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This paper proposes a fuzzy adaptive prescribed performance control scheme for a class of uncertain chaotic systems with unknown
control gains and unknown dead-zone inputs. Firstly, an error transformation is introduced to transform the original constrained
system into an equivalent unconstrained one. Then, based on the error transformation technique and the predefined performance
technique, a fuzzy adaptive feedback control method is developed. It is shown that all the signals of the resulting closed-loop
system are bounded. Finally, an illustrative example is given to demonstrate the effectiveness and usefulness of the proposed

technique.

1. Introduction

As a hard nonlinearity, dead-zone has been found in many
industrial processes. For example, dry friction or stiction is
a common source of dead-zone nonlinearities in electrome-
chanical systems, and temperature changes on the surface of
these components can produce relevant variations of dead-
zone effects [1]. If dead-zone nonlinearities are neglected [2],
they will limit the closed-loop system performance and lead
to instability. So, these nonlinearities are particularly harmful.
Many researchers employed many methods to improve the
performances of control systems with dead-zone inputs. The
most common approaches are adaptive schemes [3-6], fuzzy
systems [7-14], neural networks [15-18], and sliding mode
control [19-22]. In order to compensate the negative effects
of the dead-zone nonlinearity, an inverse dead-zone as a
method is used. But this method leads to a discontinuous
control law and requires instantaneous switching, which in
practice cannot be accomplished with mechanical actuators.
To overcome this limitation, smooth inverses are adopted
in [23, 24]. Another method was proposed by Lewis et al.
[8] and adopted by Wang et al. [25]. In both works, the

dead-zone is treated as a combination of a linear and a
saturation function. In [4], Boulkroune and M’Saad proposed
fuzzy adaptive observer-based approach to deal with the
practical projective synchronization problem for a class of
chaotic systems involving dead-zone in the control channel.
Wu et al. [5] introduced a smooth inverse of the dead-zone
to compensate the effect of the dead-zone in controllers
design and proposed an adaptive sliding mode control law
to achieve spacecraft attitude tracking problem. By using a
four-dimensional energy resource demand supply system, an
adaptive neural networks control approach is presented in
[17]. The approach not only makes the states of two chaotic
systems asymptotic synchronization but also achieved better
control performances. In [19], an adaptive fuzzy control
scheme is proposed for a class of uncertain multi-input mul-
tioutput (MIMO) nonlinear systems with the nonsymmetric
control gain matrix and the unknown dead-zone inputs.
Boulkroune and M’Saad [20] developed a fuzzy adaptive
variable-structure control scheme for a class of uncertain
MIMO chaotic systems with both sector nonlinearities and
dead-zones. In order to realize the robust compensator,
most of the aforementioned control schemes are obtained
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with the restriction that the control gains are known in
advance. However, this assumption does not appear to be
realistic in a general case [26]. So it is more advisable to
take the effects of the unknown control gains and unknown
dead-zone inputs into account for uncertain nonlinear
systems.

Recently, Bechlioulis and Rovithakis [27] proposed pre-
scribed performance control (PPC) scheme for uncertain
nonlinear system. Utilizing a transformation function, the
original controlled system is transformed into a new one. If
the uniform boundedness of the states of the latter is ensured,
we can solve the stability problem for the former. The paper
[28] established a control scheme to control unknown pure
feedback systems of known high relative degree, exhibiting
prescribed performance with respect to trajectory oriented
metrics. For nonlinear large-scale systems, Li and Tong [29]
employed prescribed performance adaptive fuzzy output-
feedback control method to ensure that all the signals in the
closed-loop system are bounded. Meanwhile, Li and Tong
[30] proposed an adaptive fuzzy output constrained control
design approach for MIMO uncertain stochastic nonlinear
systems. Sun and Liu [31] presented a fuzzy adaptive control
method for MIMO uncertain chaotic systems, which is
capable of guaranteeing the prescribed performance bounds.
However, the main limitation in [31] is that the effect of
both unknown control gains and unknown dead-zone inputs
for uncertain nonlinear systems has not been taken into
account.

