2,501 research outputs found

    Team MIT Urban Challenge Technical Report

    Get PDF
    This technical report describes Team MITs approach to theDARPA Urban Challenge. We have developed a novel strategy forusing many inexpensive sensors, mounted on the vehicle periphery,and calibrated with a new cross-­modal calibrationtechnique. Lidar, camera, and radar data streams are processedusing an innovative, locally smooth state representation thatprovides robust perception for real­ time autonomous control. Aresilient planning and control architecture has been developedfor driving in traffic, comprised of an innovative combination ofwell­proven algorithms for mission planning, situationalplanning, situational interpretation, and trajectory control. These innovations are being incorporated in two new roboticvehicles equipped for autonomous driving in urban environments,with extensive testing on a DARPA site visit course. Experimentalresults demonstrate all basic navigation and some basic trafficbehaviors, including unoccupied autonomous driving, lanefollowing using pure-­pursuit control and our local frameperception strategy, obstacle avoidance using kino-­dynamic RRTpath planning, U-­turns, and precedence evaluation amongst othercars at intersections using our situational interpreter. We areworking to extend these approaches to advanced navigation andtraffic scenarios

    Software engineering for AI-based systems: A survey

    Get PDF
    AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.This work has been partially funded by the “Beatriz Galindo” Spanish Program BEAGAL18/00064 and by the DOGO4ML Spanish research project (ref. PID2020-117191RB-I00)Peer ReviewedPostprint (author's final draft

    Autopilot simulator prototype for autonomous driving based on SimTwo

    Get PDF
    The main objective of this work was to develop a control system for an autonomous vehicle that provides autonomous driving. For this, a simulation software, named "SimTwo" was used, where the actuation and sensing model was developed. At the end of the work, a control and 3D visualization system was obtained for an autonomous vehicle capable of driving on a road, avoiding obstacles, alerting in case of danger, among others. The work was developed in a simulation environment and includes a 3D model of a road, with several real scenarios, where the vehicle moves. There are objects on the circuit that can obstruct the passage of the car, creating situations of imminent danger. This system alerts the driver in the event of danger and reacts by deflecting or stopping. This control system uses image sensors and LiDAR (Light Detection And Ranging) as inputs data sources.O principal objetivo deste trabalho foi desenvolver um sistema de controlo de um veículo autónomo que o dote de condução autónoma. Para tal, foi utilizado um software de simulação, SimTwo, onde o modelo de atuação e sensorização foi desenvolvido. No final do trabalho, obteve-se um sistema de controlo e visualização 3D de um veículo autónomo capaz de conduzir numa estrada, desviar de obstáculos, alertar no caso de perigo, entre outros. O trabalho foi desenvolvido num ambiente de simulação e contempla um modelo 3D de uma estrada, com vários cenários reais, onde o veículo se desloca. Existem objetos nas bermas que podem obstruir a passagem do carro, criando situações de perigo eminente. Este alerta no caso de perigo e reage, desviando ou parando. Este sistema de controlo utiliza sensores de imagem e LiDAR (da sigla inglesa "Light Detection And Ranging"), como fontes de informação

    Secure Communication in Disaster Scenarios

    Get PDF
    Während Naturkatastrophen oder terroristischer Anschläge ist die bestehende Kommunikationsinfrastruktur häufig überlastet oder fällt komplett aus. In diesen Situationen können mobile Geräte mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem für Zivilisten und Rettungsdienste einzurichten. Falls verfügbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefälschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzuführen. Diese Dissertation schlägt neue Ansätze zur Kommunikation in Notfallnetzen von mobilen Geräten vor, die von der Kommunikation zwischen Mobilfunkgeräten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser Ansätze werden die Sicherheit der Geräte-zu-Geräte-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen Geräten und die Sicherheit von Server-Systemen für Cloud-Dienste verbessert

    An application of Answer Set Programming in Distributed Architectures: ASP Microservices

    Get PDF
    We propose an approach to the definition of microservices with an Answer Set Programming (ASP) `core', where microservices are a successful abstraction for designing distributed applications as suites of independently deployable interacting components. Such ASP-based components might be employed in distributed architectures related to Cloud Computing or to the Internet of Things (IoT).Comment: In Proceedings ICLP 2020, arXiv:2009.0915

    Integration of Polyimide Flexible PCB Wings in Northeastern Aerobat

    Full text link
    The principal aim of this Master's thesis is to propel the optimization of the membrane wing structure of the Northeastern Aerobat through origami techniques and enhancing its capacity for secure hovering within confined spaces. Bio-inspired drones offer distinctive capabilities that pave the way for innovative applications, encompassing wildlife monitoring, precision agriculture, search and rescue operations, as well as the augmentation of residential safety. The evolved noise-reduction mechanisms of birds and insects prove advantageous for drones utilized in tasks like surveillance and wildlife observation, ensuring operation devoid of disturbances. Traditional flying drones equipped with rotary or fixed wings encounter notable constraints when navigating narrow pathways. While rotary and fixed-wing systems are conventionally harnessed for surveillance and reconnaissance, the integration of onboard sensor suites within micro aerial vehicles (MAVs) has garnered interest in vigilantly monitoring hazardous scenarios in residential settings. Notwithstanding the agility and commendable fault tolerance exhibited by systems such as quadrotors in demanding conditions, their inflexible body structures impede collision tolerance, necessitating operational spaces free of collisions. Recent years have witnessed an upsurge in integrating soft and pliable materials into the design of such systems; however, the pursuit of aerodynamic efficiency curtails the utilization of excessively flexible materials for rotor blades or propellers. This thesis introduces a design that integrates polyimide flexible PCBs into the wings of the Aerobat and employs guard design incorporating feedback-driven stabilizers, enabling stable hovering flights within Northeastern's Robotics-Inspired Study and Experimentation (RISE) cage.Comment: 42 pages,20 figure

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business
    corecore