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Abstract

Correlated data can be very useful in cryptography. For instance, if a uniformly
random key is available to Alice and Bob, it can be used as an one-time pad to
transmit a message with perfect security. With more elaborate forms of correlated
data, the parties can achieve even more complex cryptographic tasks, such as se-
cure multiparty computation. This thesis explores (from both a theoretical and a
practical point of view) the topic of cryptography based on correlated data.

The first part considers physical assumptions that can be used to obtain simple
forms of correlated data suitable for cryptographic purposes. We aim at constructing
two important cryptographic primitives, namely commitments and oblivious trans-
fer, and investigate the question of their existence as well as the theoretical limits
of how efficiently the underlying resources can be used to construct them. For
example, the existence of noisy channels between the parties allows uncondition-
ally secure realizations of both primitives. As it turns out that noisy channels are
valuable resources for cryptography, it becomes important to understand the opti-
mal way in which these noisy channels can be used for implementing cryptographic
tasks. Therefore, commitment and oblivious transfer capacities have been studied
in the literature, which capture respectively the optimal way in which commitment
and oblivious transfer can be realized using noisy channels. These capacities are
cryptographic equivalents of Shannon’s definition of channel capacity for the task
of transmitting messages reliably over noisy channels. In the thesis we will fur-
ther investigate the commitment and oblivious transfer capacity of some important
channels. Another example is the so-called bounded storage model, in which it is
assumed that the parties have limited storage capacity (an assumption orthogonal
to the restrictions on computational power that are normally made in cryptography
based on complexity theory). In this model there is a public random source avail-
able to the parties during an initial transmission phase, but since the parties only
have bounded storage they can only store parts of this random source and there-
fore they end up with correlated data that can be used subsequently to implement
cryptographic primitives. It is known that both commitment and oblivious transfer
can be implemented in the bounded storage model without errors. We present the
first secure protocols for commitment and oblivious transfer in the more realistic
bounded storage model with errors, in which the public random sources available to
the parties are not exactly the same, but instead are only required to have a small
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vi 0. Abstract

Hamming distance (between themselves).
The second part of this thesis focuses on the practical side. We investigate the

so-called trusted initializer model, in which there exists a trusted party that pre-
distributes correlated data to the protocol participants during a setup phase, but
does not take part in the rest of the protocol execution and in particular does not
learn the parties’ inputs. This allows for more structured forms of correlated data
between the parties. In this model it is possible to obtain very efficient solutions
that achieve information-theoretical security. We address the crucial question of
obtaining highly practical and parallelizable protocols for the secure computation of
some important machine learning tasks.



Zusammenfassung

Korrelierten Daten können sehr nützlich sein in der Kryptographie. Wenn sich
beispielsweise Alice und Bob einen gleichverteilt zufälligen Schlüssel teilen, dann
können sie das One-Time-Pad-Verfahren verwenden, um eine Nachricht mit perfekter
Sicherheit zu übertragen. Mit komplexeren Formen von korrelierten Daten können
die Parteien noch komplexere kryptographische Aufgaben lösen, wie zum Beispiel
sichere Mehrparteienberechnung. Diese Arbeit untersucht sowohl aus theoretischer
als auch aus praktischer Sicht das Thema der Kryptographie auf der Basis von
korrelierten Daten.

Der erste Teil dieser Dissertation betrachtet physikalische Annahmen, die ver-
wendet werden können, um einfache Formen von korrelierten Daten, die geeignet
für kryptographische Zwecke sind, zu erhalten. Wir befassen uns mit zwei wichtige
kryptographische Primitive, nämlich Commitments und Oblivious-Transfer, und un-
tersuchen die Frage ihrer Existenz sowie die theoretischen Grenzen, wie effizient die
zugrunde liegenden Ressourcen verwendet werden können, um sie zu konstruieren.
Beispielsweise ermöglicht die Existenz verrauschte Kanäle zwischen den Parteien
beide Primitive sicher zu realisieren ohne zusätzliche Annahme treffen zu müssen. Es
stellt sich heraus, dass verrauschte Kanäle wertvolle Ressourcen für Kryptographie
sind, und damit wird es wichtig, die optimale Art und Weise, wie diese verrauschten
Kanäle für die Implementierung kryptographischer Aufgaben verwendet werden kön-
nen, zu verstehen. Deshalb wurden Commitment- und Oblivious-Transfer-Kapazitä-
ten in der Literatur untersucht. Sie erfassen die optimale Art und Weise, wie
verrauschte Kanäle verwendet werden können, um Commitments beziehungsweise
Oblivious-Transfer zu realisieren. Diese Kapazitäten sind kryptographische Äquiva-
lente von Shannons’ Kanalkapazität für die Aufgabe der zuverlässigen Übertragung
von Nachrichten über verrauschte Kanäle. In dieser Arbeit untersuchen wir die
Commitment- und Oblivious-Transfer-Kapazitäten von einigen wichtigen Kanälen.
Ein weiteres Beispiel ist das so genannte Bounded-Storage-Modell, in dem angenom-
men wird, dass die Speicherkapazität der Parteien begrenzt ist (diese Annahme ist
orthogonal zu der Beschränkung von Rechenleistung, die in der Kryptographie auf
Basis der Komplexitätstheorie normalerweise gemacht wird). In diesem Modell gibt
es eine öffentliche Zufallsquelle, die für die Parteien während einer anfänglichen Über-
tragungsphase zur Verfügung steht. Da aber die Parteien nur begrenzte Speicherka-
pazität haben, können sie nur Teile dieser Zufallsquelle speichern. Damit haben sie
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viii 0. Zusammenfassung

am Ende korrelierte Daten, die später verwendet werden können, um kryptographis-
che Primitive zu implementieren. Es ist bekannt, dass sowohl Commitments als auch
Oblivious-Transfer im Bounded-Storage-Modell ohne Fehler implementiert werden
können. Wir präsentieren hier die ersten sicheren Protokolle für Commitments und
Oblivious Transfer im realistischeren Bounded-Storage-Modell mit Fehlern, in dem
die Zufallsquellen nicht gleich sind, sondern nur eine kleine Hamming-Distanz haben
müssen.