To the author’s best knowledge, there are few literatures
dealing with the prescribed performance control problem
with unknown dead-zone inputs. Inspired by the works in
[32], we investigate the tracking control with guaranteed
prescribed performance for uncertain nonlinear systems.
Compared with related works, there are three main contri-
butions that are worth to be emphasized:

(1) Compared with the results in [31], the uncertain
chaotic system with unknown control gain and
unknown dead-zone input is considered.

(2) The prescribed performance function (PPF) is incor-
porated into the control design.

(3) The proposed control law avoids the chattering phe-
nomenon.

Motivated by the aforementioned works, this paper
focuses on the problem of adaptive fuzzy control for a class of
uncertain nonlinear systems with unknown control gains and
unknown dead-zone inputs. Based on Lyapunov function, it
is proved that all the signals of the closed-loop system are
bounded and that the tracking error remains an adjustable
neighborhood of the origin with the prescribed performance
bounds.

The organization of this paper is described as follows. In
the next section, system model is derived, and the assump-
tions are also given. In Section 3, the design of the pro-
posed control strategies is discussed. The simulation results
are presented to demonstrate the effectiveness of proposed
control scheme in Section 4. Conclusion is presented in
Section 5.
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2. System Descriptions and
Problem Formulations

Consider the following nonlinear system:
X = fi (%) + g1 (%) ¢y (ug (8)

%y = fo(tx) + gy (8,x) ¢, (uy (1))
1

X, = fu(t2) + g, (6, %) §, (u, (1)),

where x = [xl,xz,...,xn]T is the system state vector
which is assumed to be available for measurement. u =
[}, 1y, ..., u,]" is the control input vector and f(t,x) =
[f1(t x), fr(t,x),..., f,(t, x)]7 is the unknown continuous
nonlinear function, g(t, x) = [g,(t, x), g,(t, x), ..., g,(t, x)]7
is unknown control gain, and ¢;(u;(t)) is the output of the
dead-zone nonlinearity, i = 1,2,...,n.

The dead-zone characteristic can be described as follows:

¢; (u; (1))
m; (u; (t) = by;),
=1do,

for u; (t) = by,

=h )
for — by <u; (t) < by;
m; (u; (t) + by), for u; (t) < by,

where m; stand for the right and the left slope, b;; and b,
represent the breakpoints of the input nonlinearity, and the
following assumption is given.

Assumption 1. The dead-zone parameters: m; > 0, by; and b,
are unknown bounded constants.

Obviously, the output of the dead-zone can be rewritten
as

¢; (u; (8)) = muu; () +d; (u; (1)), (3)

where d;(u;(t)) can be calculated as

-m;by;, for u; () > by;
d; (u; (1)) = 1 -mu; (t), for —by, <u;(t)<b; (4)
m;by;, for u; (t) < -b,;.

From Assumption 1, there exists an unknown positive con-
stant d; such as |[d;(u;(t))| < d],i=1,2,...,n

Now, let ) = [¢,(, (1), s (1)), ..., (1, (O],
D) = [d,(u,(t)),d,(u,(t)),... ,dn(un(t))]T, and M =

diag(m;,m,,...,m,). From (1) and (3), we have
x = f(t x)+diag(g (£, x)) © (v),
@ (1) = Mu+ D (u). ©
So, we can obtain
x = f(t,x) +diag (g (t,x)) Mu ©

+diag (g (t,x)) D (u).
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The objective of this paper is to construct a controller for
system (1) such that the system state x tracks the reference
signal x; € R"” and all the signals in the closed-loop system
remain bounded.

To meet the objective, we make the following reasonable
assumptions.

Assumption 2. f(t,x) and diag(g(t,x)) are unknown but
bounded.

Assumption 3. The matrix diag(g(t, x)) is nonsingular.

Assumption 4. The desired trajectory x;, is a known bounded
differentiable function,i = 1,2,...,n.

