1 0 
VV = , c = , 

5 0 8 0 0 

_ 0 1 0 10 J [ - 5 
, " 3 - 3 - 2 1 1 , 「0 _ 

A = , b = , 
4 1 - 1 - 2 0 

r — 1 1 0 0 ] , 「一 0 0 1 , 「 - 1 
E = , I = , h = . 

3 0 1 0 - 2 4 

For solving this quadratic program problem, the improved dual neural 
network needs only 2 neurons, while the Lagrange neural network [29] needs 
12 neurons, the primal-dual neural network [31] 9 neurons, the dual neural 
network [49] 4 neurons. 

The simulation results with 入 = 1 0
8
 are shown in Figs. 2.2, 2.3 and 

2.4. Figs. 2.2 and 2.3 illustrate respectively the convergence behaviors of 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
< (sec) x 10"

5 

Figure 2.2: Transient behavior of u. 

variables u and x. From the initial state [10, —10], the improved dual neural 
network converges to the optimal solution [0，—2, 2，—2] within 10" 5 second. 
And the norm of the difference between the optimal solution and the neural 
network output value at time instance 10

- 5
 second is less than 3 x 10~

10
. 

Fig. 2.4 shows the state trajectories of the improved dual neural network 
converging to the optimal solution from different initital states. 

• End of chapter. 
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Figure 2.3: Transient behavior of x. 
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Figure 2.4: Trajectory of x\ and X2 from different initial point. 



Chapter 3 

Quadratically Constrained QP 

A convex quadratic constrained quadratic programming (QCQP) is an op-
timization problem whose objective function is convex quadratic, and the 
inequality constraint functions are convex quadratic. In QCQP, a convex 
quadratic function is minimized over an ellipsoid or an ellipsoid surface in 
the equality constrained one. 

3.1 Problem Formulation 
A Q C Q P with linear equalities can be expressed in the form: 

minimize \xTQx + cT
x, 

subject to Ax = 
^xTRx + cVx ^ f. 

where Q, R are symmetric and positive definite. So the objective function is 
convex, and the constraint set is also convex. 

Note that we can apply an invertible linear transformation to the problem 
that converts the ellipsoid into a sphere of radius y/r. This result in 

minimize \xTQx + CT.T, 
subject to Ax — b, (3.1) 

Iklli < r. 

where Q is symmetric and semipositive definite. So the objective function is 
convex, and the constraint set is also convex. 

ii 
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3.2 Model Description 
The Lagrangian dual problem is to maximize 6(u) over w > 0，where 

1 1 1 
6{u) = mi{-xTQx + cTx + u{-xTx - -r) - (Ax — b)Tv : x G Rn} 

x 2 2 2 

Note that for a given w ^ 0, the function \xTQx + cTx + u{\xTx) is convex, 
so a necessary and sufficient condition for a minimum is that the gradient 
must vanish, that is 

Qx + c + ux- ATv = 0 (3.2) 

Thus the dual problem can be written as follows: 

maximize \xTQx + cTx + u{\xTx — \r) — (Ax — b), 
subject to Qx + c + ux — ATv = 0， (3.3) 

u ^ 0, v ^ 0. 

Now from (3.2), we have 

xTQx + cTx + u(xTx) — xTATv = 0 

Substituting this into (3.3), we derive the dual quadratic programming given 
below 

maximize —\xTQx — \xTx — \ur — bTv: 

subject to Qx c + ux — Arv = 0, (3.4) 

w ̂  0, v 0. 
K K T conditions 

Qx + c + ux = 0, 

I Iklll < r , ^ = 0; (3.5) 
\ Ml = r, u>0. 

That is, 

Qx + c + ux - ATv = 0， (3.6) 

Ax = b, (3.7) 

I N I ^ P d W I ^ - ^ ) - (3.8) 

Because Q G S" + , by the matrix spetrum theorem, Q can be decomposed as 

Q = TATT 

Qx -{-ux c — ATv 二 0 

^ TATtX + UTITTX = ATv - c 

=̂  T(A + uI)TTx = ATv - c 
=^ X = TT(A + UI)~1T(ATV-C) 
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N N Type # of Neurons Convergence Solution Reference 

Simplified Dual N N 1 G.C.
1
 Exact this chapter 

Dual N N m + 1 G.E.C.
2
 Exact this chapter 

Nonlinear N N n + m + 1 G.E.C. Exact [29] 

Lagrangian N N n + m + 2 G.C. Approximate [91] 

Table 3.1: Comparison between various NNs capable of solving Q C Q P 

3.2.1 Model 1 (Dual Model) 
• State Equation 

if u ) = A f 9(\\x\\l-u)-\\xr2\ 

CITY V J ~ V - A t + 6 J 

• Output Equation 

X = TT{A + UI)~1T{ATV-C) 

No. of Neuron: m + 1 
Supposed Convergence Property: Globally Exponential Convergence 

3.2.2 Model 2 (Improved Dual Model) 

Ax = b 
( 八 + ^ / ) ^ 7 ^ - 0 ) 二 6 

� ATT(A + uI)~1TATv = ATT{A + uI)~lTc + b 
々 T; 二 [^T T(A + UI)- 1TA T]~ 1[AT T{A + uI)~lTc + b] 

• State Equation 

ju = X(g(\\x\\l-u)-\\x\\l) 

• Output Equation 

v = [AT T{A + UI)~ 1TA T]- 1 [ATt{A + uI)~lTc + b) 

X = T T ( A + UI)~ 1T{A TV-C) 

No. of Neuron: 1 
Supposed Convergence Property: Globally Convergence 

• End of chapter. 



Part I I 

Engineering Applications 
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Summary 

In this part, several application examples are given out to show 
the ability of solving engineering problems of the proposed neural 
networks. First, they shows how to properly formulate the desired 
problems into time-varying quadratic optimizations through care-
ful derivation and thorough consideration of the physical feasibil-
ity. Then the correspdonging neural networks are tailed according 
to the specific case of each application. The simulation results 
demonstrated the feasbility and efficicies of the solutions. 



Chapter 4 

K W T A Network Circuit Design 

Summary 

In this chapter, the I<-Winners-Take-All (KWTA) operation is con-
verted to an equivalent constrained convex quadratic optimization 
formulation. A simplified dual neural network, called K W T A net-
work, is further developed for solving the convex quadratic pro-
gramming (QP) problem. The K W T A network is shown to be 
globally convergent to the exact optimal solution of the Q P prob-
lem. Simulation results are presented to show the effectiveness and 
performance of the K W T A network. 

4.1 Introduction 
Winner-take-all (WTA) is an operation that identifies the largest value from 
the input signals. Such an operation has many applications including associa-
tive memories [6], cooperative models of binocular stereo [55], Fukushima's 
neocogniton for feature extraction, and etc [56]. In the combinatorial opti-
mization, this operation is also needed. 

As an extension of winner-take-all operation, k-winners-take-all (KWTA) 
selects the k largest inputs from the total n inputs. It can be considered as a 
generalized version of winner-take-all operation. It has recently been shown 
that K W T A is computationally powerful compared with standard neural 
network models with threshold logic gates [57] [58]. Any boolean function 
can be computed by a single k-winners-take-all unit applied to weighted 
sums of input variables. Beside the applications in neural network model, 
the K W T A operation has important applications in machine learning, such 

ii 
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as k-neighborhood classification, k-means clustering, etc. As the number 
of inputs becomes large and/or the selection process should be operated in 
real time, parallel hardware implementation is desirable. There have been 
many attempts to design very large scale integrated (VLSI) circuits to do 
the K W T A operation[59] [60] [61] [62] [63] [64] [65] [66] 

This chapter proposes a new neural network implementation of K W T A 
operation based on the equivalent quadratic optimization formulation, which 
has the O(N) complexity. For this network, global convergence is guaranteed 
and time-varying signals can be tackled. The rest of this chapter is organized 
as following. Section II derives an equivalent formulation of K W T A , which 
is suitable for neural network design. Section III introduces the neural net-
work design procedure, architecture and properties. Simulation results are 
reported in Section IV. Section V concludes this chapter. 

4.2 Equivalent Reformulation 
The optimization capability of the recurrent neural network has been widely 
investigated. After the seminal work of Tank and Hopfield [26] [27], var-
ious neural networks have been proposed. They can be categorized as the 
penalty-parameter neural network [28], the Lagrange neural network [29]，the 
deterministic annealing neural network [30]，the primal-dual neural network 
[31] [52] and the dual neural network [32] [49]. 

Mathematically, K W T A can be formulated as a function 

J 1, if Vi e {k largest elements of v}; ( . 

I 0, otherwise. 

Fig. 4.1 shows the K W T A operation graphically. In this section, we will re-

formulate the K W T A operation as a quadratic programming problem, which 

is suitable for neural network design. Toward this goal, hereafter two theo-

rems are given and proved. 

Theorem 3 The solution of (4.1) is the same as the solution to the following 
discrete quadratic programming problem (4-2). 

minimize axTx — vTx 
subject to eTx = k (4.2) 

Xi E {0,1}, i = 1,2,--- ,n 

where a is a positive constant, v : = , ̂ 2, • • • ,
 T

；工：=[工1，工2，... , 

e:= [1,1,-- ,1]
T
- — 、 



CHAPTER 4. KWTA NETWORK CIRCUIT DESIGN 33 

•Ti X"2 • . . 'Xjx — \ Xji 

I • • • 

K W T A Network 

“ i 1 z z 

v2 ••• Vn-1 V n 

Figure 4.1: The diagram of K W T A operation. 

Proof eTx = k can be written as 
n 

J 2
x
i =

 k
 (4.3) 

i=l 

Because Xi G { 0 , 1 } , we have 
x
2
i = Xi (4.4) 

From (4.3) and (4.4), we get 

n 

i=l . 

i.e., 
n 

ax1 x = a ^ xl — ak 
i=l 

is a constant. 

So the cost function can be rewritten as 

maximize vTx 

Suppose that the solution of (4.2) x* is not the solution of (4.1). Without 
loss of generality, we assume that x* = 0, Vi in the top k largest inputs; And 
xi = 1, vi is not in the top k largest inputs. 

Because Vi is in the top kth largest inputs, and vi is not, then 

Vi > Vi 

Define x{ := 1, xt := 0, xj := x*J + ij. x := [xi,x2, • • • , xn]T also satisfies 
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the constraints. 

= ViXi + vtvi + 
= ^ + 

=叭对+妁对+ ！^卢广广； 
=vTx* 

This contradicts with the assumption that x* is the solution of (4.2). 
The proof is complete. • 

Denote the kth. largest element as {；(k + l)th largest element as v^+i-
Then we have the following theorem: 

Theorem 4 If v^ — vk+i > 2a, then the discrete quadratic programming 
problem (4-2) and the following continuous quadratic 'programming problem 
(4-5) have the same solution. 

minimize axTx — vTx 
subject to eTx = k (4.5) 

Xi e [0,1], i 二 1，2,…’ n 
where a is a positive constant. 

