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This paper deals with the problems concerned with the trajectory tracking control with prescribed performance for marine surface
vessels without velocitymeasurements in uncertain dynamical environments, in the presence of parametric uncertainties, unknown
disturbances, and unknown dead-zone. First, only the ship position and heading measurements are available and a high-gain
observer is used to estimate the unmeasurable velocities. Second, by utilizing the prescribed performance control, the prescribed
tracking control performance can be ensured, while the requirement for the initial error is removed via the preprocessing. At last,
based onneural network approximation in combinationwith backstepping andLyapunov synthesis, a robust adaptive neural control
scheme is developed to handle the uncertainties and input dead-zone characteristics. Under the designed adaptive controller for
marine surface vessels, all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB), and the
prescribed transient and steady tracking control performance is guaranteed. Simulation studies are performed to demonstrate the
effectiveness of the proposed method.

1. Introduction

As the demand for offshore exploration and operation, ocean
surface vessels have been widely used in the marine industry.
With the development of marine industrial technology, con-
trol design of marine surface vessels has become a hot topic
of research [1, 2]. Control of ocean surface ships is a difficult
question; the working environment is often complex (ocean
currents and sea breeze); external unpredictable disturbances
may degrade control system performance and even damage
the stability. Therefore, the tracking control of the marine
vessels has attracted much attention.

Various tracking control approaches have been presented
for marine surface vessels; the sliding mode tracking con-
trol schemes were developed in [3, 4] based on explicit
models. For the systems with unknown system dynamics,
both fuzzy logic systems (FLSs) and neural networks (NNs)
have been proved to be useful in the control design, where
their universal approximation properties are employed to
model unknown nonlinear functions [5–12]. Recently, many
approximation-based adaptive control schemes have also

been proposed to handle the control problem for uncertain
ocean surface ships [13–15]. The output feedback control
and the full-state feedback control were designed based
on approximation-based adaptive backstepping of the ship
dynamics in [16]. A neural learning control method was
presented in [17] to solve the problem of tracking control of
unknown ship systems. In [18], the unknown ship dynamics
was learned by using deterministic learning theory and
then learning problem from neural output feedback control
of uncertain ship dynamics was studied. The prescribed
performance control was introduced in [19] to deal with
the neural learning control of ocean surface vessels via
deterministic learning. However, in the working environ-
ments of marine surface vessels, the initial errors cannot
be obtained in advance, and the control method given by
[19] is invalid in most working environments. To solve the
aforementioned problem, we propose a new performance
function for uncertain marine surface vessels with unknown
initial errors.

Dead-zone is one of important input nonlinearities
which appears in a wide range of practical engineering. The
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existence of dead-zone nonlinearities degrades the perfor-
mance of control system and even may lead to system insta-
bility. In [20, 21], the robust adaptive control methods were
used for nonlinear systems with parametric uncertainties
subject to the input deal-zone, and the systems must satisfy
linear parameterized condition. Recently, in order to deal
with unknown nonlinear systemswith input dead-zonewhen
the knowledge of system functions is unavailable,many adap-
tive controllers have been proposed by utilizing universal
approximation capability of neural networks or some fuzzy
logic systems [21, 22]. A robust adaptive NN control design
method was proposed in [23] for a kind of strict-feedback
nonlinear systems with uncertainties and input dead-zone.
An adaptive fuzzy output feedback control was studied in [24]
for switchednonlinear systemswith uncertainties. In [25], the
problem of the adaptive fuzzy backstepping output feedback
tracking control was investigated for multi-input and multi-
output (MIMO) stochastic nonlinear systems. The problem
of adaptive decentralized NN control was investigated in [26]
for large-scale stochastic nonlinear time-delay systems with
input dead-zone.

In the control design, the tracking error is only required
to converge to a small residual set, while the transient and
steady-state tracking performance is not considered. The
practical engineering often requires certain prespecified per-
formance.More recently, the prescribed performance control
(PPC) has been proposed in [27]. Furthermore, in [28, 29],
the PPC was used for the position tracking control of robot.
Combining PPCwith dynamic surface control (DSC), a fuzzy
control schemewas studied in [30] to ensure the performance
of tracking control. When states were unmeasurable, an
output feedback control was presented in [31] for large-scale
nonlinear time-delay systems. The prescribed performance
control technology was extended to MIMO systems [32,
33]. However, to our best knowledge, by using prescribed
performance control, no tracking control methods exit for
uncertain ocean surface vessels without the need for the
initial error conditions.

Motivated by the aforementioned discussion, to guar-
antee the predefined performance for ocean surface vessels
without velocity measurements in the presence of unknown
input dead-zone, we will design an adaptive neural output
feedback control scheme. RBF NNs are used to approximate
the unknown nonlinearities. The prescribed performance
function is designed to ensure the performance of the
prescribed tracking control without any consideration for
accurate initial errors. Then, based on the backstepping and
Lyapunov theory, we propose an adaptive neural tracking
controlmethod to ensure the boundedness of the closed-loop
system.

Comparedwith previous works, our paper has the follow-
ing advantages. (1)The unmeasurable velocities of the ocean
surface ship are estimated by employing a high-gain observer.
To prevent peaking of the high-gain observer at the initial
phase, a new method is used different from the saturation
functions employed in [16, 34]. (2) A performance function
is given to ensure the tracking control performance, and the
requirement for the exact initial error is removed. (3) With
the proposed controller, the tracking control for uncertain

surface vessels is achieved with only position sensors and
the control performance of the system is guaranteed by
prescribed performance control.