Remark 5. In [19], g;(t, x) is assumed as g;(¢,x) > 4, and 4
is positive constant, i = 1,2,...,n. In this paper, we relax
this condition and only suppose diag(g(t, x)) is an unknown
nonsingular matrix.

Let x; = [, Xp45--->%,q] > and the tracking error e =

x—x; = [e),€5...,e,]". So we can obtain the following error
dynamical system:

é= f(t,x) + diag (g (t, x)) Mu + diag (g (t, x)) D (v)
~ iy

Usually, we employ sliding mode control scheme [18] to
stabilize the error system (7). Firstly, a sliding mode surface
is designed as follows:

o=e+ Jt Ke (1) dr, (8)
0

where K = diag(k,, k,,...,k,), k; > 0,i=1,2,..
entiating o with time yields

., n. Differ-

6 = f (t,x) + diag (g (t, x)) Mu + diag (g (¢, x)) D (u)
9
- 5Cd + Ke. ( )

If the nonlinear functions f(t,x) and diag(g(t, x)) and the
parameters m; and d; are all known, we employ the control
law

u = - (diag (g (&, x)) M) ™"
(f(t,x) - x;+Ke+ Ko +uy),

(10)

where u;, = [lg,(t, x)|d] - sign(a,),|g,(t, x)|d; - sign(o,),
oo 1ga(t )N - sign(a,)]”.

Consider the Lyapunov function V; = (1 /2)o"o. Using
(10) yields

LT,
Vo=0'0

= -¢'Ko

(11)
- Z (o] g (¢, )| df = 0:9; (£, %) d; (7)) -

i-1

One obtains V, < —0" Ko < 0. We can conclude that o — 0
ast — 0o. However, the control law (10) is implemented in
cases where f(t,x), diag(g(t, x)), m;, and d; are all known.
And u; may cause chattering phenomena. Meanwhile, the
inverse of diag(g(t, x))M cannot be calculated easily.

In order to overcome these limitations, we adopt the fuzzy
adaptive prescribed performance control scheme to ensure
that all the signals are bounded in probability and the system
state x(t) can track the given reference x,; with the given
prescribed performance bounds.

2.1. Prescribed Performance. According to [14, 15], the pre-
scribed performance is achieved by ensuring that tracking
error e = [e},e,,... ,en]T evolves strictly within predefined
decaying bounds as follows:

= O minthi (t) < €; (1) < & paxt (1),
(12)
t>0,i=1,2,...,n,

where §;;, and 9§, ., are design constants and the per-
formance functions ;(t) are bounded and strictly positive
decreasing smooth functions and lim, , y;(t) = e, > O.
Choosing the performance function y;(¢) and the constants
O;min and &; ... appropriately determines the performance
bounds of the errore;, i = 1,2,...,n.

To represent (11) by an equality form, we employ an error

transformation as
e®)=w s (z), i=12,....n (13)

where z; is the transformed error, and s;(+) is smooth, strictly
increasing function, satisfying the following condition:

_6imin <5 (Zi) < Simax’
Z_l_i{POOSi (21) = =0 min- (14)
zil_igloosi (Zi) = 51‘ max*
Note that s;(z;) are strictly increasing functions; we have

& (t)

-1 .
Z; =S, , 1=1,2,...,n 15
<Mz’(t)> =

Differentiating (15) with respect to time yields

Zz. = Bs,-_l 1 [f(tx)+ (t, x) mu
. a(ei(t)/,u,‘(f)) ‘Lli(t) LA A U;
(16)
: : () g (F)
+g;(tx)d; () — %45 — %]
Let
0s;! 1
"o 0 (e; (t) [p; (1) ; (t) >0,
o l 17)
_& (t) f; (t)

hi = _x i —_— .
¢ i (t)



Then (16) can be rewritten as

Z;