Proof If we can show that the solution of the problem (4.5) is in the set 
{0，l}

n
, then the theorem is proved. 

From the equality constraint eTx = k, we can get 

Xi = k — Xj (4.6) 

Substituting (4.6) into axTx — vTx, we have 
T T ax x — v x 

= 均 ） -

= 诏 € + — ! ： 讲 巧 )
2
) — 

=a(x� + ... + 4 - 2kxi + 2xi J2j_i’i 叼 + . •.)— 
ViXi + vixi 4—— 

二 2ax1i + (2a Y^i，i xj — 2a/c + Vi)x{ + ••• 

From the above derivation, we can take axTx-vTx as the function of variable 
It can be further written as 

axTx — vrx = 2ax] + (2a ^ Xj - 2ak + vt- v^Xi + e(x), (4.7) 
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where e(x) has nothing to do with Xi and Xi. 
If the following condition is satisfied, axTx — vTx can only reach its min-

imum at its boundary, that is Xi = 0 or Xi = 1. 

n 灼 + 2 t — E
^， … ) o o , 0 M i ， o o ) . 

2a 
Considering k — Ylj^i i  xj =  xi +  xh the condition is equivalent to 

V i - V l + 2a(xi-,xl) £ ( 一 ⑴ ， 0 ] U [ 1 ) 0 0 ) _ (4.8) 

If V{ E{k largest elements of inputs}, then we can choose v【^{k largest 
elements of inputs}. To let X{ = 1 and Xi = 0，the following conditions should 
be satisfied. 

VJ-VI + 2A(XJ + XI) 
— ， 

and 
Vi-Vi + 2a{xt + Xj) 

4a 
W e can get 

Xi — xi > 2a. 

If Vj, ̂ {k largest elements of inputs}, we can choose Vi e{k largest ele-
ments of inputs}. In the same way, we can get 

xi — Xi > 2a. 

So, if vk 一 vk+i > 2a, the solution of problem (4.5) is in the set {0, l}n
. 

The proof is complete. • 

From Theorems 3 and 4，we can easily get that if v^ — 1 > 2a, the so-
lution to the continuous quadratic optimization problem (4.5) is the solution 
of (4.1). 

Remark 2 Let's consider the solution of problem (4.5) when Vk-Vk+i < 2a. 
In this case 

Vk - Vk+\ + + xk+i) 

4^ ^ 1 ' J' 
Then when 

~ _ h —知+1 + 2a{xkxk+i) 
Xk = 4^ ’ 

the cost function reaches its minimum. That is, 

~ ~ Vk - Vk+l ( A 

Xk — x k +i = ~ ~ — . (4.9) 
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If other elements can be successfully separated, then 

xk + xk+i = 1. (4.10) 

From (4.9) and (4.10), we can get 

~ n c , f̂c -公 fc+ l ~ n r 礼 - ^ f c + 1 

xk = 0.5 + ——： ’ xk+i = 0.5 • 
4a 4a 

In particular, if vk = Xf： = Xk+i = 0.5. 

4.3 K W T A Network Model 
In [32] [49], a neural network called dual neural network is presented to solve 
convex quadratic problems utilizing the dual variables. In this section, we 
will simplify the dual neural network for solving the quadratic programming 
problem (4.5). Here we call the network as K W T A network. It reduces the 
architecture complexity while preserving the desirable convergence property 
compared with the dual neural network. 

Consider the problem (4.5) as the primal problem P, then its dual prob-
lem D can be written as 

maximize kTy — axTx — eTW2 
subject to _ v — q/— Wi + ^2 = 0 (4-11) 

where y G i?, W\ G R7\ W2 G Rn are dual variables. 
Define u = iui —忉2’ the equality constraints in (4.11) becomes 

ax — v — ey — u = 0. 

By the Karush-Kuhn-Tiicker (KKT) conditions for convex optimization [1], 

the following set of equations have the same solution as problem P 

ax — v — ey — Iu = 0 (4.12) 

eTx = k (4.13) 

！ Xi = 0 if Ui > 0 
Xi 二 1 if 均 < 0 (4.14) 
O ^ X i if 均 二 0 

(4.14) can be rewritten as 

x = g(x — u), (4.15) 
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where 

( 0 if 认 < 0 

g(vi) = < Vi if 0 < 灼彡 1 
[ 1 if Vi > 1. 

From (4.12), 

x = -(ey + u + v) (4.16) 
a 

Substitute (4.16) into (4.13), 

I 
-eT(ey + u + v) = k 
a , 

y can be explicitly expressed by u. 

y =-(ak- eTu - eTv) (4.17) 
n 

Substitute (4.17) into (4.16)， 

i i 1 1 pk 
x = -(I — -eeT)u + -(I — -eeT)v + - (4.18) 

a n a n n 

Based on (4.15, 4.16, 4.17), by projection theorem, the neural network that 

can solve the original problem can be designed as 

ef =-Mu-{-g{Mu-u-{-s) + s (4l9) 

x = MU + s 

where M = (I — eeT/n)/a, s = Mv + (k/n)e. 
The architecture of the K W T A network is shown in Fig 4.2. A circuit 

implementing this network consists of summers, integrators and operational 
amplifiers. 

The properties of convergence and optimality are studied below. 

Theorem 5 The KWTA network (4-19) is globally convergent to an equilib-
rium point u* which depends on the initial state of the trajectory. 

Proof At u*, we have the following inequality 

{v-x*)Tu* >0yv e^l. (4.20) 

which can be obtained by considering the following three cases: 

• Case 1: If for some i G {1,2’... u* = 0, 0 < x* < 1，then 

{Vi 一 = o； 
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A' Vl i'2 . . . Vn 

————[^] (T^J 

—— 

~ ~ ~ ( ^ ] 

r z z ^ L ^ 
： ： +^)-JI77>- : . ： 
• • +

 1
• ： • 

_ _ 如 — — 1 ¾ ^ - 1 

Figure 4.2: Architecture of the K W T A network. 

• Case 2: If for some j G {1’ 2，• •. ,p}, u* > 0, .t* = 0 and 0 < Vj < 1, 
then Vj — x* >0 and thus (vj — x*)u* > 0; 

• Case 3: If for some /c G {1,2, • • • ’p}’ u\ < 0’ x*k = 1 and 0 < v^ < 1’ 
then Vk — x*k < 0 and thus (v^ — x*k)u*k > 0. 

Therefore, it follows from (4.20) that 

[g{Mu + s-u)~ {Mu* + s)]T u* > 0. (4.21) 

O n the other hand, from projection theorem [2], it follows that, \/u G Rn 

[g(Mu + s-u)~ {Mu* + s)]r 

[{Mu + s - u) — g(Mu + s - u)} > 0. 

Combining (4.21) and (4.22), we have 

[g(Mu + s — u) - {Mu* + s)]T (4 23) 

[u* + (Mu + s-u)~ g(Mu + s-u)}>0. • 

Define g \= g(Mu + s — u) - (Mu + s), (4.23) becomes 

[g + M(u — u*)]T [(w — u*) + < 0. (4.24) 
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From (4.24), we can get 

Because the eigenvalues of M is either 0 or 1，M is positive semidefinite, i.e., 

{u - U*)tM{U - u*) > 0. (4.26) 

From (4.25) and (4.26)，we get 

(u - u*)Tg + gTM(u — u*) < 0’ (4.27) 

and if and only if u = u*, the equality holds. 
Now choose the following radically unbounded Lyapunov functional can-

didate 

V{u(t)) = ^\\Q(u(t)-un\\l, (4.28) 

where Q is a symmetric and positive definite matrix with Q2 = (I + M). 
Then from (4.27), we get 

f =(n~ û YQ̂ u 
= ( … * ) „ (4.29) 

< 0. 
By the Lyapunov stability theorem, the simplified dual neural network is 
globally stable. • 

Remark 3 The convergence speed of the neural network is determined by 
the eigenvalues of M which are independent of n and inversely proportional 
to a. 

Theorem 6 x* = Mu* + s is an optimal solution to the quadratic program-
ming problem (4-5), where u* is an equilibrium point of the dynamic equation 
(4-19). 

This theorem can be verified by substituting x* into the I<KT conditions 
(4.12,4.13,4.14). The three equations are satisfied, which means that x* is 
the optimal solution to the quadratic programming problem (4.5). 

From the Theorems 5 and 6，we can conclude that the K W T A network is 

globally convergent to the exact solution of the problem (4.5). Further, from 
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Theorems 3 and 4，the K W T A network is globally convergent to the exact 
solution of the K W T A operation. As a comparison, the K W T A circuit in 
[62] will oscillate under some conditions. 

From the convergence study of the simplified dual neural network, we can 
get the result that the K W T A network is also globally Lyapunov stable and 
globally convergent to the solution of K W T A operation with resolution 2a. 
Moreover, because the convergence speed of the K W T A network is dominated 
by the linear term of (4.19) (i.e., eigenvalues of M), which is independent 
of number of inputs n, the convergence speed is independent of the problem 
scale. In addition, the eigenvalues of M are inversely proportional to a, so 
the convergence speed is also inversly proportional to a. 

4.4 Simulation Results 
Example 1: First a static K W T A problem is tested. The inputs are Vi = 
i (S = 1,2, • •. , 77,)，/c = 2 and e = 10~

8
. When n = 5, and a 二 0.25, 

the transient behaviors of u and v are shown in Figs. 4.3 and 4.4. In Fig. 
4.4, the curves from bottom to top correspond respectively 仍’ • • • , v5. 
It can be seen that the outputs are [0 0 0 1 1]. The 2 largest elements 
are successfully selected within 5 x 10~

8
 second. Figs. 4.5 and 4.6 show 

the relationship between convergence rate and the parameters. In Fig. 4.5， 
it can be observed that when the parameter a increases exponentially, the 
convergence time also increases exponentially (note that the horizontal a,xis 
is in log scale). O n the contrary, the convergence rate remains steady with 
respect to the changing of problem scale n, which can be observed in Fig. 
4.6. 

Next, consider a set of 5 sinusoidal input signals with the following in-
stantaneous values vp(t) = 10sin[27r(1000t - 0.257r(p — l)](p = 1,2,3,4) and 
k = 2. Fig. 4.7 illustrates the 5 input signals and the transient outputs of the 
K W T A network with e = 10

- 6
 and a = 10—3

. The simulation results show 
that the K W T A network can effectively determine the two largest signals 
from the time-varying signals in real time. 

4.5 Conclusions 
A K W T A network is developed for I<-winners-take-all operation based on 
the equivalent quadratic programming formulation. The K W T A network is 
shown to be stable and can implement the K W T A operation in real time. 
Compared with the dual neural network, K W T A network has lower archi-
tecture complexity. The K W T A network is shown to be effective by analysis 
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Figure 4.7: Inputs and outputs of the K W T A network, 

and simulation. 

• End of chapter. 