Der zweite Teil der Arbeit konzentriert sich auf die praktische Seite. Wir unter-
suchen das so genannte Trusted-Initializer-Modell, in dem es eine vertrauenswürdige
Partei gibt, die korrelierte Daten an die Protokollteilnehmer während einer Auf-
bauphase verteilt, aber nicht an dem Rest der Protokollausführung teilnimmt und
insbesondere nicht die Eingabe der Parteien lernt. Dies ermöglicht strukturiert-
ere Formen von korrelierten Daten zwischen den Parteien. In diesem Modell ist es
möglich, sehr effiziente Lösungen zu erzielen, die informationstheoretische Sicherheit
erreichen. Wir konzentrieren uns auf die Frage, praktische und parallelisierbare Pro-
tokolle für die sichere Berechnung einiger wichtiger Aufgaben aus dem Bereich des
maschinellen Lernens zu konzipieren.
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1. Introduction

Correlated data can be very useful for cryptographic purposes. Imagine for instance
that a random key is chosen and given to Alice and Bob. This key can then be used
as a one-time pad in order to transmit messages with unconditional security. When
more elaborated forms of correlated data are available to the parties, even more
complex cryptographic tasks can be achieved, such as secure computation without
revealing the private inputs. For example: suppose that Alice has input x ∈ X and
Bob input y ∈ Y and they want to compute the function f(x, y) without leaking
any additional information about x or y. Lets consider the table T that contains all
possible outputs of f : the columns are indexed by x ∈ X and the rows by y ∈ Y ,
and each element has the respective output f(x, y). Let R be a permuted version
of T in which first the columns are permuted according to a permutation known by
Alice and then the rows are permuted according to a permutation known by Bob.
If Alice and Bob could get random shares RA and RB such that R = RA + RB,
securely computing f(x, y) would be quite easy: Alice selects which column should
be used, Bob which row, and then they simply sum their shares of that element
in order to obtain the result. Although this one-time table technique does not
scale well with the inputs’ size, it illustrates how useful correlated data can be
for cryptography. In this thesis we will explore the topic of cryptography based
on correlated data both from a theoretical as well as a practical point of view. Our
focus is on unconditional security (also known as information-theoretical security), in
which the security guarantees should hold even against computationally unbounded
adversaries; this in contrast with computational security, in which the adversaries are
restricted to be probabilistic polynomial time Turing machines and computational
hardness assumptions are necessary.

First we study physical assumptions that can be used to obtain simple forms
of correlated data suitable for cryptographic purposes: we consider the scenario
where noisy channels are available between the parties as well as the Bounded Stor-
age Model, in which the memory of the parties are bounded. We target at two
quintessential cryptographic primitives, namely commitment and oblivious transfer,
and investigate the question of their existence as well as the theoretical limits of how
efficiently the underlying resources can be used to achieve these primitives.

The second part of the thesis assumes that more structured forms of correlated
data are available by using the commodity based model. The crucial question of
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2 1. Introduction

obtaining highly practical and parallelizable protocols for the secure computation
of some important problems such as machine learning training and classification is
addressed.

This chapter presents an overview about the topics that will be discussed during
the thesis. A comparison with the most relevant works will be present in each
individual chapter. The outline of this chapter is as follows: we will first discuss
the commitment and oblivious transfer primitives. Then we explain the physical
assumptions we considered: noisy channels and the Bounded Storage Model. Finally,
we present some considerations about practical secure computation as well as specific
cases of secure machine learning.

Commitment Schemes

Blum [Blu83] introduced commitment schemes. They are one of the most essen-
tial primitives in modern cryptography and are widely used in applications such
as contract signing [EGL85], identification protocols [FS87], zero-knowledge proofs
[GMW91, Gol01, BCC88], and more generally in two-party and multi-party com-
putation protocols [GMW87, CDv88, CCD88]. Intuitively, commitment protocols
have a role in the digital world that is similar to that of sealed envelopes in first-
price sealed-bid auctions. In such auctions all the bidders first place their bids in
sealed envelopes which in the end are opened to determine the winner and the price.
The sealed envelopes have a dual role in that type of auction: on one hand, they
should keep the secrecy of the bids during the bidding process; on the other hand,
they should stop the winner from changing the final price. A commitment scheme
is a two-phase protocol between two mutually distrustful parties, Alice and Bob.
First they execute the commitment phase, in which Alice chooses a message m and
commits to it. At any time afterwards, Alice can decide to execute the opening
phase in order to reveal m to Bob. Similarly to the sealed envelopes, a commitment
scheme needs to meet two security properties: hiding, which guarantees that Bob
cannot learn any information about m before the opening phase; and binding, which
guarantees that Alice cannot change the committed value m without Bob detecting
it.