=1, [f; (6 x) + g; (&, x) mu; + g; (£, %) d; (w;) + B;], (18)

i=1,2,...,n.
Letz = [2),2y,...,2,] s H = [}, hy,...,h,]"; then (18) can
be written into the following form:

z = diag (r) [f (¢, x) + diag (g (t,x)) Mu
(19)
+diag (g (t,x)) D (u) + H],

where diag(r) = diag(ry, 75, ...,1,).
Remark 6. Usually, we choose s;(z;) = tanh(z;) = (6, .c€” —

8 min€ /(% + e ). So, we can calculate that r; = (1/(A; +
Oimin) + 1/ (Oimax — A1) /21 > 0, A, = €;()/p(£).

z [sziag (r) f tx) + sziag (r)H + sziag (r)Kz + ETdiag (r) ﬁs]
u=-
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If f,(t, x), g;(t,x), m;, and d; are all known, the following
controller

u = —(diag (g (t,x)) M) "' [f (t,x) + H+ Kz +u], (20)

where u; = [sign(z))|g,(t, x)|d], sign(z,)|g,(t, x)|d5, ...,
sign(z,)lg,(t, x)IdZ]T, and K = diag(k,, k,,...,k,) with k; >
0@ = 1,2,...,n), can meet the control objective. Indeed,
consider the Lyapunov function V; = (1 /2)z"z. Using (19)
and (20) yields V, = z'z < 0. According to the above
inequality, V, is always negative, which implies that z; € L .
Then, according to the properties of function s;(z;), we know
that —6; i, < s;(2;) < &; a0 Which implies =8; .. p;(t) <
€;(t) < O; maxti(t). Then, one can conclude that tracking con-
trol of system (2) is achieved.

However, the term u, is discontinuous, which may
cause chattering phenomena, and inverse matrix (diag(g(t,
x))M) ™! cannot be calculated easily. So, motivated by [11, 12],
we modify controller (20) as follows:

(21)

zTdiag (r) diag (g (t, x)) Mz

where z = [Izll,lzzl,...,lznl]T, u, = [lgt,20ldy, g,
x)ld;, ..., 1g,(t, x)Id;]T. The control objective can also be
realized.

Remark 7. In controller (21), we do not need to calculate the
matrix (diag(g(t, x))M).

Note that f(t,x), diag(g(t, x)), M, and u, are unknown
in (21); we need to use fuzzy logic system to approximate the
nonlinear unknown functions.

2.2. Fuzzy Logic Systems. The basic configuration of a fuzzy
logic system consists of a fuzzifier, some fuzzy IF-THEN
rules, a fuzzy inference engine, and a defuzzifier. The fuzzy
inference engine uses the fuzzy IF-THEN rules to perform a
mapping from an input vector x = [x,x,,..., xn]T € R"to
an output a(x) € R. The ith fuzzy rule is written as

Rulei:if x, is Fi and...and x, is F then a(x) is a;,

where Fl,F,,..., and F are fuzzy sets and o; is the fuzzy
singleton for the output in the ith rule. By using the sin-
gleton fuzzifier, product inference, and the center-average
defuzzifier, the output of the fuzzy system can be expressed
as follows:

Z;\Izl “jH?:lP‘Fif (x,-)
Zj'\l:l [H?:WFIJ’ (xl-)]

=0Ty (x), (22

a(x) =

where pp,i(x;) is the degree of membership of x; to FIJ , N is

the number of fuzzy rules, 8 = [«,,...,ay]" is the adjustable

>

parameter vector, and y(x) = [p, (x),pz(x),...,pN(x)]T,
where

H?:l.”Fif (xi)
z;\; [H?:l.”pif (xi)]

pj(x) = (23)

is the fuzzy basis function. It is assumed that fuzzy basis
functions are selected so that there is always at least one active
rule.