Chapter 5 

Dynamic Control of 
Manipulators 

Summary 

The bi-criteria joint torque optimization of kinematically redun-
dant manipulators balances between the energy consumption and 
the torque distribution among the joints. In this chapter, a simpli-
fied dual neural network is proposed to solve this problem. Joint 
torque limits are incorporated simultaneously into the proposed op-
timization scheme. The simplified dual network has less numbers 
of neurons compared with other recurrent neural networks and is 
proved to be globally convergent to optimal solutions. The control 
scheme based 011 the recurrent neural network is simulated with the 
P U M A 560 robot manipulator to demonstrate effectiveness. 

5.1 Introduction 
Kinematically redundant manipulators are those having more degrees of free-
dom (DOFs) than required to perform a given task. The redundancy of 
such manipulators includes intrinsic redundancy and functional redundancy, 
which can be utilized to optimize various performance criteria, while perform-
ing the given motion task. Among performance criteria, the optimization of 
joint torques is an appealing one since it is equivalent to effective utilization of 
actuator powers. An initial study was conducted by Hollerbach ans Suh [70] 
who presented the null-space algorithm that instantaneously minimizes the 
joint torque. Neungadi and Kazerounian [71] presented an approach that 

ii 
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locally minimizes joint torques weighted by the inverse of inertia matrix. 
This optimization criterion corresponds to global kinetic energy minimiza-
tion, and the local solutions are thus optimal and internally stable. But 
in practice, because of the large computational load of computing inverse 
matrix, the optimization function is often simplified as the 2-norm of the 
torque. The minimum-effort solution was also proposed to explicitly mini-
mize the largest torque. This solution is consistent with physical limits and 
enables a better direct monitoring and control of the magnitude of individual 
joint torques than other norms of joint torques [72]. It is thus more desirable 
in applications where low individual joint torques is of primary concern. Re-
cently, neural network approaches have been developed for the optimization 
of redundant manipulators. Tang and Wang [45] and Zhang and Wang [73] 
have proposed several recurrent neural networks (Lagrangian, primal-dual 
and dual neural network) for the torque optimization. In [74], a dual neural 
network was presented by Zhang et al. for kinematic control for redundant 
manipulators by minimizing the bi-criteria of Euclidean and infinity norm 
of joint velocities. In [75], the results have been extended to minimize both 
the weighted norm and infinity norm of the joint torques to get a balance 
between the total energy consumption and the joint torque distribution, and 
at the same time take into account of the joint torque limits. In this chap-
ter, the neural network structure is simplified, while preserving the global 
convergence property. 

5.2 Problem Formulation 
Consider the forward kinematics relations between the joint variables and 
the poses of the end-effector in Cartesian space 

r = m (5.1) 

where 6 6 Rn is the joint variable vector; r 6 Rm is the position and orien-
tation vector of the end-effector in the Cartesian space (m < n in redundant 
manipulators); /(•) is a smooth nonlinear mapping function, known for a 
given manipulator. 

Differentiating (5.1) with respect to time gives the linear relation between 
the Cartesian velocity r and joint velocity 6 

r = J(6)6 (5.2) 

where J(0) e R m x n
 is the Jacobian matrix defined as J{9) = df{9)/dd. 

Differentiating (5.2) with respect to time yields the relation between the 
joint acceleration 9 and Cartesian acceleration r 

J{6)e = r- j{e)6 (5.3) 
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where j(9) G Rmxn is the time derivative of the Jacobian matrix. In a 
redundant manipulator, (5.1) and (5.2) are underdetermined since m < n 
and hence they may admit an infinite number of solutions. 

It is well known that the revolute joint robot dynamics is 

r = H{e)e + c(6,e) + g(6) (5.4) 

where H(6) G Rnxn is the symmetric positive definite inertia matrix; c(9,9) G 
Rn is the component of the torque depending on Coriolis centrifugal forces; 
g(9) G Rn is the component depending on gravity forces. 

The 2-norm optimization of joint torques can be formulated as 

minimize r T r , , . 

subject to J{9)9 + j(6)9 - r = 0. 

Inverting (5.4), we have the joint acceleration for given joint torques 6 = 
H~x{T — c - g). Substituting it into (5.3)，the joint torque can be expressed 
in terms of r as 

JH~1r= JH~l{c + g)+r-j6. (5.6) 

Equation (5.6) can be simplified by introducing two terms rT = JH~l(c + 
g)-\-r - JO and JT = JH~l. Hence, we have a linear torque-based constraint 

JTT = RT. (5.7) 

The inertia, inverse weighted joint torque optimization problem (5.5) can 
thus be reformulated to a time-varying quadratic program subject to the 
linear torque-based constraints (5.7) as 

minimize \T tT, 〜。、 
(5.8) 

subject to JTr = rT. 

Further incorporating the infinity-norm optimization and joint torque lim-
its, the bi-criteria torque optimization can be formulated as 

minimize \{AR TT + ( 1 -

subject to JtT = RT: (5.9) 

T~ < T < T+. 

where ||t||oq denotes the infinity norm, a 6 (0,1) the weight coefficient. r~ 

arid T +
 denote respectively upper and lower limits of torque. 
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Next, let us convert the minimum infinity-norm part of (5.9) into a 
quadratic program. By defining s = ||t||oo，the minimization of (1 — ̂ )1^11^ 
can be rewritten equivalently [74] as 

minimize 全(1 — a)s
2
, 

” 「 / —e 1「r 1 [ 0 1 (5.10) 
subject to < u t — r\ 

—I—es 0 
where e := [1,1,..., 1]T

 and 0 := [0,0’...，0]
T
 are vectors, respectively, of 

ones and zeros with appropriate dimensions, I is the identity matrix. 
Thus, by defining the variable vector x = [r, s]T

 € Rn+l, the bi-criteria 
torque optimization problem (5.9) can be expressed as the following quadratic 
program: 

minimize ^x
T
Wx, 

subject to Ax = b, , . 
Cx < d, 
X~ < X < 

where the coefficient matrices and vectors are 

.=  a I  0
 e R(n+l)x(n+l) 

. [ 0 (1 - a) J 
A:=\ JT 0 ] e _Rmx(n+1)’ 
b := rT e Rn\ 

C := 1 —e G 
—I —e 

d:=0e R2n, 
_ 丁一 

cc . — « 
o 

T+ ‘ 
x+ := , G Rn+l. 

_ max1<j<n I � I • 

Since the objective function in the formulation (5.11) is strictly convex 
(clue to 0 < a < 1 and W is positive definite) and the feasible region of linear 
constraints is a closed convex set, the solution to the bi-criteria quadratic 
program (5.9) is unique and satisfies the Karush-Kuhn-Tiicker optimality 
conditions. Hence the continuity of the bi-criteria solution is guaranteed. As 
a — 0，the bi-criteria solution reaches the infinity-norm solution and o： —̂  1, 
the bi-criteria solution becomes the 2-norm solution, which illustrates that 
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the proposed bi-criteria optimization scheme is much more flexible than a 
single-criterion optimization scheme. 

5.3 Simplified Dual Neural Network 
A number of numerical algorithms have been proposed to solve the time-
varying quadratic problem (5.11). But the computational complexity of the 
serial algorithms may limit their applications in this online dynamic opti-
mization application. 

In the past two decades, the parallel computing capability of recurrent 
neural networks, known as computing with attractors, is recognized by re-
searchers in many disciplines. The essence of the computing with attractors 
is that a neuro-dynamic system can be designed to globally convergent to 
the solutions of the desired problems [76]. And the neuro-dynamic systems 
can be implemented by the electronic circuits such as analog and/or digital 
VLSI circuits. The superior property of this computing paradigm is that it 
can tackle large-scale and time-varying problems. 

Over years, various neural network models have been developed for solv-
ing quadratic programming problems. According to their design methods, 
these neural networks can be categorized as the penalty-parameter neural 
network [28], the Lagrange neural network [29], the primal-dual neural net-
work [31] [52] and the dual neural network [32] [49]. As a much flexible tool for 
exactly solving quadratic programming problems, the primal-dual neural net-
work [31] was developed with the feature that it handles the primal quadratic 
program and its dual problem simultaneously by minimizing the duality gap 
and using the gradient method. Unfortunately, the dynamic equations of the 
primal-dual neural network are usually complicated, and may contain high-
order nonlinear terms. Moreover, the network size is usually larger than or 
equal to the dimensionality of the primal quadratic program and its dual 
problem. In [32] [49], a neural network called the dual neural network is pre-
sented to solve convex quadratic problems utilizing only the dual variables. 
In this section, we will give a new neural network called simplified dual neural 
network based on dual neural network for solving the Q P problem (5.11). It 
can further reduce the architecture complexity while preserving the desirable 
convergence property. 

The inequality constraints can be unified in more consistent forms. Define 

： 小 ― ° ° 1 “ M V ， 
I X 
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then the inequalities evolve to this form 

r < fx < e-

Based on the above transformation, (5.11) can be reformulated as 

minimize \xTWx, 
subject to Ax = b, (5.12) 

where F E R^i+i)x(n+i)^《-G 丑咖+”’《+ 6 

Hereafter, we will concentrate on formulation (5.12). 
Consider problem (5.12) as the primal problem P. Its dual problem D 

can be written as 

maximize bTy — \xTWx + — 
subject to VKrc - ATy - FTv + FTw = 0, (5.13) 

v>0, w > 0, 

where y G Rn\v G i?p, w G Rp are dual variables. 
Define u = v — IU, the equality constraints in (5.13) becomes 

M,x�- ATy - Fru = 0. 

According to the Karush-Kuhn-Tucker (I\KT) conditions for convex opti-
mization [1], the following set of equations have the same solution as problem 
P 

- ATy - FTu = 0， 

Ax = b, 
[ ( F x ) i = if ^ > 0, 
< (Fx)i 二 ‘+ if ^ < 0, 

I C < (Fx), < ^ if Ui = 0. 
That is, 

- ATy - FtU = 0, (5.14) 

A c - b, (5.15) 

Fx = g{Fx-u), (5.16) 

where 
g{y) = [91^1),92^2),--- ,gP{vP)]T. 
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[ C if 叫 < f ， 

= < Vi if C <Vi< i = 1,---

If f = -co, g(vi) degenerates to 

I ^ otherwise, i = 1, - - • 

From equation (5.14), because W is invertible, 

x = W~\ATy-VFTu). (5.17) 

Substituting (5.17) into (5.15), we have 

AW-\ATy + FTu)=b. 

As rank(/1) = m and W is invertible, AW~lAT is invertible. Then y can be 
explicitly expressed by u. 

y = {AW-lAT)~l [(-AW~lFT)u + b] (5.18) 

Based on (5.16)，(5.17), (5.18), by the projection theorem, the dynamic equa-
tion of the neural network for solving the primal problem (5.12) can be de-
signed as 

• State equation 

e蓥= —Fx + g(Fx 一 u), (5.19) 

• Output equation 

x = W~\ATy + FTu), 
y = (AW~lAT)-1 [{-AW-'F^u + 6], 、’） 

where u e Rp is the state vector, e > 0 is a scaling parameter that controls 
the convergence rate of the neural network. In implementation, e should be 
set as small as the hardware permits. The recurrent neural network can be 
rewritten in the more compact and explicit form as 

• State equation 

NIL 
e— = - F M F t U + g(FMFTu -U + Fs)- Fs, (5.21) 
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Figure 5.1: Block diagram of the simplified dual neural network. 