The rest of the paper is organized as follows. Section 2
presents the preliminaries and problem formulation. An
adaptive neural tracking control scheme for uncertain ocean
surface vessels with prescribed performance control is given
in Section 3.The simulation studies are presented in Section 4
to demonstrate the effectiveness of the proposed method.
Section 5 concludes this paper.

2. Problem Formulation and Preliminaries

2.1. Ship Dynamics. Consider multiple-input-multiple-
output (MIMO) systems for a three degrees of freedom
surface vessel subject to unknown model uncertainties
and input dead-zone. The dynamics of the surface vessel is
described by [1, 35]

�̇� = 𝐽 (𝜂) ]
𝜏 = 𝑀]̇ + 𝐶 (]) ] + 𝐷 (]) ] + 𝑔 (𝜂) + Δ (𝜂, ]) , (1)

where 𝜂 = [𝑥, 𝑦, 𝜓]𝑇 ∈ 𝑅3, (𝑥, 𝑦) is the surface vessel
position, and 𝜓 is the surface vessel heading; 𝐽(𝜂) is the
rotation matrix; ] = [𝑢, V, 𝑟]𝑇 ∈ 𝑅3, 𝑢, V, 𝑟 are velocities
of the surge, the sway, and the yaw, respectively; 𝜏 ∈𝑅3 is the vector of control input, 𝑀 denotes the inertia
matrix of the ship, 𝐶(]) is the total Coriolis and centripetal
acceleration matrix, 𝐷(]) is the damping matrix, 𝑔(𝜂) =[𝑔1(𝜂), 𝑔2(𝜂), 𝑔3(𝜂)]𝑇 is the vector of buoyancy/gravitational
forces, and Δ(𝜂, ]) = [Δ 1(𝜂, ]), Δ 2(𝜂, ]), Δ 3(𝜂, ]]𝑇 is used
to model the uncertainties with Δ 𝑖(𝜂, ]), (𝑖 = 1, 2, 3) being
unknown.

Precisely, 𝑀 = 𝑀𝑇 > 0 is given by [35]; 𝐽(𝜂), 𝐶(]), and𝐷(]) are given as follows:

𝐽 (𝜂) = [[
[
cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

]]
]
,

𝐶 (]) = [[
[

0 0 𝑐13 (])0 0 𝑐23 (])−𝑐13 (]) −𝑐23 (]) 1
]]
]
,

𝐷 (]) = [[
[
𝑑11 (]) 0 0

0 𝑑22 (]) 𝑑23 (])0 𝑑32 (]) 𝑑33 (])
]]
]
,

(2)

where 𝑐13(]), 𝑐23(]), 𝑑11(]), 𝑑22(]), 𝑑23(]), 𝑑32(]), and 𝑑33(])
are unknown.
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We have the description of the ship dynamics (1) subject
to the unknown dead-zone nonlinearity as follows:

�̇� = 𝐽 (𝜂) ]
]̇ = 𝑀−1 (−𝐶 (]) ] − 𝐷 (]) ] − 𝑔 (𝜂) + 𝜏 − Δ (𝜂, ]))
𝜏 = D (𝑢𝜏) ,

(3)

where 𝜂 ∈ R3 is the system output, 𝜏 ∈ R3 is the system
input and the dead-zone output, and the actuator dead-zone
characteristic is described as D(𝑢𝜏) with 𝑢𝜏 being the input
of the unknown dead-zone.

The main goal of this control scheme is to present an
adaptive NN tracking controller for the system described by
(3) to ensure that the system output 𝜂 ∈ R3 can track the
reference signal 𝑦𝑑(𝑡) ∈ R3 and all signals in the closed-loop
system remain bounded.

Assumption 1. The system output 𝜂(𝑡) ∈ R3 and its first-order
derivative �̇�(𝑡) ∈ R3 are continuous and bounded, such that‖𝜂‖ < 𝑌0 and ‖�̇�‖ < 𝑌1, where𝑌0 and𝑌1 are positive constants.
Assumption 2. The reference signal 𝑦𝑑(𝑡) ∈ R3 and its 𝑛th
order 𝑦𝑛

𝑑(𝑡) ∈ R3 are continuous and bounded.

2.2. Dead-Zone Characteristic. The actuator dead-zone non-
linearity can be described as follows [36]:

𝜏 = D (𝑢𝜏) =
{{{{{{{{{

ℎ𝑟 (𝑢𝜏 − 𝑏𝑟) 𝑢𝜏 ≥ 𝑏𝑟
0 𝑏𝑙 < 𝑢𝜏 < 𝑏𝑟
ℎ𝑙 (𝑢𝜏 − 𝑏𝑙) 𝑢𝜏 ≤ 𝑏𝑙,

(4)

where ℎ𝑟(⋅) and ℎ𝑙(⋅) are unknown smooth functions.

