185 research outputs found

    Neural Network-based Finite-time Control of Nonlinear Systems with Unknown Dead-zones: Application to Quadrotors

    Get PDF
    Over the years, researchers have addressed several control problems of various classes of nonlinear systems. This article considers a class of uncertain strict feedback nonlinear system with unknown external disturbances and asymmetric input dead-zone. Designing a tracking controller for such system is very complex and challenging. This article aims to design a finite-time adaptive neural network backstepping tracking control for the nonlinear system under consideration. In addition,  all unknown disturbances and nonlinear functions are lumped together and approximated by radial basis function neural network (RBFNN). Moreover, no prior  information about the boundedness of the dead-zone parameters is required in the controller design. With the aid of a Lyapunov candidate function, it has been shown that the tracking errors converge near the origin in finite-time. Simulation results testify that the proposed control approach can force the output to follow the reference trajectory in a short time despite the presence of  asymmetric input dead-zone and external disturbances. At last, in order to highlight the effectiveness of the proposed control method, it is applied to a quadrotor unmanned aerial vehicle (UAV)

    Adaptive Fuzzy Tracking Control with Global Prescribed-Time Prescribed Performance for Uncertain Strict-Feedback Nonlinear Systems

    Full text link
    Adaptive fuzzy control strategies are established to achieve global prescribed performance with prescribed-time convergence for strict-feedback systems with mismatched uncertainties and unknown nonlinearities. Firstly, to quantify the transient and steady performance constraints of the tracking error, a class of prescribed-time prescribed performance functions are designed, and a novel error transformation function is introduced to remove the initial value constraints and solve the singularity problem in existing works. Secondly, based on dynamic surface control methods, controllers with or without approximating structures are established to guarantee that the tracking error achieves prescribed transient performance and converges into a prescribed bounded set within prescribed time. In particular, the settling time and initial value of the prescribed performance function are completely independent of initial conditions of the tracking error and system parameters, which improves existing results. Moreover, with a novel Lyapunov-like energy function, not only the differential explosion problem frequently occurring in backstepping techniques is solved, but the drawback of the semi-global boundedness of tracking error induced by dynamic surface control can be overcome. The validity and effectiveness of the main results are verified by numerical simulations on practical examples

    Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis

    Get PDF
    This study proposes an adaptive neural network controller for a 3-DOF robotic manipulator that is subject to backlashlike hysteresis and friction. Two neural networks are used to approximate the dynamics and the hysteresis non-linearity. A neural network, which utilises a radial basis function approximates the robot's dynamics. The other neural network, which employs a hyperbolic tangent activation function, is used to approximate the unknown backlash-like hysteresis. The authors also consider two cases: full state and output feedback control. For output feedback, where system states are unknown, a high gain observer is employed to estimate the states. The proposed controllers ensure the boundedness of the control signals. Simulations are also performed to show the effectiveness of the controllers

    Adaptive Backstepping Control for a Class of Uncertain Nonaffine Nonlinear Time-Varying Delay Systems with Unknown Dead-Zone Nonlinearity

    Get PDF
    An adaptive backstepping controller is constructed for a class of nonaffine nonlinear time-varying delay systems in strict feedback form with unknown dead zone and unknown control directions. To simplify controller design, nonaffine system is first transformed into an affine system by using mean value theorem and the unknown nonsymmetric dead-zone nonlinearity is treated as a combination of a linear term and a bounded disturbance-like term. Owing to the universal approximation property, fuzzy logic systems (FLSs) are employed to approximate the uncertain nonlinear part in controller design process. By introducing Nussbaum-type function, the a priori knowledge of the control gains signs is not required. By constructing appropriate Lyapunov-Krasovskii functionals, the effect of time-varying delay is compensated. Theoretically, it is proved that this scheme can guarantee that all signals in closed-loop system are semiglobally uniformly ultimately bounded (SUUB) and the tracking error converges to a small neighbourhood of the origin. Finally, the simulation results validate the effectiveness of the proposed scheme
    • …
    corecore