• Output equation 

x = MFtU + s, (5.22) 

where M := W~\I - ATG), s := W~\ATh), G := {AW-lAT)-\AW~l), 
h := Because the analytic expression of A, W, F can be 
obtained in the design stage, the analytic expressions of M and s can be 
computed beforehand. In view of this, though expression (5.21) appears 
complicated, it is not computationally complex. The block diagram of the 
neural network is shown in Fig. 5.1. 

As a comparison, the original dual neural network [32] [49] for solving 
problem (5.12) is 

f f = ~EW~lETu + g(EW~lETu -u), 
x = W~lETu, . ) 

where 
“A “ 

E - = C ^ j^(3n+m+l)x(n+l) 

I 

In the simplified dual neural network, the number of neurons is equal to the 
number of inequality constraints, whereas the number of neurons is equal 
to the number of equality and inequality constraints in the original dual 
neural network (5.23). A complete comparison with several existing neural 
networks for solving the quadratic program problem (5.11) is shown in Table 
5.1. The recurrent neural network (5.19) can be proven to be stable in 
the sense of Lyapunov and asymptotically globally convergent to the exact 
optimal solution of the quadratic programming problem. 
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Neural Network Type Number of Neurons References 

Simplified Dual Neural Network 3n + 1 this chapter 

Lagrange Neural Network 9n + m + 4 [29] 

Prime-Dual Neural Network hn + m + 1 [31] [52] 

Dual Neural Network 3n + m + 1 [74] [75] 

Table 5.1: Comparison of architecture complexity among various neural net-
works 

5.4 Simulation Results 
The Unimation P U M A 5 6 0 manipulator has six joints. When the pose of the 
end-effector is considered, PUMA560 is not a redundant manipulator. How-
ever, if we consider only the position of the end-effector, PUMA560 becomes 
a redundant manipulator with the associated Jacobian matrix J(6) G i?3x6

. 

In this section, we discuss the bi-criteria torque optimization of the P U M A 
560 when its end-effector tracks circular paths, by means of the proposed re-
current neural network. 

The desired motion of the end-effector is a circle of radius r — lOan with 
the revolute angle about the x axis 7t/6. The task time of the motion is 10s 
and the initial joint variables 6(0) = [0 0 0 0 0 0]T

. Fig. 5.4 illustrates the 
simulated motion of the P U M A 560 manipulator in the 3D workspace, which 
is sufficiently close to the desired one. Fig. 5.11 shows the end effector posi-
tion error more clearly. From this figure, we can see that the error is within 
0.025mm. Fig. 5.5, 5.6 and 5.7 illustrate respectively the transient behaviors 
of joint variables, joint velocities an joint accelearations. Figs. 5.8 and 5.9 
show the infinity norm and the 2-nonn of joint torques while moving when 
a 二 0.5’ 0.99，0.01 respectively. As described in Section 5.2，when a = 0.01, 
the bi-criteria solution is approximate to the infinity-norm solution; while 
a = 0.99, the bi-criteria solution becomes nearly the inertia 2-norm solution. 
From Figs. 5.8 and 5.9, we can see that the bi-criteria, solution always make 
a balance between the infinity-norm solution and the weighted-norm solu-
tion. In view of discontinuity of pure infinity-norm solution, the bi-criteria 
solution is smooth, which implies no sudden change of torque, which can be 
observed from Fig. 5.10. Hence, compared with single-criterion torque opti-
mization, the bi-criteria scheme based on the simplified dual neural network 
is much more flexible in the sense that it can yield any combination of the 
minimum-effort and minimum-power solutions as needed; at the same time 
eliminate the discontinuity of minimum-effort solution. 
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Figure 5.2: Block diagram of neural network based torque optimization of 
manipulators 

A 擊 
Figure 5.3: P U M A 5 6 0 robot manipu- Figure 5.4: Motion trajectory of 
lator PUMA560 manipulator while tracking 

a circle 
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5.5 Concluding Remarks 
In this chapter, a simplified dual recurrent neural network is applied to the bi-
criteria torque optimization of the redundant robot manipulators. The neural 
network is globally convergent to the optimal solution. Simulation results 
show that the bi-criteria torque optimization based on the neuro-dynamic 
approach is effective and efficient in balancing the energy consumption and 
the torque distribution among joints. 

J 

I 
1 
y 

I 

• End of chapter. 



Chapter 6 

Robot Arm Obstacle Avoidance 

summary 

With the wide deployment of redundant manipulators in complex 
working environments, obstacle avoidance emerges as an important 
issue to be addressed in robot motion planning. In this chapter, the 
obstacle avoidance scheme for redundant manipulators proposed in 
[50] is improved. In the improved scheme, obstacle avoidance is 
mathematically formulated as a time-varying inequality constrained 
quadratic programming problem taking advantage of the manipu-
lators' kinematic redundancy. To solve this time-varying quadratic 
optimization problem in real time, a recurrent neural network called 
simplified dual neural netwok is proposed, which has lower struc-
tural complexity compared with previously proposed neural net-
works for solving the problem. The efFectivity of the improved 
scheme and the real time solution capability of the simplified dual 
neural network is demonstrated through a simulation case on the 
Mitsubishi PA10-7C manipulator. 

6.1 Introduction 
As the development of automation industry, robot manipulators are required 
to work in more and more complex and dynamic environments, where an im-
portant issue to be considered is how to effectively avoid the static or moving 
objects in the workspace of the manipulators. Kinematically redundant ma-
nipulators are those having more degrees of freedom than required to perform 
given end-effector moving tasks. Being dexterous and flexible, they have been 

ii 



CHAPTER 6. ROBOT ARM OBSTACLE AVOIDANCE 57 

used for avoding obstacles, singularity, and optimizing various performance 
criteria in addition to tracking desired end-effector trajectories. Of those ver-
satile applications, obstacle avoidance is extremely important for successful 
motion control when obstacles exist in the workspace. Many studies have 
been reported on using kinematically redundant manipulators for motion 
control and obstacle avoidance (e.g., [77][67][68][78][79][69][80][81][82][83]). 
One class of approaches to obstacle avoidance for redundant manipulators is 
based on high-level motion planning by means of roadmaps, potential fields, 
cell decomposition, or mathematical programming. This class of methods is 
most suitable for avoidance of fixed obstacles in known structured working 
environments. For obstacle avoidance in uncertain or dynamic environments, 
low-level local motion control in real time is necessary. The popular meth-
ods for real-time obstacle avoidance employ the pseudoinverse for obtaining 
a general solution at velocity level, which contains a minimum L2-norm solu-
tion and a homogeneous solution. The homogeneous solution is selected such 
that a secondary goal of obstacle avoidance is achieved while accomplishing 
the primary goal of trajectory tracking, e.g., [77][67][68][78]. Khatib [79] de-
veloped the artificial potential method to control robots in the presence of 
obstacles. However, the use of this approach is limited due to the existence of 
local minima arid its inability to handle arbitrarily shaped obstacles. Scia,v-
icco and Siciliano [69] augmented the Jacobian matrix to fully constrain the 
system by including constraints for collision avoidance. This method may 
induce algorithmic singularity to make solutions infeasible. Guo and Hsia 
[80] presented a method to optimize the distance between the robot links 
and obstacles. The intensive computation in the construction of the distance 
function rules out a real-time application of this method. 

The real-time obstacle avoidance problem in robotic motion control is 
concerned with determining the joint variables of a kinematically redundant 
manipulator in real time to follow the desired trajectory accurately without 
any collision with obstacles in the workspace. To perform successful robotic 
manipulations in dynamic and/or uncertain environments, it is highly desir-
able to determine the optimal motion of the manipulators in real time. Such 
a real-time optimization process entails extremely extensive on-line computa-
tion. The existing optimization techniques are usually incompetent because 
of the time-varying nature of the optimization problem. Parallel and dis-
tributed approaches to real-time obstacle avoidance are deemed necessary as 
well as desirable. In the past fifteen years or so, recurrent neural networks 
for optimization have been widely explored. Reported results of numerous 
investigations have shown many advantages over the traditional optimization 
algorithms, especially in real-time applications. 

In this chapter, we will develop a recurrent neural network capable of ob-
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stacle avoidance for real-time motion planning and control of kinematically 
redundant manipulators. Compared with supervised learning feedforward 
neural networks, the proposed recurrent neural network eliminates the need 
for iterative training. Unlike the recurrent neural networks based on penalty-
parameters, the proposed recurrent neural networks are able to converge to 
exact optimal solutions without using any penalty parameters. This chapter 
addresses the key issues and solve the key problems including the formulation 
of the real-time obstacle avoidance problem as real-time optimization prob-
lems using different objective functions and constraints, the determination of 
appropriate energy functions and dynamic equations of the recurrent neural 
network models which underlie the development of the recurrent neural net-
works, the analysis of neural network dynamics and overall intelligent robotic 
systems in terms of stability and optimality, the evaluation of system char-
acteristics and performance by means of simulations of the recurrent neural 
networks for motion control of redundant manipulators. 

The remainder of this chapter is organized as follows. In Section 6.2, an 
improved obstacle avoidance scheme is proposed based on the formulation 
in [77]. The scheme is then compared with the one in [50]. In Section 6.3, 
we propose a simplified dual neural network for solving the time-varying 
quadratic optimization formulation derived in Section 6.2. The convergence 
behavior and the structural complexity of the network is also studied. A 
simulation case is reported in Section 6.4. At last, Section 6.5 concludes this 
chapter. 

6.2 Obstacle Avoidance Scheme 

6.2.1 Equality Constrained Formulation 
The obstacle avoidance scheme proposed in this section is based on the al-
gorithm proposed by Maciejewski and Klein [77]. The obstacle avoidance 
algorithm is to identify from time to time the critical points, which is defined 
as the points on the manipulator every link which are closest to the obstacles, 
and then assign them desired velocities which direct the critical point away 
from the obstacle. 

Each critical point C is defined as the point on the link L which is closest 
to the obstacle point O. As shown in Fig. 6.1, corresponding to different 
relative positions of the obstacle and the link, there are two possible cases 
for locating the critical point C on the vulnerable link L. Here the obstacle 
point O is representative of the obstacle object. In model-based control, the 
position of the obstacle O is a priori available; while in sensor-based control, 
it is determined by synthetic information of sensor fusion technology, e.g., 
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Figure 6.1: Critical point location 

utilizing vision, ultrasonic, and infra-red sensors. The critical point C is thus 
derived via the online distance minimization between the manipulator link 
and the obstacle object. 