Assumption 3. The parameters of the dead-zone 𝑏𝑟 and 𝑏𝑙 are
unknown constants and satisfy 𝑏𝑟 > 0 and 𝑏𝑙 < 0.
Assumption 4. For unknown functions ℎ𝑟(⋅) and ℎ𝑙(⋅), there
exist unknown constants𝐻0 and𝐻1, such that

0 < 𝐻𝑟0 < ℎ̇𝑟 (𝑢𝜏 − 𝑏𝑟) < 𝐻𝑟1, 𝑟 ∈ [𝑏𝑟, +∞]
0 < 𝐻𝑙0 < ℎ̇𝑙 (𝑢𝜏 − 𝑏𝑙) < 𝐻𝑙1, 𝑟 ∈ (−∞, 𝑏𝑙] . (5)

Let Dmin = min{𝐻0} and Dmax = max{𝐻1}. The dead-
zone nonlinearity can be rewritten as

𝜏 = D (𝑢𝜏) = Ξ (𝑢𝜏) 𝑢𝜏 + 𝑑 (𝑢𝜏) , (6)
where

Ξ = {{{
Ξ
𝑟 𝑢𝜏 ≥ 𝑏𝑟

Ξ
𝑙 𝑢𝜏 < 𝑏𝑟,

𝑑 (𝑢𝜏) =
{{{{{{{{{

−Ξ
𝑟𝑏𝑟 𝑢𝜏 ≥ 𝑏𝑟

−Ξ
𝑟𝑢𝜏 𝑏𝑟 < 𝑢𝜏 < 𝑏𝑙

−Ξ
𝑙𝑏𝑙 𝑢𝜏 ≤ 𝑏𝑙,

(7)

where Ξ
𝑟 = ℎ̇𝑟(⋅) and Ξ

𝑙 = ℎ̇𝑙(⋅).
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Figure 1: Prescribed performance of the error 𝑒1(𝑡).

It can be obtained thatDmin ≤ Ξ ≤ Dmax, ‖𝑑(𝑢)‖ ≤ 𝑑∗ fl
max{−Dmax𝑑l,Dmax𝑑𝑟}.
2.3. Prescribed Performance. This section introduces the
concept of the prescribed performance. Then, a performance
function is given and it will be chosen to be used in the control
design.

Definition 5 (see [27]). A smooth function 𝜌(𝑡) : 𝑅+ → 𝑅+ is
called a performance function, if

(i) 𝜌(𝑡) is a strictly positive decreasing function;
(ii) lim𝑡→+∞𝜌(𝑡) = 𝜌∞ > 0, where 𝜌∞ is a positive

constant.

According to Definition 5, we choose the performance
function as follows:

𝜇 (𝑡) = (𝜇0 − 𝜇∞) exp (−𝜅𝑡) + 𝜇∞, (8)

where 𝜇0, 𝜇∞ and 𝜅 are design parameters. It is obvious
that 𝜇(𝑡) satisfies that lim𝑡→∞𝜇(𝑡) = 𝜇∞. According to the
description of the performance function 𝜇(𝑡), the tracking
error 𝑒1 = 𝑦 − 𝑦𝑑 has the following performance bound (as
shown in Figure 1):

−𝑀𝜇 (𝑡) < 𝑒1 (𝑡) < 𝜇 (𝑡) , if 𝑒1 (𝑡) ≥ 0
−𝜇 (𝑡) < 𝑒1 (𝑡) < 𝑀𝜇 (𝑡) , if 𝑒1 (𝑡) < 0, (9)

where 0 ≤ 𝑀 ≤ 1, 𝑡 ≥ 0.
To represent (9) by an unconstrained form, the following

state transformation is employed [27]:

𝑒1 (𝑡) = 𝜇 (𝑡) 𝑅 (𝜁1) , (10)

where

𝑅 (𝜁1) = 𝑀 𝑒𝜁1 − 𝑒−𝜁1𝑀𝑒𝜁1 + 𝑒−𝜁1 , if 𝑒1 (𝑡) ≥ 0

𝑅 (𝜁1) = 𝑀 𝑒𝜁1 − 𝑒−𝜁1𝑒𝜁1 +𝑀𝑒−𝜁1 , if 𝑒1 (𝑡) < 0
(11)
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and 𝜁1 is called the transformed error. According to (11), the
derivation of 𝜁1 is as follows:

�̇�1 = 𝜕𝑅−1

𝜕𝜔 �̇� =
{{{{{{{{{{{

12 1 +𝑀(𝜔 +𝑀) (1 − 𝜔) �̇�, if 𝑒1 (𝑡) ≥ 0
12 1 +𝑀(𝜔 + 1) (𝑀 − 𝜔)�̇�, if 𝑒1 (𝑡) < 0.

(12)

Based on 𝑒1(𝑡) = 𝑥1(𝑡) − 𝑦𝑑, one has
�̇� = 1𝜇 (𝑡) ( ̇𝑒1 − �̇� (𝑡)𝜇 (𝑡) 𝑒1 (𝑡)) ,

�̇�1 = 1𝜇 𝜕𝑅−1

𝜕𝜔 ( ̇𝑒1 − �̇� (𝑡)𝜇 (𝑡) 𝑒1 (𝑡))

= 𝑝1 ( ̇𝑒1 − �̇� (𝑡)𝜇 (𝑡) 𝑒1 (𝑡))

(13)

with

𝑝1 = 1𝜇 𝜕𝑅−1

𝜕𝜔 . (14)

2.4. RBF Neural Networks. It has been shown that neural
networks are good atmodeling unknownnonlinear functions
in control design [37]. In the study, RBFNNwill be employed
to model unknown continuous function 𝑓(𝑍) : 𝑅𝑞 → 𝑅 over
a compact set Ω𝑍 ⊂ 𝑅𝑞 for a given arbitrary accuracy 𝜖∗ > 0
as follows:

