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ABSTRACT

Protocols for Secure Computation on Privately Encrypted Data in the Cloud

Feras Abdulaziz Aljumah

Concordia University, 2017

Cloud services provide clients with highly scalable network, storage, and computa-

tional resources. However, these service come with the challenge of guaranteeing the con-

fidentiality of the data stored on the cloud. Rather than attempting to prevent adversaries

from compromising the cloud server, we aim in this thesis to provide data confidentiality

and secure computations in the cloud, while preserving the privacy of the participants and

assuming the existence of a passive adversary able to access all data stored in the cloud.

To achieve this, we propose several protocols for secure and privacy-preserving data

storage in the cloud. We further show their applicability and scalability through their im-

plementations. we first propose a protocol that would allow emergency providers access to

privately encrypted data in the cloud, in the case of an emergency, such as medical records.

Second, we propose various protocols to allow a querying entity to securely query privately

encrypted data in the cloud while preserving the privacy of the data owners and the querying

entity. We also present cryptographic and non-cryptographic protocols for secure private

function evaluation in order to extend the functions applicable in the protocols.
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Chapter 1

Introduction

The idea of cloud computing was first suggested in 1961 by John McCarthy during a speech

given to celebrate MIT’s centennial. In that speech, he envisioned that computer time-

sharing technology might result in a future in which computing power and even specific

applications could be sold through the utility business model (like water or electricity). The

idea became popular during the 1960s, but faded in the 1970s because the infrastructure

needed for such an idea was not possible at the time [1]. Cloud computing as a term was

used for the very first time in 1996 by George Favaloro in an internal Compaq analysis titled

"Internet Solutions Division Strategy for Cloud Computing". In 1997, Netcentric attempted

to trademark the term for educational purposes, but the application was never approved [2].

In 2006, the term was used by Google’s CEO Eric Schmidt during a conference note at

Google where he suggested that “Data services and architecture should be on servers. We

call it cloud computing” [3].

The National Institute of Standards and Technology (NIST) later defined cloud com-

puting as a model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage, applica-

tions, and services) that can be rapidly provisioned and released with minimal management
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effort or service provider interaction [4].

In recent years, storing data in the cloud has become popular due to its simplicity, in-

tegration, affordability, and the wide range of features offered by service providers. Within

minutes of buying a new smart phone, a user can pull backup data from the cloud and

restore call logs, messages, photos, app data, media, and emails to the new phone within

minutes without needing anything other than a username and a password. Although these

backups contain private and personal data, many users find that the convenience out-ways

the privacy concerns.

However, there are many applications, where the privacy of the data remains a con-

cern due to the sensitive nature of the data. Such systems include cloud-based personal

health record (PHR) or financial management systems. Researchers have addressed this

issue by proposing numerous schemes to ensure the confidentiality of user data in the cloud

[5].

When users upload data to the cloud or the web, their control over the data is lost.

Most of the time, it is unclear to the users where the data is stored, how many copies of

the data exist, or who actually has access to the data. Moreover, users are unable to detect

or prevent a malicious user from accessing their data. Although data is usually transferred

using encrypted channels to protect user data from malicious eavesdroppers, the data is

decrypted in most cases when received by the cloud service provider. This leaves the data

vulnerable to malicious insiders, or any attack on the provider’s system.

There are various methods for securing sensitive data stored in the cloud [5]. Data

encryption ensures that access is only possible when the correct decryption key is provided.

However, although cloud providers claim that sensitive data in the cloud is securely en-

crypted, in most cases trust is given to the cloud service providers to manage the encryption

keys on behalf of the users. This implies that, although data is encrypted, the cloud service
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provider has the ability to see the actual data.

It is possible to build a secure privacy-preserving system that allows users to store pri-

vately encrypted data in the cloud. In such a system, data is encrypted and key management

becomes the responsibility of the users, thus ensuring cloud service providers cannot access

the unencrypted data. This approach is not popular due to the limited features providable by

a cloud service provider, such as sharing or querying data to provide statistical information.

Cloud-based PHRs are the most common applications used by researchers when discussing

this problem [6, 7, 8].

In the market today, there are many solutions, which give users the ability to cryp-

tographically secure their cloud storage drives. Such solutions include Boxcryptor, Cryp-

tomator, Tarsnap, cryptelo, and Seafile [9]. These systems guarantee that access is only

possible through the user’s encryption keys, which are not accessible or stored by the cloud

provider. These solutions provide data confidentiality, but also prevent the system from

generating useful reports or statistics based on users’ data.

In this thesis, we will address the security issues of preserving the privacy of data

owners in the cloud by empowering data owners and giving them control over their data in

the cloud. Our goal is to protect the confidentiality of the data in the cloud and the privacy

of the data owners, while providing services to the data owners such as the ability to run

queries or compute secure functions with each other or querying entities.

The rest of the chapter is organized as follows: Section 1.1 presents the motivations.

Section 1.2 lists the objectives. Section 1.3 lists the contributions of the thesis. The structure

of the thesis is given in Section 1.4.
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1.1 Motivations

Cloud computing provides many opportunities for users by offering a wide range of com-

puting services. These services include high storage and computation resources, dynamism,

elasticity, and many other choices offered by this highly scalable technology are too attrac-

tive to overlook. Dynamic elasticity, allows for rapid scaling of resources so it appears to

the client that the available capabilities are unlimited, while paying for used resources only.

However, these services do not come without challenges. In this section, we discuss the

challenges and motivations of the current study and identify cloud storage challenges:

1.1.1 Trust in the Cloud

Cloud services present us with new challenges introduced by a different type of trust sce-

nario. In this section, we will discuss the problem of trust in the cloud, which is a major

concern for users. The problem does not only lie in the lack of trust in the cloud providers

intentions, but in the provider’s ability to protect the security of the stored data and compu-

tations from internal or external adversaries. Trusting the cloud can become difficult due to

lack of transparency, loss of control over data, and unclear security assurances [5].

There have been many cases in the past couple of years to make users and enterprises

fearful of uploading any sensitive data to the cloud. These include cases where confidential

user data was abused intentionally or unintentionally by service providers, corporations, or

governmental agencies.

In 2014, Community Health Systems, which operates 206 hospitals in 28 states across

the United States, announced that hackers gained unauthorized access into its network and

stole data on 4.5 million patients. Cyber-security experts from Mandiant were hired to

consult on the hack, and later determined that malware was used by Chinese hackers to

launch the attacks [10].
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In 2015, the second largest health insurer Anthem in the United States, announced

that hackers broke into their systems and stole over 78.8 million records. The stolen data

contained personally identifiable information such as names, birth dates, medical IDs, so-

cial security numbers, and income data. [11]. According to Anthem Inc., the data breach

extended to into many of its brands, including Anthem Blue Cross, Anthem Blue Shield,

Amerigroup, Caremore, and UniCare.

In 2016, it was revealed that the Red Cross blood service in Australia was affected by

a data breach, which affected 550,000 blood donors. The stolen data included personal data

about blood donors between 2010 and 2016, including information about “at-risk sexual

behavior” [12].

In 2014, a vulnerability was discovered in the user authentication system of Apple’s

iCloud. The vulnerability allowed users to try logging into the system an unlimited number

of times regardless of the number of failed attempts [13]. A script was later published

on github that allowed users to brute force passwords to gain access to iCloud accounts

[14]. This led to hackers to publish hundreds of private and intimate images collected from

iPhone image backups of a large number of famous public figures.

In 2014, a vulnerability was found in the cloud storage providers Dropbox, Box, and

Google Drive [15]. The vulnerability allowed third parties to read private files stored in the

cloud. It was discovered that when users type the URL of a shared file in the search engine

field rather than the URL field, the files are then automatically indexed by search engines

and become publicly available.

In a 2015 report, by Imperva’s Hacker Intelligence Initiative, a "man-in-the-cloud"

attack was presented [16]. The attack allows attackers to gain access to a users’ file syn-

chronization cloud storage accounts without needing to compromise the users’ login cre-

dentials. Tests were conducted on Microsoft’s OneDrive, Dropbox, Google Drive, and Box.
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These solutions work by connecting user devices to a cloud server through the same user

account. When a file is added to the repository, then all devices associated with the ac-

count synchronize and download the file. To make the system simpler for users, many of

these popular applications do not require users to enter their credentials each time. Instead,

authentication depends on a token usually stored locally on the users’ devices. Attackers

can add their devices to be synchronized with an account by accessing an authentication

token of that account. As a proof of concept, Imperva researchers developed a tool to steal

credential tokens by using phishing or drive-by download attacks.

Based on the aforementioned, it is clear that relying on the trust and reputation of

a school, corporation, cloud service provider’s employees, or an authentication system is

neither a strong nor is it a sustainable way forward for the cloud computing industry.

1.1.2 Privacy in the Cloud

In this section, we discuss the issue of preserving the privacy of data owners in the cloud.

In the market today, there are many cloud service providers that offer data storage and

analysis for specific applications such as financial or medical applications [17, 18, 19, 20].

Microsoft HealthVault [17] stores Personal Health Records (PHRs) in the cloud and allows

users to access them from location or device. These records include allergies, chronic

disease, prescription records, surgeries, imaging reports, family history, vaccinations, etc.

The system conveniently allows patient to give access to doctors or pharmacist in moments,

thus helping medical professionals give more accurate diagnoses. Microsoft HealthVault

also provides useful analysis on user data, such as suggested doctor checkups based on age

and chronic diseases, or notifying users when two conflicting prescription drugs are added.

Dossia [18] is a similar solution, which is based on open-source software. Dossia is an

initiative led by from AT&T, Intel, BP America, Walmart, and many other companies to
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offer a cloud-based PHR system to their employees. Given the number of their employees,

Dossia could be the largest PHR system in the world.

Quicken and Mint [19, 20] are financial applications that offer cloud-based services

that allow users to track their bank accounts and credit card balances and spending. They

also offer services such as reminding user of upcoming bills, irregular account activity,

or spending statistics (e.g., gas, groceries, shopping, entertainment). TurboTax and H&R

Block [21, 22] are applications that analyze the users’ financial data to help with income

tax preparation by filling in forms for the users and searching for applicable deductions and

credits.

Although all of these features simplify users’ lives, they find themselves with a difficult

choice. Should users use theses services and hand their sensitive data to these corporations.

Can users trust them with their complete medical history and all their financial records? Can

users trust them with data on every doctors visit, every prescription drug, or every dollar

they’ve ever spent?

1.1.3 Security in the Cloud

In this section, we discuss the importance of protecting the confidentiality of user data in

the cloud and the challenges introduced by the cloud environment. By relying on cryptog-

raphy, data owners can encrypt their data before uploading it to the cloud to guarantee data

confidentiality. Although this approach would prevent the cloud provider from accessing

the data, it would also prevent the cloud provider from analyzing the data to produce useful

statistics (e.g., searching data, computations on data).

In some cloud services, user data is encrypted and decrypted when access to the data

is needed. For example, financial cloud applications need to access user data to produce

spending reports or help calculate taxes. However, since the service providers have access
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to the encrypted data and the decryption keys, user data is still accessible to the service

provider. The data in this case is also vulnerable to “man-in-the-cloud” attacks [16], or

attacks on the provider’s infrastructure targeting the encrypted data and the decryption keys.

Homomorphic cryptography can perform mathematical operations on encrypted data

directly. This would help providers analyze user data without having to decrypt the data

first. Moreover, the results of the computations can not be accessed without the correspond-

ing cryptographic keys. Unfortunately, there is not a one size fits all solution. Partially

homomorphic cryptography is limited in the type of operations that can be computed. Fully

homomorphic cryptography on the other hand is expensive and slow to the point where it

is not practical [23]. A detailed discussion on homomorphic cryptography is presented in

section 2.1.4.

1.2 Objectives

Our main objective is to allow users to securely store their data online while allowing the

following querying features:

• Design and implement a security protocol to allow users to securely store their data

in the cloud, while preventing cloud providers from accessing user data.

• Propose a protocol for querying privately encrypted user data in the cloud during an

emergency (such as emergency medical records) while preserving the privacy of the

user.

• Design and implement a security protocol to allow querying privately encrypted data

in the cloud using aggregate and comparison queries, while preserving the privacy of

the querying entity and the users.
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• Elaborate a protocol to allow users to jointly compute a private polynomial function

on their data while keeping their values private.

To this end, we will have the following requirements:

• Protocols can not rely on a trusted entity in the environment able to access unen-

crypted user data.

• Users need to be given complete control over their data, enabling them to decline

participating in certain queries.

1.3 Contributions

To address the objectives mentioned above. The contributions of this thesis can be summa-

rized as follows:

• Design a protocol for secure mobile emergency access of privately encrypted

data in the cloud: We propose a protocol to allow emergency responders to query

a subset of cloud stored private data in the case of an emergency in a mobile envi-

ronment, such as critical medical data. The proposed protocol allows access only in

the case of an emergency, preventing emergency responders from abusing their privi-

leges. We propose a protocol based on attribute based encryption and symmetric key

threshold encryption and solves the problem without requiring the participation of the

patient in the protocol. We experimentally evaluate the performance of the proposed

protocol and report on the results of implementation.

• Design a protocol for secure and privacy-preserving querying protocol on pri-

vately encrypted data: We propose a protocol that would allow querying entities
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such as health organizations to produce statistical information about privately en-

crypted data, which is data encrypted by the data owner using keys not accessible

to the service provider, such as PHRs stored in the cloud. The protocol depends on

two threshold homomorphic cryptosystems: Goldwasser-Micali (GM) [24] and Pail-

lier [25]. It executes queries on KD-trees that are constructed from encrypted health

records. It also prevents patients from inferring what health organizations are con-

cerned about. We experimentally evaluate the performance of the proposed protocol

and report on the results of implementation.

• Design an improved protocol for secure and privacy-preserving querying proto-

col on privately encrypted data: We propose a second privacy-preserving protocol

that would allow a third party, such as a health organization, to query privately en-

crypted data without relying on a trusted entity. The improved protocol does not store

data in a KD-Trees, computations by the DO are reduced, the query size is reduced,

and DOs can choose not to participate in a query. The protocol relies on homomor-

phic, threshold cryptography, and randomization to allow for secure, distributed, and

privacy-preserving queries. We also present two variations of the protocol, the first

aims to hide the query attributes, the second aims to prevent data inference by apply-

ing differential privacy. We evaluate the performance of our protocol and report on

the results of the implementation.

• Design a protocol for a privacy-preserving private function evaluation protocol

in the cloud: We propose cryptographic and a non-cryptographic privacy-preserving

protocols that allow a participant to collaboratively compute a private polynomial

function with at least two other participants using semantically secure cryptosystems.

We experimentally evaluate the performance of the proposed protocol and report on
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the results of our implementation.

The work in this thesis is published in [26], [27], [28], and [29], and a patent has been

filed in June of 2014 [30] on a collaborative research with Ericsson Canada Research and

Development.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of the

necessary knowledge required throughout our work. In addition, it provides a discussion

on the current literature about the subjects that are related to the problems addressed in

this thesis. Chapter 3 describes our solution for accessing privately encrypted data in the

case of an emergency. Chapter 4 and Chapter 5 propose solutions to solve the problem of

querying privately encrypted data stored in the cloud. Chapter 6 discusses and solves the

problem of private multi-party computation and proposes a protocol to achieve PFE in a

reasonable amount of time. Chapter 7 presents concluding remarks on this thesis together

with a discussion of future research.
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Chapter 2

Background and Related Work

2.1 Background

In this section, we review some of the required concepts that are used throughout our thesis.

This section is organized as follows. Section 2.1.1, discusses cloud security models and the

assumptions we make throughout this thesis. Section 2.1.2, presents an overview on At-

tribute Based Encryption (ABE), which provides cryptographically enforced access control

to data in the cloud. Sections 2.1.3, presents the concept of threshold cryptography, which

can aid in splitting trust in the cloud between multiple users. Section 2.1.4, presents the

cryptographic primitives, which allow users to run secure computations while guaranteeing

the confidentiality of the computation inputs.

2.1.1 Security Models and Assumptions in the Cloud

In this section, we discuss the goals of security in the cloud, cloud trust models, cloud

adversary models, and the assumptions we follow throughout this thesis. Although there

are many benefits to cloud storage and computing, there are many risks introduced by the

cloud to sensitive data. These risks come from the need to trust a third party provider to
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securely store sensitive data. Cloud providers may have nodes administered or controlled by

untrusted entities. In some cases, cloud storage may be vulnerable to attacks from external

adversaries or malicious insiders such as employees or from other cloud tenants. Security

guarantees are required to assure data owners that their data is properly protected. These

security guarantees are legally binding promises between the cloud provider and the data

owner as outlined in a Service Level Agreement (SLA). Data owners can proactively protect

their data by relying on cryptography rather than relying on SLA agreements, which can be

difficult to enforce.

Three cryptographic security guarantee goals are considered in the context of cloud

computing security:

• Data Confidentiality: This property ensures that data contents are not accessible by

unauthorized users. When data is stored in the cloud, outsourced data becomes out

of the data owners’ direct control. Access to sensitive data should only be given to

authorized users, while others, including cloud service providers, should not gain any

information about the data. Data owners should be able to fully take advantage of

cloud data services such as data search, computation, or sharing, without leakage of

any information about the data to any adversaries including the cloud provider.

• Data Access Controllability: This property enables data owners to selectively re-

strict access to data outsourced to the cloud. This means data owners can grant users

to some users, while restricting others from accessing the data without permission.

Moreover, it is desirable to enforce fine-grained access control; this would enable the

data owner to create different access privileges to granted to different users in regards

to different data pieces. Access authorization should only be controlled by the data

owner untrusted cloud environments.

• Data Integrity: This property demands ensuring the accuracy and completeness of
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outsourced data in the cloud. Data owners expect that outsourced data is stored in

the cloud correctly and in a trustworthy manor. This implies that data should not be

modified, fabricated, or deleted. This property ensures that data owners would be able

to detect corruption or loss of data. Moreover, when a subset of the data is corrupted

or lost, the remaining data should be retrievable.

• Privacy Preservability: This property ensures that the identities of data owners are

hidden when using cloud data services. This also includes the protection of the com-

putations executed on the data and the information retrieved from the cloud. For

example, the keywords queried by data owners over the outsourced data and the re-

sults should not be accessible any party in the cloud. Furthermore, the behaviors and

habits of data owners should be protected and not be inferred by others.

In terms of the trust assumptions between the data owner and the cloud resources, we con-

sider the following three trust models:

• Untrusted cloud: In this model, data owners do not trust the cloud or any nodes

associated with the cloud provider. This implies that the cloud is not trusted to main-

tain the confidentiality or integrity of the data or the computations outsourced to it.

In this model, client-side protections are a necessity to ensure the confidentiality and

integrity of the data. This model is commonly associated with public cloud deploy-

ment.

• Trusted cloud: In this model, the cloud is deployed in an isolated environment.

Nodes in this model may be corrupted, but can not access any private data. Nodes can

also attempt to violate the data and computation integrity. This model is commonly

associated with the private cloud deployment model, and in government use-cases.

• Semi-trusted cloud: In this model, it is assumed that the client does not fully trust
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the cloud. However, the cloud is not assumed to be untrusted. Instead, it is assumed

that parts of the cloud may be under the control of an adversary at any given time,

but a sufficient fraction of the resources would remain adversary-free. This model is

relevant to real-world deployments, where a cloud provider that is trusted to attempt

to maintain security, but not guaranteed to successfully protect against all internal and

external adversaries. This model may be associated with hybrid, public, or private

cloud deployment models.

To model the threat of an adversary, who is able to control chosen nodes in the cloud, we

present the two adversary models:

• Passive adversary: In this model, a party is corrupted by an honest-but-curious adver-

sary. The adversary in this model tries to learn additional information about private

data by combining and analyzing observations of its set of corrupt parties. In this

model, the adversary does not modify any messages or the prescribed protocol steps.

• Active adversary: In this model, a malicious adversary may cause a party to devi-

ate from the prescribed protocols. This may include sending malformed messages,

modifying messages, protocol steps, or actively colluding with other malicious par-

ties. The adversary in this model actively controls corrupted parties to violate the

confidentiality or integrity of the data or computations.

The goal of cloud security is to preserve the confidentiality and integrity of the data in the

cloud in the presents of adversaries. The chosen cloud architecture, cloud trust model, and

adversary models dictate the suitable solutions for a given scenario. In this thesis, we focus

on preserving the confidentiality of the data and the secure computations in the cloud. The

solutions we present in this thesis also assume the semi-honest cloud trust model for its

suitability for most real-world cloud deployments and the passive adversary model.
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Threats to data integrity in the cloud are out of the scope of this thesis. There have

been many works to address integrity challenges in the cloud. Cloud Integrity issues related

to data loss or manipulation have been addressed in [31, 32], dishonest computations in

cloud servers are addressed in [33, 34], and Provable Data Possession (PDP) are addressed

in [35, 31, 32, 36].

2.1.2 Attribute Based Encryption

This section discusses data encryption methods on the cloud, and provides an overview on

Attribute Based Encryption (ABE) and its variations. Although cloud storage has many

advantages, it also presents us with challenging issues such as security and practicality

[37, 38, 39, 40]. One of the most serious challenges is protecting the confidentiality of the

data in the cloud. Traditional methods, such as the reliance on a username and password

to authenticate users, do not protect the confidentiality of the stored data from the cloud

provider. Therefore, it is necessary to utilize an encryption method before uploading the

data to the cloud storage server. For example, a user can encrypt the data using a symmetric-

key algorithm before uploading the data. However, to share the data, the user needs to share

the symmetric-key, thus granting the shared users access to all data encrypted with this key.