Taken obstacle avoidance into consideration, the forward kinematics of a 
serial-link manipulator can be described by the following augmented forward 
kinematics equation: 

re(t) = Wit)), rc(t) = f c _ (6.1) 

where re G Rm is the encl-efFector's m-dimensiona.l position and/or orienta-
tion vector, and rc e R3 is the critical point's position vector, 9(t) is the joint 
vector of the manipulator, and fe and fc are nonlinear functions of the ma-
nipulator with respect to respectively the end-effector and the critical point. 
If there exist more than one critical points, multiple equations, similar to the 
second one, are present. 

The manipulator path planning problem (also called inverse kinematics 
problem or kinematic control problem) is to find the joint variable 6(t) for any 
given re(t) and rc(t) through the inverse mapping of (6.1). Unfortunately, it 
is usually impossible to find an analytic solution due to the nonlinearity of 
/e(.) and /c(-). The inverse kinematics problem is thus usually solved at the 
velocity level with the relation 

Je(0)6 = re, Jc(6)9 = rc, (6.2) 

where Je(6) = dfe(6)/d0 and Jc(6) = dfc(6)/d6 are the Jacobian matices, 
and re is the desired velocity of the end-effector, rc is the desired velocity of 
the critical point which should be properly selected to effectively direct the 
link away from the obstacle. 

The desired motion of the critical point is regarded as the secondary goal 
when the minimum distance between the link and the obstacle is shorter than 
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a specified safety margin. Here we put the obstacle avoidance algorithm into 
an optimization framework. Then the motion planning and obstacle avoid-
ance problem of a kinematically redundant manipulator can be formulated 
in a time-varying local optimization framework as: 

minimize c(6{t)) 
subject to Je(e{t))6(t) = re(t) 

J C M ) ) M =训 ‘ 
I < 9{t) < u 

where c(.) is an appropriate convex cost function, and I and u are respectively 
lower and upper bounds of the joint velocity vector [46]. 

In the above problem formulation, the convex cost function can be se-
lected according to the task needs. For example, various vector norms of 
the joint velocity vector (e.g., |丨々 ⑷丨|i,丨|々 ⑴||!，丨|々 ⑴||oo) are often used as a 
cost function [42] [43] [44] [45] [46] [47]. To avoid singularity configurations or 
drifty in repeated operations, a linear term of 9 can be added. The first 
constraint corresponds to the primary goal of tracking a given end-effector 
motion, and the second constraint is to achieve the secondary goal of obsta-
cle avoidance, which is included whenever the shortest distance between the 
obstacle and the manipulator is within a prespecified safety margin. When 
there exist more than one obstacle, multiple constraints, similar to the second 
constraint, that associate with the obstacles, should be included in the prob-
lem formulation. By putting the motion requirement of the critical points 
as a constraint instead of as a part of a part of the objective function, the 
solution obtained from (6.3) is ensured to satisfy both the goals of tracking 
a specified end-effector trajectory and avoiding the obstacles simultaneously. 

6.2.2 Inequality Constrained Formulation 
The previous obstacle avoidance method formulated in (6.3) can make the 
manipulator link move away from the obstacle once it enters the danger zone 
(i.e., the region inside the prespecified safety margin). But it has several 
drawbacks. First, how to determine the suitable magnitude of escape velocity 
rc? This value should be selected large enough to ensure that the link moves 
faster than the obstacle (if the obstacle is moving) to ensure the minimum 
distance between them enlarge as time goes on. At the same time, to be safe 
and energy efficient, the velocity should not be too large. Second, suppose 
that there are p critical points. If m + p > n, the optimization problem 
(6.3) is overdetermined, i.e., it has no solution. From this sense, the equaltiy 
constraints unnecessarily reduce the solution space, sometimes even make it 
null. 
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Figure 6.2: Escape direction and magnitude 

One possible approach to overcome these drawbacks is to replace the 
equality constraints by inequality constraints. As shown in Fig. 6.2, we 
can just constrain the direction and magnitude of rc in a range and let the 
optimization process to determine its accurate direction and magnitude. 

The constraints of direction and magnitude of fc can be considered as 
follows. The component of rc projected on OC (i.e., CE in Fig. 6.2) should 
change with the minimum distance \OC\ between the obstacle and the link. 
W h e n the distance is large, \CE\ can be small, but when the distance is near 
small, especially less than the safety margin, \CE\ should be big enough to 
direct the link away from the obstacle promptly. Because the moving velocity 
of the obstacle is not known, \CE\ should be large enough when the distance 
\OE\ is very small. A natural candidate function is the hyperbolic function 

c 
.,where c is a positive parameter controlling the velocity magnitude as 

shown in Fig. 6.3. Then the obstacle avoidance constraint can be formulated 
as 

\rc\cosa ^ (6.4) 

The above inequality is equivalent to 

|rc||OC| coscv》c. 

It can be further written in the dot product of the two vectors rc and OC as 

Because 

_ ^ r -iT 
OC = xc — x0 yc - y0 zc — z0 

and 
rc = Jc(0)(9), 
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fc • OC can be written in the expression of 0, 

_ ^ � 1 . 

十c • OC = xc — x0 yc - yD zc - z0 Jc{0)9. 

Then the constraint (6.4) evolves to the following form 

xc 一 x0 yc - y0 zc - z0 Jc{0)6�c. (6.5) 
If there are p critical points, define 

/ r -j \ 
^CI _ Vc\ 一 Vo\ — :01 Jci (没） 

m ：= ； . 

y [知P - yCp — y0p zCp - z0p JCp{0) y 

After substituting the equality constraint in (6.3) by the inequality constraint 
(6.5), we get the following formulation with the L2-norm function as the cost 
function, 

1 
minimize 

subject to Je{Q)6 = ？ （ 6 6) 
L(9)9�c, 

Further define 

F{9) ：= e R{n+P) X 71’ 

r := Cj e R{n+P\ 

t ：= 0 0 e R^n+P\ 
u 

then the above formulation can be rewritten as 

minimize 臺||々丨旧 

subject to Je(9)9 = re, (6.7) 

r ‘ F(6)6 ^ 

Now let's compare the proposed scheme with the one proposed in [50] 
where the obstacle avoidance is formulated as an inequality constraint 

JN(9)e 彡 0， (6.8) 



CHAPTER 6. ROBOT ARM OBSTACLE AVOIDANCE 64 

where Jj-v(O) = —sgn(OC) o Jc{0). 1 The vector matrix multiplication opera-

tor o is defined as uoV = [^1^1,^2^2, •. • , upVv]T, where the column vector 
u = • • •，up]T and the row vector Vi denotes the ith. row of matrix V. 

From (6.8)，we can see that the direction of escape velocity is confined 

in the quadrant where OC lies, which varies with the Cartesian corrdinates 
setted up. While in this proposed scheme, the direction is only required to 

be on the perpendicular half plane on which side OC lies. That is to say, 
compared with the scheme in [50], the present scheme can double the solution 

space. 

6.3 Simplified Dual Neural Network Model 

6.3.1 Existing Approaches 
In the past two decades, the theory, methodology and applications of neural 
networks have been widely investigated. As dense parallel computational 
models, neural networks possess many desirable properties such as real-
time information processing. In particular, recurrent neural networks for 
optimization, control, and signal processing received tremendous interests 
[26] [33] [34] [35]. In recent years, neural networks have been developed and ap-
plied to robot control in intelligent robotic systems. Specifically, feedforward 
and recurrent neural networks have been used for kinematic control and dy-
namic control of redundant manipulators. In particular, Wang, Xia, Zhang, 
et al, have developed several recurrent neural networks for kinematic control 
and torque optimization of redundant manipulators using different objective 
functions under various conditions or constraints [43j [44] [45] [46] [47] [32] [49] [51] [50] [52]. 
These recurrent neural networks are theoretically proven to be asymptotically 
stable and are demonstrated to be suitable for real-time motion control of 
redundant manipulators. For example, a two-layer recurrent neural network 
called the Lagrangian network is developed based on a quadratic optimization 
formulation of differential inverse kinematic problem and Lagrange optimal-
ity condition for pseudoinverse control of kinematically redundant manipu-
lators without directly computing the pseudoinverse of a Jacobian matrix 
[44] [46]. Such a neural network is proven to be capable of generating optimal 
joint rate signals to track given trajectories, even though the Jacobian ma-
trix is rank-deficient. A single-layer recurrent neural network called the dual 
network is recently developed based on the primal-dual formulation of the 
differential inverse kinematic problem and the duality theory in optimiza-
tion [27] [30]. This neural network has much lower architectural complexity 

J T h e notations in [50] are revised to be consistent with the notations in this chapter. 
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and is also proven to be able to generate optimal joint rate signals like the 
Lagrangian network. Recently, a recurrent neural network called the primal-
dual network with much reduced network complexity is also applied for the 
minimum infinity-norm kinematic control of redundant manipulators based 
on an improved problem formulation [26] [33]. Compared with feedforward 
neural networks for robot control based on supervised learning, the presented 
recurrent neural networks eliminate the need for off-line learning. Compared 
with other recurrent neural network approaches to robot control, the stability 
and optimality of the above models are theoretically guaranteed. 

The above recurrent neural network approaches to robot kinematic con-
trol mainly aim at the primary task of redundancy resolution for the trajec-
toiy tracking by the end-effectors of redundant manipulators without con-
sideration of the secondary task of obstacle avoidance. To equip redundant 
manipulators with the capability of obstacle avoidance based on neural net-
works, the following investigation on recurrent neural networks for real-time 
obstacle avoidance of redundant manipulators is absolutely necessary and 
rewarding. 

6.3.2 Model Derivation 
In [32] [49]，a neural network called dual neural network is presented to solve 
the convex quadratic problems utilizing the dual variables. In this subsec-
tion, we will simplify the dual neural network for solving the quadratic pro-
gramming problem (6.7). Here we call the network as simplified dual neural 
network, which reduces the dual neural network's structural complexity while 
preserving its desirable convergence and optimality properties. 

Taken the problem (6.7) as the primal problem, its dual problem can be 
written as 

maximize —》
T
§ + — 

subject to 6- Je(6)Ty - F{6)Tv + F(6)Tw = 0, (6.9) 
v ^ O , 0， 

where y € Rm, v E Rn+P, w G Rn+P are dual variables. 
Define u = v — w, the equality constraint in (6.9) becomes 

9 - JE{9)Ty - F{6) TU = 0. 

According to the Karush-Kuhn-Tiicker (KKT) conditions for convex opti-
mization, the following set of equations have the same solution as problem 
(6.7). 

0 - JE{6)Ty — F(6) TU = 0， (6.10a) 



CHAPTER 6. ROBOT ARM OBSTACLE AVOIDANCE 66 

j人 d)e = te, (6.10b) 

f ( F _ = <e「， if 叫 >o， 

< {F(9)6)I = ^, if 均 <0， 

[ c < (FiO)^ < if 均二 0. 

The last equation can be rewritten as 

F{6)e = g{F{e)6-u), (6.10c) 

where g(v) is a piecewise linear function, defined as 

9iv) = [^1(^1),^2(^2),--- ,9P{yP)}T, 

and 

I C ' if 灼 < &一， 

v“ if C ^ ^ ^ i = 1,--- ,p. 