3. Main Results

Let diag(g(t,x)) = diag(g(t,x))M = diag(g,(t, x)my, g,(t,
x)m,, ..., g,(t, x)m,). By applying the introduced fuzzy sys-
tems, approximation of functions f;(t,x), g;(t,x)m;, and
|g:(t, x)|d; (4;) can be expressed as follows:

fi(x605) =67y, (x),
Ei ('x’ 991‘) = egivlgi (x), (24)
3:(%.641) = 6 ¥ig (),

i=12,...,n

Optimal parameters 9; , 6;_ ,and Gl*gil can be defined such that

0; = argngfip [sup |f, (t:x) - f; (x, 9ﬁ)|] ’
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3; = argngin [sup |g,~ (£, x)m; — 52% (x, egi)'] ’
9i

6) = argmin [sup |lg: ()| d} - g (x.6,,)]]
9i

i=1,2,...,n.
(25)

Define the parameter estimation errors and the fuzzy
approximation errors as follows:

0, =05 -0,
04, = 65, ~ b,
0191 = 01~ Olgp>

e () = f;(62) - f,(%.0}),

sziag (r) f (x, Of) + sziag (r)H + sziag (r)Kz + ETdiag (r) ﬁs +u,

g, (x) = g; () m; - g (.6, ).
i) () = |9 (0] 4] - g, (%.6,),

i=1,2,...,n.
(26)

Assumption 8. sﬁ(x), egl_(x), and s|gi|(x) are all bounded,
respectively.

Denote ?(x, 9;) = [fl(x, 6;1 ), }’Z(x, 0;2), Ceo f,,(x, Q;n)]T)
diag(g(x,0;)) = diag(g,(x,0; ), g,(x, 0 ),...,g,(x.6; ),

and @, = [g,(x,0,), 3,(x,6], ) ... 3, (x, 0}, )]
The controller can be constructed as

u = zu, (27)

where

Uy

where p = ||diag(§(x, Gg))ll + €, € is a small positive constant,

u, is a compensated controller, which will be designed later,

and K = diag(k,, k,,...,k,), k; >0,i=1,2,...,n.
Substituting (27) and (28) into z'z yields

2T = —sziag (r)Kz + sziag (r)

: (f (t.x)- f (x, Qf)) + 2" diag (r)
. (diag (g (t,x)) — diag @ (x, Gg))) 2z,

+ uz' diag (r) zug + Wy —u

(29)

r

+ 2" diag (r) diag (g (t, x)) D (u) — Z" diag (r)

NN

Note that sziag(r)diag(g(t, x))D(u) < ETdiag(r)ﬁs. So,

(21) can be written as follows:

n n T
2z = —Zrikizi2 + Zriziefil//fi (x)
i=1 i=1

n T n T
+ Zriziz”()egiwﬁ () + Zri 2| 0)g1¥1g, (%)
i=1 i=1

n
+ Zrizi (g: (t. x) d; (u;) ~ |9i (t,x)| d;)-u,
i=1
2
+ ugu, + A,
where A = Y% rzie, + Yo r.zluge, + Yo rilzle,, +
i=1 "i%icf; i=1"i%i *0%g; i=1"il<il¢|g;]|
n 2
Yic1 Uiz U

—zTdiag (r) diag (? (x, Og)) z + uzTdiag (r) z + u?

, (28)

According to Assumption 8, there exist unknown positive
constants &y, €., and g, such that

max g} <
max {'8 '} <€ (31)

max {[eig |} < eig)

So, we have
n n 5
A< (sf + glgl) Zri |Zi| + (sg + P‘) Zrizi |“0| . (32)
i=1 i=1
Let e + ¢, = €, ¢, = &. To generate the approximations

f(t, x), diag(g(t,x)), u,, &, and &, online, we choose the
following adaptation laws:

ef,- =K1z, (x),

; 2
egi = Kg,TiZ uow% (%),

-

gl = Kig i |2il Wig ()

\ (33)
El = Kslzri |ZII N
i=1

n

Py 2

&= Kszzrizi |to]»
i1



where €, €, are the estimates of ¢ and ¢,, respectively.
Ko Kgi’_Klgil’ 'Kgl,and K., are positive constants, 1 = 1,2,...,n
And u, is designed as

. 1 IMu,
U, =-uu, +1- ———
r 0% r uf+v2’
(34)
B Iy
u? +1%°

- - 2
where I1 =8, Y rilz;l + (& + ) Y, 1:2; |ug.
So, we obtain the following theorem.