Another method would be to encrypt the data using an asymmetrical-key encryption scheme

to encrypt the data with the private key before uploading the data to the cloud. In this case,

to share data, the user needs to download the data, decrypt it using the corresponding private

key, and then re-encrypt the file using the shared user’s public key before uploading the file

again. This method has many drawbacks. First of all, there will be many copies of the same

file encrypted with a different key for every shared copy. Secondly, when a file is updated,

it needs to be re-encrypted again for every shared copy of the file.

Identity Based Encryption (IBE) was first proposed by Adi Shamir in 1984 [41].
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IBE generates users’ public keys based the unique user information, such as a user’s email

address. This allows users to use the public system parameters to generate the public keys

of other users without having to store a list of all the users’ and their public keys. When

using Biometrics as identities for Identity Based Encryption, the values of the biometric

feature readings contain noise. Sahai et al. [42] tackled this problem and in doing so,

they also introduced what is now known as attribute based encryption. They suggested

that if we use w as the Biometric Identity, then a second reading of the biometric features

would be w′, which would be close to the value of w. They also proposed a Fuzzy Identity

Based Encryption scheme which can use w′ as an Identity to decrypt messages encrypted

using w as the Identity. They then explain that Fuzzy-Based Encryption can be used as

an application for "Attribute-Based Encryption". In ABE, ciphertexts are associated with

attributes. To Decrypt the ciphertexts, a user must have all the attributes needed to decrypt

the file.

To achieve Fuzzy IBE they suggested that each user in the system would have a set of

attributes. These attributes could be roles, or in the case of Biometrics the features would

be split into attributes. A user would be able to decrypt a file if he has at least k attributes

of the attributes used by the encrypter to encrypt the file. Since FIBE is intended for error

tolerance when using IBE, it only supports access structures in the shape of a threshold

gate. ABE, on the other hand supports Linear Secret Sharing Scheme (LSSS) realizable

access structure.

Matthew Pirretti, Patrick Traynor, and Patrick McDaniel [43] later proposed a more

secure Attribute Based Encryption method. They implement more complex policies for

Attribute Based Encryption based on the work done by Sahai et al. [42]. In their method,

they allow complex policies such as having ‘and’ and ‘or’ logical policies. They also

applied their method to a medical application where the patients’ medical records are only
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Figure 2.1: Overview of the Surveyed Attribute Based Encryption Research Works Taxon-
omy

available to entities with the proper attributes.

There are two basic ABE schemes, namely cipher-based attribute based encryption

(CP-ABE) [44] and key-policy attribute based encryption (KP-ABE)[45]. The difference

between these two schemes is what the attributes describe as shown in Figures 2.2 and 2.3.

In CP-ABE the attribute access structures are used to describe the encrypted data, while

in KP-ABE the attribute access structures are used to describe the user’s key. CP-ABE is

similar to RBAC, while KP-ABE is similar to ABAC.

Many extensions have been proposed by researches to address the problems of multi-

authority, accountability, proxy re-encryption, and revocation. In an ABE scheme, an au-

thority is responsible for generating a key pair for every user after verifying the user’s iden-

tity. However, there are many cases where having a single trusted authority for all users
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Figure 2.2: KP-ABE

in the system is not possible. Chase et al. [46] was the first to propose a Multi-authority

ABE scheme, other multi-authority schemes were later proposed in [47, 48, 49, 50, 51, 52].

Accountability in ABE is needed to prevent key abuse. To achieve accountability in ABE,

two kinds of abuses are considered in the literature. The first, is when users collude and

illegally share their private keys. The second is when a semi-trusted ABE authority mis-

behaves by illegally generates legitimate keys and distributes them to unauthorized users.

CP-ABE accountability was address in [52, 53], and KP-ABE accountability was addressed

in [54, 55].

Figure 2.3: CP-ABE

Proxy re-encryption (PRE) allows a proxy to convert a ciphertext encrypted for a

user to a ciphertext, which may be decrypted by a different user, without having to know the

private key of either of these users. For example, this would allow a user to go on a vacation
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and delegate his work load to another colleague. The proxy in this case would temporarily

forward all incoming encrypted emails to the colleague after re-encrypting them. Proxy

re-encryption in ABE has been addressed in [56, 57, 58, 59, 60]. ABE-PRE allows a user

to delegate designated users to decrypt proxy re-encrypted ciphertexts using the associated

attributes of the delegated user.

Revocation is also a challenging problem in an ABE system. The key pairs issued

by the authority in an ABE system correspond to the users’ attributes. This allows users to

decrypt any file where their attributes satisfy a ciphertext’s access policy. Access revocation

becomes difficult because once a user is granted a key, users can store their keys anywhere

and make an as many copies they want. Since the system is based on enforcing access

control cryptographically, revocation also has to be enforced the same way and not by the

system. The complexity of the problem also depends on whom access is being revoked

from. If access to a file is being revoked from an entire attribute, such as revoking access

to a file from an entire department, the simple solution would be to re-encrypt the files

using a new symmetric key after updating the access policy tree. The problem becomes

more complex and difficult when access is being revoked from a single user that has many

attributes shared with other users.

For example, a user that works in the IT department in Montreal, would have access

to all files that permit access to employees in the IT department, in Montreal, or both. In this

case, the keys of all users that share attributes with the revoked user need to be changed. All

files related to these attributes would also need to be re-encrypted and the access policies

would need to be updates with the keys. Proposed works to address revocation are split into

two main categories:The first is the indirect revocation method [64, 65, 66, 67, 8, 68, 69],

and the other is the direct revocation method [61, 62, 63].

In the indirect revocation method, the data owner delegates a third party to execute
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revocation. This releases a key update periodically preventing revoked users from updat-

ing their keys. The drawback of this method is that it requires the authority periodically

communicate with all non-revoked to execute the key update phase.

In the direct method of revocation, it is the responsibility of the data owner is to revoke

access. This is done by the data owner by specifying a revocation list when encrypting

the ciphertext. The advantage of this method is that it does not require all non-revoked

users to update their keys. The drawback of this method is that the data owner needs to

keep and manage a list of all revoked users, which can become long and troublesome with

time. Attrapadug et al. [70] proposed a hybrid ABE revocation scheme (HR-ABE), which

takes advantage of the direct and indirect methods. It allows the data owner to select the

encryption scheme including specifying whether to use the direct or indirect revocation

method. However, their solution only supports user revocation but not attribute revocation.

2.1.3 Threshold Cryptosystems

In a (t,n) threshold scheme [71], a secret S is split into n shares and distributed to the

participants. To reveal the secret S, any t participants must work together and use their

share to calculate the secret S. Threshold schemes also ensure that when t−1 participants

work together, it would not be possible for them to calculate S nor gain any information

about it.

2.1.4 Secure Computation

In this section, we discuss the research works related to secure computations, which is a

subfield of cryptography that aims to create methods to enable parties to compute mathe-

matical operations while keeping the inputs private.

Rivest et al. [72] introduced the concept of homomorphic cryptography, which allows
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Figure 2.4: Overview of the Surveyed Secure Computation Research Works Taxonomy

certain algebraic operations on two encrypted values, without any intermediate decryptions.

Given two ciphertexts c1 = Epk(m1) and c2 = Epk(m2) of messages m1 and m2 with the

same public key pk. A cryptographic homomorphic scheme can compute Epk (m1 op m2),

an arbitrary operation op on two encrypted values without having to decrypt either value.

Variants of homomorphic algorithms were designed by researchers to do computations on

encrypted data. All these proposal could be broadly classified into Partial Homomorphic

Encryption (PHE) schemes and Fully Homomorphic Encryption (FHE) schemes [73].

Partially Homomorphic Encryption (PHE)

Partial homomorphic encryption schemes are limited to the number of operations they can

securely compute. For example, some schemes either support addition or multiplication

operations on encrypted ciphertexts due to its inability to decrypt after a threshold of noise

it reached by the operations. Some of the most commonly used partial homomorphic cry-

tosystems are Paillier [74], Unpadded RSA and ElGamal [89], Goldwasser-Micali [24],

Benaloh [76], Damgard-Jurik [75], and Boneh-Goh-Nissim [81].
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The Paillier scheme [74] is one of the most popular PHE methods. Using Paillier’s pro-

tocol, given two ciphertexts E(x) and E(y), an encryption of their sum E(x+ y) can be

efficiently computed by multiplying the ciphertexts modulo a public key N, i.e., E(x+y) =

E(x).E(y)modN. The cost of Paillier encryption is not high, but the cost of decryption is

higher because it needs one exponential modulo n to the power λ (n) and a multiplication

modulo n. In 2002, Crameret al. [77] proposed an extension to the Pallier cryptosystem

to prevent chosen ciphertext attacks. Damgard-Jurik et al. [75] propose a generalization

of the Paillier scheme to reduce the expansion value. The solution they propose aims to

reducing the expansion value to one in some cases, but the solutions was computationally

more intensive compared to the Paillier scheme. Galbraith et al. [78] propose an Ellip-

tic Curve Cryptosystem (ECC) for homomorphic encryption based on a one-way trapdoor

function. Their scheme uses the algebraic structure of elliptic curves over finite fields. ECC

has the advantage of having a smaller key size, thus reducing the storage and communica-

tion requirements. However, ECC has a very high computational cost for key generation

and decryption. Boneh et al. [81] propose a scheme based on bilinear pairings on ellip-

tic curves and is able to compute multiple additions and a single multiplication operation.

Their scheme required a larger message space to compute discrete logarithms during the

encryption process. The Goldwasser-Micali (GM) cryptosystem is a semantically-secure

protocol based on the quadratic residuosity problem [24]. It has XOR homomorphic prop-

erties, in the sense that E(b).E(b′) = E(b⊕ b′) mod N, where b and b′ are bits and N is

the public key. Variations of the homomorphic Paillier and GM cryptosystems are the dis-

tributed threshold decryption protocols in which the decryption is performed by a group

of participants rather than one party [90, 91]. In this case, each participant would obtain

a share of the secret key by executing the distributed key generation algorithm detailed in

[92].
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Fully Homomorphic Encryption (FHE)

Cryptosystems that can compute addition and subtraction on encrypted data are considered

fully homomorphic. Many FHE works have been proposed [82, 83, 84, 85, 86]. Gentry et

al. [82] discusses FHE in his doctoral thesis and proposes a scheme that can be used to com-

pute complex operations on encrypted data. His scheme consists of three modules: Ideal

lattices based on SomeWhat Homomorphic Encryption (SWHE), a bootstrapping module

that transfers SWHE to FHE using bootstrapping. The scheme is based on hardness approx-

imating problems within sub exponential factor. It uses the parameter per gate evaluation

time (the ratio of time for homomorphic evaluation of the circuit to the time for evaluating

circuit on plaintext). Gentry’s work became the blueprint, which researchers are building on

to improve the efficiency and practicality of FHE. Smart et al. [85] present a FHE scheme

that improves efficiency by using smaller keys and ciphertexts. However, the scheme they

propose requires more time to generate keys. Gentry et al. [23] continued the work done

by Smart et al. [85]. They improve the key generation process and simplify the decryption,

which help reduce the per-gate-evaluation time. However, the processing resources required

are too high for the solution to be feasible for most applications. In an optimized imple-

mentation on a high-end workstation for a large setting, key generation takes 2.2 hours and

encryption takes 3 minutes. Stehle et al. [93], propose a faster FHE scheme by improving

Gentry’s FHE scheme on ideal lattices [94]. They implement a probabilistic decryption

algorithm with a circuit of a low multiplicative degree. The hardness assumption of the

security is stronger in their work compared to Gentry’s scheme. In spite of the many im-

provements to Gentry’s scheme, FHE remains too slow and expensive when compared to

PHE.
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Private Comparison

Yao’s classical millionaires’ problem [87] involves two millionaires who wish to know who

is richer. However, they do not want to inadvertently find out any additional information

about each other’s wealth. More formally, given two input values x and y, which are held

as private inputs by each party respectively, the problem is to securely evaluate the Greater

Than (GT) condition x > y without exposing the inputs. In this paper, we employ Fischlin’s

protocol [88] for private comparison because it allows us to compare two ciphertexts en-

crypted with the GM crytosystem using the same public key. Fischlin’s protocol takes

as input two ciphertexts encrypted using the GM cryptosystem and produces ciphertext se-

quences, namely ∆ and c, that are encrypted by the same public key. The decryption of these

sequences reveals the result of comparing the private inputs without revealing anything be-

yond the result of the comparison. Fischlin’s protocol utilizes the XOR-homomorphic GM

cryptosystem to privately compute:

x > y⇐⇒
∨n

i=1

(
xi∧¬yi∧

∧n
j=i+1(x j = y j)

)
⇐⇒

⊕n
i=1

(
xi∧¬yi∧

∧n
j=i+1¬(xi⊕ yi)

)
where |x|= |y|= n.

2.2 Related Work

In this section, we present a review of state-of-the-art techniques developed in the areas

of secure and privacy-preserving querying of privately encrypted data in the cloud. This

section is organized as follows:

In Section 2.2.1, we present the contributions related to electronic health records

(EHRs) and securing storing and querying them in the cloud. Section 2.2.2, we discuss the
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works related to searching and querying encrypted data in the cloud. Finally, section 2.2.3,

presents the contributions related to secure multi-party computation and garbled circuits.

2.2.1 Electronic Health Records

In this section, we present an overview on electronic health records and the literature related

to securely storing and analyzing health data on the cloud. Healthcare has evolved through-

out the past two decades. Rising service costs and an aging population are challenges

that face healthcare systems. To overcome these challenges, governments and healthcare

providers are searching for ways to improve the efficiency of their healthcare services.

Moreover, they are investing vast sums of money into information and communications

technologies, including decision support systems, telemedicine, and electronic records.

Furthermore, there are many benefits to using electronic health records with mobile

networks. Using an efficient mobile healthcare system on the cloud can dramatically reduce

the cost of healthcare. It eliminates a healthcare provider’s need to buy and maintain servers.

Mobile health can provide high availability of sensitive medical records remotely, which can

help saving a patient’s life. It would also enable doctors to remotely monitor their patients’

conditions.

Mobile health can also help during epidemic and disease outbreaks by warning pa-

tients that might be prone to catch the disease. The Global Health Organization recently

released a survey on mobile health, which shows that most mobile health projects are on a

small scale that are tailored to address specific problems in data sharing and access[95].

There have been many fatal and highly contagious diseases throughout history. The

Bubonic plague swept through Europe in the 14th century and killed an estimated 25 million

people, or 30-60% of the European population. In 1994, there was a plague outbreak in

India causing an estimated 700 infections, which resulted in 52 deaths. In that same year,
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there were also cases reported in Peru. Another case was reported in 2010 in Oregon, United

States [96].

Early detection of such diseases could save millions of lives. With the vast number of

people traveling around the world, an outbreak in a busy city such as New York or London

could end up spreading around the world within a few days. There are many organizations,

which work on studying epidemiology and preventing them from spreading around the

world. Recent examples of newer diseases include mad cow disease, SARS, swine flu, etc.

To better understand what caused a disease, researchers need as much data as possible

about the infected patients. After a link is found between the disease and the infected

patients, it becomes crucial to prevent the disease from spreading further by informing and

taking care of the people that might be vulnerable to the disease.

In a perfect world, electronic health records would be stored in a single location for

every person in the world. Unfortunately, electronic health records are usually managed

by hospitals, making it even more difficult to get a single patient’s history due to the fact

that it might be spread between multiple hospitals and pharmacies. What makes combining

these databases together even more difficult, is the cost of creating and enforcing the use of

a standard that can be trusted by all institutions.

EHR (Electronic Health Records) are groups of electronic health information about

patients or populations. The law in Canada gives patients the right to access their Personal

Health Information (PHI) that is stored in medical records systems [97, 98]. However, not

all the information about a patient in EHR is PHI. EHR records may include data such

as medical history, medication and allergies, immunization status, laboratory test results,

radiology images, vital signs, personal stats like age and weight, and billing information.

Personal patient data in the EHR are referred to as Personal Health Records (PHR).

Since patients have the right to access and control their PHR, many researchers and
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service providers began to implement solutions to make use of PHRs [99]. These solutions

have been able to use PHR to give patients statistics about their health records, raise flags

if the patient is vulnerable to a new medical epidemic, remind patients to perform certain

procedures if needed, raise flags if the patient is taking interacting drugs that can cause side

effects, etc.. In this section we will compare some of the solutions available in the market

from a security point of view.

In the field of secure personal health records which are managed and controlled by

patients, there are many research proposals [18, 17, 100, 101, 102, 103, 104, 105, 106].

Hembroff et al. [102] and Neubauer et al. [105] propose the use of smart cards for en-

cryption. Microsoft HealthVault [17], Dossia [18], and Ueckert et al. [106] encrypt health

records using symmetric keys, while all communication is encrypted using Transport Layer

Security (TLS). Recently, the executive office of President’s Council of Advisors on Sci-

ence and Technology (PCAST) has reported that more extensive cloud-based solutions and

services in the future should support public health reporting and basic clinical research

[107].

Indivo is a free open-source open-standard personally controlled health record

(PCHR) system that gives patients control over their medical records [108] . Indivo pro-

vides users with the ability to share their records with different physicians, hospitals, and

clinic. In 1998, researchers at the Children’s Hospital Informatics Program (CHIP) at Chil-

dren’s Hospital in Boston introduced the concept of Indivo in a planning grant. In 2005,

the project was implemented under the name personal inter-networked notary and guardian

(PING) and renamed to Indivo in 2006. The project was designed since Indivo 1.0 as a

distributed, cloud-based online system that provides an API for connecting to user specific

Person Health Applications (PHA). Indivo also provides an API that enables healthcare
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providers to develop modules and services to the existing system. In the latest release, In-

divo is actively deployed as the backbone of various commercial PHR systems such as the

Dossia consortium and the Children’s Hospital in Boston.

Figure 2.5: Indivo System Architecture

The main components of the Indivo system as shown is figure 2.5 include the Indivo

API, an encypted storage, and a staging server [108]. The PCHRs are stored on a backend

server in encrypted form. Unlike Microsoft Health Vault and Google health, Indivo stores

all data in XML documents. Indivo uses PostgreSQL relational database for data storage.

To maximize performance, database level encryption is used to provide data security. How-

ever, this does not protect against an adversary who has access to the data or the server.

Although adding column or table level encryption can increase security, it is not the opti-

mal way to provide patient-centric, fine-grained access control. The reasoning behind the

weakness of adding column or table level encryption is that the keys would be on the server

while they are being decrypted and sent to the client. This provides the adversary with a
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window to intercept the data and the keys. Moreover, the client would need to use multiple

asymmetric key pairs to achieve fine-grained access control.

In the domain of securely storing health records in the cloud, Narayan et al. [7] show

how Attribute-Based Encryption (ABE) scheme can be used to construct a secure and a

privacy-preserving Electronic Health Record (EHR) system that enables patients sharing

data among healthcare providers in a flexible manner. Whereas an electronic health record

(EHR) is a computer record that originates from and is controlled by doctors, a personal

health record (PHR) can be generated by physicians, patients, hospitals, pharmacies, and

other sources but is controlled by the patient. The EHRs are stored on an untrusted cloud

storage and encrypted using symmetric key cryptography. The proposed keyword search

functionality allows the patient choosing what terms may be searched, and who may be able

to access the search terms. For example, a patient may allow a certain hospital searching

the terms “Diabetes” and “male”. Narayan et al. [7] also assume that there is a trusted

authority that generates keys for users of the system. Similarly, Li et al. [109] and Akinyele

et al. [110] leverage ABE techniques to encrypt health records under the assumption of the

existing of the trusted authority.

2.2.2 Searchable Encryption

In this section, we present the literature in the field of searchable encryption, which includes

secure single keyword search, Multi-keyword search, ranking encrypted search results, sub-

set and range queries on encrypted data, and searching privately encrypted databases.

The primary concern of data owners in the cloud, is protecting their privacy and the

confidentiality of their data. Homomorphic cryptosystems address the issue of computing

data confidentiality. In this section, we discuss the contributions related to the problem of
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Figure 2.6: Overview of the Surveyed Searchable Encryption Research Works Taxonomy

preserving the privacy of data owners when searching encrypted data in the cloud. Re-

searchers have proposed numerous works to address the issue of querying encrypted data

on the cloud.

Single Keyword Search

The most trivial search functionality is the single keyword search. Song et al. [111] are the

first to address the concept of searching encrypted data. Their scheme used two layers of

symmetric encryption to encrypt each word independently in the file. The first layer uses a

symmetric key with a secret key, while the second uses a pseudo-random number generator

and two pseudo-random functions as shown in figure 2.7. However, their method only

allowed querying for equality. Goh et al. [112] later proposed an efficient search technique

based on bloom filters, which uses a separate index file for each document. However, the

scheme results in space inefficiency. Chang et al. [113], proposed a scheme based on
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the Searchable Symmetric Encryption (SSE) method. However, adaptive queries by an

adversary can lead exposing the privacy of the data owners. Curtmola et al. propose an

extension in [114] to solve the privacy issue. They propose using hash indexing for the

entire file. Their scheme had the drawback of hiding the access patterns of specific users.