If ̂  = 00, g(vi) degenerates to 

卜
i f V

礼 
I ^，otherwise, i = 1, • • • ,p 

From equation (6.10a), 6 can be explicitly expressed by y and u, 

e = Je(6)Ty + F(d)Tu. (6.11) 

Substitute the expression of 9 into (6.10b), 

Je(0)Je(0)Ty + Je(6)F(e)Tu = re. 

Then y can be explicity expressed by u, 

V = ( J E W M ^ F U M ^ L F M T U + Q. (6.12) 

Based on (6.10c),(6.11),(6.12), by the projection theorem [2], the simplified 
dual neural network for solving the primal problem (6.7) can be designed as 

• State equation 
(jii . . 

e— = -F{d)e + g(F{6)6-u) 

• Output equation 

9 = JE(9)Ty + M T U 

y = (Je(0)Je(0)T)-l[-Je(6)F(e)Tu + re] 
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where u E Rp is the state vector, e > 0 is a scaling parameter that controls 
the convergence rate of the neural network. It can be rewritten in the more 
compact and explicit form as 

• State equation 

nni 
e— = -F(6)MF{6) TU + g{F{E)MF{6)Tu - u 

+F{6)s) + F{9)s (6.13a) 

• Output equation 

6 = MF{6) TU + s (6.13b) 

where M := I 一 Je{0)T{Je(e)Je{e)T)~l Je{6),s := Je(6)T(Je(9)Je(d)T)-lre. 
In this context, the desired end-effector velocity re is fed into the neural 

network as its input. And the neural network parameters (e.g. Je, J0, g(-)) 
are time-varying, determined by the pose of the manipulator and the position 
of the obstacle. The optimal joint rate 9 that could make the manipulator 
avoid obstacles is generated as the neural network output. By further taking 
integration of the joint velocities with the known initial values, we can get 
the joint motions that the manipulator should follow. 

Because the analytic expression of Je(9), F(6) can be obtained in the de-
sign stage, the analytic expressions of M and s can be computed beforehand. 
In the simplified dual neural network, the number of neurons is equal to the 
number of inequality constraints, whereas the number of neurons is equal to 
the number of equality and inequality constraints in the original dual neural 
network [32] [49]. 

6.3.3 Convergence Analysis 
The properties of convergence and optimality of the solution are studied 

below. 

Theorem 7 The simplified dual neural network (6.13a) is globablly conver-
gent to an equilibrium, pont u*. 

Proof W e have the following inequality at u* 

{v-F(6)d*)Tu*^oyven, 

where 8* is the optimal solution of problem (6.7). 
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Therefore, it follows that 

[g(F(0)MF(O)Tu + F(0)s-u) 
~(F(0)MF(O)Tu* + F(d)s)]Tu* 彡 0. 1 . 

O n the other hand, from the projection theorem [2], it follows that Wu e Rn, 

{g(F{6)MF(6)Tu + F{6)s 一 u) — (F(6)MF{9)Tu* + 
F{6)s))T{{F{e)MF)6)Tu + F{9)s - u) 
-g{F{0)MF(e)Tu + F{9)s — u))彡 0. (6.15) 

Combining (6.14) and (6.15), we have 

{g{F(6)MF{e)Tu + F{0)s - u) — (F(9)MF{6)Tu* + 
F{9)S)) T(U* + [F(6)MF(E)Tu + F{0)s — u) 

-g(F(d)MF(0fu + F(0)s - u))�0. 

Defining 

g ：= {F{6)MF{9) TU + F{6)s - u) — {F{6)MF{9) T + F{6)s), 

it can be written as 

[g + F(6)MF{9) T(U — 'u*)]T[(u - u*) + 浏 彡 0. 

Then we can get 

(u - u*)Tg + gTF(d)MF(6)T(u - u*) 
彡-||引I2 - (u - u*)TF{9)MF{9)T{u — u*). • 

Because 

F(9)MF(6) T = F(6)(I — JE(6)(Je(0)Je(0) TRlJEMM T  

is positive semidefinite (see Lemma 4 in the Appendix), i.e., 

(u - u*)TF(d)MF{d)T{u 一 u*)彡 0. (6.17) 

From (6.16) and (6.17), we can get 

(u - u*)T~g + gTF{9)MF{d)T{u — u*)彡 0. (6.18) 

If and only ii u = u*, the equality holds. 
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Now choose the following radially unbounded Lyapunov function candi-
date 

V(u) = \\\Q(u)-u*Wl (6.19) 

where Q is symmetric and positive definite matrix with Q2 = (I-\-F(6)MF(6)T). 
Then from (6.18), we get 

dV , *�7^0 

i = ( … W 
={u-u*)T{I + F{d)MF{9)T)g 
=(u - u*)Tg + gTF{6)MF(0)T(u - u*) 
^ 0. 

By the Lyapunov theorem, the simplified dual neural network is globally 
convergent. • 

Theorem 8 0* = Mu* + s is an optimal solution of the quadratic program-
ming problem (6.7), where u* is an equilibrium point of the dynamic equation 
(6.13a). 

This theorem can be proven by substituting 9* into the K K T conditions 
(6.10). The three conditions are satisified, which means that 6* is the optimal 
solution of the problem (6.7). 

From Theorems 7 and 8, we can conclude that the simplifed dual neural 
network (6.13) is globally convergent to the exact solution of the problem 
(6.7). 

6.3.4 Model Comparision 
As pointed out at the beginning of this section, previously three recurrent 
neural network models have been proposed for kinematically redundant ma-
nipulators, respectively Lagrangian neural network [46], dual neural network 
[50] and primal-dual neural network [52]. In this subsection, we will com-
pare the different aspects of these recurrent neural network models with the 
simplified dual neural network proposed in this chapter. 

In [46], the obstacle avoidance is formulated as the equality constraints 

and not considering the joint velocity limits. The formulation can be written 

as 1 
minimize -0

T
0, 

2 
subject to Je(9) = re, (6.20) 

Jc(0) = rc. 
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If we define J := [Je
T
, JC

T
]

T
, r := [rj, rj

1
]
7
", then the Lagrangian neural 

network for solving (6.20) can be written as 

du rT li— = —u — J v, (6.21a) 

" 字 = J u — f , (6.21b) 

at 
where // is a positive scaling constant to scale the convergence rate of the 
neural network. The Lagrangian neural network can only tackle equality 
constraints easily. And the number of neuron is equal to 3m. Another 
drawback of Lagrangian neural network is that it can only converge to the 
approximate optimal value, not the exact optimal value. 

If we define 

rr . Je(0) 1 _ I" re 1 + [ fe 
T2 • = , 77 • = 77丁 • = . 

F(6) ’ " ’ � . ‘ 
the dual neural network proposed in [50] for solving (6.7) can be written as 

dzi 
/J— = g{HHru -U)- HH TU, (6.22a) 

^ = H t U , (6.22b) 

where /x is a positive design parameter to scale the convergence rate of the 
dual neural network, and g is defined similiarly as (6.10c). The number of 
neurons is n + m + 1. This neural network is globally convergent to the 
optimal solution. 

In [52], a new recurrent neural network called primal-dual neural network 
is proposed. In the paper, the neural network can only tackle bound inequal-
ity constraints, not general inequality constraints. But if new variables are 
introduced, this neural network can be used to solve (6.7). The number of 
neurons is 3n + 4. This neural network is simplifier than dual neural network 
only if the inequality constraints is bound constraints, instead of the general 
ones. This neural network is also globally convergent to the optimal solution. 

In summary, the simplified dual neural network is simplifier than these 
previously proposed neural networks with n + 1 neurons while preserving the 
globally optimal solution property. 

6.4 Simulation Results 
In this section, the validity of the proposed obstacle avoidance scheme and the 
real-time solution capability of the simplified dual neural network is shown 
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through a simulation case with the Mistsubishi 7-DOF PA10-7C manipulator. 
The coordinates are setted up according to [44], and the structure parameters, 
joint limits, and joint velocity limits can also be found there. In this study, 
only the position of the end-point is concerned, then m = 3 and n = 7. The 
parameter c is chosen as 5e — 4. The parameter that controls the convergence 
rate of the simplified dual neural network is chosen as e = 10~

6
. 

Example 1: The desired motion of the end-effector is a circle of radius 
r = 20cm with the revolute angle about the x axis 7r/6. The task time of the 
motion is 10s and the initial joint variables 0(O)=[O; —7r/4; 0; 7r/2; 0; —tt/4; 
0]. In the workspace there are two obstacle points, respectively [-0.0454m; 
-0.0737m; 0.8367m], and [-0.1541m; -0.0609m; 0.5145m]. Fig. 6.4 illustrates 
the simulated motion of the PA10 manipulator in the 3D workspace, which is 
sufficiently close to the desired one with the tracking error less than 0.6mm, 
as seen from Fig. 6.5. 

The minimum distances between obstacles and links are shown in Figs. 
6.6, 6.7, arid 6.8, where the links always tend to move away from the obstacle 
once they enter the danger zone. Fig. 6.9 shows the comparison between 
the case with and without obstacle avoidance scheme. Without obstacle 
avoidance, the link will collide with an obstacle as shown by the dotted line 
in Fig. 6.9. But when the proposed scheme is adopted, the link will move 
away from the obstacle once entering the danger zone, which is shown by the 
solid line in Fig. 6.9. 

Example 2: In this example, The desired motion of the end-effector is 
a straight line. The task time of the motion is 10s and the initial joint 
variables 6>(0) = [0; -7r/4; 0; 7r/2; 0; -7r/4; 0]. In the workspace there are 
two obstacle points, respectively [0; 0; 0.6000m], and [-0.1541m; -0.0609m; 
0.4500m]. Figs. 6.12 and 6.13 show respectively the motion trajectories of 
P A 10 when there are no obstacles and when there are two obstacles in the 
workspace. The minimum distances between obstacles and links are shown 
in Fig. 6.15, where the links always tend to move away from the obstacle 
once they enter the danger zone. 

6.5 Concluding Remarks 
A new obstacle avoidance scheme is proposed based on quadratic program-
ming formulation. The solution to this time-varying optimization problem 
using a new recurrent neural network called simplified dual neural network is 
compared with other neural network models and is simulated with the PA 10 
robot manipulators. The results show that this scheme is effective and can 
be performed in real time. 
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Figure 6.4: The PA 10 manipulator in Figure 6.5: Position Error of the end-
a circular motion effector 
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obstacle 1 I obstacle 1 

0,6 ^ • -' • obstacle 2 . q.3 .I obstacle 21 • 

0.5 • 0.25 , 

^ 0.4 . 一 0.2
 :

/ 

£ ^ 
0.3 0.15 • 

0.2 0.1 • 
.• • • • 

0.1 0.05 • — , . . 

o' ' ‘ 0' ' 
0 2 4 6 8 10 0 2 4 6 8 10 

t (sec) t (sec) 

Figure 6.6: Minimum distance be- Figure 6.7: Minimum distance be-

tween obstacles and Link 1 tween obstacles and Link 2 



CHAPTER 6. ROBOT ARM OBSTACLE AVOIDANCE 73 

Link 3 
0 4 丨 . , , Link 2 

O b s t a c l e 1 with obstaclo avoidance 

0 . 3 5 • | Obs t ac l e 2 without obslacle avoidance 

0.3. ,... 0 2 ' 

0 . 2 5 . . . . . . . . . . , Z 

0 . 0 5 ^ ^ \ J 丨 

qI I I , i i v 1 

0 2 4 6 8 10 °o 2 4 6 8 10 

t (sec) 1(sec) 

Figure 6.8: Minimum distance be- Figure 6.9: Comparision of minimum 
tween obstacles and Link 3 distance between obstacle 2 and link 2 

with and without obstacle avoidance 

0.4, , ,
 2

i '—
 1 1

 ~~iy 
1 8 . scheme by Zhang | | . 