Theorem 9 (consider system (19)). Suppose that Assumptions
1-8 are satisfied. Then controller (27) with the adaptation
law given by (33) can guarantee all signals in the closed-loop
system are bounded in probability, and the tracking error e(t)
remains in a neighborhood of the origin within the prescribed
performance bounds for all t > 0.

Proof. Consider a Lyapunov function as V =V, + V5, where

1 T 21 ~T~ ] T~
V, = > le z+ gaeﬁeﬁ +Z4K_9g,-95i
i= i i=1""g;

1 T
+ Zk_elgilelgil}’ (35)

where &, =& —€,§, = ¢, — &,.
The time derivative of V, is given by

Vy=2z"z2

" (] r. o o (36)
-y {iej;ef_ v 86, + 8, elg_,} .
P L ’

Substituting (33) into (36), we have
Vz = _zrl‘kiziz
i=1
+ Z”izi (9: (6, ) d; () = |g; (&, )| d}) —u,  (37)
i1

n
2 2 2
+ugu, + A < —Zrikizi —u, + ugu, + A,
i=1

Notice that
n n )
A< 512”;’ |z:| + (e, + ) Z”izi |u4o
=1 =1

(38)

n n
= Elzr,- |z;| + EZZriziz |ug| + 1.
i=1 i1

Mathematical Problems in Engineering
Substituting (38) into (37), one can obtain

n n

- 2 2 =

V, < —Zrikizi —u, + ugl, + SIZri |z
i=1 i=1

(39)
n
+ EZZriziz |u0| +I1.
i=1
The time derivative of V; is
. ) S N Y
Vi=ua, +vV— —€& — —&,5,. (40)
& Ksz

Substituting (34) into (40), one gets
. ) n n )
Vi =—uuy+u, —EIZri |z —EZZrizi [uo] - T1. (41)
i=1 i=1
Combining (40) and (41) gives
. n
V() <-)rkz. (42)
i=1

Therefore, according to Lyapunov theorem, V'(¢) is always
negative, so, V(t) is uniformly ultimately bounded; thus, the
transformed error z; is bounded; that is, z; € L. Then,
according to the properties of function s;(z;), we know that
—=8; min < 5i(2;) < 6} pax- Then, one can conclude that tracking

control of system (7) with prescribed error performance (4)
is achieved. This completes the proof. O

Remark 10. Compared with the results in [15], the unknown
dead-zone inputs are considered in the paper. Meanwhile, the
control law (27) can avoid the singular problem.

4. Numerical Simulations

In this section, the Genesio chaotic system [33] is also used
to illustrate the effectiveness of the proposed control scheme.
The uncertain Genesio chaotic system is described:

=% +d) (%) + g, (6X) ¢ (1) (O,

filt.x)
Ky = x5 +dy (6,X) + g, (8,%) () (8),
F(tx) (43)
Xy = =6, — 2.92x, — 1.2x; + x> +d; (£, %)
f3(tx)

+gs (£, %) $5 (u3) (1),

whered, (t, x) = 2+2sin(2t), d,(t, x) = 3—cos(x,), d5(t, x) =
0.2 + 3sin(4t), g,(t, x) = 2 — cos(t), g,(t, x) = 2 — cos(2t),
gs5(t,x) =2 —sin(x,), m; =2,b; =1.5,b,; = -7,i=1,2,3.
Firstly, we employ the sliding mode control scheme (see
[32]) to control system (43). We assume that the desired
trajectory is x; = [x4, X9, X34] = [sin(t),sin(t),sin(t)]T.
Lete, = x; — X106, = X, — Xp3, €3 = X3 — X33, and
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40

e, e, €3

=20

--- e
-- e

Time (s)

— &

FIGURE 1: Time responses e, e,, and e, of system (44) by using the control scheme (46).