𝑓 (𝑍) = 𝑊∗𝑇𝑆 (𝑍) + 𝜖 (𝑍) , (15)

where 𝑍 ∈ Ω𝑍 is the input vector with 𝑞 being the input
dimension of the neural networks. 𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑙]𝑇 ∈𝑅𝑙 is the neural weight vector with 𝑙 > 1 being the node
number of the neural network, and 𝑊∗ denotes the ideal
constant weight vector. 𝜖(𝑍) is the approximation error,‖𝜖(𝑍)‖ ≤ 𝜖∗. 𝑆(𝑍) = [𝑠1(𝑍), 𝑠2(𝑍), . . . , 𝑠𝑙(𝑍)]𝑇 is the vector of
basis function; 𝑠𝑖(𝑍) commonly is Gaussian function which
has the following form:

𝑠𝑖 (𝑍) = exp[− (𝑍 − 𝜉𝑖)𝑇 (𝑍 − 𝜉𝑖)𝜂2 ] , 𝑖 = 1, . . . , 𝑙, (16)

where 𝜉𝑖 = [𝜉𝑖1, 𝜉𝑖2, . . . , 𝜉𝑖𝑞]𝑇 is the center of the receptive field
and 𝜂 is the bandwidth of Gaussian function [37].

The ideal constant weight vector is defined as

𝑊∗ fl arg min
�̂�∈𝑅𝑙

{ sup
𝑍∈Ω𝑍

𝑓 (𝑍) − �̂�𝑇𝑆 (𝑍)} , (17)

where �̂� is the estimation of𝑊∗.

Lemma 6 (see [38]). Consider the Gaussian RBF neural
networks (15). Let  fl (1/2)min𝑖 ̸=𝑗‖𝜉𝑖 −𝜉𝑗‖. 𝑞 is the dimension
of the neural network input𝑍 and 𝜂 is thewidth of theGaussian
function (16); then the following inequality holds:

‖𝑆 (𝑍)‖ ≤ ∞∑
𝑘=0

3𝑞 (𝑘 + 2)𝑞−1 𝑒−22𝑘2/𝜂2 fl 𝑠∗, (18)

where 𝑠∗ is an upper bound of ‖𝑆(𝑍)‖ and is limited and inde-
pendent of neural input 𝑍 and the neural weights dimension𝑙.
2.5. High-Gain Observer. The system output 𝜂 = [𝑥, 𝑦, 𝜓]𝑇 ∈𝑅3 is available for measurement, and ] = [𝑢, V, 𝑟]𝑇 ∈ 𝑅3 is
unavailable. To solve the unmeasured states problem,we need
a high-gain observer used in [39].

Lemma 7 (see [16]). Consider the following linear system:

𝜀𝜆�̇�1 = 𝜋2,
𝜀𝜆�̇�2 = −𝜆𝜋2 − 𝜋1 + 𝜂, (19)

where 𝜀𝜆 is a small constant, 𝜋1 and 𝜋2 are system states, and𝜆 is chosen to ensure that the linear system is stable. According
to Assumption (1), the following properties hold:

(i)
𝜋2𝜀𝜆 − �̇� = −𝜀𝜆�̈�, (20)

where 𝜙 = 𝜋2 + 𝜆𝜋1.
(ii) There exist two constants 𝑡∗ > 0 and ℎ0 > 0, which rely

on the parameters𝑌0,𝑌1, 𝜀𝜆, and 𝜆, such that ‖�̈�‖ ≤ ℎ0,∀𝑡 > 𝑡∗.
Considering that �̇� = 𝐽(𝜂)] in system (1) and the property𝐽𝑇(𝜂)𝐽(𝜂) = 𝐼, we can use ]̂ = 𝐽𝑇(𝜂)(𝜋2/𝜀𝜆) to estimate the

state variable ].

Lemma 8 (see [39]). For the RBF neural networks, if 𝑍 = �̂� −𝜀𝜙, 𝜀 > 0, 𝜙 is a bounded vector; then

𝑆 (�̂�) = 𝑆 (𝑍) + 𝜀𝑆𝑡, (21)

where 𝑆𝑡 is the bounded function, ‖𝑆𝑡‖ < 𝑠∗𝑡 ; 𝑠∗𝑡 is a positive
constant.

3. Adaptive Neural Control Design

Thebackstepping design is based on the following coordinate
changes:

𝑧1 = 𝜁1,
𝑧2 = ] − 𝛼1,

(22)

where 𝛼1 is the virtual control signal, which is defined later.
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Step 1. Considering 𝑒1(𝑡) = 𝜂(𝑡) −𝑦𝑑 and ̇𝑒1 = 𝐽(𝜂)]− �̇�𝑑, one
has

�̇�1 (𝑡) = 𝑝1 (𝐽 (𝜂) ] − �̇�𝑑 − �̇�𝜇𝑒1) . (23)

Noting the following the error variable as 𝑧2 = ]−𝛼1, we have
�̇�1 (𝑡) = 𝑝1 (𝐽 (𝜂) (𝑧2 + 𝛼1) − �̇�𝑑 − �̇�𝜇𝑒1) . (24)

From the property 𝐽𝑇(𝜂)𝐽(𝜂) = 𝐼, 𝛼1 is defined as

𝛼1 = 𝐽𝑇 (𝜂) (−𝐾1𝑝−1
1 𝑧1 + �̇�𝑑 + �̇�𝜇𝑒1) , (25)

where𝐾𝑇
1 = 𝐾1 ≥ 0 is a design parameter.