Boneh et al. [81] later proposed the first searchable encryption “Public key encryption with

keyword search”, which supported a multi-user model. In the construction of their scheme,

any user with the public key can write data to the cloud, but only users with the private key

can search the encrypted data.

Figure 2.7: Searchable Encryption General Architecture

Multi-Keyword Search

Multi-Keyword gives users the ability to search encrypted collections of files for keywords

in a conjunctive matter. Golle et al. [115] propose two schemes, which both supported con-

junctive keyword searching. Li et al. [116] proposed a fuzzy keyword searching scheme,

which tries to match a keyword to an encrypted file. If the keyword is not found, then a

search for a close match of the keyword is executed and the corresponding file is returned.
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An improved method that works on symmetric key encrypted data is proposed by Jianhua

et al. [117]. Ranking keyword search was first proposed by Cao et al. [121]. In their pro-

posed scheme, multi-keyword queries are searched linearly in the database and the top-k

most relevant documents are returned to the user. The relevance is based on the number of

keyword matches between the encrypted files and the search query. Wang et al. [119, 120],

proposed a ranked keyword scheme, where the relevance was computed using an inverted

index for keywords in the database. The scores are encrypted with an order-preserving

symmetric encryption scheme. Sun et al. [122, 123], proposed a multi-keyword ranked

encryption scheme based on similarity ranking. The scheme ranks search indexes on term

frequency and vector space. Efficiency is improved in this scheme by using tree structures.

Bouabana-Tebibel et al. [124], proposed a method combining attribute based encryption

with searchable encryption and adopted the access control mechanism to protect confiden-

tiality. Xia et al. [125], proposed a scheme that applies latent semantic analysis to find the

relationships between terms and documents.

Emergancy Access

Ming Liet al. [6] proposed a method for providing access to emergency private health

records (PHRs) encrypted with ABE during an emergency. They suggested using a

break-glass approach, where each patient’s PHR’s access rights are also delegated to an

emergency department. To protect the PHR break-glass option from being abused they

suggested that the ER staff need to contact the emergency department to verify their

identities and verify the emergency case. The emergency department would then give

temporary read keys. After the emergency, the patient may restore normal access by

computing another key and then submit it to the emergency department and the server to

update the files.
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Although their proposed solution provides access in emergency cases, they do make the

assumption of trusting emergency departments. Any employee in an emergency department

would be able to access any emergency PHRs in the system. In our work, we do make the

assumption that none of the entities in the system are completely trusted. We also make

the assumption that the access to PHRs is not achieved by emergency staff accessing them

using their personal keys. In our work, we simplify the process by giving all Emergency

Care Providers (ECPs) the same attributes and keys.

Gardner et al. [137] proposed a different method which did not rely on attribute based

encryption. In their work they assume that the PHRs are to be stored on a smart phone,

and their goal is to protect the PHRs stored on the phone from being accessed by an

adversary. Moreover, their approach might be modified to access Emergency Medical

Records (EMRs) stored on an untrusted cloud. They propose using secret sharing [71]

to split the decryption key and distribute it to different entities. By dividing the access

capabilities, it becomes possible to associate the credentials of different entities with

varying weights. The partial weighted rights are then distributed in a way where no one

credential is sufficient to obtain access, but appropriate combinations are.

They used secret sharing to distribute the decryption key kr between the following

entities:

• Break-The-Glass (BTG): a share that is used only as a last-resort access mechanism

• Password: a share accessible with the PHR owner’s password

• EP: a share that is available to ECPs

• Face: a share that is accessible with the PHR owner’s face

• Finger: a share that is accessible with the PHR owner’s fingerprint
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To access the PHRs, the decryption key kr could only be recalculated by satisfying

the following policy:

{BT G∨{password∧EP}∨{{password∨EMT}∧{ f ace∨ f inger}}}

This means that patients would be able to view their PHRs at anytime by using the password

and taking a photo of their face, or using the password and their fingerprint. However, in

case of an emergency an adversary would not be able to recover the PHRs by using the

patient’s face or fingerprint since the password is needed. However, an EP would be able to

use their password to gain access to the patients’ PHRs.

Although this solution could be applied to provide access to PHRs stored on an un-

trusted cloud. We do not think it could be used as a global solution because this would mean

that all medical health providers would be using the same key. This implies that any ECP

would be able to view all PHRs on the cloud. Gardner et al. [118] discussed this problem

and suggested three methods for solving this problem.

• The first method aims at providing every EP with a different key pair. However, this

would mean that the client software must store a corresponding ciphertext for each

key. This would obviously have a huge storage overhead if looked at as a global

solution.

• The second solution consists of using a public-key broadcast encryption system such

as that proposed by Bonehet al. [138], a trusted entity would generate a private key

for every EP and a broadcast public key. This entity would program the private keys

onto a smart card for each EP and maintain a list of non-revoked keys. The client

software would use this list and the broadcast public key to encrypt the EP share.

• The third method consists of updating the EP keys everyday, but this would also
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require the patient to download the new keys and re-encrypt the PHRs every day.

Subset and Range Queries

Range and subset queries allow users to query encrypted data for values between a given

upper and lower bound. A method allowing range queries is suggested by Agrawal et al.

[126]. In their work, an encryption protocol is proposed allowing for the comparisons to

be executed on the encrypted data directly. It is assumed, in their work, that the order of

the data was confidential. Boneh et al. [127] proposed a scheme based on Hidden Vec-

tor Encryption (HVE). The scheme allows queries on encrypted data to produce tokens for

testing supported query predicates. Tokens allow users to test the predicate of a ciphertext

without leaking any information on the plaintext. This allows for comparison and subset

queries. Shi et al. [129] proposed a scheme for conjunctive range queries. The scheme

uses points of a multidimensional space to represent the queries. To execute a range query,

the server tests whether the point is located in a hyperrectangle of the multidimensional

space. Boldyreva et al. [128] proposed a searchable encryption scheme that supports range

queries by improving on previous order-preserving encryption schemes. They introduce

the modular order preserving encryption scheme, which is more secure than previous order

preserving scheme and allows for range queries. Li et al. [130] proposed a scheme for

range queries by applying hierarchical predicate encryption to construct a flexible search-

able encryption scheme.

Private Database Outsourcing

Private database outsourcing also known as database-as-a-service model deals with the

problem of hiding database records from an untrusted cloud server. A common approach in
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the existing research proposals is to send a set of encrypted records to the client for further

processing and filtration [131, 132, 133, 134, 135, 136, 139]. The major problem with this

approach is that finding the required records, on which the query is executed, is a significant

challenge. In order to solve this problem, current proposals have revealed some information

about the query to be used in filtering the required tuples [132, 139]. With a good filtration

mechanism, the communication cost of retrieving data from service providers is less. How-

ever, the quality of the filtration process depends on the amount of information revealed to

the service provider. Instead of using encryption, Aggarwal et al. [140] propose secret shar-

ing to hide database records from the service provider. They require multiple non-colluding

service providers to keep the share of each database records. These techniques keep the

database confidential from service providers and outsider adversaries but they do not pro-

tect database privacy. CryptDB [141] works by executing SQL queries over encrypted data

using a collection of SQL-aware encryption schemes including order-preserving and deter-

ministic ones. It works by intercepting all SQL queries in a database proxy, which rewrites

queries to execute them on encrypted data as shown in figure 2.8. The proxy encrypts and

decrypts all data, and changes some query operators, while preserving the semantics of the

query. As mentioned previously, the symmetric key and the deterministic cryptosystems

are not semantically secure. CryptDB also has a trusted proxy that represents a single point

of failure.

Figure 2.8: CryptDB Architecture

37



Similar to CryptDB, MrCrypt [141, 142] also uses partial homomorphic cryptog-

raphy to execute computations on encrypted data. However, neither of them protect the

confidentiality of code, nor guarantee the integrity of the computation results or their com-

pleteness. Other secure databases systems are also proposed in [143, 144, 145, 146], but

unlike CryptDB and MrCrypt, these solutions require trusted hardware. Monomi [145],

TrustedDB [146], and Cipherbase [144] use different types of hardware to securely execute

queries on encrypted data. These solutions also lack the ability to protect the confidentiality

of the code and the integrity of the data. Monomi splits the computations between users and

an untrusted server by utilizing PHE. Mylar [143] is a system that allows user to build web

applications that support secure searches on encrypted data.

2.2.3 Secure Multi-Party Computation

Secure Multi-Party Computation (MPC) is appropriate for the semi-trusted cloud setting.

MPC takes advantage of the participation of honest parties, without having to know which

of them are honest, to satisfy the confidentiality and integrity of the data and computation.

Security guarantees are higher in FHE, but MPC can be more efficient and practical. The

practicality and relative efficiency of MPC, and its applicability to the real world model of

a semi-trusted cloud, make it a promising choice for use in secure cloud computations.

Secure computation is initially proposed by Yao [147] and Goldreich et al. [148] and

later extended to the multi-party case by Chaum et al. [149], and Ben-Or et al. [150]. The

threshold adversary model is used by most MPC schemes; this limits the number of parties

that an adversary can corrupt to t out of n, where t is the threshold and n is the total number

of parties. These schemes share the input data between the parties in a way that ensures that

no set of less than t shares reveals anything about the input data. Computing on the input

shares enables the parties to compute shares of the output that the receiver can reconstruct
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to get the real output. MPC ensures that the parties do not learn about the input or output

data because the participating parties only have access to their own shares of the data.

Researchers have proposed a number of practical MPC implementations. For exam-

ple, a solution was proposed by Bogetoft et al. [151], which allowed Danish farmers to

agree the price of sugar beets by using MPC in auctions. Several MPC protocols can be

run using the VIFF library [152]. Bogdanov et al.proposed Sharemind [153]. Burkhart

et al. proposed [154] Sepia. Ejgenberg et al. [155] proposed the Secure Computation

Application Programming Interface (SCAPI), which is an open-source Java library for im-

plementing MPC protocols.

The idea of garbled circuits is first proposed by Yao in [156]. In his secure two-party

setting, a circuit is created with two inputs and a single output. Each input and output can

accept a single bit. In the protocol Yao proposed, Alice wants to securely compute the value

of a circuit with two inputs and a single output, where she provides the first input and Bob

provides the second input:

• Alice creates the circuit and generates 6 keys corresponding to the 6 possible binary

values for the two inputs and the output as shown in Figure 2.9 and Table 2.9.

• Alice then sends the key corresponding to her input bit to Bob along with a garbled

truth table of four values corresponding to encrypted values of the two possible out-

puts keys.

• Alice sends Bob his two possible input keys using the 1-out-of-2 oblivious transfer

protocol.

• Bob chooses the key corresponding to his input it and uses it along with Alice’s input

key to lookup the correct value in the garbled truth table to decrypt the output key.
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• Bob then sends the output key to Alice who looks up the actual output bit mapped to

that key.

Figure 2.9: Garbling a Circuit

w0 w1 w2 w0 w1 w2 Garbled Values

0 0 0 k0
0 k0

1 k0
2 H(k0

0||k0
1||g1)⊕ k0

2

0 1 1 k0
0 k1

1 k1
2 H(k0

0||k1
1||g1)⊕ k1

2

1 0 1 k1
0 k0

1 k1
2 H(k1

0||k0
1||g1)⊕ k1

2

1 1 1 k1
0 k1

1 k1
2 H(k1

0||k1
1||g1)⊕ k1

2

Table 2.1: Garbled Circuit Truth Tables. Original Values (left), Garbled Values (right)

Many works are proposed to optimize Yao’s protocol and make it less expensive

[157, 158, 159, 160, 161, 162]. These contributions fall into three main categories:

• Communication optimization the aim is to reduce the amount of data that must be

transferred between the parties. The cost of transmitting a garbled circuit from P1 to

P2 is the highest of all other communication steps in Yao’s protocol. This is due high

number of gates a circuit can contain; in some cases it can grow to billions of gates.
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Each gate in the circuit is connected via a wire, which is represented by four multi-

byte strings. The problem gets worse in the case of a malicious setting, where the

cut-and-check strategy requires the first party to send multiple copies of the circuit.

Reducing the size of the data communicated between the parties and the number of

communication steps is a significant issue in making Yao’s protocol efficient.

A solution is proposed by Goyal et al. [157] to optimize Yao’s protocol. Their scheme

included two modifications to reduce the communication costs of the protocol. In first

modification, the first party deterministically calculates the values for the wires in the

circuit by using a random seed, instead of having to assign a random value for each

wire. In the second modification, the first party does not need to send m number of

copies of the circuit during the cur-and-check phase. Instead, commitments are used,

where the first party sends “commitments” for each version of the circuit. This allows

P2 to generate the garbled circuit from the random seed and the structural information

for the circuit sent by P1. This technique reduces the communication overhead of the

protocol significantly because the sizes of the commitments are constant and much

smaller than the size of the circuit.

• Execution optimization aims at reducing the computation time needed to execute

the same number of gates. These optimizations deal with the efficiency of securely

evaluating a garbled circuit without having to alter the circuit’s structure. The first

method reduces the time needed to evaluate the circuit by introducing faster table

lookups. This method was proposed by Milkhi et al. [158] and further optimization

is proposed by Huang et al. [160]. This technique does not require P2 to decrypt each

row of the truth table until a value is found that decrypts correctly. Instead, a bit is

added to each garbled output. This bit also serves as half of an index to the following

gate’s garbled truth table. Combining the index bits can identify which of the four
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rows can decrypt from the following gate’s garbled truth table. The index values do

not reveal any information about the underlying value due to the randomization of the

rows in the garbled truth table during the construction of the circuit.

The second execution optimization method reduces the execution time by pipelining

circuit execution. Garbled circuits can be large for even simple function, making

it difficult to store the circuit for the generating and computing parties. Evaluating

the circuits can also take a large amount of time to evaluate because P2 waits in the

protocol while P1 garbles the circuit. Huang et al. [160] proposed that the execu-

tion and garbling processes may be partially done in parallel. Their solution had the

advantages of requiring less storage because none of the parties need to store the en-

tire circuit in the memory. The solution was also faster due the execution pipelining.

However, this solution is only possible in the semi-honest model due to the cut-and-

choose technique needed in the malicious model, where P1 needs to create multiple

variations of the circuit as previously mentioned. Kreuter et al. [161] proposed a cir-

cuit pipelining method for the malicious model. In their solution, P1 generates each

garbled circuit twice, the first is done before P2 chooses which circuit to verify, and

the second after P2 makes a choice. This solution also optimizes the execution by

not requiring either party to store the entire circuit and the time needed to execute a

circuit is reduced due to pipelining.

• Circuit optimization this aims at reducing the number of gates needed to compute a

function. The objective of the first method is to simplify the circuit. Circuit optimiza-

tion techniques were proposed by Pinkas et al. [159] and Kreuter et al. [161]. Re-

ducing the gates in a pre-garbled circuit can be achieved by adding a pre-processing

step to optimize the circuit before garbling. This is done by looking for unnecessary

gates, which do not have an effect on the final output. These gates can be identity
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gates or sub-circuits that are guaranteed to result in the same output. In fact, Pinkas

et al. [159] found that optimizing circuits generated from a common circuit generator

can result in a 60% reduction to the size of the circuit.

A “free XOR” method was proposed by Kolesnikov et al. [162] to reduce the number

of gates needed to evaluate a garbled circuit. This is done by replacing all garbled

XOR gates in the circuit with a simple XOR operation. Instead of needing to lookup

and decrypt the output value in a garbled truth table, four garbled values from the

circuit are removed for each XOR gate.

Moreover, Pinkas et al. [159] also proposed a solution to further reduce the number

of garbled values that need to be stored in the garbled circuit. Their solution removes

the need to store a garbled value from each AND and OR gate in the circuit. This

is achieved by building on the fast table lookup technique and choosing one of the

four indexes in the gate’s garbled truth table for reduction. Instead of needing a new

pseudo-random value, the garbled output value for the chosen wire is designed to be

a function of the input wire values.

Implementations and Practicality: Multiple implementations of Yao’s garbled circuit

protocol are developed in [158, 160, 161]. In 2004, Fairplay [158] is introduced, making

it one of the first executions of Yao’s protocol. Fairplay allows a user to describe function

using a high level language, which is then transformed into a circuit ready for garbling.

The system included a variation of the cut-and-choose technique to protect malicious ad-

versaries. The system also takes advantage of the fast table lookup technique to optimize

the execution of the garbled circuit. In 2011, another implementation is presented by Huang

et al. [160]. Their implementation allowed users to write their functions in Java, and the

code would then be transformed to a circuit. One of the differences between their approach

and Fairplay, is their focus on the semi-honest model. This meant that they chose to trade
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off less security for faster performance. They also propose additional optimizations to their

system including, free XORs, garbled circuit reduction, and pipelined circuit execution.

In 2012, Kreuter et al. [161] presented an implementation that takes advantage of all opti-

mization techniques mentioned above. Their system addresses the malicious model, and the

system is able to produce significantly larger circuits using less computations than Fairplay.
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Chapter 3

Emergency Mobile Access to Privately

Encrypted Data on an Untrusted Cloud

When storing files on an untrusted cloud, attribute based encryption is the cryptosystem

usually chosen to securely encrypt the files while allowing fine grained access control.

When storing sensitive privately encrypted data such as medical records, we find that al-

lowing access to a subset of the users’ data in the case of an emergency to be a difficult task

to achieve while preserving the users’ privacy. In this chapter we present a protocol to aid

in providing remote mobile access to privately encrypted data in the case of a emergency

only. In this chapter, we will be using access to sensitive patient medical files during an

emergency as a running example. Our aim is to provide emergency responders with access

to patients’ emergency medical records in the case of an emergency only, without requiring

the participation of the patient or allowing emergency responders to abuse their privileges.
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3.1 Introduction

As patients our medical records are stored in many locations; hospitals, pharmacies, clinics,

medical labs, etc. This makes it difficult for a doctor to get the complete medical history for

a patient. Personal health records (PHR) have become popular. In such a system, patients’

data would be gathered in one location and is accessible to the patients.

With cloud storage we usually expect the data on the cloud to be protected by trusted

servers. However, if an attacker were able to penetrate the security of the authentication

server on such a cloud, he would be able to access all patient records. Since medical health

records are sensitive, we assume the data is stored on an untrusted server.

Although this might seem unsecure, each file in the system is to be encrypted using an

attribute based cryptosystem which would only allow users with the right credentials to de-

crypt the files. To better understand what we mean by attributes we could think of them as

roles or privileges which that entity has.

In a cloud based patient centric PHR management system, the patients have control over

their medical records. When we assume the cloud to be untrusted, then this means that the

files are to be encrypted with the patient’s private key and access control is to be controlled

by the patient.

Before a user encrypts a medical record, he associates that record with a set of attributes

which describe the users who should have access to the file. When a record is requested

from the cloud, the user would be able to decrypt the record if and only if he has all the

attributes associated with the encrypted record.

Our proposed solution solves the problem of granting an Emergency Care Provider (ECP)

access to a patient’s Emergency Medical Records (EMRs) in case of an emergency while

preventing them from abusing that power to access patients’ records without an emergency.
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3.2 Problem Statement

In case of an emergency, we cannot assume the patient would be able to give consent to

ECPs in order to grant them access to EMRs stored on the cloud. EMRs contain basic

information such as the patient’s blood type, terminal illnesses, emergency contacts, etc.

Granting access to these files may be easily done by adding an attribute to represent an

ECP. Also, when the patients encrypt their emergency files, they must set the emergency

access attribute. This solution would easily allow ECP to access any patient’s emergency

medical records. However, it does give too much power to ECPs. An employee at an ECP

would have the power to access all patient emergency files in the system without being

detected or stopped since we’re assuming the cloud to be untrusted.

In our research, our goal is to come up with a method that would enable us to allow ECPs

access to a patient’s emergency medical records without giving them the ability to view

every medical record in the system.

This chapter is organized as follows. In section 3.3, we illustrate the problem by providing

several scenarios. Section 3.4 presents a secure privacy-preserving PHR system, which we

base our work on. In section 3.5, we present our proposed solution.

3.3 Motivational Scenarios

In this section, we present two possible scenarios. The first scenario presents the behavior

of a PHR system during an emergency. The second scenario shows how an adversary might

be able to abuse such a system to invade a user’s privacy.

In the first scenario, a hospital gets a call about a car accident. They are told that the

patient is unconscious, and that he has been severely injured. The hospital rapidly sends an

emergency team to the location of the accident and retrieve the patients file before he gets
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to the emergency. An employee at the hospital enters the patient’s ID into the system and

then the system would retrieve the patient’s EMRs in a reasonable amount of time.

In the second scenario, an authenticated employee at a hospital with malicious intentions

retrieves a public figure’s EMRs. The purpose of this request is to smear that person’s

reputation by convincing the public he is not healthy enough for a higher position. The

employee would enter the patient’s ID into the system. Rather than getting the medical

records back, the system should reject that request and flag the hospital for abusing the

system.

3.4 Privacy-preserving EHR system

Narayan et al [7] proposed a scheme for Privacy preserving electronic health records (EHR)

using an attribute-based infrastructure. The system they proposed is patient-centric which

means that the patient has complete control over the EHR. In their scheme the EHR are

stored in untrusted cloud storage. The EHR in this system are seen as a directory of files

stored in sub-folders. They assumed EHR to have the following structure:

• Patients’ health data in the form of encrypted files. These files are encrypted with

symmetric keys which can be found in the entry files.