In the context of computational security, commitment protocols can be designed
based on generic assumptions such as the existence of pseudorandom generators
[Nao91] or more efficiently based on the hardness of various specific computational
problems [Eve81, Blu83, Ped92]. On the other hand, if unconditional security is
desired and no setup or physical assumption is made, then commitment is impossible
to obtain. This work investigates solutions based on the existence of noisy channels
between the parties as well as in the Bounded Storage Model.

Oblivious Transfer

Oblivious transfer (OT) is another two-party primitive that is fundamental for two-
party and multi-party computation. Alice has as input two strings s0, s1 and Bob
a choice bit c, and Bob learns the string sc. The protocol is secure for Alice if Bob
cannot learn any information about s1−c, and it is secure for Bob if Alice cannot
learn the choice bit c. The usefulness of OT comes from the fact that it breaks the
symmetry of (correlated) information knowledge between the parties, i.e., Alice and
Bob get data which is correlated, but not the same. Indeed OT, despite its very
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simplistic appearance, is a very powerful primitive and is complete for two-party
and multi-party computation [GMW87, Kil88, CvT95, IPS08], i.e., given any secure
implementation of OT it is possible to obtain, without any additional assumption,
secure two-party and multi-party computation protocols to evaluate any polynomial
time computable function.

Given its power, it is no surprise that OT has been the subject of much research
by cryptographers. In the context of computational security it can be obtained from
dense trapdoor permutations [Hai04] or assuming the hardness of many specific com-
putational problems [Rab81, BM90, Kal05, PVW08, DvdGMN08, DvdGMQN12,
DDN14]. Like commitment schemes, unconditionally secure OT cannot be obtained
if no setup or physical assumption is made. Nonetheless, it is possible to obtain
unconditionally secure OT protocols if either there are noisy channels between the
parties or the memory of the parties are bounded. Both scenarios will be studied in
this work.

Cryptography based on Noisy Channels

The cryptographic usefulness of noisy channels was first noticed by Wyner [Wyn75],
who proposed a scheme for exchanging a secret-key in the presence of an eaves-
dropper who receives the transmitted symbols over a degraded channel with re-
spect to the legitimate receiver’s channel. Csiszár and Körner [CK78] extended
the possibility result to the class of general (non-degraded) broadcast channels.
Maurer [Mau93] later pointed out that public communication can improve the par-
ticipants’ ability to generate a secret. In the case of commitment and oblivious
transfer protocols, the first schemes based on noisy channels were developed by Cré-
peau and Kilian [CK88]. The efficiency of these solutions were largely improved
by Crépeau [Cré97] and the topic was further studied both from the theoretical as
well as the efficient protocol designing points of view by many subsequent works
[DKS99, KM01, SW02, WNI03, CMW05, IMN06, AC07, NW08, PDMN11].

Commitment and OT Capacities

Given the importance of the commitment and OT primitives and the exceptional
value of noisy channels for cryptographic purposes, researchers started to investigate
the questions of which channels can be used to implement these primitives and what
is the optimal rate in which they can be used to implement these primitives. Com-
mitment and oblivious transfer capacities were defined and are the cryptographic
equivalents for these primitives of the Shannon capacity for information transmis-
sion. In the case of commitment capacity, which was first defined by Winter et
al. [WNI03], this amounts to determining the optimal ratio between the length of
the committed values and the number of uses of the noisy channel. Winter et al.
[WNI03] characterized the commitment capacity of discrete memoryless channels.
Afterwards, Nascimento et al. [NBSI08] determined the commitment capacity of
Gaussian channels. In the case of oblivious transfer capacity, which was first pro-
posed by Nascimento and Winter [NW08], this amounts to determining the optimal
ratio between the length of the strings in the OT protocol and the number of uses of
the noisy channel. Nascimento and Winter [NW08] identified some noise resources
that have strictly positive OT capacity. Imai et al. [IMN06] obtained the OT ca-
pacity of erasure channels against honest-but-curious adversaries (i.e., adversaries
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which always follow the protocol instructions but try to learn additional informa-
tion) and a lower bound on its OT capacity against malicious adversaries (which
can arbitrarily deviate from the protocol). Ahlswede and Csiszár [AC07, AC13]
showed new bounds for the OT capacity of Generalized Erasure Channels (GEC)
against honest-but-curious adversaries, which were partially extended to the ma-
licious case by Pinto et al. [PDMN11]. We should also mention that the ques-
tion of determining the optimal way of using noisy channels was also studied for
other cryptographic tasks, for instance in the vast literature on secrecy capacity
[Wyn75, CK78, LYCH78, OW85, Mau93, AC93, CN04, PB05, BR06, LYT10, LPS07,
GLEG08, CN08, AFJK09, BMK09, EU11, OH11].

In Chapter 3 we extend to the case of malicious adversaries the remaining bounds
of Ahlswede and Csiszár [AC07, AC13] on the OT capacity of Generalized Erasure
Channels and in Chapter 4 we determine the commitment capacity of Unfair Noisy
Channels (UNC).

Bounded Storage Model

In this work we also consider the Bounded Storage Model (BSM) [Mau92]. In this
model, the storage capacity of the (dishonest) participants is bounded, instead of
the usual bound on the computational power that is used in cryptography based
on complexity theory. It also assumed that the parties have access to a public
random string during an initial transmission phase. This string can be obtained
from a natural source, from a trusted third party, or, in some cases even generated
by one of the parties. One appealing feature of the BSM is that the security is
unconditional and holds even if the parties get infinite storage capacity after the
transmission phase. Another interesting property is that in the BSM no additional
assumption needs to be made; this is in strong contrast with the case of bounds
on the computational power, in which case computational hardness assumptions are
also necessary.