We choose a Lyapunov function candidate 𝑉1 =(1/2)𝑧𝑇1 𝑧1, and its derivative along (24) yields

�̇�1 = 𝑧𝑇1 𝑝1 (𝐽 (𝜂) 𝑧2 − 𝐾1𝑝−1
1 𝑧1)

= −𝑧𝑇1𝐾1𝑧1 + 𝑧𝑇1 𝑝1𝐽 (𝜂) 𝑧2,
(26)

where the last term 𝑧𝑇1 𝑝1𝐽(𝜂)𝑧2 will be canceled in the next
step.

Step 2. From 𝑧2 = ] − 𝛼, we have
�̇�2 = 𝑀−1 (−𝐶 (]) ] − 𝐷 (]) ] − 𝑔 (𝜂) + 𝜏 − Δ (𝜂, ]))

− �̇�. (27)

Noting𝑀𝑇 = 𝑀 ≥ 0 is the design constant obtained by [35],
we consider the following Lyapunov function candidate:

𝑉2 = 12𝑧𝑇2𝑀𝑧2. (28)

The derivative of 𝑉2 along (27) is obtained by

�̇�2 = 𝑧𝑇2 (−𝐶 (]) ] − 𝐷 (]) ] − 𝑔 (𝜂) + 𝜏 − Δ (𝜂, ])
− 𝑀�̇�) = 𝑧𝑇2 (Ξ (𝑢𝜏) 𝑢𝜏 + 𝑑 (𝑢𝜏) − 𝐶 (]) ]
− 𝐷 (]) ] − 𝑔 (𝜂) − Δ (𝜂, ]) − 𝑀�̇�) .

(29)

Denote

𝐹 (𝑍)
= − (𝐶 (]) ] + 𝐷 (]) ] + 𝑔 (𝜂) + Δ (𝜂, ]) + 𝑀�̇�) ,

(30)

where 𝐹(𝑍) = [𝑓1(𝑍), 𝑓2(𝑍), 𝑓3(𝑍)]𝑇 ∈ 𝑅3, 𝑍 = [𝜂, ], 𝛼, �̇�] ∈𝑅8. A RBF NN 𝑊∗𝑇𝑆 is employed to approximate the
unknown function 𝐹(𝑍) as follows:

𝐹 (𝑍) = 𝑊∗𝑇𝑆 (𝑍) + 𝜖 (𝑍) , |𝜖 (𝑍)| ≤ 𝜖∗, (31)

where 𝑊∗𝑇𝑆(𝑍1) = [𝑊∗𝑇
1 𝑆1(𝑍),𝑊∗𝑇

2 𝑆2(𝑍),𝑊∗𝑇
3 𝑆3(𝑍)]𝑇 ∈𝑅3 and 𝜖(𝑍) = [𝜖1(𝑍), 𝜖2(𝑍), 𝜖3(𝑍)]𝑇 ∈ 𝑅3 is the approxima-

tion error.
We choose the following control as

𝑢𝜏 = 1𝐶1

(−𝐾2�̂�2 − �̂�𝑇𝑆 (�̂�) − 𝐽 (𝜂) 𝑝1𝑧1) , (32)

where �̂� = [𝜂, ]̂, 𝛼, �̇�] ∈ 𝑅8. �̂�𝑇𝑆(�̂�) = [�̂�𝑇

1 𝑆1(�̂�), �̂�𝑇

2 𝑆2(�̂�),�̂�𝑇

3 𝑆3(�̂�)]𝑇 ∈ 𝑅3; 𝐶1 = 𝐷max is a design parameter.
From Lemma 7 and the property 𝐽𝑇(𝜂)𝐽(𝜂) = 𝐼, one has

�̃�2 = �̂�2 − 𝑧2 = 𝐽𝑇 (𝜂) 𝜋2𝜀𝜆 − 𝛼 − (] − 𝛼)

= 𝐽𝑇 (𝜂) 𝜋2𝜀𝜆 − ] = 𝐽𝑇 (𝜂) (𝜋2𝜀𝜆 − �̇�) = −𝐽𝑇 (𝜂) 𝜀𝜆�̈�

= 𝛽,

(33)

where ‖𝛽‖ ≤ 𝜀𝜆ℎ0. 𝜀𝜆 = ‖𝐽𝑇(𝜂)𝜀𝜆‖ > 0 is constant.
According to Lemmas 7 and 8, we have

𝑆𝑖 (�̂�) = 𝑆𝑖 (𝑍) + 𝜀𝑆𝑖𝑡
�̂�𝑇

𝑖 𝑆𝑖 (�̂�) = 𝑊∗𝑇
𝑖 𝑆𝑖 (𝑍) + 𝑊∗𝑇

𝑖 𝜀𝑆𝑖𝑡 + �̃�𝑇

𝑖 𝑆𝑖 (�̂�) .
(34)

Consider the following Lyapunov function candidate

𝑉 = 𝑉1 + 𝑉2 + 12
3∑
𝑖=1

�̃�𝑇

𝑖 Γ−1𝑖 �̃�𝑖

= 12𝑧𝑇1 𝑧1 + 12𝑧𝑇2𝑀𝑧2 + 12
3∑
𝑖=1

�̃�𝑇

𝑖 Γ−1𝑖 �̃�𝑖.
(35)