• A table consisting of entries corresponding to the patient’s files. The contents of the

entry files include the following:

– Meta data describing the files and their locations, all in encrypted form. The

data is encrypted using broadcast ciphertext-policy attribute-based encryption

and includes the following information:

∗ File description.
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Figure 3.1: Proposed System Architecture Under an LTE Mobile network

∗ A random locator tag which is also the file name used to locate the file in

the cloud.

∗ A symmetric key used to encrypt the health data.

– An access policy in plain text form which specifies who decrypt the encrypted

data in the entry file.

– A search-index for keywords within the encrypted file used for keyword search.

The search index is the encryption of the keyword.

3.5 Proposed Solution

We base our work on the privacy preserving PHR scheme proposed by Narayan et al. [7]

described in section 3.4. However, in our work we introduce a method that would allow

ECPs to get access to a patient’s EMRs in case of an emergency without giving them access

to all EMRs in the system.
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In our scheme, rather than generating a single key for every user in the system, we

propose generating another ABE key pair to aid in the emergency access protocol. The

public key generator (PKG) would generate another key kep for every patient in the system

for use in case of an emergency. This key would be generated under the policy:

{emergency∧ patient ′sID = x}.

In our proposed scheme, we encrypt all EMRs with kep. We also note that no one in

the system would have that key, not even the ECPs or the patient. The patient would not be

able to decrypt the records without having the emergency attribute.

The PKG would then split the kep key into n shares, where k shares would be needed

to recalculate kep. To achieve this, we propose using Shamir’s (k,n) threshold scheme [71].

For our running example, we propose splitting the keys into four shares, where any two

shares are needed to compute kep. However, increasing the number of shares needed to

access an EMR would make it more difficult for an attacker to conspire with key share

holders to unlawfully access a patient’s EMRs. All the key shares would also be encrypted

with ke, which is a key with the policy {emergency}. This would make the key shares

accessible to ECPs only. The key shares will be given to the following entities:

• One share would be in the patient’s entry file. This would enable any ECP to access

the patient’s first kep key share. However, the ECPs would not be able to decrypt the

EMRs because they would still need another share of kep to be able to decrypt the

EMRs.

• A second share of kep is given to the patient for cases where the patient needs emer-

gency medical care, but is also able to participate in the protocol. In this case, the

protocol would enable the patient to provide the ECP with the second share enabling
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them to retrieve and decrypt the emergency medical records. This share could be

stored on the patient’s mobile device and sent to the ECP after the patient acknowl-

edges the emergency.

Another method of storing the key share could be to give the patient an RFID chip

with the key share stored on it. This could even save time if found in the patient’s

wallet during an emergency.

• The third share would be giving to a third party, which would provide the third share

after verifying that the patient needs emergency medical attention. In this scheme,

we assume the third party to be the patient’s telecom provider. We do not assume that

the telecom provider is completely trusted, which is why all the key shares are also

encrypted with kep. In section 4.2.5 we will further discuss why we chose the telecom

providers to be the third party and the methods they may use to verify an emergency

situation. After verifying the patient’s need for emergency medical attention, the par-

tial key is sent to the ECP allowing them to calculate kep and decrypt the emergency

medical records.

• The fourth share would be given to a government agency which would provide the

fourth share after verifying that the patient is in need of emergency medical care. This

verification would be done manually by a government employee. After making sure

that the patient is in need of emergency medical attention, the government agency

would authorize the system request to send the kep key share to the ECP.

Encrypting the EMRs with an ABE key as in our proposed solution would enable the

patient to modify the medical records at anytime. This is mainly because the system would

automatically generate the EMRs from the patient’s medical records and encrypt the EMRs

with the policy set to:

{emergency∧ patient ′sID = x}.
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Although encrypting the EMRs with an ABE key gives us the advantages we men-

tioned above, we find that a problem could arise after a patient has received the needed

emergency care. Since the same key would always be used to encrypt the patient’s EMR,

the ECP would always be able to access the patient’s medical records, because they can

keep the key to use it at any time in the future. If we assume that this could be a security

risk, we propose the following solutions to solve this problem:

• Session attributes could be added to the ABE access policy. The new policy would

be:

{emergency∧ patient ′sID = x∧ session = y}.

It would be enough for the session attributes to be a counter where every time the

patient gets emergency treatment the counter y is increased by one. The PKG would

also need to split the new key to four share and redistribute them.

• Rather than using an ABE key kep to encrypt the EMRs, a random symmetric key Kr

would be used to encrypt the patients’ EMRs. Similar to our protocol, the first share

of Kr would also be encrypted with ke and placed in the patient’s entry file. The other

shares would be distributed to the other parties after encrypting them with ke.

Although using a symmetric key might seem more appropriate than using an ABE

key as in our proposed solution, we find that when using the latter, the shares could always

be recomputed by the PKG in case one of the key shares is lost. However, if one of the

symmetric key shares is lost then nothing can be done unless a copy of the entire symmetric

key is stored somewhere.
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3.5.1 Key Share Providing Protocol

We propose an authentication protocol in place for sending a key share to the ECP. The

purpose of this protocol is to authenticate both parties to each other, and ensure that the key

share is securely sent to the ECP. ABE is used in this protocol to ensure the confidentiality

and integrity of the data.

Notations

• ECP: Emergency Care Provider

• KSH: Key Share Holder (this could be any entity with a key share, ex. patient or

telecom provider)

• PID: Patient’s ID

• ECPID: ECP’s ID

• KSHID: KSH’s ID

• {..}KKSH : Encrypted with a key which has the identity attributes set to the KSH’s ID

• {..}KECP: Encrypted with a key which has the identity attributes set to the ECP’s ID

• Kepi: A key share of Kep

The Key Share Request Protocol

• ECP→ KSH {PID,ECPIDRAND1}KKSH

• KSH→ ECP {PID,RAND1,RAND2}KECP

• ECP→ KSH {PID,RAND2}KKSH
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• KSH→ ECP {PID,{Kepi}}KECP

Figure 3.2: Sequence Diagram of Proposed Solution

3.5.2 Building a Patient-Centric EHR System

In this section, we outline the algorithms needed to construct a PHR system with the prop-

erties described in our proposed solution. The protocol is presented in a sequence diagram

in figure 3.2.

The main concept of this work is to build on current ABE PHR systems to allow

emergency access. Access to the EMRs is to be provided only in case of a verified emer-

gency. Granting access should not allow ECPs the right to view every emergency medical

record in the system. The encryption scheme of our PHR system is based on CP-ABE [44]

and contains the following functions:

PHR-Setup: Runs CP-ABE-Setup(): It is used to obtain the system public key PK

and the master secret MK. The setup algorithm will choose a bilinear group G0 of prime
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order p with generator g. Next it will choose two random exponents α,β ∈ Zp. The public

key is published as:

PK =G0,g,h = gβ ,e(g, g)α

and the master key MK is (β ,gα).

PHR-KG(S,ID): Run CP-ABE-KeyGen(MK, S, ID). The key generation algorithm

will take as input a set of attributes S along with the ID of the user, and outputs a secret key

SKid that identifies with the set of user attributes.

PHR-ER-KG(ID): Run CP-ABE-KeyGen(MK, emergency, ID) to generate an emer-

gency key kep for a patient, the key generator will generate a key kep with the attributes

{emergency, patientID}.

PHR-Split-ER(kep) It is used to split the key kep into four shares where any two shares

are enough to reconstruct the key kep. The algorithm first chooses a random value rand.

Then it forms the polynomial:

f (x) = kep + rand x

Finally, it computes and returns the key shares kepi = f (i), 1≤ i≤ 4, along with the index

i.

PHR-Combine-ER(kep1,kep2) it combines any two shares to reconstruct kep. The al-

gorithm computes the coefficient a1 of f(x) by using Langrangian interpolation. The algo-

rithm then can compute f (0) = a0 = kep.

PHR-Encrypt: Run CP-ABE-Encrypt(PK,M,T ) to generate a cipher text of a message

M under the tree access structure T .
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PHR-Decrypt: Run CP-ABE-Decrypt(CT, SKid). The decrypt algorithm takes as in-

put the ciphertext CT and the private key SKid .

3.5.3 Emergency Verification

In our proposed solution, we suggested that a third party would provide a key share of kep,

which is also encrypted with ke, to the ECP after verifying that the patient is in need of

medical attention. It is difficult to come up with an automated method to achieve this task

because a false negative could delay the medical care a patient needs. Also, a false positive

would be an invasion of a patient’s privacy. There are numerous ways of verifying an emer-

gency. We propose in this section three possible methods of emergency verification.

Willkomm et al. [163] analyzed data collected over three weeks at hundreds of base sta-

tions in highly populated areas. The dataset consisted tens of millions of calls and billions

of minutes of talk time. In their study they found that 10% of RF voice channels were

allocated for the duration of about 27 seconds. They later confirmed that these were calls

that were either not answered and then redirected to voice mail. This means that 90% of all

phone calls were answered.

With a 90% probability of having phone calls answered, we propose giving the third share to

a third party that would contact the patient and emergency contacts to verify the emergency.

The third party could be a telecom provider given the resources they have. Moreover, with

the high percentage of mobile subscribers, we are assuming every user in the system would

be a mobile subscriber.

We propose the following three methods of verification, each with its advantages and dis-

advantages.
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Location Based Verification

Telecom providers have the ability to find a mobile subscribers approximate location given

the cell towers providing the mobile subscriber with a connection to the network.

When a ECP requests a key share for a patient, the telecom provider may provide it if the

patient’s telecom device is in a location within a reasonable distance from the hospital’s

location.

This solution has the benefit of being completely automated. This would lead to a response

within seconds, allowing the ECPs the chance to act rapidly to save the patient’s life.

Although this solution would deny access from ECPs which are not in the same location as

the patient’s mobile device, it would still be possible for an ECP to target a specific person

within the same location where the patient’s mobile device is located. Access might also be

denied if the patient’s mobile device’s battery runs out in a location far from the location

of the emergency. This would mean that the telecom provider’s data shows the last known

location of the patient’s device in a different area. However, that could also be solved with

an algorithm that would estimate the possibility a patient could travel from the last known

location to the location of the emergency. Also, access to a patient’s key share might be

denied because the patient did not have his/her mobile device at the location where the

emergency occurred.

Emergency Contact Verification

To overcome the disadvantages in the location based solution, we propose contacting the

patient’s emergency contacts. The telecom provider could either send a text message or

generate an automated call to the patient asking for permission to provide access to the

ECP. In case the patient does not reply within a reasonable amount of time, the same request

would be sent to the patient’s emergency contacts.
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This method has the benefit of being more thorough in verifying whether the patient is

in need of emergency care or not. However, it does require more time, which could be

dangerous to the patient’s health in an emergency. Moreover, a request might be denied if

the emergency contacts are contacted during late hours of the night.

Location-Based and Emergency Contact Verification

Both of the emergency verification methods we mentioned above had their advantages and

disadvantages. Thus, we propose using a hybrid solution that combines both methods. We

propose using the emergency contact verification method in the beginning, and in case no

response is returned, the location based method would take over. This means that a request

would only be denied if the emergency contacts do not respond within a reasonable time

interval and the patient’s last location is not in proximity to the ECPs location [164].

3.6 Implementation

In this section, we show some preliminary results as a proof of concept for our proposed

encryption-based solution. The implementation code is written in Java and run on an Intel

Core i5 with 4GB RAM. The attribute based encryption implementation is based on the

open-source Advanced Crypto Software Collection (ACSC) 1. The threshold implementa-

tion is based on a java implementation by Tim Tiemens 2. To test the practicality and scala-

bility of our proposed solution, we test for the time needed to encrypt the EMRs, combining

multiple key shares, and the time needed to decrypt the EMRs. However, communication

delays are out of the scope of this work and are not taken into account.

According to a technical report by TechTarget [165], the size of an electronic health

1http://www.cs.berkeley.edu/ bethenco/
2https://github.com/timtiemens
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Figure 3.3: CP-ABE Encryption and Decryption Execution Times

record without images is typically less than 1MB for a relatively healthy adult patient and

40MB for a patient with major medical issues. To calculate the time needed to encrypt

the EMRs, we create a user with a simple access policy and run the encryption algorithm

assuming various file sizes. We show in figure 3.3, the execution times for encrypting and

decrypting files of various sizes.

Assuming that the EMRs are for a patient with major health issues, it would take 0.47

seconds to encrypt the 40MB records. It would also take the system 0.16 seconds to split

a 256 bit symmetric key into 4 shares, where at least 2 shares are needed to reconstruct

the secret. To combine the shares, It would take the ECPs 0.2 seconds to reconstruct the

symmetric key. Finally, decrypting the 40MB EMRs takes 0.64 seconds. Moreover, our ex-

periments show that the execution time for a large EMR of 200MB, would require the ECPs

less than 2 seconds to combine the key shares and decrypt the medical records. Therefore,

our experimental results show the practicality and scalability of our protocol.
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3.7 Conclusion

In this work we discussed the problem of providing emergency response providers access

to emergency PHRs stored on an untrusted cloud. We proposed a solution based on us-

ing ABE and threshold cryptography to secure the data on the cloud while providing fine

grained access control and confidentiality. In our solution we proposed a protocol capable

of providing access to these records, but only during a verified emergency. We achieved

this by splitting the decryption key between four parties where two are needed to calculate

the decryption key. We also discussed how verifying the occurrence of an emergency can

be automated by a third party such as a telecom provider. We believe that this method can

be generalized to storing sensitive data in untrusted storage systems such as cloud storage

systems.
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Chapter 4

Secure and Privacy-Preserving Querying

of Privately Encrypted Data in the Cloud

In cases where users need to store sensitive data in an untrusted cloud, cryptography can

help protect the confidentiality of the users’ data. By encrypting the data before uploading

it to the cloud, users can benefit from having secure access to their data when needed as

long as they safely store their private keys. Since access to the data is not possible with-

out the corresponding private keys, analyzing the data is also prevented. In this chapter, we

present a scheme to allow a querying entity to securely query privately encrypted data while

preserving the privacy of the users and the querying entity. We will continue using privately

encrypted records (PHRs) as a running example for our scheme. Our goal is to allow query-

ing entities such as health organizations to produce statistical information about privately

encrypted data such as PHRs stored in the cloud. The protocol depends on two threshold

homomorphic cryptosystems: Goldwasser-Micali (GM) and Paillier. It executes queries on

KD-trees that are constructed from encrypted health records. It also prevents patients from

inferring what health organizations are concerned about. We experimentally evaluate the

performance of the proposed protocol and report on the results of implementation.
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4.1 Introduction

Electronic health records are usually managed by different healthcare providers including

primary care physicians, therapists, hospitals and pharmacies. Consequently, it is difficult

to get a single patient’s history due to the fact that it is spread between multiple providers. It

has become a recent trend for patients to take these matters into their own hands by manag-

ing their own records using a Personal Health Record (PHR) system. PHRs systems allow

patients to manage their medical data, giving them the ability to create, view, edit, or share

their medical records with other users in the system as well as with healthcare providers

[166]. In the past few years, many providers have created platforms to manage PHRs with

features including flexible access control, mobile access, and complex automated diagnoses

that analyze PHRs and alert patients when a preventive checkup is needed. These providers

include Microsoft HealthVault [17] and Dossia [18]. Due to the sensitivity nature of health

data, security concerns have prevented many patients from using PHR systems. Many of

the providers of the current PHR systems have the ability to access all patient records.

Recently, architectures for storing PHRs in the cloud have been proposed [166]. How-

ever, this does not solve the privacy problem and the latter remains an issue for many pa-

tients. Since these records are stored on cloud servers, it means that these servers have the

ability to read any medical record in the system. In addition, if an attacker is able to com-

promise a cloud server, then all the PHRs would be exposed. For these reasons, researchers

have begun searching for a way to allow patients storing their medical records in the cloud

using a Database-as-a-Service (DaaS) model while preserving their privacy. DaaS is a cate-

gory of cloud computing services that enables IT providers to deliver database functionality

as a service. Encrypting PHRs before outsourcing appears to be a promising solution in this

domain. However, it prevents health organizations from analyzing medical data for research

purposes. To better understand what caused a disease, health organizations and researchers
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need as much data as possible about the infected patients.

In this chapter, we propose a protocol that allows health organizations producing

statistical information about encrypted PHRs stored in the cloud. The proposed protocol

also does not enable patients to infer about what health organizations are concerned about;

not to worry or panic patients targeted by the queries. Intuitively, the proposed protocol

works as follows: Patients are organized in small groups. The patients of a given group

jointly generate public keys for encryption. They later encrypt their PHRs using their public

keys and send the ciphertext to the cloud server. Encrypted records are stored in KD-trees

constructed by the cloud server for each group. To execute SQL queries, KD-trees are

traversed in the cloud server. Finally, the cloud server aggregates the results and sends

the final query result to the health organization. However, realizing this seemingly simple

system presents a number of significant challenges. First, the search should be performed

on encrypted records. To achieve this, our proposed protocol depends on the homomorphic

properties of two semantically-secure encryption schemes. Using homomorphic schemes,

specific operations can be performed on the encrypted records directly without the need for

decryption. More specifically, query predicates are evaluated using the Goldwasser-Micali

(GM) cryptosystem [24] and Fischlin’s protocol [88] whereas query aggregate functions are

computed using Paillier cryptosystem [25]. Second, the engagement of the patients in the

protocol execution should be minimal. We achieve this by using threshold cryptosystems

such that the decryption process is performed by a specific number of patients, namely the

threshold k. Finally, the searching should be efficient and can be done in logarithmic time.

For this purpose, we use balanced binary KD-trees.

The contributions of this work can be summarized as follows:

• We propose a protocol, which allows health organizations producing statistical in-

formation about PHRs stored in the cloud and encrypted using semantically-secure
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encryption schemes. The main characteristics of the protocol are the following:

– It preserves the privacy of health organizations and patients.

– It supports aggregate queries such count, sum, max and min.

• We design and implement a prototype of the proposed protocol and we also report on

the experimental results.

The rest of the chapter is organized as follows. Section 4.2 discusses the execution

environment. Section 4.3 presents a protocol to find the maximum/minimum value of en-

crypted inputs without resorting to deterministic encryption schemes. In Section 4.4, the

proposed protocol is presented. The security and complexity analysis of the protocol as

well as the experimental results are discussed in Section 4.5. Finally, concluding remarks

as well as a discussion of future work are presented in Section 4.8.

4.2 Execution Environment

In this section, we first identify the involved entities. Then, we present the assumptions

underlying the system design.

4.2.1 Entities

There are three main entities:

• Patients who own health records and want to store them on a cloud server while

keeping them confidential from the cloud server and health organizations.

• Cloud server that stores the encrypted health records of the patients and executes the

queries of the health organization over the encrypted records. The cloud server will

assign an assisting server to each group. The assisting server is a cloud computing
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instance, which will be responsible for storing the encrypted records of the patients

and executing the SQL queries of the health organization.

• Health organization that execute queries over the encrypted records of the patients

and produce statistical information.

4.2.2 Assumptions

We assume that there is no fully trusted entity in the environment and all entities are semi-

honest. Semi-honest adversaries follow the protocol steps, but they try to extract informa-

tion about other entities’ input or output. This is a common security assumption used in

secure multiparty computation literature [167] and it is realistic in our problem scenario

since different organizations are collaborating for mutual benefits. Hence, it is reasonable

to assume that parties will not deviate from the defined protocol. However, they may be

curious to learn additional information from the messages they receive during protocol ex-

ecution. The cloud server and the assisting servers are modeled as “honest but curious”

in the sense that they will execute requests correctly, but they are not reliable to maintain

data confidentiality. Regarding query privacy, we assume that the shape of SQL queries

submitted by health organizations is public whereas the constants contained in the query

predicates are private [168, 169]. We also assume that there is no collusion between the

different parties and that there are mechanisms that ensure integrity and availability of the

remotely stored data. Our scheme focuses only on confidentiality and privacy issues and

does not provide protection against attacks such as data tampering and denial of service.

4.3 Secure Maximum/Minimum Computation

As a major step in our proposed protocol, we need to execute the max/min aggregate queries

over encrypted records. In this section, we provide a cloud-based solution that calculates

65



the maximum/minimum of encrypted values owned by some parties. Formally, given n

inputs v1, . . . ,vn owned by the parties P1, . . . ,Pn respectively, the cloud server wishes to

securely compute max(v1,v2, . . . ,vn) and min(v1,v2, . . . ,vn). We assume that the parties are

not malicious and they correctly carry out the prescribed steps. The proposed cloud-based

solution relies on Fischlin’s protocol [88] and the threshold GM cryptosystem [90]. We

explain the technique to find the max but it can be easily modified to find the min.

Parties jointly generate the public key pk for k-out-of-n threshold GM cryptosystem

such that at least k parties are required to fully decrypt a ciphertext [90]. Parties then en-

crypt their values and outsource them to the cloud server. The cloud server initializes the

current maximum to the encryption of a small negative value with the threshold GM cryp-

tosystem. Afterwards, the cloud compares the current maximum with the encrypted value

of the party Pi using Fischlin’s protocol. The outputs of Fischlin’s protocol are sequences

of λ elements. To decide whether the encrypted value of Pi is greater than the current

maximum (If there exists a sequence of λ quadratic residues), the cloud server contacts k

other parties and sends the generated sequences for them. Each party performs calculation

on the sequences using her share of the factors of the public key [90] using the threshold

GM decryption. The results are then submitted to the cloud server. Afterwards, the cloud

server combines the results received from k parties and decide if the encrypted value of Pi is

greater than the current maximum based on the quadratic residuosity of the combinations.