0 3 . scheme in this paper j | 

、 16- !j 

- o , \ 、 - . . 0 6 -

04- J ！ I • 

03
 i -

 02
 一 ^ ^ o . 」 u j ： 

-0 4 ' 1 1 ‘ ‘ 0 ^-^ 1 1 1 

0 2 4 6 8 10 0 2 4 6 8 10 

I (soc) t (sec) 

Figure 6.10: Joint velocities Figure 6.11: Comparision of minimiza-

tion of the objective function between 

two schemes 



CHAPTER 6. ROBOT ARM OBSTACLE AVOIDANCE 74 

•••• : : ••••： : : .: 

. I t " ^ ^、 ^： ；: , , 
oi / 0 ' X 0 

06
 /-0.2 06

 ^ T ^ r T T T T - - - - - ^ "
0 2 

0 2 0 1 Z 0 1 0 -0.4 x (m) , 、 0 1 0 ^ - 0 4 x(m) -0.1 M m ) 

y (m) 

Figure 6.12: The motion trajectory Figure 6.13: The motion trajectory 
of PA10 when there are no obstacles of PA10 when there are two obstacles 
while tracking a straight line while tracking a straight line 

Link 1 

0.5. 1 . > U 
obstacle 1 一 

0 6 r ' 1 ' : j 百 • obstacle2 

"02[ / \ \ \ / ‘ 夕 / j 。0 2 4 6 8 10 

J . .. / ,__,__ - „ 
! obstacle 1 

/ 它 obstacle 2 

i ——-^E： 
_q 31 » — J — 1 1 1 0 2 4 6 8 10 

0 2 4 6 8 10 t(sec) 
t(sec) 

Figure 6.14: The joint velocities of PA Figure 6.15: The distances between 

while tracking a straight line obstacles and links while tracking a 

straight line 



CHAPTER 6. ROBOT ARM OBSTACLE AVOIDANCE 75 

Appendix 
Lemma 4 For P G Rmxn (m < n), rank(P) = m, the following matrix 
inequality holds 

I — PT{PPT)~lP h 0 

Proof Denote P = [pi p2 ... p m]
T
, we can find n — m column vectors 

PuP2, • • • ’Pn-m，such that 

pjpi = 0. 

Define P := [?〕i 乡2 …p„_ m], then 

~ T 

P P = 0(n-m)xm 

^ ( P P T ) T = 0 m X ( n - m ) 

^ P P = O m x ( n - m ) . 

�P 1 
Define Q := 户 € R n x n . Because rank(P) = m, andpi,p2, •. • ,Pm.,Pi,P2,. _ • ,pn-m 

are linearly independent vectors, then matrix Q is invertible. 

y Ty = y TQ T(Q T)- lQ~ lQy 

=(Qy) T(QQ T)~ l(Qy) 
p 1 「 P 1 r i 「 P 

= ( p ")T( p [ P t p T}r l( p y) 

'PyV [" PPT PpT 1_1 r Py _ 
Py PP T PP T Py 

'py]\ P P t omx(n_m) r 1 r py' 
— _ P y \ [ 0 ( „ - m ) x m PP T

 J [ Py _ 

'Py]\ (PP T)~ 1 0mx(ri_m) 1 r Py' 

一 py\[ 0 ( n _ m ) x m ( P P T r l \ [Py _ 

=y TP T(PP T)~ lPy + y TP T(PP T)- 1Py 

Move y TP r{PP T)~ lPij to the left side, 

y Ty - y TP T(PP T)- lPy = y TP T(PP T)- lPy. (6.23) 

Because 

PPT h 0’ 
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then 

P T(PP T)- 1Pto. 

That is, 

y TP T(PP T)- 1Py>0, \fy G R n. (6.24) 

From (6.23) and (6.24), 

y Ty — yTPT(PPT)~1Py >0， yy e R n, 

i.e., 

I - PT{PPT)~lPhO. 
• 

• End of chapter. 



Chapter 7 

Multiuser Detection 

Multiuser detection has gained much attention in recent years for its poten-
tial to greatly improve the capacities of C D M A communication systems. In 
this chapter, a recurrent, neural network is presented for solving the nonlinear 
optimization problem involved in the multiuser detection in C D M A . Com-
pared with other neural networks, the presented neural network can globally 
converge to the exact optimal solution of the nonlinear optimization prob-
lem with nonlinear constraints and has relatively low structural complexity. 
Computer simulation results are presented to show the optimization capa-
bility. The performance in C D M A communcation systems is also verified 
through a simulation example. 

7.1 Introduction 
In wireless communication systems, Direct-Sequence Code Division Multi-
ple Access (DS-CDMA) is a promising technology, with several advantages 
over others: asynchronous multiple access, robustness to frequency selective 
fading, and etc [85]. But to permit a high number of user communicating 
simultanously with high bit rate in 3G mobile communication systems, the 
capacity has to be increased. The capacity of DS-CDMA is limited by signal 
interference. Therefore it can be increased by using techniques that suppress 
interference. Many research activities have been focused on the MultiUser 
Detection (MUD) techniques [85] [86]. Among them, blind detection is the 
most promising one because it requires no more knowledge than does the con-
ventional single-user detection: the desired user's signature waveform and its 
timing. The blind detection techniques turns the M U D problem to a con-
strained nonlinear optimization of the objective function Minimum Output 
Energy (MOE). Based on this, Verclu proposed the adaptive blind detection 
which gives an adaptive solution to the nonlinear optimization to reduce the 

ii 
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computational complexity [87]. As the cost, adaptive blind detection needs a 
certain number of bit intervals to reach the optimal solution, since the path 
towards the optimum filter coefficients set is performed in a step by step 
approximation, based on the steepest descent gradient technique. 

Wireless communication channels are changing with time rapidly, because 
of both natural communicating conditions (like multipath fading, mobile ter-
minal moving, etc.) and random asynchronous access of other interfering 
users. So the wireless communication systems are typical real-time systems. 
This requires that the detection methods should adapt the parameters rapidly 
to achieve good performance. 

Neural network approaches have shown to be able to handle real-time 
applications, because of VLSI implementability and parallel processing ca-
pability [88]. The idea proposed in this chapter is to employ a recurrent 
neural network in order to accelerate the convergence process of the adap-
tive filter coefficients towards the optimum solution in the blind detection 
algorithm. 

After Hopfielcl and Tank's seminal work, Kennedy and Chua developed 
a neural network with a finite penalty parameter for solving nonlinear pro-
gramming problems [88]. Although this work actually fullfills both the Kuhn-
Tucker optimality conditions in terms of penalty function, this network is not 
capable to find an exact optimal solution due to a finite penalty parameter 
and is difficult to implement when the penalty parameter is very large. Fan-
tacci, Forti, and et al, developed a blind detector/receiver based on Kennedy 
and Cliua's neural network [89]. Kechriotis and Manolakos [94] investigated 
the application of Hopfield neural networks (HNN's) to the problem of mul-
tiuser detection in spread spectrum/CDMA (code division multiple access) 
comniuiiication systems. Recently, Xia and Wang proposed a recurrent neu-
ral network that can solve nonlinear convex optimization problems [90] [91]. 
Xia, and Wang's neural network is stable in the sense of Lyapunov and glob-
ally convergent to the exact optimal solution. Applying Xia and Wang's 
neural network, we proposed a neural network approach to blind multiuser 
detection. The simulation results show that it is efficient in blind detection 
of C D M A . 

7.2 Problem Formulation 
Multiaccess communication, in which several transmitters share a common 
channel, is common nowadays, like mobile communication systems, satellite 
communication systems, packet-radio networks, and etc. A common feature 
of those communication channels is that the receiver obtains a noisy version 
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of the superposition of the signal sent by active transmitters. How to detect 
the desired signal is important for these communication systems. 

The conventional D S - C D M A system treats each user as signal, with other 
users considered as noise or M A I (Mulitple Access Interference). This tech-
nique has several inherent shortcomings. Simply considering other users 
as noise makes the capacity interference-limited. For the same reason the 
near/far effect is very serious, so the system needs good power control [85]. 

To solve these problems, the MultiUser Detection (MUD) method was 
proposed by Verclu. M U D considers all users as signals when detecting a 
particular user signal; so this is a joint detection (in comparison to the sperate 
detection disucssed previous). This technique can reduce interference and 
hence lead to increase capacity. At the same time it alleviates the near/far 
problem. 

The optimum multiuser detector for asynchronous mulitple-access Gaus-
sian channels is discussed in [85] where it is shown that the near/far problem 
suffered by the conventional C D M A receiver can be overcome by a more so-
phisticated receiver which accounts for the presence of other interferers in the 
channel. This receiver is shown to attain essentially single-user performance 
upon knowing the following [86]: 

① The signature waveform of the desired user. 

② The signature waveform of the interfering users. 

③ The timing of the desired user. 

④ The timing of each interfering user. 

⑤ The received relative amplitudes of the interfering users to that of the 

desired user. 

The conventional receiver only requires ① and ③，but it is severely limited 
by the near/far problem, even in the presence of perfect power control, the 
bit-error-rate is orders of magnitude far from optimal. 

To alleviate the need to know interferers' signature ②，timing ④，and 
amplitudes ⑤，some attention has been focused recently on adaptive mul-
tiuser detection. The adaptive multiuser detector in [87] is based on the 
minimization of mean-square-error (MMSE) between the outputs and the 
data. But it needs traing data sequences for each user to approximate the 
unknown parameters. However, at any time there may be a drastic change 
in the communication environment (e.g. a deep fade or the access of other 
interfering users), at this time the parameters becomes unreliable. Then 
data transmission of the desire user must be temporarily suspenecl and a 
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Figure 7.1: Simplified K-user D S - C D M A Synchronous Communication 

Model 

fresh training sequence must be retransmitted. Thus retransmitting of the 
training sequence is cumbersome in most C D M A systems, where one of the 
most important advantages is the ability to have completely asynchronous 
and uncoordinated transmissions that switch on and off autonomously. 

The foregoing observation implies that the need for blind adaptive re-
ceivers is even more evident in multiaccess channels than in single-user chan-
nels subject to intersymbol interference. 

The formulation of blind adaptive multiuser detection is discussed as 
follows. 