Cachin and Maurer [CM97] proposed key agreement protocols in the Bounded
Storage Model both with and without a small pre-shared key between the parties. If
the public random source has size ` and the pre-shared key has size O(log `), then it
can be used to select bits from the source. If there is no pre-shared key is available,
then the parties need O(

√
`) samples from the source, thus making the protocol

less practical. Dziembowski and Maurer [DM08] later proved that this last bound
is optimal, i.e., any key agreement by public discussion protocol requires O(

√
`)

samples from the parties.
Cachin et al. [CCM98] presented the first OT protocol in the BSM. Ding [Din01]

and Hong et al. [HCR02] presented improvements to that protocol in a slightly dif-
ferent model. Finally, Ding et al. [DHRS04] obtained the first constant-round OT
protocol. In the case of commitment, Shikata and Yamanaka [SY11] and indepen-
dently Alves [Alv10] studied the problem of commitment in the BSM and provided
solutions that were based on the work of Ding et al. [DHRS04].

A weakness of the BSM is that it assumes that the random source can be reliably
broadcasted to all parties without transmission errors, which is hard to realize in
practice. In this work we considered a more realistic variant, the so called Bounded
Storage Model with Errors, in which errors can be introduced in the public random
source in arbitrary positions; it is only assumed that the error frequency is not
too large. This model captures both the situation in which the source is partially
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controlled by an adversary as well as errors due to noise in the channel. Ding
[Din05] previously studied this model and obtained secret key agreement protocols.
In Chapter 5 we present the first commitment and OT protocols in this model.

Practical Secure Computation

Secure computation is a very important topic in modern cryptography and deals
with the problem of two or more mutually distrustful parties that want to make
computations over their data without leaking any information other than the spec-
ified output of the desired functionality. Despite the apparent complexity of the
problem, general solutions meeting different security notions were proposed decades
ago for both the two-party case as well as the multi-party, for example, [Yao82,
GMW87, CCD88, Kil88, CvT95]. There are solutions evaluating either boolean or
arithmetic circuits, and achieving either computational or unconditional security.

The ongoing research effort into obtaining more efficient secure computation fol-
lows approaches such as optimizing Yao’s garbled circuits technique [Yao82] for
two-party computation [FJN+13, Lin13, LR14], evaluating RAM programs [KSS13,
WHC+14, AHMR15], optimizing OT-based protocols [NNOB12, SZ13, ALSZ15] and
constructing protocols in the preprocessing model [DPSZ12, DKL+13, DSZ15]. De-
spite all the progress on the performance of general multiparty computation pro-
tocols, when compared to multi-party computation protocols that are tailored to
one specific functionality, the general protocols still pay a high price in terms of
efficiency in order to achieve generality. These protocols typically require the func-
tion to be represented by an arithmetic circuit [BDOZ11, DPSZ12, DKL+13] or
a boolean circuit [NNOB12, FJN+13, Lin13, LR14], and the circuits need to be
evaluated gate by gate; thus introducing an overhead proportional to the num-
ber of gates. In addition, protocols that are secure against malicious adversaries
have an extra overhead due to the mechanisms that are employed in order to ver-
ify that the parties are following the protocol instructions: such as message au-
thentication codes [BDOZ11, DPSZ12, DKL+13] and circuit validation techniques
[FJN+13, Lin13, LR14]; the protocols attaining the best performance [SZ13, DSZ15]
are only secure against honest-but-curious adversaries.

Given the improvements that can be reached by using tailor-made protocols, this
approach was pursued for many important functionalities, such as scalar products
[GLLM05], means [KLML05], statistics [BSMD10], equality [DFK+06], comparison
[DFK+06] and exponentiations [DFK+06]. In this work we focus on the design
of highly practical and parallelizable protocols for particular functionalities. All
protocols obtained in the second part of this thesis achieve unconditional security and
work in the commodity-based model, in which a trusted initializer (TI) distributes
correlated randomness for the parties during a setup phase but does not engage in
the protocol afterwards. In our protocols both the TI and the parties only have to
perform simple operations over a finite field; such operations are simple enough to
be executed in resource constrained environments (e.g. embedded computers) while
being embarrassingly parallelizable for simultaneous execution of several protocol
instances in large scale environments (e.g. big data applications). We particularly
focus on protocols for secure machine learning.
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Privacy-Preserving Learning

Traditional machine learning methods usually require all the training dataset to be
directly available to the learning algorithm. However, increasingly often the training
data that is useful for deriving a model is distributed among multiple parties that
cannot or will not share their data due to economic reasons or privacy legislation.
Therefore privacy-preserving learning algorithms, which allow the parties to learn
a model without leaking any additional information about the training dataset,
are growing in importance. In this thesis we deal with the problem of designing
a privacy-preserving protocol for performing linear regression over a dataset that
is distributed over multiple parties. We provide security definitions, a protocol,
and security proofs. Our solution, which is presented in Chapter 6, is information-
theoretically secure and works in the commodity-based model.