If the output indicates that the current maximum is greater, there is no need to update the

current maximum. Otherwise, the cloud server sets the current maximum to the value of

Pi and repeats the same process with Pi+1. After comparing the current maximum with all

the existing values, the cloud server sends the encrypted maximum value to k members for

decryption. This idea can be extended to enable a cloud server to sort the encrypted values
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without knowing the secret key and the plaintexts. In this case, any comparison-based sort-

ing algorithm can be utilized and the comparison is performed on the encrypted values by

exploiting Fischlin’s protocol.

4.4 Secure Execution of Queries in Cloud

In this section, we present a protocol that enables health organizations to produce statis-

tical information about encrypted personal health records stored in the cloud server. The

proposed protocol prevents patients from inferring what health organizations are concerned

about. The health organization’s input is an aggregate SQL query that consists of exact-

matching and interval-matching predicates over multiple attributes combined with logical

operators (AND/OR/NOT). The cloud server’s input is the encrypted health records of the

patients. The naive approach to achieve these objectives is that the health organization

communicates with each patient and securely evaluates queries on her record. This can be

achieved by exploiting Fischlin’s protocol for private comparison. However, this approach

incurs excessive communication and computation overhead on the health organization side

that is linear to the number of patients.

To reduce this overhead, patients are organized into smaller groups. The patients in

each group jointly generate two public keys for Goldwasser-Micali [24] and Paillier [25]

encryption schemes. Then, they encrypt their records and outsource them to the cloud

server for storage. The cloud server assigns an assisting server to each group. Assisting

servers are responsible for securely executing health organization’s queries on the database

of each group to obtain partial results. Assisting servers then collaborate to combine the

partial results into the query result and report it to the health organization. In the following,

we elaborate the basic steps of our protocol that protects the data privacy of patients and the

query privacy of the health organization.
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Figure 4.1: System Architecture

4.4.1 Key Generation and Tree Construction

Assuming the total number of N patients, the cloud server defines L = b
√

Nc groups. It

then randomly maps and assigns each patient into exactly one group. Let n = dN
L e denotes

the number of patients in each group. The cloud server assigns an assisting server to each

group, which is responsible for executing health organizations’ queries over the medical

database of patients as shown in figure 4.1. Assisting servers collaborate with each other

to obtain the query result from the partial results and send it to the health organization.

In the i-th group, the patients execute the distributed key generation algorithms for the

threshold Paillier and the threshold GM cryptosystems to obtain the public keys pk′i and

pki for Paillier and GM cryptosystems. We utilize the protocols explained in [90] and

[170] for the threshold GM and the threshold Paillier cryptosystems, respectively. These

protocols depend on distributed RSA key-generation protocols [171, 92] without the need

for a trusted dealer. Following the execution of the key-generation protocols, each patient

obtains a single public key and a share of the secret key. The threshold cryptosystems

enable the patients to encrypt their record with a single public key while at least a minimal

number of patients are required to decrypt a ciphertext.

Example 1. Consider health records with the attributes Age and Surgery, where the value
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of Surgery specifies the type of the surgery that a patient undergoes (e.g. 1: Transgender,

2: Plastic, 3:Vascular, 4: Urology). The total number of patients is N = 10; therefore, these

patients are organized in L = b
√

10c = 3 groups, namely, G1, G2 and G3. Assume that

patients 1,9 and 10 are assigned to G1; patients 2, 4, 5 and 8 to G2 and patients 3, 6 and

7 to G3, randomly. Furthermore, the patients in the group Gi jointly generate the public

key pki and pk′i for the GM and the Paillier cryptosystems, respectively. The members of Gi

encrypt their records with pki and pk′i as presented in Fig. 4.2. The encrypted tables are

then outsourced to the cloud server.

To store the shares of a secret key, we assume the secret key is stored on secure

hardware such as FPGA [172]. These devices are designed in such a way that after a patient

places a key into the on-board key memory on the device, it cannot be read externally. After

the secret key of each patient and the group public keys (for Paillier and GM cryptosystems)

have been written, the FPGA can be delivered to the cloud operator for installation.

The patients encrypt each record using both Paillier and GM cryptosystems by the

group public keys. Therefore, the encrypted record of each patient has two columns for

each attribute in the database: one column that contains the encryption of the attribute value

using the group public key for the threshold Paillier cryptosystem, and another column that

stores the GM encryption of the attribute value using the group public key for the threshold

GM cryptosystem. Finally, the cloud server assigns an assisting server to each group. Each

assisting server collects the encrypted health records and organizes them as a KD-tree [173].

Example 2. (Continued from Example 1) The generated KD-trees for each group are shown

in Fig. 4.2. The partitioning attributes may be different in each group depending on the data

within that group.
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Age Surgery
Patient 1 34 1
Patient 2 39 2
Patient 3 20 1
Patient 4 59 3
Patient 5 63 4
Patient 6 27 2
Patient 7 78 4
Patient 8 11 2
Patient 9 83 3
Patient 10 42 3

Table 4.1: Health Records
AgeGM SurgeryGM AgeP SurgeryP

Patient 1 Epk1(34) Epk1(1) Epk′1
(34) Epk′1

(1)
Patient 9 Epk1(83) Epk1(3) Epk′1

(83) Epk′1
(3)

Patient
10

Epk1(42) Epk1(3) Epk′1
(42) Epk′1

(3)

(a) G1 Data Set
AgeGM SurgeryGM AgeP SurgeryP

Patient 2 Epk2(39) Epk2(2) Epk′2
(39) Epk′2

(2)
Patient 4 Epk2(59) Epk2(3) Epk′2

(59) Epk′2
(3)

Patient 5 Epk2(63) Epk2(4) Epk′2
(63) Epk′2

(4)
Patient 8 Epk2(11) Epk2(2) Epk′2

(11) Epk′2
(2)

(b) G2 Data Set
AgeGM SurgeryGM AgeP SurgeryP

Patient 3 Epk3(20) Epk3(1) Epk′3
(20) Epk′3

(1)
Patient 6 Epk3(27) Epk3(2) Epk′3

(27) Epk′3
(2)

Patient 7 Epk3(78) Epk3(4) Epk′3
(78) Epk′3

(4)
(c) G3 Data Set

Table 4.2: Outsourced Health Records in Groups
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Epk1 �42� Epk1 �3�

Epk1 �34� Epk1 �1� Epk1 �83� Epk1 �3�

Age

Epk2�59� Epk2�3�

Epk2�39� Epk2�2�

Epk2�11� Epk2�2�

Epk2�63� Epk2�4�

Age

Surgery

Epk3 �27� Epk3 �2�

Epk3 �20� Epk3 �1� Epk3 �78� Epk3 �4�

Surgery

Figure 4.2: Generated KD-trees

4.4.2 Query Sanitization and Token Generation

The health organization wishes to execute an SQL query such that the constants in the

predicates are not revealed to the patients and the cloud server. Therefore, the health orga-

nization sanitizes the query by replacing the constants contained in the predicates by their

GM encryption using the public key of each group. Furthermore, the health organization

uses a token for each group that is encrypted by the group’s public key. This token can

be manipulated by assisting servers to produce a noisy query result. Generating the token

depends on the type of the aggregate function. For count and sum, the health organization

generates L random numbers R1,R2, . . . ,RL such that R = R1 +R2 + . . .+RL. The random

share Ri will be the token that is sent to the assisting server of the i-th group. For the max

and min, the health organization generates a random number R as the token for all groups.

The health organization then encrypts the token of each group by the Paillier cryptosystem

using the group public key. The health organization forwards the sanitized query together

with the encrypted token to assisting servers. Therefore, in this step the health organization

should create L sanitized queries and L encrypted tokens.

Example 3. Suppose that the health organization’s query is:

SELECT MAX(Age) FROM D WHERE Surgery= 1

The sanitized query that will be forwarded to the i-th group would be
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SELECT MAX(Age) FROM D WHERE Surgery= Epki(1)

In addition, since the function is max, the health organization generates a random number

R and uses it as the token for all groups. The health organization then encrypts the token

using the Paillier encryption by the public key of each group and forwards the encrypted

token together with the sanitized query to the corresponding assisting server.

4.4.3 Tree Traversal and Query Execution

To execute the health organization’s query, the assisting servers must traverse the KD-trees,

constructed from the encrypted records of the patients. To do so, the assisting servers

follow the tree traversal algorithm. The search begins from the root; the assisting server

uses Fischlin’s protocol and the threshold GM decryption to evaluate the query predicate

on the root record. Based on the result of the query evaluation, the search is continued on

the left tree or the right subtree or both. At the end of this step, the assisting servers will

end up with the records that satisfy the query predicate. The assisting servers then compute

the encrypted query result depending on the type of the aggregate function as follows:

• count: The assisting server of the group Gi counts the number of records that are

reported as the query result and encrypts this value using the Paillier cryptosystem

with the group public key.

• sum: The assisting servers encrypt 0 (as the current sum) by the Paillier encryption

using the group public key. While traversing the tree, if at each level the conditions

in the query predicate are satisfied, the assisting server projects the record over the

Paillier-encrypted column targeted by the aggregate function and multiplies it by the

the current sum to update the query result. At the end, the assisting server will end up

with the sum that is encrypted with the group public key using the threshold Paillier

cryptosystem.
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• max, min: Initially, the assisting servers pick up a small negative number (or a large

positive in case of min) that denotes the current max/min value and encrypts it by

the GM and the Paillier cryptosystems using the group public keys. GM-encrypted

ciphertext is utilized for the comparison while Paillier-encrypted ciphertext is used

for generating noisy query result. During the tree traversal if a record satisfies the

query condition(s), the assisting server projects the record over the columns that con-

tain the GM- and the Paillier-encryption of the record. It then executes Fischlin’s

protocol using the encrypted current max/min value and the GM-encrypted value, to

find out if this record has greater (resp. smaller) value or not. If so, the assisting

server initializes the current max/min value to the GM- and the Paillier-encrypted

ciphertexts. Otherwise, the current max/min value remains unchanged. At the end,

the assisting servers end up with the query result encrypted with the Paillier and GM

cryptosystems. For the remaining step of the protocol, the assisting servers only need

the Paillier-encrypted ciphertext.

At the end of this step, the assisting servers obtain the partial query result (that has been

encrypted using the Paillier scheme by the public key of the group).

Example 4. (Continued from Example 3) Considering the KD-trees presented in Fig. 4.2

and the sanitized query

SELECT MAX(Age) FROM D WHERE Surgery= Epki(1)

All assisting servers receive an encrypted token Epk′i
(R) from the health organization.

The assisting server of the group Gi extracts Epki(1) from the query and performs the

point search on the KD-tree constructed by the patients in the group Gi. The assisting

servers report the records that satisfy the predicate Surgery = Epki(1) by executing Fis-

chlin’s protocol and the threshold GM cryptosystem. The record of Patient 1 in G1 and
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the record of Patient 3 in G3 satisfy the predicate. Therefore, the output of the tree traver-

sal for the assisting servers of the groups G1, G2 and G3 will be {Epk1(34),Epk′1
(34)},

{Epk2(−1000),Epk′2
(−1000)} and {Epk3(20),Epk′3

(20)}, respectively. The resulted out-

puts will be projected over the column AgeP to obtain {Epk′1
(34)}, {Epk′2

(−1000)} and

{Epk′3
(20)} as the encrypted query result.

4.4.4 Query Result Decryption

So far, the assisting servers have obtained the encrypted partial query result, which we will

call group results from now on. Therefore, the assisting servers must collaborate with each

other to compute the final query result and submit it to the health organization. The group

results are encrypted with different keys. Therefore, in order to compute the final query

result, the group results must be in plaintext. The assisting servers first obfuscate the group

results because they are not willing to reveal these results to each other. The obfuscation

is performed by the mean of multiplying the group result by the encrypted token, sent by

the health organization (both of them are ciphertexts generated by the same key under the

Paillier cryptosystem). The obfuscation allows the assisting servers to collaborate with each

other to calculate the noisy query result while hiding the actual group result. In addition,

since the noise is generated by the health organization, it allows the health organization

to recover the actual query result from the noisy query result. Afterwards, each assisting

server decrypts the noisy group result (that is encrypted by the Paillier cryptosystem) by

contacting patients in its group.

The assisting servers then need to obtain the final noisy query result by aggregating

their group results. In this context, the assisting servers send the noisy group results in

plaintext to the cloud server. The cloud server then aggregates the partial noisy query results

to obtain the noisy query result. In the case of count and sum, the cloud server adds up all

the group results and submits the summation to the health organization. In the case of max
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and min aggregate functions, the cloud server executes the maximum/minimum algorithm

on the plaintexts and sends the resulted value to the health organization. Notice that the

noise generated for obfuscating the maximum/minimum of all groups is the same, therefore

it will not affect the algorithm correctness (i.e., if a < b then a+R < b+R). Finally, the

health organization in its turn subtracts the noise and obtains the query result.

Example 5. (Continued from Example 4) We have seen that the result of executing the SQL

query

SELECT MAX(Age) FROM D WHERE Surgery= Epki(1)

on the groups G1, G2 and G3 was {Epk′1
(34)}, {Epk′2

(−1000)} and {Epk′3
(20)} respec-

tively. Moreover, the token sent by the health organization to the i-th group is Epk′i
(R). The

assisting servers multiply the received token ER
pk′i

by all records in the encrypted query re-

sult to obtain the encrypted noisy query result, i.e., {Epk′1
(34+R)}, {Epk′2

(−1000+R)}

and {Epk′3
(20+R)}. The assisting servers then decrypt these ciphertexts to obtain 34+R,

−1000+R and 20+R. They send their noisy plaintexts to the cloud server. The cloud

server executes the maximum algorithm on the 34+R, −1000+R and 20+R and eventu-

ally ends up with 34+R as the maximum. The cloud server forwards 34+R to the health

organization. The health organization subtracts the noise R to obtain 34 as the result of

executing the SQL query on the medical database.

4.5 Security Analysis

Assuming the semi-honest adversary model and no collusion between the patients, the se-

curity of the protocol depends on the steps where the parties exchange information and it is

conducted as follows:
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• Health organization-Cloud server: The health organization sends the sanitized query

and the token that are encrypted by the semantically-secure encryption schemes using

patients’ public keys. Therefore, the cloud server is not able to decrypt it [24, 25].

• Patient-Cloud server: The patients sends their medical records, encrypted using

semantically-secure encryption schemes that are secure against semi-honest adver-

sary [24, 25].

• Cloud server-Patient: The cloud server communicates with the patients in order to

execute Fischlin’s protocol, that is proven to be secure in the presence of semi-honest

adversaries [88, 90, 91].

• Assisting servers: The interactions between assisting servers are required to aggre-

gate the noisy group results and acquire the randomized final query result. Since the

query results have been randomized by a number that is generated by the health or-

ganization, the assisting servers are not able to extract the actual query results from

the noisy results.

Moreover, the output of each subprotocol is the input to another subprototcol. Therefore, ac-

cording to the Composition Theorem [174], the entire protocol is secure. The main concern

with threshold cryptosystems comes from the collusion attack. We address in the following

the possible attacks resulted from the collusion between the different parties. The threshold

decryption will be compromised if the number of colluding clients under the control of an

adversary exceeds the threshold k. Any collusion that contains less than k patients in each

group cannot learn any information about the ciphertext sequences ∆ and c, generated for

comparison as well as constants in the query of the health organization. The most seri-

ous collusion attacks are when: (i) the cloud server colludes with more than k patients in

each group to recover the encrypted database records, (ii) the cloud server and at least k
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Health Organization Assisting Servers
Communication Computation Communication Computation

O(
√

N) O(k
√

N) O(kT (N)) O(kT (N))

Table 4.3: Communication and Computation Cost

patients in any group collude to infer constants in the query. In practice, we can increase

the threshold k such that attackers will not be able to compromise too many patients. De-

spite simplicity, this mechanism has two disadvantages: First, the number of the required

online patients is increased. Second, the communication cost on the assisting servers is

increased because they need to communicate with more parties for decryption. Therefore,

there should be a trade-off between availability/efficiency and security by choosing a proper

value for k.

It should be noted that the proposed protocol does not protect the privacy of pa-

tients from being identified through the query result. There is a significant body of works

on distributed privacy preserving data mining (e.g. constructing decision trees [175] and

differential privacy [176, 177, 178]) that provide a rich and useful set of tools to protect

the record owner (i.e., patients) from being identified through query results. They allow a

trusted server to release obfuscated answers to aggregate queries to avoid leaking informa-

tion about any specific record in the database. Such works have a different goal and model

and can be added as a front end in the proposed protocol to provide privacy-preserving

answers to the health organization’s queries.

4.6 Complexity Analysis

Let N denotes the number of patients in a PHR system. These patients are organized into

L groups and each group contains n = N
L patients. Recall that the execution time of range

queries, exact matching queries and partial matching queries on a KD-tree with
√

N records,

will be O(N0.5−1/2d +m), O(logN) and O(N0.5−s/2d +m), respectively [179] where d is the
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number of the attributes in the table, s is the number of attributes in the query predicate and

m denotes the number of records, reported as the query result. The communication and

the computation cost of the protocol is summarized in Table 4.3 where T (N) indicates

the execution time of different types of queries (e.g., exact-matching, partial matching and

range matching). The most communication- and computation- intensive operation on the

assisting servers is the tree traversal.

4.7 Performance Evaluation

To evaluate the performance of the proposed protocol, we implement a prototype relying

on some existing open source projects [180] in Java 1.6. The secret keys p and q of the

GM cryptosystem are 256-bit long. Moreover, we employ the publicly available Breast

Cancer dataset [181]. It has 286 records with 9 categorical attributes. The patient’s and the

server’s side experiments are conducted on an Intel core i5 2.3GHz notebook with 4GB of

RAM. The number of patients in each group is fixed at L = 286 leading to approximately

81,800 patients in the PHR system. The shares of the secret key are stored on FPGAs.

Decrypting a ciphertext by the cloud server is performed by sending a ciphertext to the

FPGAs. Since the communication is intra-site, we ignore communication delays in the

performance evaluation.

To understand the source of the overhead, we measure the query execution time for

Query Query Time(ms)
Select by = 41.93
Select range 216.14
Select sum 33.02
Select max/min 217.32

Table 4.4: Assisting Server Latency for Different Types of SQL Queries (k = n
4 = 71).
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different types of aggregate SQL queries, but running with only one core enabled. The re-

sult is presented in Table 4.4 and Fig. 4.3. When k is small, the query time is dominated by

Fischlin’s protocol, which is independent from the threshold k. Therefore, there is a small

difference in the query time when k = 36 and k = 71. However, as k increases the effect

of the threshold decryption becomes more visible and the execution time starts to grow.

According to a similar analysis, for small values of k there is a small change in the exe-

cution time but as k increases the query time becomes linear with k. Finally, we calculate

the execution time of an arbitrary SQL query k = n
4 = 71. In addition, the execution time

of a query heavily depends on the number of comparisons that are performed to traverse

the KD-tree. Therefore, we consider three different scenarios: (1) the worst case scenario is

when evaluating predicates targeting a single attribute for interval matching such that all the

tree nodes are traversed, (2) the best case scenario is when evaluating predicates targeting

all attributes for exact matching, and (3) the real-world scenario is when evaluating pred-

icates targeting multiple attributes for range and exact matching predicates. In the worst

case, the time required to evaluate the predicate is 110 seconds (approximately 2 minutes)

for each group, whereas in the best case it is 0.3 seconds. In the real-world scenario, we

derive the execution time of a SQL query that contains interval matching and exact match-

ing predicates. For each type of predicate, we execute four SQL queries with different

number of attributes. The results are presented in Fig. 4.4. The results indicate that as the

number of attributes in the query increases, the execution time decreases due to the smaller

search space and the reduction of the number of comparisons. Our experimental results

indicate that the proposed protocol would work well with medium size databases (with a

total number of 100,000-400,000 patients) and the queries that contain multiple attributes.

The implementation and the above results are meant to prove the feasibility. Further opti-

mizations may lead to a better performance. It is worth to mention that health organizations
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Figure 4.3: Query Time Figure 4.4: SQL Query Time (Exact
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do not frequently conduct statistical studies on the medical databases (every month or when

there is a pandemic). Therefore, the performance of the protocol is acceptable for this type

of applications whose goal is to perform search while the absolute privacy of the patients

and the health organization is preserved.

4.8 Conclusion

In this chapter, we have presented a protocol that allows executing various types of SQL

queries on PHRs stored in the cloud while preserving the privacy of the patients and the

health organization as well. The health records are encrypted using probabilistic encryption

schemes, which are semantically secure. The protocol supports aggregate, exact matching

and range matching queries. It is based on Fischlin’s protocol for private comparison and

on two threshold cryptosystems. The implementation result has indicated that the protocol

works well with medium size databases and the queries that contain multiple attributes. We

have shown that we can execute queries over encrypted data using probabilistic cryptosys-

tems.
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Chapter 5

Enhanced Privacy-Preserving Querying

Mechanism on Privately Encrypted Data

in the Cloud

The affordability of cloud data storage has made it simpler for users to store and access

data online from any location or operating system. These services may be used by users

to store sensitive data, such as personal health records or financial data. Many service

providers offer features such as analyzing the users’ private data to generate useful reports

for medical data. Storing such sensitive data on the cloud raises many privacy concerns.

