180 research outputs found

    On the Commitment Capacity of Unfair Noisy Channels

    Get PDF
    Noisy channels are a valuable resource from a cryptographic point of view. They can be used for exchanging secret-keys as well as realizing other cryptographic primitives such as commitment and oblivious transfer. To be really useful, noisy channels have to be consider in the scenario where a cheating party has some degree of control over the channel characteristics. Damg\r{a}rd et al. (EUROCRYPT 1999) proposed a more realistic model where such level of control is permitted to an adversary, the so called unfair noisy channels, and proved that they can be used to obtain commitment and oblivious transfer protocols. Given that noisy channels are a precious resource for cryptographic purposes, one important question is determining the optimal rate in which they can be used. The commitment capacity has already been determined for the cases of discrete memoryless channels and Gaussian channels. In this work we address the problem of determining the commitment capacity of unfair noisy channels. We compute a single-letter characterization of the commitment capacity of unfair noisy channels. In the case where an adversary has no control over the channel (the fair case) our capacity reduces to the well-known capacity of a discrete memoryless binary symmetric channel

    Cryptography Based on Correlated Data: Foundations and Practice

    Get PDF
    Correlated data can be very useful in cryptography. For instance, if a uniformly random key is available to Alice and Bob, it can be used as an one-time pad to transmit a message with perfect security. With more elaborate forms of correlated data, the parties can achieve even more complex cryptographic tasks, such as secure multiparty computation. This thesis explores (from both a theoretical and a practical point of view) the topic of cryptography based on correlated data

    Decidability of Secure Non-interactive Simulation of Doubly Symmetric Binary Source

    Get PDF
    Noise, which cannot be eliminated or controlled by parties, is an incredible facilitator of cryptography. For example, highly efficient secure computation protocols based on independent samples from the doubly symmetric binary source (BSS) are known. A modular technique of extending these protocols to diverse forms of other noise without any loss of round and communication complexity is the following strategy. Parties, beginning with multiple samples from an arbitrary noise source, non-interactively, albeit securely, simulate the BSS samples. After that, they can use custom-designed efficient multi-party solutions using these BSS samples. Khorasgani, Maji, and Nguyen (EPRINT--2020) introduce the notion of secure non-interactive simulation (SNIS) as a natural cryptographic extension of concepts like non-interactive simulation and non-interactive correlation distillation in theoretical computer science and information theory. In SNIS, the parties apply local reduction functions to their samples to produce samples of another distribution. This work studies the decidability problem of whether samples from the noise (X,Y)(X,Y) can securely and non-interactively simulate BSS samples. As is standard in analyzing non-interactive simulations, our work relies on Fourier-analytic techniques to approach this decidability problem. Our work begins by algebraizing the simulation-based security definition of SNIS. Using this algebraized definition of security, we analyze the properties of the Fourier spectrum of the reduction functions. Given (X,Y)(X,Y) and BSS with noise parameter ϵ\epsilon, the objective is to distinguish between the following two cases. (A) Does there exist a SNIS from BSS(ϵ)BSS(\epsilon) to (X,Y)(X,Y) with δ\delta-insecurity? (B) Do all SNIS from BSS(ϵ)BSS(\epsilon) to (X,Y)(X,Y) incur δ2˘7\delta\u27-insecurity, where δ2˘7>δ\delta\u27>\delta? We prove that there is a bounded computable time algorithm achieving this objective for the following cases. (1) δ=O1/n\delta=O{1/n} and δ2˘7=\delta\u27= positive constant, and (2) δ=\delta= positive constant, and δ2˘7=\delta\u27= another (larger) positive constant. We also prove that δ=0\delta=0 is achievable only when (X,Y)(X,Y) is another BSS, where (X,Y)(X,Y) is an arbitrary distribution over {1,1}×{1,1}\{-1,1\}\times\{-1,1\}. Furthermore, given (X,Y)(X,Y), we provide a sufficient test determining if simulating BSS samples incurs a constant-insecurity, irrespective of the number of samples of (X,Y)(X,Y). Handling the security of the reductions in Fourier analysis presents unique challenges because the interaction of these analytical techniques with security is unexplored. Our technical approach diverges significantly from existing approaches to the decidability problem of (insecure) non-interactive reductions to develop analysis pathways that preserve security. Consequently, our work shows a new concentration of the Fourier spectrum of secure reduction functions, unlike their insecure counterparts. We show that nearly the entire weight of secure reduction functions\u27 spectrum is concentrated on the lower-degree components. The authors believe that examining existing analytical techniques through the facet of security and developing new analysis methodologies respecting security is of independent and broader interest

    Cloud-based homomorphic encryption for privacy-preserving machine learning in clinical decision support

    Get PDF
    While privacy and security concerns dominate public cloud services, Homomorphic Encryption (HE) is seen as an emerging solution that ensures secure processing of sensitive data via untrusted networks in the public cloud or by third-party cloud vendors. It relies on the fact that some encryption algorithms display the property of homomorphism, which allows them to manipulate data meaningfully while still in encrypted form; although there are major stumbling blocks to overcome before the technology is considered mature for production cloud environments. Such a framework would find particular relevance in Clinical Decision Support (CDS) applications deployed in the public cloud. CDS applications have an important computational and analytical role over confidential healthcare information with the aim of supporting decision-making in clinical practice. Machine Learning (ML) is employed in CDS applications that typically learn and can personalise actions based on individual behaviour. A relatively simple-to-implement, common and consistent framework is sought that can overcome most limitations of Fully Homomorphic Encryption (FHE) in order to offer an expanded and flexible set of HE capabilities. In the absence of a significant breakthrough in FHE efficiency and practical use, it would appear that a solution relying on client interactions is the best known entity for meeting the requirements of private CDS-based computation, so long as security is not significantly compromised. A hybrid solution is introduced, that intersperses limited two-party interactions amongst the main homomorphic computations, allowing exchange of both numerical and logical cryptographic contexts in addition to resolving other major FHE limitations. Interactions involve the use of client-based ciphertext decryptions blinded by data obfuscation techniques, to maintain privacy. This thesis explores the middle ground whereby HE schemes can provide improved and efficient arbitrary computational functionality over a significantly reduced two-party network interaction model involving data obfuscation techniques. This compromise allows for the powerful capabilities of HE to be leveraged, providing a more uniform, flexible and general approach to privacy-preserving system integration, which is suitable for cloud deployment. The proposed platform is uniquely designed to make HE more practical for mainstream clinical application use, equipped with a rich set of capabilities and potentially very complex depth of HE operations. Such a solution would be suitable for the long-term privacy preserving-processing requirements of a cloud-based CDS system, which would typically require complex combinatorial logic, workflow and ML capabilities

    Protocols for Secure Computation on Privately Encrypted Data in the Cloud

    Get PDF
    Cloud services provide clients with highly scalable network, storage, and computational resources. However, these service come with the challenge of guaranteeing the confidentiality of the data stored on the cloud. Rather than attempting to prevent adversaries from compromising the cloud server, we aim in this thesis to provide data confidentiality and secure computations in the cloud, while preserving the privacy of the participants and assuming the existence of a passive adversary able to access all data stored in the cloud. To achieve this, we propose several protocols for secure and privacy-preserving data storage in the cloud. We further show their applicability and scalability through their implementations. we first propose a protocol that would allow emergency providers access to privately encrypted data in the cloud, in the case of an emergency, such as medical records. Second, we propose various protocols to allow a querying entity to securely query privately encrypted data in the cloud while preserving the privacy of the data owners and the querying entity. We also present cryptographic and non-cryptographic protocols for secure private function evaluation in order to extend the functions applicable in the protocols
    corecore