There were many attempts in the literature at obtaining secure linear regression
protocols over distributed databases, but most of the works do not even aim at
obtaining the level of privacy usually required by modern cryptographic protocols
(such as Karr et al. [KLSR05] and Du et al.[DHC04], see also [SKLR04, KLSR09]).
Hall et al. [HFN11] proposed a protocol aiming at a strong notion of security. They
used the framework of secure two-party protocols and simulation based definitions
of security from Goldreich [Gol04]. We would like to point out that as some of their
protocols rely on function approximations, rather than exact computations, they
should have considered the framework of Feigenbaum et al. [FIM+01, FIM+06]. The
truncation protocol also has a small (correctable) problem as explained in [CDNN15].
Nikolaenko et al. [NWI+13] proposed a solution based on homomorphic encryption
and garbled circuits for a different scenario in which the multiple parties encrypt
the training data and upload the ciphertexts to a third party. This party computes
the regression model with the help from a semi-honest Crypto Service Provider
that performs the heavy cryptographic operations. The Crypto Service Provider is
assumed to not collude with other parties and actively engages in the protocol during
its execution. This contrasts with our solution, in which the trusted initializer does
not engage in the protocol execution after the setup phase. Our online phase is far
faster than the previous protocols. If a trusted initializer is not available or desirable,
the parties can run an offline phase, which is only computationally secure, in order
to generate the required correlated data. Even in this case, our total time is still
smaller due to the fact that our solution is extremely parallelizable.

Privacy-Preserving Classifiers

Machine learning classifiers have a great potential for improving our daily lives and
can be used in many scenarios: by healthcare providers to diagnose patients, by
search engines and recommendation platforms to produce more accurate results, by
wearable devices for making personal health recommendations, by websites to decide
the contents to be shown to each particular user, and so on. But if this classification
is done in the clear, either the user Alice has to reveal her data or the model owner
Bob has to reveal his model, and both options are not satisfactory as both Alice’s
data as well as Bob’s model can contain sensitive information. In this thesis we will
deal with the problem of performing the classification in a such way that Bob learns
nothing about Alice’s data, and Alice learns as little as possible about Bob’s model.

In the past solutions were given for a weaker security model in which Alice learns
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the classification model [BLN13] or for very specific classifiers with limited applica-
tions [AB06, AB07, EFG+09, SSW10, BFK+09, BFL+09, BFL+11]. General privacy-
preserving classifiers were proposed just recently by Bost et al. [BPTG15, BPTG14]
for the case of hyperplane-based classifiers, Naive Bayes and decision trees and by
Wu et al. [WFNL15] for decision trees and random forests. Both works relied on the
Paillier encryption scheme as well as other computationally secure building blocks.
In Chapter 7 we present more efficient protocols for evaluating these classifiers which
enjoy unconditional security.

Outline

Chapter 2 presents our notation and the background knowledge and lemmas that
are used in the subsequent chapters. In Chapter 3 we establish lower bounds on
the oblivious transfer capacity against malicious adversaries of generalized erasure
channels with low erasure probability. In Chapter 4 we determine the commitment
capacity of Unfair Noisy Channels. Chapter 5 introduces the first commitment
and oblivious transfer protocols in the Bounded Storage Model with Errors. Chap-
ter 6 presents our protocol for privacy-preserving learning using linear regression. In
Chapter 7 we present some privacy-preserving classifiers. Finally, Chapter 8 contains
our final remarks.





2. Preliminaries

In this chapter we present our notation and model as well as supporting theorems,
lemmas and definitions that are used in the subsequent chapters.

2.1 Notation

Calligraphic letters are used for denoting domains of random variables and other
sets, upper case letters for random variables and lower case letters for realizations
of the random variables. The cardinality of a set X is written as |X |, the set
{1, . . . , `} as [`] and the set of all subsets S ⊆ [`] with |S| = t as

(
[`]
t

)
. For a tuple

X` = (X1, X2, . . . , X`) and a tuple R of non-repeated elements of [`], XR is the
restriction of X` to the positions specified by R. We denote by Zq the ring of order
q and by Z`q the space of all `-tuples of elements of Zq. Z`1×`2q represents the space of
all `1×`2 matrices with elements belonging to Zq. Similar notation Fq, F`q and F`1×`2q

is used for a finite field if the additional mathematical properties are emphasized.
For a random variable X over X , PX : X → [0, 1] with

∑
x∈X PX(x) = 1 will de-

note its probability distribution. For a joint probability distribution PXY : X ×Y →
[0, 1], PX(x) :=

∑
y∈Y PXY (x, y) denotes the marginal probability distribution and

PX|Y (x|y) := PXY (x, y)/PY (y) the conditional probability distribution if PY (y) 6= 0.
The statistical distance between two probability distributions is defined as follows:

Definition 2.1 (Statistical distance) The statistical distance ‖PX−PY ‖ between
two probability distributions PX and PY with alphabet X is

‖PX − PY ‖ = max
S⊆X

∣∣∣∣∣∑
x∈S

PX(x)− PY (x)

∣∣∣∣∣ .
We say PX and PY are ε-close if ‖PX − PY ‖ ≤ ε.

A function ε(·) is negligible in the security parameter n if it is asymptotically
smaller than the inverse of any fixed polynomial in n. Two sequences X(n) and Y (n)

of random variables are said to be statistically close, denoted by X
s
≈ Y , if there

exists a negligible function ε(·) such that for every n ∈ N, ‖PX(n) − PY (n)‖ ≤ ε(n).

They are said to be computationally indistinguishable, denoted by X
c
≈ Y , if there

9
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exists a negligible function ε(·) such that for every n ∈ N and for every non-uniform
probabilistic polynomial time distinguisher D it holds that

|Pr [D(X(n)) = 1 ]− Pr [D(Y (n)) = 1 ]| ≤ ε(n).