[diag(g(t, x))I = &; & is a positive constant. So, the error

dynamic system can be rewritten as follows:

e = fLtx) =X+ gy (X)) () (1),
&y = fo(t,x) = Jpq + g5 (£, %) ) (1) (£) (44)
e3 = f3(t,x) = J3q + g, (£, %)y (u3) (8) .

The sliding surface s = [s,, s,,s;]" is designed as follows:

t

sp=¢e + J e, (1)dr,
0
t

Sy =ey+ J e, (1) dr, (45)
0
t

3 =e3+J e; (1)dr
0

Let 7(t, x) = f(t,x) + diag(g(t, x))D(u), diag(g(t, x)) =
diag(g(t, x))M. And the control scheme for error system (24)
is designed as

U = Uy +up,
N R -1
U =—g; (x, 9@_) [e +9; (x, 6@_)2] [ei - Xy

+ ?i (x, G?i) + k;sign (si)] ,

-1

Uy = —é (sl +¢&, |ui1| + [e+§i (x,Ogi)z]
[ €; 1d+?(
0

A

) + k;sign (s; )] > sign (s;),

9?,’ = Kyiv/?iuilsi’
i=1,2,3,
(46)

where € is a small positive constant. The initial values of
the chaotic system are [xl(O),xz(O),x3(0)]T = [-1,-2,1]%.
The design parameters are chosen as follows: Kp = Ky =
3,i = 1,23,k =k, = ky = 2,e = 001,8 = 1, The
initial conditions for the adaptive parameters are selected as
& 03, = 0.01, i = 1,2, 3. By using the sliding mode control

scheme (46) the simulation result is shown in Figure 1.

From Figure 1, the error states are beyond the pre-
set boundary y(t) in the previous stage, where y,(t) =
3.17¢7 M7+ 0.2

The transformation functions are s;(z;) = (2/
m)arctan(z;), i = 1,2,3. We define three membership
functions uniformly distributed on the interval [-2,2].
O min = Oimax = 1. Firstly, according to the proposed control
scheme (27), we give a block diagram (see Figure 2).

The simulation result is shown in Figure 3 by using the
control scheme (27). In order to improve the control effect,
we modify y,(t) as y,(t) = 3.17e M7 + 0.05. Compared
with Figure 3, the tracking errors are improved in Figure 4.
From Figure 5, we can see that the chatter phenomenon is
eliminated.
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® —C | Transformation |_Z APP controller u Dead-zone (2) N Nonlinear
(28) system (1)

- system (19)
+
T
Compensated cont-|
roller (34)

FIGURE 2: A block diagram for the proposed control scheme (27).
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FIGURE 3: Time responses e, e,, and e, of system (44) by using the present control scheme (27) with y, (t).
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FIGURE 4: Time responses e;, e,, and e; of system (44) by using the present control scheme (27) with y,(t).
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¢1 (u49), ¢2 (uy), ¢3 (us3)

- ¢y ()
SR 21C2Y

Time (s)

— ¢5(u3)

FIGURE 5: Time responses ¢, (i,), ¢,(u,), and ¢;(u;) of system (44) by using the present control scheme (27).

From the simulation results in Figures 4 and 5, we
know that the proposed control scheme can guarantee that
all the error states are bounded. Moreover, the tracking
errors can remain within the prescribed performance bounds
all the time without showing chatter phenomenon. So, the
proposed control scheme in this paper can achieve the
objective.

5. Conclusions

In this paper, a fuzzy adaptive prescribed performance con-
trol scheme has been developed for a class of uncertain
nonlinear systems with unknown control gains and unknown
dead-zone inputs. By using fuzzy logic systems and the
prescribed performance technique, the stability of the closed-
loop system has been improved. Simulation results have
shown the effectiveness of the proposed scheme.
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