Let's consider the D S - C D M A systems as illustrated in Figure 7.1, where 
bk e { — 1,1} is the bits to be transmitted, Sk(t) is the kth user's signature 
waveform, is the modulation amplitude, crn(t) is the additive Gaussian 
white noise, r(t) is the received signal, and Ck{t) is the matched filter coeffi-
cients. The commonly used objective function to be minimized in multiuser 
detection is: 

MMSE( C / c⑴）-mmE[(b k -�Q：⑴，r��)2] 
Cfc 

where (ck(t), r� � = /。几 Ck(t)r(t)dt, c^t) is the waveform used to demodulate 
r(t). The output, decision is 

h = sgn[(ck{t),r{t))\ 

It can be proven that the solution of this optimization problem has no relation 

with 1̂ . 
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For simplicity, we will concentrate on the first user only from now. The 
canonical representation of linear M M S E is 

ci(i) = si{t) + xi{t), and (si(t),xi(t)) = 0 

Define Mean Output Energy of user 1 as 

MOE(xl(t)) = E[((r(t),sl(t) + x1(t)))2} 

Then 
MSE(xl(t)) = E[(A1b1 -�r⑴，幻⑴ + 尉⑴〉)2] 
= Aj + MOE(:n⑷)—2A1(s1(t), Sl(t) + Xl{t)) 
= MOE(xl{t))-A21 

So the solution of M M O E is also the solution of M M S E . While M M O E has 
no nothing to do with bk, then the detection problem evolves to the following 
form: 

min MOEfe⑷)=E [ { { r { t ) , S l { t ) + Xl{t)))2] 
s.t. 〈si ⑴’ 0^(0) = 0 

Because the received signature Si is not always the same as Si, so we need 
to add the surplus energy constraints [87]: 

_ l l 2 < x 
where x is the surplus energy which is a positive constant. So the formulation 

for Blind M M O E Detector with surplus energy constraints can be expressed 

as follows, 

min MOE(rci(i)) = E[{(r{t),Sl{t) + x^t)))2} 
s.t. { 8 ^ ) ^ ^ ) ) = 0 , (7.1) 

It is proven that MOE(:C!) is a convex function [85]. 
The nonlinear optimization problem (7.1) is a general form. Particularly, 

when the signature waveforms Sfc(t), (k = 1,...,/() are binary P N sequences, 
the vector form of (7.1) is as follows. 

min MOE(a;1) = E[{(r, sl + xx))2] 
s.t. (si,^) - 0 , (7.2) 

ll̂ i||2<X 
where Xi,S\,yi E R n , n is the number of chips per bit for the P N sequences. 
From now on, we will design the neural network based on formulation (7.2). 
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7.3 Neural Network Architecture 
Problem (7.2) can be generalized to the following formulation: 

min f(u) 
s.t. g{u) < 0 (7.3) 

h{u) = 0 

where, u G Rn, g(u), h(u) are scalar functions. 
In [91], Xia and Wang developed a neural network for solving the following 

nonlinear optimization problem with inequality constraints. 

min f(u) 
s.t. c(u) <0, u>0 

In addition in [90]，Xia and Wang developed a neural network for solving the 
following nonlinear optimization problem with both equality and inequality 
constraints. 

min \uTQu + qTu 
s.t. g(u) < 0， GTu = -fext 

Following these design methods, here we present a recurrent neural net-
work for solving the nonlinear program (7.3). For complete proof, please 
refer to [90] [91]. 

To derive a neural network model for solving (7.3), we first give a equiv-
alent form of (7.3). 

I V / � + v\/g(u) - wh(u) = 0， 

{v + g{u)y-v = 0, (7.4) 

h(u) = 0, 

where v ̂  R, iu E R are both auxiliary one-dimensional variables. 
It can be derived as follows. First define the Lagrangian function 

L(u, v, w) = f(u) + vg{u) - iuh(u) 

According to the well-known saddle point theorem [92], u* is a solution to 
(7.3) if and only if there exists v* e R+ and w* e R, such that for any 
(u,v,w) e R n

 x R +
 x R, (u*,v*,w*) satisfies 

L(u*,v,w) < L{u\v\w*) < L(u,v*’w*) 
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where R+ = {v ^： R \ v >0}. Then we can get 

L{u\v,0) < L{u\v\w*) < L(u,v\w*) 

Because h(u*) = 0, so 

f(u” + vg(u*) 
< f(u*) + v*g(u*) 
< f{u) + v*g{u) - iu*h{u) 

From the first inequality above, we can derive that 

O n the other side, let 

(p(u) = f(u) + v*g(u) — wh(u) 

Then the right inequality above implies: 

<p{u) > (f){u*), Wu e R n  

this means, 

= 0 
that, is, 

V/K) + v*Vg{u*) - iu*\/h,(u*) = 0 

so, u* is a solution to (7.3), if and only if (u*, v*,w*) satisfies 
(Wf{u*) + v*Wg{u*) - iu*Wh{u*) = 0 
I (v - v*)(-g{u*)) > 0，Vi;>0 (7.5) 

[ /•*) = 0 
From the projection theorem [2], it can be seen that the above formulation 

is equivalent to (7.4). 

Based on the equivalent formulation in (7.4), we propose a recurrent 

neural network for solving (7.3) with its dynamical equation given by 

/ u \ / -V/(w) - vVg(u) + wWh{u) \ 
jf v = A + (7.6) 

\ ^ / V -h(u) 

where A is a positive scaling constant. 



CHAPTER 7. MULTIUSER DETECTION 84 

The neural network is guaranteed to be globally convergent to the exact 
optimal solution [90] [91]. 

Now for the problem (7.2), the specific neural network can be defined by 
the following dynamic state equation. 

/ xi \ / -2E[r
T
(xi + si)r] - 2vxx — wsi \ 

ft v + (7.7) 

\ w J \ — ) 
where X\,s\,r e Rn, n is the number of chips per bit. veR, weR, X>0 
is a scalar parameter. 

In [89], R. Fantacci, et al. also investigated the neural network approach 
to solve the problem (7.2). They proposed a recurrent neural network with 
nonobvious modification of Kennedy and Chua's neural network [88]. It can 
be defined by the following equation. 

.T! 二 -Gxx - VVi.x,) + (VT/(a;i), S l) S l (7.8) 

where 

V G T O - M O E C t O + J / ^ ^ P , 

/(x-O^X-lkill
2
, 

咖 ) = {
0
’

 f o r 

� ; I Kp, for p<0 

X\ e Rn, G e R+ models the neuron parasitic capacitances, and K is the 
positive penalty parameter. 

7.4 Simulation Results 
To verify the neural network (7.8), Fantacci, et al. used the following 

example problem. 

min MOE(u) = \uTQu + qTu 
s.t. sTu = 0 , 

I I K x 

where, 

/ 1 0 2 1 \ / 23 \ 

Q = 2 12 3 , q= - 2 7 ， 

\ 1 3 7 / \ -24 J 

s = (1 0 0)
T
, x = u e R

3 
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Figure 7.2: Trajectories of two Neural Networks 

W e will also use this problem to demonstrate the optimization capability of 
the neural network (7.7). 

Figure 7.2 depicts the contour lines of the objective function, and the 
constraint circle ||w||

2 = uju\ = x 二
 4
.

 I n
 this figure, two simulated 

trajectories are plotted, separately of Fantacci's neural network (7.8) and of 
the neural network (7.7) both starting from point (2,4,-1). It can be seen 
that the trajectory of Fantacci's neural network (7.8) converges toward the 
equilibrium point ue, which is close to the minimum u*, while the trajectory 
of neural network (7.7) converges exactly toward the optimal point u*. For 
Fantacci's neural network (7.8), the accuracy of solution, i.e., the closeness 
of ue and u* depends on the value of the penalty parameter K. 

In Figure 7.3，the convergence of Ui with time is illustrated. From this 
figure, it can be easily seen that the neural network (7.7) converges with more 
accuracy than the Fantacci's neural network (7.8) within the same period of 
time and under the same corresponding parameters. 

The performance of the neural network (7.7) in a D S - C D M A mobile com-
munication systems is also studied by means of computer simulation. It 
shows that the neural network is efficient in blind adaptive multiuser de-
tection. Compared with the classic blind adaptive detector [87], the neural 
network permits to gain better performance in terms of bit error rate (BER). 

The simulated system uses 31 chips per bit Gold P N sequences [85] as 
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Figure 7.3: Convergence of u\(t) of two Neural Networks 

the signature codes. W e assume that it is under perfect power control; i.e., 
A\ = A2 = .. • — Aj^. The communcation channel is an additive Gaussian 
white noise ( A G W N ) channel and the signal noise ratio (SNR) is 20dB. For 
brevity, we only detect the first user's signal. 

Figure 7.4 depicts the case when only one user is transmitting in the 
first 4500 bit time periods, and suddenly 19 other interfering users begin to 
transmit. In this circumstance, the communication channel for the first user 
at 4500 bit interval is under a rapid change. As shown in Figure 7.4, the 
neural network (7.7) can rapidly adapt its parameters to the optimum, while 
the classic blind adaptive detector needs a few steps for its parameters to 
reach the steady state and therefore in the adaptation period the error bit 
rate (EBR) is much higher. 

• End of chapter. 
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Chapter 8 

Conclusions and Future Works 

8.1 Concluding Remarks 
W e have come to the end of this thesis. Before moving to the future works 
that deserves more research works. Let's first retrospect the content that 
has been discussed. This thesis is devoted to the R N N for time-varying 
quadratic optimization. This problem is solved by the three proposed neural 
networks, with detailed description of the design procedures, convergence 
and complexity analysis, and several engineering applications. The S D N N is 
globally stable and convergent to the exact solution. With this capacity and 
RNN's highly parallelism, analog input/output processing ability, the N N 
can track the time-varying input signals and gave out the solution as output 
in real time. 

W e have discussed the design, analysis and applications. But we didn't 
have time to implement the NN. So one of the future works that can be 
clone is to design an ASIC which can works as a stand-alone processor or 
co-processor in the robot control, or wireless communication. 

Another possible direction of research work is to extend the work on 
robot control to multirobot coordinations which can be formulated as equality 
constraints. Other applications, like vision and hearing perception is also a 
promising direction of research. 

8.2 Future Prospects 
Indeed, as the years pass, our ambitions and demands grow, we want to tackle 
more and more complex problems that are maybe not imaginable in the past. 
For example, we want to get a multiple sensor equipped computer which has 
visual, audio, and other perceptions; we want to get a highly dexterous robots 

ii 
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that can cook, care for babies, work together with human being. All these 
challenges needs for computing machines that can deal with noisy, incomplete 
and analog input signals. On the other hand, as the technologies advances, 
its' more and more easy to prototype an circuit desin, which makes the 
validation easy and cheap. This is a great opportunity for R N N to show its 
promise in this area with great demands and easy to implementation. Then 
a very promising research direction is to design and analysis more general 
R N N s that can tackle more general and complex problems. 

• End of chapter. 
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