While encryption can ensure data confidentiality, it introduces the challenge of analyzing

the privately encrypted data while preserving the privacy of the users and the querying

entity. In this paper, we address this problem by elaborating a cryptographic protocols

that allows a third party, such as a health organization, to query privately encrypted data

without relying on a trusted entity. The proposed protocol preserves the privacy of the users

and the querying entity. The protocol relies on homomorphic, threshold cryptography, and

randomization to allow for secure, distributed, and privacy-preserving queries. We evaluate
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the performance of our protocol and report on the results of the implementation.

5.1 Introduction

There are various methods for securing sensitive data stored in the cloud. Data encryption

ensures that access is only possible when the correct decryption key is provided. However,

although users are assured that sensitive data in the cloud is securely encrypted, in most

cases trust is given to the cloud service providers to manage the encryption keys on their

behalf. This implies that, although the data is encrypted, the cloud service provider has

the ability to see the actual data. It is possible to build a secure privacy-preserving system

where data is encrypted and key management becomes the responsibility of the users, thus

ensuring cloud service providers cannot see the plaintext data. This approach has not been

popular due to the limited features providable by a cloud service provider, such as sharing

or querying data to provide statistical information. There are many solutions to provide

these features while preserving the users’ privacy. Cloud-based PHRs are the most common

application used by researchers when discussing this problem.

Although the use of an ABE system preserves the privacy of the users in the cloud, it

prevents third party entities such as health organizations from querying privately encrypted

data (e.g. PHRs) on the system. To produce statistical information on privately encrypted

data on the cloud, users would have to give the query requester access to all private data

using ABE. According to a report from the consulting firm PwC [182], health organizations

are falling short in protecting the privacy and security of patient information. Additionally,

according to the same report, more than half of health organizations have had at least one

issue with information security and privacy since 2009. The most frequently observed issue

is the improper use of protected health information by an employee in the organization.
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We therefore propose a solution to querying privately encrypted data under the as-

sumption of not having a trusted entity in the system. This implies that the user trusts

neither the system nor the Querying Entity (QE) to have direct access to the data. This

also means that the QE trusts neither the system nor the users to see the query details in

the query. We achieve this by means of a protocol, which uses private comparison proto-

cols along with semantically secure cryptography to compare the encrypted values. This

allows us to support equality, range, and aggregate queries such as count, sum, and aver-

age. We also use threshold Goldwasser-Micali cryptography to prevent the QE or the cloud

server (CS) from viewing the actual user data. Finally, we use the randomization and partial

decryption of the results array to prevent the CS from correlating a result to a specific user.

The enhanced protocol we propose in this chapter differs from the solution we present

in Section 4.4. Rather than requiring DOs to assist in the decryption process for each com-

parison in the KD-Tree, the enhanced protocol requires DOs to participate in a single com-

munication step. The computations that need to be executed by the DOs are also reduced.

Finally, the enhanced protocol does not require the DOs data to have the same structure.

Variations of our approach may solve a variety of problems, other than the PHR

example mentioned in the introduction, where a party needs to query multiple data sources

that are privately encrypted. Moreover, neither party trusts the other with any data aside

from the final results of the query. Examples of some possible use cases include:

• Credit card companies querying private e-commerce data to find cases of credit card

fraud or identity theft.

• Insurance providers querying pharmacies for illegal abuse by patients, doctors, or

pharmacists related to drug prescriptions.

The remainder of the chapter is organized as follows. In Section 5.2, we present

the threat model and the security guarantees. Section 5.3, describes our protocol in detail.
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Section 5.6, provides a security analysis of our protocol. Section 5.7, presents the results of

our implementation.

5.2 Security Overview

Figure 1 shows the architecture of our proposed solution. Our solution consists of outsourc-

ing the homomorphic computations to a semi-trusted Cloud Server (CS). The QE encrypts

the query constants to preserve its privacy. Threshold encryption is used to protect the con-

fidentiality of the QE’s query constants. Threshold encryption along with randomization

preserves the privacy of the data owners’. The CS runs all the homomorphic computations

on the encrypted data, and it only sends the final result back to the QE. This ensures that

our system guarantees the confidentiality of the QE’s query constants and the Data Owners’

data. The solution does not provide confidentiality if the QE and the CS collude and share

their encryption keys.

Although our solution guarantees data confidentiality, it does not ensure the integrity,

freshness, or completeness of the results returned to the QE. An adversary that compromises

the cloud server or a data owner can modify the data and the final result. We now describe

the entities in our system, the threat model, and the security guarantees provided under the

threat model.

5.2.1 Entities

There are four main entities in our protocol (as shown in Figure 5.1):

• Data Owners (DO), own the data and want to store it in a cloud server while keeping

it confidential from the cloud server and Querying Server.

• Cloud Storage Servers, are used by the DOs to store their encrypted data, which are
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confidential from the cloud service providers. In our protocol, DOs’ data may be

stored with different cloud providers, under different standards, or encrypted using

different cryptosystems. We are using the cloud storage servers as an example, al-

though the privately encrypted data may be stored locally by the DO on an offline

storage device.

• Cloud Server (CS), is an intermediary entity in the cloud between the DOs and the

QE, trusted to help manage the execution. The DOs and the QE trust the CS to

execute the queries, but neither entities trust the CS to see unencrypted data.

• Querying Entity (QE), runs queries over the encrypted data of the DOs to produce

statistical data.

5.2.2 Problem Statement

Given a set of n data owners DO{DO1,DO2, . . . ,DOn}, each storing their privately en-

crypted data di on an offline storage device or on a semi-trusted cloud with different en-

cryption keys or cryptosystems. An external querying entity QE is securely allowed to run

a query Q with a set of m attributes Qai ∈ {Qa1,Qa2, . . . ,Qam}, i = 1, . . . ,m and a set of j

constants Qci ∈ {Qc1 ,Qc2, . . . ,Qc j}, i = 1, . . . , j, on the encrypted data di while ensuring the

confidentiality of the QE’s query constants Qc. The QE cannot ascertain any information

about the DOs’ data other than the final result Qr and the number of DOs that satisfy the

QE’s query Q.
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Figure 5.1: System Architecture

5.2.3 Threat Models

Threat 1: Compromising The Survey Server or The Querying Entity

In this threat, our solution guards against a curious cloud server, a curious querying entity,

or other external attackers with full access to either server. Our goal is confidentiality (data

secrecy), not integrity or availability. Since we are assuming the semi-honest model, the

attacker is assumed to be passive, which means that the attacker wants to learn about the

confidential data in the querying entity’s query, the data owners’ responses, or the final

result. The semi-honest model implies that the attacker is not able to modify the data in

the query, the data owner responses, or the computation results. This threat is becoming

increasingly important with the increasing popularity of migrating data centers to the cloud.

We address this threat in Section 5.6.

Threat 2: Personally Identifiable Information Queries

In this threat, the querying entity’s goal is to take advantage of the secure querying mech-

anism to create targeted queries that expose Personally Identifiable Information (PII). For

example, a malicious QE may create a query with the goal of finding out if a specific person

has cancer. By requesting a count query for the number of data owners with “diabetes”,
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living in “location” x, are y years old, and are z cm tall. In most cases, a query this spe-

cific would usually be unique to a single DO. Our solution guards against such attacks

and ensures the data owners that their PII would not be exposed to a querying entity. Our

system achieves this while providing the querying entity with an approximate result using

differential privacy. We address this threat in section 5.5.

Threat 3: Exposing the Query Attributes to the Data Owners

In this threat, our solution guards against a DO attempting to learn about the attributes in

the QE query. To address this threat, our solution hides the query attributes along with the

query predicates from the data owners. If the QE were to request a query after a major

health outbreak, then exposing the attributes in the query might cause DOs to panic. For

Example, if a new fatal virus was to spread and a health organization chose to query asking

about DOs’ with “Diabetes” and “Pregnancy” attributes, then that might cause all DOs

with Diabetes and Fever to panic and unnecessarily flood hospitals for unneeded test. The

initial solution we present in Section 5.3 hides the query predicates from the data owners to

prevent the data owners from knowing the specifics of what the querying entity is interested

in. We chose not to hide the query attributes in the initial solution because one of our goals

is to return control of data to the DOs themselves. DOs should have the right to prevent

the querying of any attribute or any combination of attributes of their data. In Section 5.4,

we present a second solution as an extension to the initial protocol to address this threat by

hiding the attributes from the DOs.

5.3 Proposed Protocol

The purpose of this approach is to propose a protocol that enables querying privately en-

crypted data on a semi-trusted cloud while preserving the privacy of both the DOs and the
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QE without requiring a trusted entity.

The protocol uses the Goldwasser-Micali (GM) cryptosystem along with Fischlin’s

protocol to enable DOs to securely compare values in their data to the encrypted constants

in the QE’s query.

The protocol additionally uses threshold encryption to allow the QE and the CS to

cooperate in order to execute the query without compromising the privacy of either the QE

or the DO. Threshold encryption allows us to split an encryption or decryption key into

n shares, where only k of the n shares are needed to encrypt or decrypt a message [71].

Threshold encryption allows the CS to calculate the response to the query over encrypted

data without trusting it to see the query constants, the DO data, or the result of the query.

5.3.1 Notations

Throughout this chapter, we will be using the following notations:

• QE: Querying entity.

• CS: Cloud server.

• Q: Query sent by QE with the query attributes and the encrypted constants.

• Qc: Query constants.

• Qa: Query attributes.

• PKgmi: The ith private GM-threshold key share.

• pkgm: Public GM-threshold key.

• PKgmi: The ith private Paillier-threshold key share.

• pkpa: Public Paillier-threshold key.
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5.3.2 Functions

Throughout this chapter, we will be using the following functions:

• PaillierEncpk(m): Encrypts a message m using the Paillier cryptosystem and the

session public key [25].

• GmEncpk(m): Encrypts a message m using the GM cryptosystem and the session

public key [24].

• PaillierSum (a,b): Runs the Paillier secure sum algorithm adding the two encrypted

values a and b, where a and b are both encrypted with the same key using the Pail-

lier cryptosystem [25]. The function outputs an encrypted value c, which is also

encrypted with the same key used for a and b.

• RunFischlin (a,b): Runs Fischlin’s algorithm to compare a and b, which are both

encrypted with the same key and using the GM cryptosystem [88]. The functions

outputs two values (∆,c), which are also encrypted with the same key used for a and

b. Decrypting (∆,c) allows us to analyze their values to determine whether a is greater

than or equal to b.

• FischlinResAnalysis(∆,c): Analyzes the decrypted values of (∆,c) to determine the

comparison result of the two input values to the RunFischlin (a,b) function that was

used to generate (∆,c) [88].

• PaillierDecrypt(m,PKa): Runs the Paillier-threshold decryption algorithm to par-

tially decrypt the message m using a key share a of the private key PK [25].

• GMDecrypt(m,PKa): Runs the GM-threshold decryption algorithm to partially de-

crypt the message m using a key share a of the private key PK [24].
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5.3.3 Protocol Phases

The protocol is split into four main phases:

• Setup phase: In this phase, the CS and QE agree on the session encryption keys

required for the QE’s query.

• Query distribution phase: In this phase, the QE encrypts the queries and sends them

to the CS. The CS then processes the queries and forwards them to the DOs.

• Data Owner Query execution phase: In this phase, the DOs run the comparison and

sum algorithms on the QE’s data and their own encrypted data, and send the results

to the CS.

• Cloud server query execution phase: In this phase, the CS analyzes and calculates

the final result of the query with the help of the QE.

The protocol differs in its operations according to the query type. In other words,

the overall structure stays the same; however, there are three deviations according to three

query types (Sum/Avg, Range, and Hybrid queries).

5.3.4 Setup Phase

This section discusses how the QE and the CS start a new query session in our protocol

using the GM-threshold cryptosystem along with Fischlin’s protocol.

In the first step of the protocol, the secure key agreement protocol is run jointly by

the QE and the CS to generate the session public key pk for k-out-of-n threshold GM cryp-

tosystem or the Pailler cryptosystem such that at least k of n participants are required to

fully decrypt a ciphertext [88, 90]. In this solution, we set the threshold k to 2 and the
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number of participants n to 2. The generated threshold keys will be kept privately by the

QE and the CS.

The QE sends a query session request to the CS along with the type of query (range,

sum, or hybrid). The identities of the QE and the CS must be verified at this stage (e.g. by

using digital signatures). The type of query determines which keys are generated using the

secure key agreement protocol as follows:

• For sum or average queries, the QE and CS generate a Paillier-threshold key pair,

splitting the private key PKpa into two shares PKpa1 and PKpa2. The key PKpa1 will

be used by the QE and the key PKpa2 will be used by the CS.

Phase 1: Sum/Avg query example
To find the average age of DOs in the system, the following query Q will be sent by the

QE to the CS:

AV G (age) f rom DOs

• For range queries, which include queries such as equality, range, and Max/Min

queries, the QE and CS generate a GM-threshold key pair, splitting the private key

PKgm into two shares PKgm1 and PKgm2. The key PKgm1 will be used by the QE and

the key PKgm2 will be used by the CS.

Phase 1: Range query example
To find the number of DOs under the age of 20 that have diabetes, the following query Q

will be sent by the QE to the CS:

COUNT (∗) f rom DOsWHERE age < (Encpkgm(20) ∧ Diabetes = Encpkgm(1))

• For hybrid queries with range and sum operations, the QE and CS generate a GM-

threshold and a Paillier-threshold key pair, splitting each private key into two shares.
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Phase 1: Hybrid query example
To find the average age of female DOs with diabetes in the system, the following query

Q will be sent by the QE to the CS:

AV G (age) f rom DOsWHERE gender = Encpkgm(1)AND Diabetes = Encpkgm(1)

The session public keys pkgm for the GM-Theshold cryptosystem and pkpa for Paillier-

Theshold cryptosystem will be separately signed by both parties using their trusted certifi-

cates before being sent to the DOs with the queries in the upcoming steps of the protocol.

5.3.5 Query Distribution Phase

The QE encrypts the constants Qc in the query Q using the session public key pkgm or pkpa

depending on the type of query. The QE then forwards the query to the CS.

The CS then distributes the attributes Qa in the query Q, the encrypted constants Qc,

the public session key pkgm or pkpa, and the cryptosystem to be used (Paillier-threshold or

GM-threshold) to all the DOs.

• In the case of sum or average queries,the DOs would be requested to use the Paillier

cryptosystem.

Phase 2: Sum/Avg queries
1: QE→CS : Q

2: CS→ DOs : Qa[ ]; Paillier; pkpa

• In the case of range queries, the DOs would be requested to use the GM cryptosystem.

Phase 2: Range queries
1: QE→CS : Q

2: CS→ DOs : Qa[ ]; GMEncpkgm(Qc[ ]); GM; pkgm
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• In the case of a hybrid query, both of the above actions are required. The CS sends

two messages to the DOs: one for the comparison part of the query and another for

the Avg/Sum part of the query.

Phase 2: Hybrid queries

1: QE→CS : {Q}

2: CS→ DOs : {Qa[ ]; Paillier; pkpa}

3: CS→ DOs : {Qa[ ]; GMEncpkgm(Qc[ ]); GM, pkgm}

The queries are not sent to the DOs, but the attributes and the encrypted constants are sent

in arrays of the same size. In the case of comparison queries, the constants in the array

correspond to the attributes in the same positions in the attributes array.

5.3.6 Data Owner Query Execution Phase

The DOs retrieve the values related to the attributes in the QE’s query from the cloud.

• If the DOs are requested to use the Paillier cryptosystem, they encrypt the values

retrieved from the cloud and encrypt them using the Paillier cryptosystem. The final

encrypted result is then forwarded to the CS.

Phase 3: Sum/Avg queries
1: f or each Qa do {

2: resultspa[i] = Encpkpa(DOdata.Qai)) }

3: DOs→CS : resultspa[ ]

• If the DOs are requested to use the GM cryptosystem, they encrypt the values re-

trieved from the cloud and run Fischlin’s protocol on their values and the encrypted

values sent from the QE. The DOs then forward the results (∆ ,c) to the CS.
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Phase 3: Range queries
1: f or each Qa do {

2: resultsgm[i] = RunFischlin(GMEncpkgm(Qci), GMEncpkgm(DOdata.Qai)) }

3: DOs→CS : resultsgm[ ]

• In the case of a hybrid query, both of the above actions are required, and the DOs

send the CS the final two arrays resultsgm and resultspa.

5.3.7 Cloud Server Query Execution Phase

The CS stores the results received from the DOs into an array and waits until it receives the

required number of results from the DOs. Depending on the query type, the CS then takes

the following steps:

• In the case of a sum/average query, the CS runs the addition algorithm on all the

Paillier encrypted values received from the DOs. The CS then partially decrypts the

result using its share of the private key. The partially decrypted result is then sent to

the QE along with the number of DOs. The QE then decrypts the results using its

private key share. If the query was an average query, the QE also divides the result

by the number of DOs.

Phase 4: Sum/Avg queries

1: CS : EncResult = PaillierSum(resultspa[ ])

2: CS : PartiallyDecResult = PaillierDecrypt(EncResult;PKpa2)

3: CS → QE : PartiallyDecResult;NumberO f DOs

4: QE : FinalResult = PaillierDecrypt(PartiallyDecResult;PKpa1)

If average is needed:

5: QE : Avg = FinalResult/NumberO f DOs
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• In the case of range queries, all results are sent to the QE in an array. The QE then

randomizes the order of the elements in the array. The purpose of the randomization

by the QE is to prevent the CS from correlating the result of any comparison to a

specific DO. The QE then decrypts all the elements in the array using its share of the

private key PKgm1 . The new array is then sent to the CS.

The CS then uses its share of the private key to complete the decryption of the (∆ ,c)

elements in the array. The CS can then use (∆ ,c) to determine the results of the

comparisons between the encrypted values in the DO’s data and the encrypted con-

stants Qc in the QE’s query. The QE then counts the number of results that satisfy the

conditions in the QE’s query. The final result is then sent to the QE.

Phase 4: Range queries

1: CS → QE ;resultsgm[ ]

2: QE : PartiallyDecResult[ ] = GMDecrypt(Rand(resultsgm[ ]);PKgm1)

3: QE → CS ;PartiallyDecResult[ ]

4: CS : DecryptedResult[ ] = GMDecrypt(PartiallyDecResult[ ];PKgm2)

5: CS : i f (FischlinResAnalysis(DecryptedResult[i])) counter++;

6: CS → QE ;counter

• In the case of a hybrid query, the CS sends the GM-threshold and Paillier-threshold

encrypted result arrays to the QE. The QE then randomizes the order of the elements

in both arrays. The same randomization order is applied to both arrays to maintain

the relationships between them. The QE then decrypts all the elements in the GM-

threshold array using its share of the private key. The QE then chooses a new random

value, encrypts it using the public Paillier key, and runs the homomorphic addition

algorithm on all the values in the Paillier encrypted results array. The new arrays are

then sent to the CS. The CS then uses its share of the private key to complete the
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decryption of the (∆ ,c) elements in the GM-threshold encrypted array.

The CS can then use (∆ ,c) to determine the results of the comparisons between the

encrypted values in the DO’s data and the encrypted values sent by the QE. The

CS then runs the addition homomorphic protocol on the values in the Paillier array,

which are in the positions of the value that satisfy the condition in the GM-threshold

encrypted array. The CS then partially decrypts the encrypted sum result using its

share of the Paillier private key. The CS then sends the QE the partially decrypted

sum result along with the number of DOs, which satisfy the query condition if the

QE’s query required the average value. The QE then decrypts the result using its

private key share and deducts the random value from the result, which is the random

value multiplied by the number of DOs. If the query was an average query, the QE

also divides the result by the number of DOs. The flowchart in Fig.5.2 shows the

complete process of executing a hybrid query.

Phase 4: Hybrid queries

1: CS → QE : resultsgm[ ];resultspa[ ]

2: QE : PaillierSum(rand;resultspa[ ])

3: QE : Randomize(resultsgm[ ];resultspa[ ])

4: QE : PartiallyDecGMResult[ ] = GMDecrypt(resultsgm[ ];PKgm1)

5: QE → CS : PartiallyDecGMResult[ ];resultspa

6: CS : DecryptedResult[ ] = GMDecrypt(PartiallyDecGMResult[ ];PKgm2)

7: CS : i f (FischlinResAnalysis(DecryptedResult[i]))

8: { sumResult += resultspa[i];

9: counter++;}
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Phase 4: Hybrid queries (continued)

10: CS : PartiallyDecResult = PaillierDecrypt(sumResult;PKpa2)

11: CS → QE : PartiallyDecResult;counter

12: QE : FinalResult = PaillierDecrypt(PartiallyDecResult;PKpa1)− (rand ∗ counter)

If average is needed:

13: QE : Avg = FinalResult/counter

5.4 Hiding Query Attributes

In this section we will address the threat we described in Section 5.2.3. In the solution

we presented so far, the query attributes are sent to the clients in plaintext. The purpose

of keeping them in plaintext was to give the control to the data owners to decide which

attributes can be queried. However, hiding the query attributes will further preserve the

privacy of the QE without decreasing the privacy of the data owners.

We now present an extension to the protocol to also hides the query attributes from

the DOs. To hide the query attributes, we modify the query distribution phase and the data

owner query execution phase.