The time derivative of 𝑉 is given by

�̇� = −𝑧𝑇1𝐾1𝑧1 + 𝑧𝑇1 𝑝1𝐽 (𝜂) 𝑧2 + 𝑧𝑇2 (Ξ (𝑢𝜏) 𝑢𝜏 + 𝑑 (𝑢𝜏)
− 𝐶 (]) ] − 𝐷 (]) ] − 𝑔 (𝜂) − Δ (𝜂, ]) − 𝑀�̇�)

+ 3∑
𝑖=1

�̃�𝑇

𝑖 Γ−1𝑖 ̇̃𝑊𝑖.
(36)
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Define the adaptive law as follows:

̇̂𝑊 = ̇̃𝑊 = Γ [𝑆 (�̂�) �̂�2 − 𝜎�̂�] , (37)

where Γ = Γ𝑇 > 0 and 𝜎 are design parameters.
Substituting (32) and (37) into (36) yields

�̇� ≤ −𝑧𝑇1𝐾1𝑧1 + 𝑧𝑇1 𝑝1𝐽 (𝜂) 𝑧2 + 𝑧𝑇2 (−𝐾2�̂�2
− �̂�𝑇𝑆 (�̂�) − 𝑝1𝐽 (𝜂) 𝑧1 +𝑊∗𝑇𝑆 (𝑍) + 𝜖) + 𝑧𝑇2 𝑑∗

+ �̃�𝑇 [𝑆 (�̂�) �̂�2 − 𝜎�̂�] ≤ −𝑧𝑇1𝐾1𝑧1 − 𝑧𝑇2𝐾2𝑧2

− 𝑧𝑇2𝐾2�̃�2 − 3∑
𝑖=1

𝑧2,𝑖𝑊∗𝑇
𝑖 𝜀𝑆𝑖𝑡 − 3∑

𝑖=1

𝑧2,𝑖�̃�𝑇

𝑖 𝑆𝑖 (�̂�)

+ 𝑧𝑇2 𝜖 + 𝑧𝑇2 𝑑∗ + �̃�𝑇 [𝑆 (�̂�) �̂�2 − 𝜎�̂�] ≤ −𝑧𝑇1𝐾1𝑧1

− 𝑧𝑇2𝐾2𝑧2 − 𝑧𝑇2𝐾2�̃�2 − 3∑
𝑖=1

𝑧2,𝑖𝑊∗𝑇
𝑖 𝜀𝑆𝑖𝑡

+ 3∑
𝑖=1

�̃�2,𝑖�̃�𝑇

𝑖 𝑆𝑖 (�̂�) + 𝑧𝑇2 𝜖 + 𝑧𝑇2 𝑑∗ − 𝜎�̃�𝑇�̂�.

(38)

Considering �̃� = �̂� −𝑊∗, we have

−𝜎�̃�𝑇�̂� = −𝜎�̃�𝑇 (𝑊∗ + �̃�)
≤ −𝜎 �̃�2 + 𝜎 �̃� 𝑊∗
≤ 12𝜎 (𝑊∗2 − �̃�2) .

(39)

By completing the squares, we have

𝑧𝑇2 𝜖 ≤ 12𝑧𝑇2 𝑧2 + 12 𝜖∗2

𝑧𝑇2 𝑑∗ ≤ 12𝑧𝑇2 𝑧2 + 12𝑑∗2

− 3∑
𝑖=1

𝑧2,𝑖𝑊∗𝑇
𝑖 𝜀𝑆𝑖𝑡 ≤ 12𝑧𝑇2 𝑧2 +

3∑
𝑖=1

𝑊∗
𝑖 𝜀2 𝑆𝑖𝑡22

3∑
𝑖=1

�̃�2,𝑖�̃�𝑇

𝑖 𝑆𝑖 (�̂�) ≤ 3∑
𝑖=1

𝜎𝑖 �̃�𝑖

24

+ 3∑
𝑖=1

2 𝑆𝑖 (�̂�)2𝜎𝑖
12 �̃�𝑇2 �̃�2

−𝑧𝑇2𝐾2�̃�2 ≤ 12𝑧𝑇2 𝑧2 + 12 (𝐾2�̃�2)𝑇 (𝐾2�̃�2) .
(40)

Substituting (39)-(40) into (38) yields

�̇� ≤ −𝑧𝑇1𝐾1𝑧1 − 𝑧𝑇2 (𝐾2 − 2𝐼) 𝑧2 − 14𝜎 �̃�2

+ 12 𝜖∗2 + 12𝑑∗2 + 12
3∑
𝑖=1

(𝜀2𝑖 𝑆𝑖𝑡2 + 𝜎𝑖) 𝑊∗
𝑖
2

+ 𝜆max (𝐾𝑇
2𝐾2 + diag[2𝑠∗2𝜎𝑖 ]) 12𝛽𝑇𝛽,

(41)

where 𝜆max(𝐴) and 𝜆min(𝐴) denote the minimum and maxi-
mum eigenvalues of matrix 𝐴.