A sequence E(n) of events happens with overwhelming probability in the security
parameter n if

Pr [E(n) ] ≥ 1− ε(n),

where ε(·) is a negligible function of n.

x
$← X denotes choosing an element x uniformly at random over X and Ur a vector

uniformly chosen from {0, 1}r. y $← F (x) denotes the act of running the probabilistic
algorithm F with input x and obtaining the output y. If the randomness needs to
be made explicit, we use the notation F (x; r) where r is the randomness. y ← F (x)
is similarly used for deterministic algorithms.

We use additively secret sharings to perform computation over a ring Zq. For a
value x that is randomly shared with parties P1, . . . ,Pu using shares over a ring
Zq, each party Pi gets an uniformly random xi ∈ Zq subject to the constraint that
x =

∑u
i=1 xi, where the operations are in the ring. Let JxKq denote the resulting

secret sharing and JxKq
$← x the operation of creating and distributing the shares,

which can be executed either by one of the parties Pi or by an external participant.
In order to unify the treatment of the protocols with the case in which one input
x is held by a single party Pi, we write JxKq ← x to denote the sharing in which
Pi (which is always clear from the context) computes with the share x and the
remaining parties with shares equal to zero. Given JxKq , JyKq and a constant c, it is
trivial for the parties to compute a secret sharing JzKq corresponding to z = x + y,
z = x − y, z = cx or z = x + c. All these operations can be performed locally
by the parties without any interaction by simply adding, subtracting or multiplying
the shares respectively for the first three cases, and by having a pre-agreed party
adding the constant in the last case. These operations will be denoted respectively
by JzKq ← JxKq + JyKq , JzKq ← JxKq − JyKq , JzKq ← cJxKq and JzKq ← JxKq + c. For
a secret sharing JxKq , the parties can open the value x by revealing their shares xi.
Extending this for a vector x (respectively for a matrix X), JxKq (respectively JXKq)
will denote the element-wise secret sharing and the notation for the operations will
be similar to the one above.

Let log x denote the logarithm of x in base 2. The binary entropy function is
denoted by h: for 0 ≤ x ≤ 1, h(x) = −x log x − (1 − x) log(1 − x). By convention,
0 log 0 = 0. H(X) denotes the entropy of X and I(X;Y ) the mutual information
between X and Y . If x and y are strings, x ⊕ y denotes their bitwise exclusive-
or, x ‖ y their concatenation. If additionally they have the same length, HD(x, y)
denotes their Hamming distance, that is, the number of positions in which they
differ.

2.2 Entropy Measures

The main entropy measure used in this work is the min-entropy as its conditional
version captures the private randomness that can be extracted from a random vari-
able X given a correlated random variable Y that an adversary knows.
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Definition 2.2 (Min-entropy) Let PXY be a probability distribution over X ×Y.
The min-entropy of X, denoted by H∞(X), and the conditional min-entropy of X
given Y , denoted by H∞(X|Y ), are respectively defined as

H∞(X) = min
x∈X

(− logPX(x))

H∞(X|Y ) = min
y∈Y

min
x∈X

(− logPX|Y=y(x)).

X is called a κ-source if H∞(X) ≥ κ.

The min-entropy has the problem of being sensitive to small changes in the proba-
bility distribution and for this reason its smooth version [RW05] will be used instead.
Intuitively, the smooth min-entropy is the maximum min-entropy in the neighbor-
hood of the probability distribution. The smooth min-entropy is defined as follows.

Definition 2.3 (Smooth min-entropy) Let ε > 0 and PXY be a probability dis-
tribution. The ε-smooth min-entropy of X given Y is defined by

Hε
∞(X|Y ) = max

X′Y ′:‖PX′Y ′−PXY ‖≤ε
H∞(X ′|Y ′)

Similarly, we also define the max-entropy and its smooth version.

Definition 2.4 ((Smooth) Max-entropy) The max-entropy is defined as

H0(X) = log |{x ∈ X|PX(x) > 0}|

and its conditional version is given by

H0(X|Y ) = max
y
H0(X|Y = y).

The smooth variants are defined as

Hε
0(X) = min

X′:‖PX′−PX‖≤ε
H0(X ′),

Hε
0(X|Y ) = min

X′Y ′:‖PX′Y ′−PXY ‖≤ε
H0(X ′|Y ′).

The notion of min-entropy rate and a few results regarding its preservation are
also be used in this work.

Definition 2.5 (Min-entropy rate) Let X be a random variable with an alphabet
X , Y be an arbitrary random variable, and ε ≥ 0. The min-entropy rate Rε

∞(X|Y )
is defined as

Rε
∞(X|Y ) =

Hε
∞(X|Y )

log |X |
.

The following lemma says that a source with high min-entropy also has high min-
entropy when conditioned on a correlated short string and is a restatement of a
lemma in Ding et al. [DHRS04]. This lemma makes the Bounded Storage Model
interesting as it implies that a memory-bounded adversary has limited information
about the public random string.
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Lemma 2.6 Let X ∈ {0, 1}` be such that Rε
∞(X) ≥ α and Y be a random variable

over {0, 1}γ`. Fix ε′ > 0. Then

Rε′+
√

8ε
∞ (X|Y ) ≥ α− γ − 1 + log(1/ε′)

`
.

Proof: Let ρ = α− γ − 1+log(1/ε′)
`

. By lemma 3.16 in Ding et al. [DHRS04] we have
that if Rε

∞(X) ≥ α then

Pr
y

$←Y

[
R
√

2ε
∞ (X|Y = y) ≥ ρ

]
≥ 1− ε′ −

√
2ε.