5.4.1 Modified Query Distribution Phase

To hide the attributes from the DOs we will first send a query request to the DOs. Each

DO then generates a Paillier key pair (DO_pkpa and DO_PKpa) and uses the public key to

encrypt all their data and send it to the CS in an array along with the generated public key.

The CS would then be able to choose the attributes related to the QE’s query from the array

sent by the DO. The CS then creates a response array with only the encrypted values of the

attributes in the query.
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Figure 5.2: Hybrid Query Execution Flowchart
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The CS then chooses a random value for each attribute. For example, if the QE

query was concerned with the DOs’ “age” and “salary”, we would have a one random value

for “age” and another for “salary”. The same random value would be used for the “age”

attribute for all DOs.

The CS then uses the generated public Paillier key to encrypt the random values and

then add them to the encrypted values in the response array it created. The response array

is then sent to the DO.

Phase 2: Hybrid queries
1: QE→CS : Q

2: CS :

3: f or each Qa in Q do {

4: Rand[i] = GenerateRandomValue();}

5: CS→ DOs : QueryRequest()

6: Each DO :

7: GeneratePaillierSessionKey() % Generates Public S_pkpa and Private S_PKpa Keys

8: f or each Qa in DOdata do {

9: DATApa[i] = EncS_pkpa(DOdata.Qai)) }

10: DOs→CS : DATApa[ ];S_pkpa

11: CS :

12: Extract the elements from DOdata[ ] that correspond to the Qas in Q

13: f or each DOdata.Qa in Qa do {

14: attribute[i] = PaillierSum(DATApa[i],EncS_pkpa(Rand[i]))

15: if Qa is related to Sum/Avg part of the query {

16: crytosystem[i] = Paillier}
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Phase 2: Hybrid queries (continued)
17: else if Qa is related to the comparison part of the query {

18: crytosystem[i] = GM}

19: }

20: CS→ DO : attribute[ ] ; cryptosystem[ ]; pkpa; pkgm ; GMEncpkgm(Qc[ ])

5.4.2 Modified Data Owner Query Execution Phase

In this phase, the data owners are to execute the query without knowing which of their

attributes are being queried. The participation of the DOs is needed in this phase because

it is not possible to run the encrypted homomorphic operation without having the data

encrypted with the session public key. For that reason, the DO needs to decrypt the values

in the attribute[ ] array to be able to execute the homomorphic operations on the QE’s query.

For the sum/avg part of the query, the DO simply re-encrypts the value of the at-

tribute using the public Paillier session key pkpa and add the result to resultspa[ ]. For the

comparison part of the query, the DO needs to compare the re-encrypted value to the GM

Phase 3: Hybrid queries Sum/Avg queries

1: f or each attribute[ ]do {

2: i f (cryptosystem[i] == Paillier) {

3: resultspa[counterPA] = Encpkpa(PaillierDecrypt(attribute[i],S_PKpa)

4: counterPA++ }

5: else i f cryptosystem[i] == GM {

6: resultsgm[counterGM] = RunFischlin(GMEncpkgm(QccounterGM),

7: GMEncpkgm(PaillierDecrypt(attribute[i],S_PKpa))

8: counterGM++ }}

9: DOs→CS : resultspa[ ] ; resultsgm[ ]
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5.5 Differentially Private Query Results

In this section, we will be addressing the threat model described in Section 5.2.3. The mech-

anism we presented in Section 5.3 securely executes aggregate and comparison queries

while preserving the privacy of the QE and the DOs. The mechanism produces accurate

results for each query. However, if the QE were to create a query with the goal of exposing

PII about a specific DO, then the identity and data of a specific DO could be revealed.

To address this issue, we present an extension to the mechanism proposed in Section

5.3 to add differential privacy. Rather than returning the accurate result, the result becomes

an approximation of the actual result. Formally, differential privacy is defined as follows:

A randomized function K gives ε-differential privacy if for all data sets D and D′ differing

on at most one row, and all S⊆ Range(K), Pr[K(D) ∈ S]≤ exp(ε)×Pr[K(D′) ∈ S]

Differential privacy ensures that the risk to a DO’s privacy should not substantially decrease

when responding to statistical queries. This means the knowledge a curious QE can gain

about a specific DO, is not affected by the participation of the DO in responding to the query.

This provides DOs with the assurance that the risk to the DO’s privacy for participating and

responding to a query is low. One method for adding noise involves the use of the Laplace

mechanism to add random noise that conforms to the Laplace statistical distribution [183].

The Laplace distribution has two parameters, the location and scale parameters. The

value of the location parameter will be set to zero to keep the noisy result close to the

accurate result. The scale parameter is directly proportional to its standard deviation, or

noisiness. The value we choose as the scale depends on the value of the privacy parameter

ε , and the QE’s query. Moreover, it corresponds to the maximum difference a DO can have

on the result of the query f . This is known as the sensitivity of the query f , and can be

defined mathematically as follows:
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4 f =max
D,D′‖ f (D)− f (D′) ‖1

=max
D,D′

d

∑
i=1
| f (D)i− f (D′)i|

for all D,D′ databases differing in at most one row. Dwork et al. [184] presents a proof

showing that by adding a random Laplace(∆ f/ε) variable to a query, ε-differential privacy

is guaranteed.

5.5.1 Query Sensitivity

In the case of count queries, the maximum effect a DO can have on a query result is 1,

for that reason the query sensitivity would always be equal to 1. For sum queries, the

query sensitivity would be equal to the maximum value an attribute could have. In our

mechanism, the CS would have a list of all attributes and the maximum value an attribute

can have. For that reason, the query sensitivity would also be equal to 1 for binary value

attributes. For larger value attributes, the sensitivity would be equal to the maximum value

of that attribute. For example, if we wanted to execute a sum query on the “Diabetes”

attribute, which specifies whether a DO has diabetes, then the sensitivity would be equal to

1. If we wanted to execute a sum query on the “Salary” attribute, it would be equal to the

maximum defined salary value. Finally, for average queries the value of the sensitivity is

equal to the maximum value defined value for the queried attribute divided by the number

of DOs responding to the query.
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5.5.2 Modified Protocol

To modify the protocol we introduced in Section 5.3, we first need to modify the noisy

query response before returning it to the QE. There are two modifications that need to be

made to the noise value. First of all, for the noisy query response to make sense, the value

must be an integer, and for that reason we will be rounding the laplace noise before adding

it to the actual result.

The second modification is to ensure the noisy query response is not a negative value.

The laplace noise can be positive or negative, but for the query response to make sense we

need the noisy response to be zero or more. In our mechanism, the query is executed by the

CS, which means that for comparison queries, the CS would know the number of entities

that satisfy the query conditions. We do not consider this a security concern because the

CS will not be able to know what the query constants are or which DOs satisfy the query

conditions. Since the CS knows the noise value and the number of DO that satisfy the query

conditions, it would also know whether the noisy response is positive or negative. In the

case of a negative noisy query response, the CS would always respond with a zero. How-

ever, in the case of sum or average queries, we propose aggregating the query sensitivity

to the noisy response. This would enable the QE to decrypt the noisy query response. If

the result is negative, the QE would consider the result to be zero. The modifications to the

protocol would only change the cloud server execution phase we present in Section 5.3.7:
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Phase 4: Hybrid queries

1: CS → QE : resultsgm[ ];resultspa[ ]

2: QE : PaillierSum(rand;resultspa[ ])

3: QE : Randomize(resultsgm[ ];resultspa[ ])

4: QE : PartiallyDecGMResult[ ] =

5: GMDecrypt(resultsgm[ ];PKgm1)

6: QE → CS : PartiallyDecGMResult[ ];resultspa

7: CS : DecryptedResult[ ] =

8: GMDecrypt(PartiallyDecGMResult[ ];PKgm2)

9: CS : i f (FischlinResAnalysis(DecryptedResult[i]))

10: {sumResult += resultspa[i];

11: counter++;}

12: sumResult = PaillierSum(sumResult,LaplaceNoise(0,querySensitivity(Q)))

13: sumResult = PaillierSum(sumResult,querySensitivity(Q))

14: CS : PartiallyDecResult =

15: PaillierDecrypt(sumResult;PKpa2)

16: CS → QE : PartiallyDecResult;counter;querySensitiviy(Q)

17: QE : FinalResult = PaillierDecrypt(PartiallyDecResult;PKpa1)− (rand∗counter)−

querySensitiviy(Q)

If average is needed:

18: QE : Avg = FinalResult/counter

5.6 Security Analysis

In this section, we address the security threats mentioned in Section 6.2.3:
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Approach

Our solution aims at protecting the confidentiality of the querying entity data by preventing

the CS from accessing the private keys. The querying entity encrypts the query constants

with the session public key. The CS and the data owners can encrypt data and run ho-

momorphic computations on the data using only public keys. The querying entity is also

unable to access the final result without having the private key. However, the CS needs

the private keys to be able to preform comparisons on encrypted data. To enable the CS to

complete these computations, we rely on threshold encryption with a randomization algo-

rithm. Together, they allow the CS to complete the secure computations with the assistance

of the QE while protecting the confidentiality of the data owners’ data and the QE’s query

constants.

Figure 5.3: The Processing Load Distribution for Sum Queries
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Figure 5.4: The Processing Load Distribution for Hybrid Queries

Guarantees

Confidentiality is provided by our solution for query constants, DOs data, and the secure

computation results. The solution does not hide the attributes in the query or the number

of data owners responding to a query. However, the solution does protect the identities of

the data owners that satisfy the query range and prevents the CS from correlating a any

results to specific DOs. The security of our solution is not perfect: The number of DOs that

satisfy the range conditions in the query is revealed to the CS. Also, the number of DOs that

responded to a query is revealed to the QE, but the number of those that satisfy the range

conditions is not revealed. Finally, the solution does not protect against queries that target

specific data owners. For example, a QE can send a query to find if a specific person has

specific disease. By sending a sum query of all DOs that have that disease and combining

the query with other identifiers such as location, age, gender, etc. The result of the query

can reveal the data of a specific DO. To minimize this problem, the solution prevents the CS

from sending the final result of the query to the QE in case the result of the query condition
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only involves a single data owner. This technique is not prefect because a malicious QE can

craft complex queries to reveal data of specific DOs, and this attack is not addressed by our

solution. More intuitively, our solution provides the following security properties:

• The query constants and the random values cannot be recovered without the partic-

ipation of the QE: The QE sends the sanitized query constants and the random values

encrypted using a semantically secure cryptosystem: Paillier-threshold in the case of

sum queries, or GM-threshold in the case of range queries. This means that the query

constants and the random values cannot be recovered without the participation of the

QE [24, 25].

• The cloud server cannot correlate any of the results to specific data owners: In the

cloud server query execution phase, the CS sends the results array resultsgm to the

QE for partial decryption in the case of range queries, and sends both arrays resultsgm

and resultspa in the case of a hybrid query. Randomizing the order of resultsgm along

with the partial decryption prevents the CS from correlating a result to a specific DO.

However, in the case of hybrid queries, the QE has to randomize both arrays in the

same order before sending them back to the CS. This renders the partial decryption

ineffective in preventing the CS from correlating a result to a specific DO. It is for

this reason that we must add a random value to all the elements in the resultspa array

using the Paillier sum algorithm. This ensures that the CS executes the query using

the randomized array resultspa and the partially decrypted resultsgm without being

able to correlate any of the results to a specific DO.

• Data owner data cannot be decrypted or calculated by the cloud server or the query-

ing entity: In regard to range queries, the DOs do not send their actual data encrypted,

but instead send the results of the Fischlin’s private comparison protocol (∆ ,c), which

are then used to compare the encrypted values.
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In the case of sum/avg or hybrid queries, the DOs send their data encrypted using the

Paillier-threshold cryptosystem after adding a random value to it using the Paillier

sum algorithm. Adding the random value prevents the CS from calculating the DO

data in case the CS sends the QE the resultspa array in place of the resultsgm array in

the hybrid case of the cloud server query execution phase, thus receiving a partially

decrypted resultspa array, which it can then decrypt, using its Paillier-threshold pri-

vate key share, to access the actual DO data. Under our semi-honest adversary model

assumption, we do not need to add this extra step; however, due to the simplicity of

this attack and due to the fact that it would expose the DOs’ actual data, we felt that

adding this step is a necessity.

• Data owners cannot know what attributes are being queried by the querying entity:

In the extension we present in section 5.4, the DO send their data encrypted using a

public key, which they generated for that session. No entity has access to the corre-

sponding private key, which means the confidentiality of the DO’s data is protected.

The DO also sends the public keys to allow the CS to perform the homomorphic ad-

dition of random values to the DO’s values corresponding to the attributes related to

the QE’s query. The CS then sends the noisy values back to the DO in random order.

This ensures that the DO will receive noisy values in random order, thus preventing

the DO from knowing which attributes the QE was interested in.

• The QE cannot learn about Personally Identifiable Information (PII) about a spe-

cific data owner: In the extension we presented in Section 5.5, the CS adds a noisy

value to the final response to protect the privacy of DOs in the system. The noise is

chosen according to the type of query to ensure that the response is as accurate as

possible while satisfying the definition of differential privacy. The noise is chosen
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from a laplace distribution where the maximum amount of noise is equal to the max-

imum difference a single DO can have on the response of query. This ensures that

even if the QE manages to create a query that should result in PII, it cannot be sure

whether the final result of the query is PII or noise.

5.7 Performance Evaluation

In this section, we present our experimental result. We rely on the projects used in Section

4.7, which are open-source [27]. The code is written in Java and executed on Amazon’s

elastic cloud (EC2) [185]. Amazon allows users to run their applications on virtual ma-

chines, called instances. Amazon offers a variety of instance types with different config-

urations of CPU, RAM memory, and ROM storage. Amazon EC2 is built on commodity

hardware, and over time there may be several different types of physical hardware under-

lying EC2 instances. Using this method allows Amazon to provide consistent amounts

of processing power regardless of the actual underlying physical hardware. A single EC2

compute unit produces the equivalent CPU capacity of 1.0-1.2 GHz 2007 Opteron or 2007

Xeon processor. We run our implementation on an Windows instance with the following

specs:

• 128 vCPUs

• 1,952 GiB of memory

• 2 x 19,20 GB of SSD instance storage

• Instance Type: x1.32xlarge

The execution time in our work depends greatly on the type of query and the number of

attributes in the query. To demonstrate the required processing time, we take sum and
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hybrid queries as an examples. Sum queries simply aggregate a value of a common attribute

among data owners. Hybrid queries are aggregate queries that also include comparisons.

For that reason, they are the most expensive ones since they utilizes all the building blocks.

As previously mentioned, our goal is to allow a QE to query privately encrypted distributed

data with the assistance of a semi-trusted cloud. We run our code assuming 100, 1000,

10k, and 100k data owners to demonstrate the practicality of our approach. We do not

take network delays into account. We also assume data owners run their computations in

parallel. To test the performance we execute the following two queries:

AV G (doctorVisitsPerYear)FROM data_owners

AV G (doctorVisitsPerYear)FROM data_ownersWHERE age > 30 AND diabetes = 1

Our implementation shows how the overall load on the CS increases with the number of

data owners as shown in Figures 5.3 and 5.4. Our results show that executing the sum

query on 10k DOs requires 0.023 seconds. However, hybrid queries require 2.34 minutes

due to the high computational overhead of Fischlin’s protocol. These computations can

be done in parallel, which allows us to reduce the computation time with the use of cluster

computing solutions such as Apache Spark [186]. In fact, with the assistance of 100 clusters

of the same instance used, the hybrid query can be executed for 1 million data owners in

less that 3 minutes. These results show that our approach can be reasonably used for large

set of data owners to provide the results in timely manner.

5.8 Conclusion

In this Chapter, we described the problem and challenges of securely querying privately

encrypted data, where data owners store their data in the cloud encrypted with their own

private keys, while preserving the privacy of all the parties involved. We proposed a
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protocol that allows third parties to execute various types of queries on privately encrypted

data stored in an untrusted cloud, while preserving the privacy of the data owners as well as

the querying entity. The protocol relies on semantically secure probabilistic cryptosystems.

It also allows for range, sum, average, and hybrid queries. The protocol relies on two

cryptosystems along with Fischlin’s protocol for private comparisons. We also present the

results of our implementation, which show the feasibility and scalability of our approach.

Finally, we analyzed the security of our protocol.
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Chapter 6

Secure Multi-Party Private Function

Evaluation

Secure multi-party computation (SMC) allows multiple parties to jointly and securely com-

pute a function while preserving the privacy of all the parties involved. Homomorphic

cryptosystems allow users to perform addition or multiplication operations on encrypted

values without having to decrypt the function input. In this chapter, we propose a cryp-

tographic and a non-cryptographic privacy-preserving protocols that allow a participant to

collaboratively compute a polynomial function with at least two other participants using

semantically secure cryptosystems. We experimentally evaluate the performance of the

proposed protocol and report on the results of our implementation.

6.1 Introduction

Secure function evaluation can be useful in solving problems where multiple parties would

like to assist each other, but are bound by privacy policies. Currently, most homomorphic

cryptosystems either allow the parties to calculate addition or multiplication operations, but
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not both. In 2009 Gentry et al. [82] proposed a solution to support fully homomorphic

operations. However, the processing resources required are too high for the solution to be

feasible for most applications. In an optimized implementation on a high-end workstation

for a large setting, key generation takes 2.2 hours and encryption takes 3 minutes [23]. In

this work, we propose a privacy-preserving protocol that would allow multiple parties to

jointly compute polynomial functions with addition and multiplication operations.

In this work, we address the trust issue by proposing a cryptographic protocol that

relies on a semantically-secure cryptosystem to allow an entity to request the assistance

of at least two other entities to securely calculate a private polynomial function while pre-

serving the privacy of the function and all the values provided by the other entities. Since

homomorphic encryption is known to need heavy computation, we also presented a scalable

non-encryption-based solution.

Using the solutions we propose in this work, analysts or organizations would be able

to calculate, for instance, the weighted financial effect a phishing attack had on corpora-

tions while preserving the privacy of the affected organizations and the corporations. The

solution may also be useful in medical studies where a research center would like to se-

curely compute a function jointly with the assistance of medical centers nationwide while

preserving the privacy of the patients’ data. Moreover, the protocol may also be useful in

allowing distributed decision makers receiving plan execution monitoring feeds to generate

parameters of interest for situational awareness.

6.2 Execution Environment

In this section, we identify the involved entities and then, we present more details about the

assumptions underlying the system design. The entities involved are decision makers who

own private data and want to keep it confidential. A common way to protect private data is
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through encryption.

6.2.1 Assumptions

We assume that there is no fully trusted entity in the environment and that all entities are

semi-honest. Semi-honest players follow the protocol steps, but they try to extract infor-

mation about other entities’ input or output. This is a common security assumption used in

secure multi-party computation literature [167] and it is realistic in our problem scenario

since different decision makers are collaborating for mutual benefits. Hence, it is reason-

able to assume that parties will not deviate from the defined protocol. However, they may

be curious to learn additional information from the messages they receive during proto-

col execution. We also assume that there is no collusion between the different parties and

that there are mechanisms that ensure integrity and availability of data. Our scheme focuses

only on confidentiality and privacy issues and does not address issue such as data tampering

and denial of service.

6.2.2 Problem Statement

Given a set of N parties Di ∈ {D1,D2, . . .DN}, i= 1..N, each with access to private variables

xi, securely compute polynomial form non-trivial secret functions fD j(xi) known only to

D j, j = 1..N such that the value of fD j(xi) is known only to D j and xi remain known only

to Di.

In particular, fD j(xi) may be the same for all decision makers in the case where only

the arguments of the function are private for the decision makers.
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6.2.3 Threat Model

The proposed solution guards against a curious function owner or a participant. Our goal

is to guarantee data confidentiality, ensuring the secrecy of the private values of all the

participants and the function owner’s private function. The solution does not guarantee the

integrity of the data. Since we assume the semi-honest model, the attacker is assumed to

be passive. This implies that the attacker will attempt to analyze all the messages received

or sent by the compromised entity. The attacker’s goal in this threat is to learn about the

private values of the participants, the function owner’s private function, the results of any

intermediate steps, or the final result. This threat is becoming increasingly important with

the increasing popularity of migrating data centers to the cloud. We address this threat in

Sections 6.3 and 6.4.

6.3 Approach

In order to allow a participating decision maker to securely calculate a wide range of pos-

sible functions with multiple multiplication and sum operations based on private values

accessible only to other decision makers, we propose the following protocol:

Given a multivariate function in the form of a polynomial, with an expression known

to only one of the decision makers, we need to collaboratively compute its value without

exchanging the values of the underlying variables.

For instance, let us consider the following example: Given a situation where three

decision makers (e.g. incident response teams) A,B,C with their respectively secret values

x,y,z and function f (x,y,z) = x2y+ xz, known only to A, jointly calculate f in a secure

manner such that the values of x,y,z remain known only to A,B,C respectively and the

value of f is known only to A.
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In order to securely calculate f , we need the capability to perform homomorphic mul-

tiplication. In this pursuit, we have to leverage appropriate crypto-system primitives. Thus,

each party needs to generate its own ElGamal cryptosystem key pair, which would allow

the participants to carry out homomorphic multiplication. We can assume that each of the

A,B,C participants has a pair of keys (private and public) for homomorphic multiplication.