Considering (1/2)𝛽𝑇𝛽 ≤ (1/2)𝜀2𝜆ℎ20, we have
�̇� ≤ −𝑧𝑇1𝐾1𝑧1 − 𝑧𝑇2 (𝐾2 − 2𝐼) 𝑧2 − 14𝜎 �̃�2

+ 12 𝜖∗2 + 12𝑑∗2 + 12
3∑
𝑖=1

(𝜀2𝑖 𝑆𝑖𝑡2 + 𝜎𝑖) 𝑊∗
𝑖
2

+ 𝜆𝑚𝑎𝑥 (𝐾𝑇
2𝐾2 + 𝑑𝑖𝑎𝑔 [2𝑠∗2𝜎𝑖 ]) 12𝜀2𝜆ℎ20,

(42)

where diag[∗] denotes a block-diagonal matrix.
Then, we have the following inequality:

�̇� ≤ −𝜌1𝑉 + 𝛿1, (43)
where

𝜌1 = min{2𝜆min (𝐾1) , 2𝜆min (𝐾2 − 2𝐼)𝜆max (𝑀) ,
min

𝑖=1,2,...,𝑛

𝜎𝑖2𝜆max (Γ−1𝑖 )}

𝛿1 = 12 𝜖∗2 + 12𝑑∗2 + 12
3∑
𝑖=1

(𝜀2𝑖 𝑆𝑖𝑡2 + 𝜎𝑖) 𝑊∗
𝑖
2

+ 𝜆max (𝐾𝑇
2𝐾2 + diag [2𝑠∗2𝜎𝑖 ]) 12𝜀2𝜆ℎ20.

(44)

To ensure 𝜌1 > 0, the parameters 𝐾1 and 𝐾2 are chosen to
satisfy that𝐾1 > 0 and𝐾2 − 2𝐼 > 0.
Theorem 9. Consider the ship system composed of system (1),
observer (19), the neural controller (32), and the adaptive law
(37). Under Assumptions 1 and 2, if the initial conditions are
bounded, then all the signals in the closed-loop system are
semiglobally uniformly ultimately bounded. Moreover, for all𝑡 ≥ 0 the tracking error 𝑒1 = 𝜂 − 𝑦𝑑 is confined within the
prescribed performance bounds.
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Proof. Multiplying (43) by 𝑒𝜌1𝑡 yields
𝑑𝑑𝑡 (𝑉𝑒𝜌1𝑡) ≤ 𝛿1𝑒𝜌1𝑡. (45)

Integrating (45), one has

𝑉 ≤ (𝑉 (0) − 𝛿1𝜌1) 𝑒−𝜌1𝑡 + 𝛿1𝜌1 ≤ 𝑉 (0) + 𝛿1𝜌1 . (46)

Given 𝑄 = 2(𝑉(0) + 𝛿1/𝜌1), the closed-loop error signals 𝑧1,𝑧2, and �̃� will converge asymptotically to the compact setsΩ𝑧1, Ω𝑧2, andΩ𝑊, defined by

Ω𝑧1 fl {𝑧1 ∈ 𝑅3 | 𝑧1 ≤ √𝑄} .
Ω𝑧2 fl {𝑧2 ∈ 𝑅3 | 𝑧2 ≤ √ 𝑄𝜆min (𝑀)} .

Ω𝑊 fl {�̃� ∈ 𝑅𝑙×3 | �̃� ≤ √ 𝑄𝜆min (Γ−1)} ,
(47)

where 𝑙 denotes the neural network node number.
Therefore, 𝑧1, 𝑧2, and �̃�1, �̃�2, �̃�3 are uniformly ulti-

mately bounded. Then �̂�𝑖 = �̃�𝑖 + 𝑊∗
𝑖 (𝑖 = 1, 2, 3) is

also bounded. 𝑧1 is the transformed error, so 𝑒1 = 𝜂 − 𝑦𝑑
is bounded. From Assumption 2, 𝑦𝑑 is bounded and 𝛼 is
bounded, and thus 𝜂 and ] are bounded. The control input𝜏 is bounded since 𝑆(𝑍) is bounded. Thus, all signals in the
closed-loop system remain bounded, and the tracking error𝑒1 = 𝜂 − 𝑦𝑑 not only converges to a small neighborhood of
zero, but also achieves the prescribed performances.

Remark 10. To achieve the control design with no need of
the initial error 𝑒1(0), preprocessing is needed before the
operation of the controller and identifying which controller
is applicable. In the paper, we have assumed that system state
variable ] is unmeasurable. In practice, for most merchant
vessels, only the heading and the position are measured.
To estimate unmeasured ], a high-gain observer (19) is
introduced.We use the Exponential function to overcome the
peaking phenomenon of the high-gain observer.

4. Simulation Studies

Simulation studies are presented to illustrate the effectiveness
of the proposed control method in this section.The following
choices of the system (1) are given: 𝑐13(]) = −1.0948𝑟 −24.6612V, 𝑐23(]) = 25.8𝑢, 𝑑11(]) = 1.3274|𝑢| + 5.8664𝑢2 +0.7225, 𝑑22(]) = 8.05|𝑟| + 36.2823|𝑢| + 0.8612, 𝑑23(]) =3.450|𝑟|+0.845|V|−0.1079, 𝑑32 = −0.13|𝑟|−5.0437|V|−0.1052,𝑑33 = 0.75|𝑟|−0.08|V|+1.9, and 𝑔1 = 𝑔2 = 𝑔3 = 0. We assume
that these parameters are unknown for the control input 𝜏.
The ship inertia matrix 𝑀 is a constant matrix and, equally
with [35],

𝑀 = [[
[
25.8000 0 0

0 24.6612 1.0948
0 1.0948 2.7600

]]
]
. (48)

Δ(𝜂, ]) is assumed to be the model uncertainties withΔ(𝜂, ]) = [1; 0.01𝑢2 + 0.5; −0.1𝑟3 + sin(V)].
The dead-zone nonlinearity is given as

𝜏 = 𝐷 (𝑢) =
{{{{{{{{{{{{{{{

1.5 (𝑢 − 0.4) 𝑢 ≥ 0.4
0 −0.5 < 𝑢 < 0.4
1.3 (𝑢 + 0.5) 𝑢 ≤ −0.5.