To get the desired result, let G = {y ∈ Y|R
√

2ε
∞ (X|Y = y) ≥ ρ} and PXY be the joint

probability distribution of X and Y . Let P ′XY be the distribution that is
√

2ε-close
to PXY and is such that P ′(X = x|Y = y) ≤ 2−ρ` for any x ∈ X , y ∈ G. Let
P ′′XY be obtained by letting P ′′(X|Y = y) = P ′(X|Y = y) for y ∈ G and defining
P ′′(X = x|Y = y) = 2−` for any x ∈ X , y /∈ G. As Pr [G ] ≥ 1 − ε′ −

√
2ε, it

holds that ‖P ′′XY − P ′XY ‖ ≤ ε′ +
√

2ε and so ‖P ′′XY − PXY ‖ ≤ ε′ + 2
√

2ε. Since
P ′′(X = x|Y = y) ≤ 2−ρ` for every x ∈ X , y ∈ Y , the lemma follows.

The following smooth entropy analogues of the chain rule for conditional Shannon
entropy are due to Renner and Wolf [RW05].

Lemma 2.7 ([RW05]) Let ε, ε′, ε1, ε2 ≥ 0 and PXY Z be a tripartite probability
distribution. Then

Hε+ε′

∞ (XY |Z)−Hε′

∞(Y |Z) ≥ Hε
∞(X|Y Z)

≥ Hε1
∞(XY |Z)−Hε2

0 (Y |Z)− log(1/(ε− ε1 − ε2))

and

Hε+ε′

0 (XY |Z)−Hε′

0 (Y |Z) ≤ Hε
0(X|Y Z)

≤ Hε1
0 (XY |Z)−Hε2

∞(Y |Z) + log(1/(ε− ε1 − ε2)).

2.3 Averaging Samplers and Randomness Extractors

In the Bounded Storage Model, due to the assumption that it is infeasible to store
the whole source string, it is not possible to apply an extractor to the complete
string; the extractor needs to be locally computable [Vad04]. A typical approach
for using the source is the sample-then-extract paradigm: first some positions of
the source are sampled and then an extractor is applied on these positions. In this
context, averaging samplers [BR94, CEG95, Zuc97] are a fundamental tool that
intuitively produce samples such that, for any function, its average value taken over
the sampled string is roughly the same as the average when taken over the original
string.

Definition 2.8 (Averaging sampler) A function Samp : {0, 1}r → [`]t is an (µ, ν,

ε)-averaging sampler if for every function f : [`] → [0, 1] with average
∑`
i=1 f(i)

`
≥ µ

it holds that

Pr
S $←Samp(Ur)

[
1

t

∑
i∈S

f(i) ≤ µ− ν

]
≤ ε. (2.1)
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Among the several useful properties enjoyed by averaging samplers, of particular
importance for us is the fact that averaging samplers roughly preserve the min-
entropy rate.

Lemma 2.9 ([Vad04]) Let X ∈ {0, 1}` be such that R∞(X|Y ) ≥ ρ. Let τ be such
that 1 ≥ ρ ≥ 3τ > 0 and Samp : {0, 1}r → [`]t be an (µ, ν, ε)-averaging sampler
with distinct samples for µ = (ρ − 2τ)/ log(1/τ) and ν = τ/ log(1/τ). Then for

S $← Samp(Ur)
Rε′

∞(XS |S, Y ) ≥ ρ− 3τ,

where ε′ = ε+ 2−Ω(τ`).

For t < `, the uniform distribution over subsets of [`] of size t is an averaging
sampler, also called the (`, t)-random subset sampler. The following lemma is just a
restatement of Lemma 5.5 from Babai and Hayes [BH05]

Lemma 2.10 Let 0 < t < `. For any µ, ν > 0, the (`, t)-random subset sampler is
a (µ, ν, e−tν

2/2)-averaging sampler.

A strong extractor [NZ96, DRS04, DORS08] is a function that takes as input a
string with high min-entropy and outputs a string that is statistically close to an
uniformly distributed string.

Definition 2.11 (Strong extractor) A function Ext : {0, 1}`×{0, 1}r → {0, 1}m
is a (κ, ε)-strong extractor if for every κ-source X ∈ {0, 1}`, and for random vari-
ables R and M uniformly distributed in the bit-strings of length r and m, respectively,
we have

‖PExt(X,R),R − PM,R‖ ≤ ε.

The following lemma from Zuckerman [Zuc97] specifies the parameters of an ex-
plicit strong extractor construction.

Lemma 2.12 ([Zuc97]) Let β, ψ > 0 be arbitrary constants. For every ` ∈ N and

every ε > e−`/2
O(log∗ `)

, there is an explicit construction of a (β`, ε)-strong extractor
Ext : {0, 1}` × {0, 1}r → {0, 1}m with m = (1− ψ)β` and r = O(log `+ log(1/ε)).

Universal Hash Functions [CW79] are strong extractors and can extract the opti-
mal number of nearly random bits [RTS00] according to the Leftover-Hash Lemma
(similarly the Privacy-Amplification Lemma) [BBR88, ILL89, BBCM95, HILL99].

Definition 2.13 (t-universal hash functions) A family of functions G = {g :

H → L} is called a family of t-universal hash functions if for g
$← G and for any

x1, . . . , xt ∈ H, the induced distribution on (g(x1), . . . , g(xt)) is uniform over Lt.

For any H = {0, 1}h and L = {0, 1}`, there exists a t-universal family of hash
functions for which the function description has size poly(h, t) bits, and the sampling
and computing times are in poly(h, t).