Moreover, we assume that each participant knows the public keys of every other. Then, we

can proceed in the following manner:

We use the notation → to denote sending a message along with Em,B(. . .) and

Em,C(. . .) as representing the multiplicative homomorphic encryption with the correspond-

ing public keys of B and C. Conversely, we use Dm,B(. . .) and Dm,C(. . .) as representing

homomorphic decryption with the corresponding private keys of B and C respectively. To

better explain the proposed approach, we present the key idea of the protocol in simplified

form. We discuss thereafter the weaknesses in the simple protocol, and subsequently we

propose two other protocol variants that are improving the simplified variant.

We start with a simplified protocol variant to illustrate the key idea. Given that A

needs to calculate its function f (where f can be any non-trivial polynomial function), we

assign the role of MultiplicationAssistant to B. The latter is responsible for running the

homomorphic multiplicative algorithm to assist A to securely calculate the polynom. To

this end, B will be the only party with access to the homomorphic multiplication private

encryption key (em,B). However, for the homomorphic multiplication algorithm, the public

keys are known to all parties.

Considering Dm,B(. . .) as denoting the multiplicative homomorphic decryption with

the corresponding private key, we can proceed as follows:

1. B→ A : Em,B(y)
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2. C→ A : Em,B(z)

3. A : Em,B(x2y) = Em,B(x)∗Em,B(x)∗Em,B(y)

4. A : Em,B(xz) = Em,B(x)∗Em,B(z)

5. A→ B : Em,B(xz),Em,B(x2y)

6. B : Dm,B(Em,B(xz)) = valueO f (xz)

7. B : Dm,B(Em,B(x2y)) = valueO f (x2y)

8. B→ A : valueO f ((xz)+(x2y))

Although the foregoing steps allow A to compute its private function using private

variables owned by other entities, there is an issue concerning the information that B may

be able to infer about A’s function and the values of the variables used. The purpose of

requiring an assistant to help the function owner with the calculations, is to prevent A from

being able to decrypt the values of the used private variables. In this context, the assistant

B will receive multiple values from A, which it has to decrypt, then sum, and return back

to A. The fact that the function is private to A and unknown to B prevents the latter from

knowing what the values correspond to. However, B would be able to see the final result of

the function. To solve this issue, we require A to multiply each term with a random value r

to prevent B from seeing the final result or the values of the function terms:

1. B→ A : Em,B(y)

2. C→ A : Em,B(z)

3. A : chooses a large random value r

4. A : Em,B(x2yr) = Em,B(x)∗Em,B(x)∗Em,B(y)∗Em,B(r)
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5. A : Em,B(xzr) = Em,B(x)∗Em,B(z)∗Em,B(r)

6. A→ B : Em,B(xzr),Em,B(x2yr)

7. B : Dm,B(Em,B(xzr)) = valueO f (xzr)

8. B : Dm,B(Em,B(x2yr)) = valueO f (x2yr)

9. B→ A : valueO f ((xzr)+(x2yr))

10. A : valueO f ((xz)+(x2y)) = valueO f ((xzr)+(x2yr))/r

The aforementioned steps solve the problem of sending the values of the function

terms and potentially the final result of A’s private function to the assistant B. Since we

assumed that all entities in the system are honest but curious, then B should not be able

to calculate the values of the terms nor the final result. However, because A multiplies all

the terms by the same random value r, it is still possible for B to infer the terms and even

the final result. This is a result of A multiplying all the terms by the same random value r,

which means that all the terms are also divisible by r. The assistant B can infer the terms

by listing all the common divisors for the terms sent by the function owner A, and one of

those values would be the correct random value. This gives B the ability to generate a list of

possible results, which definitely contains one value as the correct result. Moreover, as the

number of terms increases, the possibility of the random value r being the greatest common

divisor (gcd) of terms also increases. To solve this issue, we introduce another modification

to the protocol in order to prevent B from inferring the terms or the final result. If A could

multiply each term by a different random value before sending the terms to B, then the terms

would not necessarily have the random value as a common divisor. However, the function

owner would not be able to remove the random values from the final result if each term was

multiplied by a different random value. To address this, we add another assistant to help A
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in calculating the private function. In the final variant of our protocol, the function owner

chooses a large random r and splits it into t dissimilar shares (the sum of the shares equals

r) and inserts the values into an array rand1 of size t, where t is the number of terms. It then

creates a second array rand2 of the same size as rand1, where the value at each position

in rand2 represents the difference between the random value r and the value in the same

position in the first array rand1. This scheme allows A to multiply each term by a different

random, while being able to calculate the final result by adding the results sent by the two

assistants and then dividing by r to get the actual final result.

1. B→ A : Em,B(y),Em,C(y)

2. C→ A : Em,B(z),Em,C(z)

3. A : chooses a large random value r

4. A : creates two arrays rand1[ ] and rand2[ ] of size t, where t is the number of terms in

the function.

5. A : splits r into t shares, and adds the values to rand1[ ]

6. A : for(i = 0 ; i < t ; i = i+1) rand2[i] = r - rand1[i]

7. A : Em,B(x2y∗ rand1[0]) = Em,B(x)∗Em,B(x)∗Em,B(y)∗Em,B(rand1[0])

8. A : Em,B(xz∗ rand1[1]) = Em,B(x)∗Em,B(z)∗Em,B(rand1[1])

9. A→ B : Em,B(xz∗ rand1[0]),Em,B(x2y∗ rand1[1])

10. B : Dm,B(Em,B(xz∗ rand1[0])) = valueO f (xz∗ rand1[0])

11. B : Dm,B(Em,B(x2y∗ rand1[1])) = valueO f (x2y∗ rand1[1])

12. B→ A : valueO f ((xz∗ rand1[0])+(x2y∗ rand1[1]))
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13. A : Em,C(x2y∗ rand2[0]) = Em,C(x)∗Em,C(x)∗Em,C(z)∗Em,B(rand2[0])

14. A : Em,C(xz∗ rand2[1]) = Em,C(x)∗Em,C(z)∗Em,C(rand2[1])

15. A→C : Em,C(xz∗ rand2[0]),Em,C(x2y∗ rand2[1])

16. C : Dm,C(Em,C(xz∗ rand2[0])) = valueO f (xz∗ rand2[0])

17. C : Dm,C(Em,C(x2y∗ rand2[1])) = valueO f (x2y∗ rand2[1])

18. C→ A : valueO f ((xz∗ rand2[0])+(x2y∗ rand2[1]))

19. A : valueO f ((xz ∗ r) + (x2y ∗ r)) = valueO f ((xz ∗ rand1[0]) + (x2y ∗ rand1[1])) +

valueO f ((xz∗ rand2[0])+(x2y∗ rand2[1]))

20. A : valueO f ((xz)+(x2y)) = valueO f ((xz∗ r)+(x2y∗ r))/r

6.4 Non-Encryption Solution

As previously discussed, we utilize homomorphic encryption in order to achieve secure

multi-party computation. However, such encryption schemes are known to be computa-

tionally demanding. In this section, we discuss a lightweight non-encryption solution to

achieve operations, such as, summation, average, and multiplication.

6.4.1 Protocol for Secure Summation

For privacy-preserving multi-party summation, let us assume we have N participants

(D1,D2, . . . ,DN), each with a secret value vi where i = 1, . . . ,N, collaborate to securely

calculate the summation of vi. The protocol is composed of two stages: off-line key setup

and on-line secure summation.
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Stage 1: Key Setup

1. Each Di (i ∈ [1,N]) randomly selects an integer value ri, j (( j ∈ [1,N])∧ (i 6= j)) and

sends it to j, and sets ri,i = 0 (as shown in Figure 6.1).

2. The key ki for Di is calculated as follows:

ki =
N

∑
k=1

(rk,i)−
N

∑
j=1

(ri, j)

D1 D2 … Di … DN-1 DN

D1 r1,2 … r1,i … r1,N-1 r1,N

D2 r2,1 … r2,i … r2,N-1 r2,N

… … … … … … …

Di ri,1 ri,2 … … ri,N-1 ri,N

… … … … … … …

DN-1 rN-1,1 rN-1,2 … rN-1,i … rN-1,N

DN rN,1 rN,2 … rN,i … rN,N-1

Figure 6.1: Key Setup

Stage 2: Secure Summation The naive way is, for each participant, to broadcast the

value (vi + ki) to the other participants, and then each participant can independently calcu-

late the summation.

1. Each Di (i ∈ [1,N]) sends v′i = vi + ki to other participants.

2. Each participant then calculates the summation:

sum =
N

∑
i=1

(v′i)

This aforementioned procedure requires high communication overhead. To achieve

better efficiency, an alternative way is as follows: Each participant sends the intermediate
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value to one of its neighbors. The last participant sums up the final result and broadcasts it

to all the others.

1. D1 sends sum1 = v1 + k1 to D2.

2. For i = 2 to N−1: Di sends sumi = sumi−1 + vi + ki to Di+1.

3. DN sends the result (sumN) to other participants.

Note that we can simply utilize certain additional data structure to further reduce

the whole communication and computation overhead. For example, we can organize the

participants in a binary-tree architecture.

6.4.2 Analysis

Correctness In this section, we analyze the protocol to ensure that the computations are

properly calculated. It is straightforward to note that:

N

∑
i=1

(ki) = 0

since:

N

∑
i=1

(ki) =
N

∑
i=1

(
N

∑
k=1

(rk,i)−
N

∑
j=1

(ri, j))

=
N

∑
i=1

N

∑
k=1

(rk,i)−
N

∑
i=1

N

∑
j=1

(ri, j) = 0

Informally, each ri j appears exactly twice in two keys which cancel out each other.

Therefore,
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N

∑
i=1

(v′i) =
N

∑
i=1

(vi + ki)

N

∑
i=1

(vi + ki) =
N

∑
i=1

(vi)+
N

∑
i=1

(ki) =
N

∑
i=1

(vi)

Complexity In this section, we analyze the complexity of the protocol. For the key setup

phase, the complexity of the communication for each participant is O(N) (N−1 for receiv-

ing, N−1 for sending). The complexity of the computations in the key setup phase is O(N)

for each participant (2×N summation operations).

For the secure summation in the naive method, the complexity of the communications

for each participant is O(N) (N−1 for receiving value from others, N−1 for sending). The

complexity of the computations in the naive method are O(N) (N + 1 summation opera-

tions). The complexity in the secure summation in the alternative method is O(1) (1 for

receiving value from DN , 1 for sending to the next) for all participants other than DN . How-

ever, the complexity of the communications for DN is O(N) (1 for receiving value DN ,

N−1 for sending to others). Finally, the complexity of the computations in the alternative

method is O(1) (2 summation operations) for all participants other than D1. The computa-

tions complexity for D1 is O(1) (1 summation operation).

Note that from a practical implementation stand point, O(N) for summation operation

is notably different than O(N) for homomorphic encryption or decryption since in the latter

case each operation is significantly more costly.

Security Each participant only knows those random values sent to him and those he sends.

This means that participant Di only knows those values in the cells filled in gray color

as shown in Figure 6.1. Since the random values are drawn randomly without bias, no

participant can infer any of the others’ keys unless all the N participants collude.
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6.4.3 Enhanced Key Setup

Note that, in the aforementioned key setup process, the key for each participant is deter-

mined once. Given that ki, vi is one-to-one mapped to v′i, this scheme is not semantically

secure. One possible solution to achieve semantic security is as follows. Instead of de-

termining the key once off-line, each time for a summation operation, each participant re-

selects the random values for each participant by repeating the key setup stage. As analyzed

above, the communication and computation overhead will be O(N) for each participant,

which may be an challenging for near real-time application.

Actually, in many real applications, it is acceptable that less than K participants can-

not collude to disclose a participant’s secure value. To reduce the overhead, we can slightly

reduce the resistance degree of collusion attack by reducing all the N participants to a given

parameter K (which means that at least K participants should collude to disclose others’

value). In such case, each participant only sends K random values ri j to the other K partici-

pants. For example, Di only sends to D(i+1) mod N , . . . ,D(i+K) mod N . Now the complexities

are O(K).

6.4.4 Protocol for Secure Multiplication

The protocol for secure summation can be slightly revised in order to achieve secure mul-

tiplication. In the remainder of this section, we briefly introduce the required changes. The

analysis and key setup enhancement are similar with secure summation, and are omitted.

Stage 1: Key Setup In this stage, each Di (i∈ [1,N]) randomly selects one positive integer

value ri, j (( j ∈ [1,N])∧ (i 6= j)) and sends it to j, and then sets ri,i = 1. The key ki for Di is

calculated as follows:

ki =
∏

N
k=1(rk, i)

∏
N
j=1(ri, j)
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Stage 2: Secure Multiplication In this stage, to securely calculate the product, each Di

(i ∈ [1,N]) sends v′i = vi× ki to other participants. Each participant then calculates the

multiplication in the follow way:

prod =
N

∏
i=1

(v′i)

It must be noted here that, fractions may lead to an accuracy errors, which can be

controlled by decimal digits.

Example 6. Secure Summation

D1 D2 D3
D1 0 5 -3
D2 7 0 10
D3 8 -9 0

Table 6.1: The Values of ri j

As shown in Table 6.1, D1 sends r1,2 = 5 to D2. Based on the ri j values as shown in

Table 6.1, the key for each participant is shown as follows:

D1 : k1 = r2,1 + r3,1− r1,2− r1,3 = 7+8−5− (−3) = 13

D2 : k2 = r1,2 + r3,2− r2,1− r2,3 = 5+(−9)−7−10 =−21

D3 : k3 = r1,3 + r2,3− r3,1− r3,2 = (−3)+10−8− (−9) = 8

Suppose that the value for participant D1, D2 and D3 is v1 = 10, v2 = 30, and v3 = 15,

respectively. Then, the summation is sum = v1 + v2 + v3 = 55.

D1, D2 and D3 broadcasts v′1 = v1 + k1 = 10+13 = 23, v′2 = v2 + k2 = 30−21 = 9,

and v′3 = v3 + k3 = 15+8 = 23, respectively.

Each participant will calculate the summation as:

sum = v′1 + v′2 + v′3 = 23+9+23 = 55.
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Example 7. Case Study: Secure Multiplication

D1 D2 D3
D1 1 5 3
D2 7 1 10
D3 8 9 1

Table 6.2: The Values of ri j

As shown in Table 6.2, D1 sends r1,2 = 5 to D2. Based on the ri j values as shown in

Table 6.2, the key for each participant is shown as follows.

D1 : k1 =
r2,1×r3,1
r1,2×r1,3

= 7×8
5×3 = 3.733333

D2 : k2 =
r1,2×r3,2
r2,1×r2,3

= 5×9
7×10 = 0.642857

D3 : k3 =
r1,3×r2,3
r3,1×r3,2

= 3×10
8×9 = 0.416667

Suppose that the value for participants D1, D2 and D3 is v1 = 10, v2 = 30, and

v3 = 15, respectively. Then, the product is prod = v1× v2× v3 = 10×30×15 = 4500.

D1, D2 and D3 broadcasts v′1 = v1× k1 = 37.33333, v′2 = v2× k2 = 19.28571, and

v′3 = v3× k3 = 6.250005, respectively.

Each participant will calculate the product as prod = v′1× v′2× v′3 = 37.33333×

19.28571×6.250005 = 4500.0022. Note that the accuracy can be increased by increasing

decimal digits of the keys.

6.5 Implementation

In this section, we will show some preliminary results as a proof of concept for our proposed

encryption-based solution. The implementation code is written in Java and run on an intel

Core i7 with 8GB RAM. The homomorphic implementation is based on an open-source

Java implementation of the ElGamal cryptosystem by the Computing and Software Systems
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Department at the University of Washington 1.

To test the practicality and scalability of our proposed solution, we test the solution

assuming that 3 entities participate in the protocol. We then run multiple iterations of the

protocol increasing the number of participants by 100 at each stage. We also tested each

stage using four different key sizes for the ElGamal Homomorphic cyrptosystem. Within

our solution, we are concerned with three main operations, encryption, homomorphic mul-

tiplication, and decryption.

6.5.1 Encryption

We test the time needed to encrypt thousands of random integers under four key sizes (128

bits, 256 bits, 512 bits, and 1024 bits). Since encryption in our protocol is executed by

the participants in parallel, we are only concerned with the time it takes to encrypt a single

value using each of the above keys. As such, the encryption time is really insignificant.

Key size 128 bits 256 bits 512 bits 1024 bits
Avg. encryption time 0.04 ms 0.088 ms 0.109 ms 0.859 ms

6.5.2 Homomorphic Multiplication

To get accurate results, we run multiple iterations of our programs, testing the time needed

to homomorphiclly multiply two ElGamal encrypted values with each other, and then we in-

crease the number of values by 100 for each iteration to test the scalability of homomorphic

algorithm. In our approach, the homomorphic multiplications will be executed by the func-

tion owner. The results of our testing in Figure 6.2, show the scalability of our approach.

They also show that that the average time per multiplication operation is significantly lower

than the time needed to encrypt or decrypt a value using the ElGamal cryptosystem with

1http://faculty.washington.edu/moishe/javademos/Security/ElGamal.java
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an average time of 0.00972 ms per multiplication operation on two values encrypted with a

1024 bit encryption key.
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Figure 6.2: Homomorphic Multiplication

6.5.3 Decryption

We test the time needed to decrypt thousands of random integers under four key sizes (128

bits, 256 bits, 512 bits, and 1024 bits). The decryption operations will be executed by the

assistants in the protocol. The number of values each assistant needs to decrypt is equal

to the number of terms in the function owner’s polynomial function. The following table

shows the average time needed to decrypt each term encrypted with the following key sizes

(128 bits, 256 bits, 512 bits, and 1024 bits):
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Key size 128 bits 256 bits 512 bits 1024 bits
Avg. decryption time 0.0168 ms 0.041 ms 0.108 ms 0.365

6.6 Conclusion

In this chapter, we presented a protocol that leverages homomorphic encryption primitives

in order to securely compute a polynomial function with private variables provided by at

least two other parties while preserving the privacy of the function itself and the variables.

Since homomorphic encryption is known to need heavy computation, we also presented

a more scalable non-encryption based solution. In this respect, illustrative examples have

been presented. The proposed protocol is suitable for collaborative environments where the

participants are deemed semi-honest.
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Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusion

Cloud storage is becoming increasingly popular due to its high computational power, stor-

age capabilities, convenience, availability, cost, and dynamism. Security concerns and lack

of trust have many users and service providers weary of adapting such solutions. Cryp-

tography can address confidentiality by allowing users to privately encrypting their data in

the cloud. However, this approach leads to the problem of querying privately encrypted

data. Solving this problem while preserving the privacy of the users and the confidentiality

of their data, would enable cloud providers to provide secure services such as analyzing

sensitive medical or financial data.

In Chapter 3, we introduced a protocol to allow a querying entity access to a subset

of a user’s privately encrypted data in the cloud. This would aid emergency responders to

get critical medical information about a patient in the case of an emergency. The proposed

protocol prevents emergency responders from abusing their privileges. The protocol relies

on attribute based encryption and symmetric key threshold encryption to solve the problem

without requiring the participation of the patient in the process. We also evaluated the
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performance of the protocol and presented the results of our experimental results.

To allow a querying entity to execute more complex queries, we introduced in Chap-

ter 4 a privacy-preserving querying protocol on privately encrypted data in the cloud. The

proposed protocol would allow a querying entity such as a health organization to query pri-

vately encrypted data such as private health records. The protocol allows for sum, average,

or comparison queries. The protocol executes queries on Kd-trees that are constructed from

encrypted health records. It also prevents patients from inferring what health organizations

are concerned about. We experimentally evaluated the performance of the protocol and

reported on the results of implementation.

In Chapter 5, we introduced enhancements to the protocol in Chapter 4. The enhanced

protocol removed the preprocessing steps needed to gather the encrypted data in a central

location for each group and securely sorting the KD-Tree. The protocol also reduced the

computational overhead on the cloud server and the data owners. The size of the queries

was also reduced. Two variations of the protocol were introduced, the first hides the query

attributes to prevent the data owners from knowing what the querying entity is interested in.

The second variation prevents the querying entity from being able to query for personally

identifiable information. We also evaluated the performance of the protocol and reported on

the results of the implementation. We also filed a patent on a mechanism based on a variant

of this protocol designed for an LTE mobile network environment.

In Chapter 6, we introduced a cryptographic and a non-cryptographic privacy-

preserving protocol to allow multiple parties to jointly compute a private polynomial func-

tion. The protocol allowed a user to request the assistance of at lease two other participants

in computing a polynomial function using their privately encrypted data, without exposing

the values of the participating parties or the function. Additionally, We experimentally eval-

uated the performance of the protocol and reported on the results of our implementation.
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In this thesis, we proposed several protocols for secure and privacy-preserving data

storage in the cloud. We further show their applicability and scalability through their im-

plementations. The proposed protocols provide an efficient way forward to guarantee user

data confidentiality in the cloud, while preserving their privacy and providing them with a

range of computational features.

7.2 Future Work

Much progress remains to be made in addressing secure cloud computations on privately

encrypted data. In what follows, we suggest some research directions to improve on the

protocols we proposed in this thesis.

• Reduce Computation Load on Data Owners: To increase the practicality of secure

cloud computations on privately encrypted data, the load on the DOs should be re-

duced. This can be done by outsourcing a portion of the cryptographic operations to

the cloud.

• Provable Function Usage: To enhance the private function evaluation protocol we

presented in Chapter 6, we suggest proposing a method to prevent the function owner

from crafting a function that aims to expose a participant’s private values. This

method should prove to the participants that the function owner is being fair, and

the function is not designed to focus on a single participant’s private values.
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