(49)

For the state variable 𝑥, the performance function is
chosen as

𝜇 (𝑡) = (0.3 − 0.02) exp (−3.4𝑡) + 0.02, (50)

where𝑀 = 1.
For the state variables 𝑦, the performance function is

chosen as

𝜇 (𝑡) = (0.25 − 0.01) exp (−2.4𝑡) + 0.01, (51)

where𝑀 = 1.
For the state variable 𝜓, the performance function is

chosen as

𝜇 (𝑡) = (0.25 − 0.01) exp (−6.4𝑡) + 0.01, (52)

where𝑀 = 1.
The objective of the control is to put forward an

adaptive neural control scheme to ensure that all sig-
nals in closed-loop system remain bounded, and the sys-
tem output 𝜂 tracks the ideal reference trajectory 𝑦𝑑 =[0.8 sin(𝑡), 0.8 cos(𝑡), −0.8 sin(𝑡)]𝑇.

During the simulation, the initial conditions are 𝜂(0) =[0.1, 0.75, −0.0873]𝑇 and ]̂ = [0, 0, 0]𝑇. �̂�𝑖(0) = 0, 𝑖 = 1, 2,3. 𝑒1(0) = [𝑥(0) − 𝑦𝑑1(0), 𝑦(0) − 𝑦𝑑2(0), 𝜓(0) − 𝑦𝑑3(0)]𝑇 =[0.1, −0.05, −0.0873]𝑇. The design parameters are given as
follows: 𝐾1 = [12, 30, 24]𝑇, 𝐾2 = [30, 40, 30]𝑇, Γ1 = diag{12},Γ2 = diag{10}, and Γ3 = diag{17}. 𝜎1 = 0.02, 𝜎2 = 0.01,
and 𝜎3 = 0.05. The input of the RBF neural networks is 𝑍 =
[𝜂, ]̂, 𝛼, �̇�]𝑇 and �̂�𝑇

𝑖 𝑆𝑖(𝑍) are constructed using 34 nodes with
the centers 𝜇𝑖 evenly spaced on [−1.8, 1.8] × [−1.8, 1.8] ×[−1, 1] × [−1, 1], the width being 𝜛𝑖 = 1.1, 𝑖 = 1, 2, 3.

Figures 2–10 show the simulation results for the pre-
scribed performance control of the unknown ship dynamics.
Figures 2, 4, and 6 show that the good tracking performances
of the closed-loop system are achieved, even though no initial
tracking errors are available. In Figures 3, 5, and 7 provide
the curves of the tracking errors with PPC. It is obvious that
the initial error 𝑒1(0) does not need to be known in advance.
Figure 8 illustrates the time trajectory of the state variables𝑢, V, and 𝑟 and their estimations �̂�, V̂, �̂� by using the high-
gain observer. It can be seen that the peaking effect of the
high-gain observer is eliminated. Figure 9 gives the norms of
the adaptive laws �̂�1, �̂�2, and �̂�3, which demonstrates the
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Figure 2: System output 𝑥 and reference signal 𝑦𝑑1 with the positive
initial error 𝑒1(0) > 0.
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Figure 3: Tracking error trajectory of𝑥with the positive initial error𝑒1(0) > 0.
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Figure 4: System output𝑦 and reference signal𝑦𝑑2 with the negative
initial error 𝑒2(0) < 0.
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Figure 5: Tracking error trajectory of 𝑦 with the negative initial
error 𝑒2(0) < 0.

yd3

𝜓

0
0.

1
0.

2

−0.2
−0.1

0

0 10 15 20 25 305
Time (s)

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Tr

ac
ki

ng
 p

er
fo

rm
an

ce

Figure 6: Systemoutput𝜓 and reference signal𝑦𝑑3 with the negative
initial error 𝑒3(0) < 0.
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Figure 7: Tracking error trajectory of 𝜓 with the negative initial
error 𝑒3(0) < 0.
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û

u

5 10 15 20 25 300
Time (s)

−1
−0.5

0
0.5

1
St

at
e 

va
ria

bl
es

St
at

e 
va

ria
bl

es

r

r̂

5 10 15 20 25 300
Time (s)

−1

0

1

�

�̂

Figure 8: System variables 𝑢, V, 𝑟 and their estimated value �̂�, V̂, �̂�.
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boundedness of the adaptive weights. The control input 𝜏 is
shown in Figure 10.

5. Conclusion

In the paper, we investigate the problem of the tracking con-
trol with predefined performance for marine surface vessels
without velocity measurements in the presence of unknown

dead-zone input. RBF neural networks are used to deal with
uncertain ship dynamics, a new performance function is
designed with no requirement for the exact initial error, and
the unmeasurable ship velocity is estimated by using a high-
gain observer. It has been shown that the proposed common
controller can ensure that all signals in the closed-loop
systems are semiglobally uniformly bounded, and tracking
error converges to a predefined small neighborhood of zero.
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