Lemma 2.14 Let G be a 2-universal class of functions g : {0, 1}` → {0, 1}m. Then
for G uniformly random in G and a κ-source X ∈ {0, 1}` we have that

‖PG(X),G, PUm,G‖ ≤
1

2

√
2−κ+m.

In particular, it is a (κ, ε)−strong extractor when m ≤ κ− 2 log(ε−1) + 2.
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One possible method for obtaining universal hash functions is the multiplication
by a random matrix of appropriate size.

The noise-resilient variant of strong extractors, the so called fuzzy extractors
[DRS04], will also be used in this work. They enable any party with a string that
is close enough in the Hamming distance metric to the original source to reproduce
the extracted string.

Definition 2.15 (Fuzzy extractor) A pair of functions Ext : {0, 1}` × {0, 1}r →
{0, 1}m × {0, 1}q, Rec : {0, 1}` × {0, 1}r × {0, 1}q → {0, 1}m is an (κ, ε, δ, β)-fuzzy
extractor if:

− (Security) For every κ-source X ∈ {0, 1}` and for random variables R and
M uniformly distributed in the bit-strings of length r and m, let (Y,Q) ←
Ext(X,R). Then ‖PY RQ − PMRQ‖ ≤ ε.

− (Recovery) For every x, x′ ∈ {0, 1}` such that HD(x, x′) ≤ δ`, let r
$← Ur,

(y, q)← Ext(x, r). Then it should hold that Pr [Rec(x′, r, q) = y ] ≥ 1− β.

Fuzzy extractors are a special case of one-way key-agreement schemes [HR05,
KR09] and ultimately equivalent to performing information reconciliation followed
by privacy amplification [RW04]. Due to the restriction to close strings with re-
spect to the Hamming distance, syndrome-based fuzzy extractors can be used, as
summarized in Ding’s lemma [Din05].

Lemma 2.16 ([Din05]) Let 1 ≥ β, ψ > 0 and 1/4 > δ > 0 be arbitrary constants.
There is a constant σ, depending on δ, such that for every sufficiently large ` ∈ N,

and every ε > e−`/2
O(log∗ `)

, there exists an explicit construction of a (β`, ε, δ, 0)-fuzzy
extractor (Ext,Rec), where Ext is of the form Ext : {0, 1}` × {0, 1}r → {0, 1}m ×
{0, 1}q with

m = (1− ψ)β`,

r = O
(
log `+ log ε−1

)
,

q ≤ 1− σ
(1− ψ)β

m.

Remark 2.17 The code used to correct the errors has code size ` with rate σ and
can correct δ` errors. According to the Gilbert-Varshamov bound, for a given υ
with 0 < υ < 1/2 and 0 ≤ ξ ≤ 1 − h(υ), there exists a random linear code with
minimum distance υ` and σ ≥ 1−h(υ)−ξ; however this construction has no efficient
decoding. One alternative solution is to use the concatenated solution in Theorem 4
of Guruswami and Indyk [GI02], which achieves the Zyablov bound and provides a
code with linear-time encoding and decoding that, for a given 0 < σ < 1 and ξ > 0,
can correct δ` errors, where

δ ≥ max
σ<σ̃<1

(1− σ̃ − ξ)y
2

and y is the unique number in [0, 1/2] with h(y) = 1− σ/σ̃.
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2.4 Typical Sequences

In this section we define the concept of typical sequences largely following the book
of Csiszár and Körner [CK82].

Definition 2.18 For a probability distribution PX on X and ε > 0 the ε-typical
sequences form the set

T `PX ,ε = {x` ∈ X ` : ∀x ∈ X |N(x|x`)− `PX(x)| ≤ ε` and PX(x) = 0⇒ N(x|x`) = 0},

with the number N(x|x`) denoting the number of symbols x in the string x`.

The type of x` is the probability distribution Px`(x) = 1
`
N(x|x`). Then, x` ∈

T `PX ,ε ⇒ |Px`(x)− PX(x)| ≤ ε,∀x ∈ X .

Properties 2.19

1. P⊗`X (T `PX ,ε) ≥ 1− 2|X | exp(−`ε2/2).

2. |T `PX ,ε| ≤ exp(`H(PX) + `εD).

3. |T `PX ,ε| ≥ (1− 2|X | exp(−`ε2/2)) exp(`H(PX)− `εD),

with the constant D =
∑

x:PX(x)6=0− logPX(x).

Extending the concept to the conditional ε-typical sequences:

Definition 2.20 Consider a channel W : X → Y and an input string x ∈ X `. For
ε > 0, the conditional ε-typical sequences form the set

T `W,ε(x`) = {y` : ∀x ∈ X , y ∈ Y |N(xy|x`y`)− `W (y|x)Px`(x)| ≤ ε`

and W (y|x) = 0⇒ N(xy|x`y`) = 0}
=

∏
x

T IxWx,εPx` (x)−1,

where Ix are the sets of positions in the string x` where xk = x.

Properties 2.21

1. W `
x`

(T `W,ε) ≥ 1− 2|X ||Y| exp(−`ε2/2).

2. |T `W,ε| ≤ exp(`H(W |Px`) + `εE).

3. |T `W,ε| ≥ (1− 2|X ||Y| exp(−`ε2/2)) · exp(−`H(W |Px`)− `εE),

with the constant E = maxx
∑

y:W (y)6=0− logWx(y) and the conditional entropy

H(W |PX) =
∑

x PX(x)H(Wx). See [CK82] for more details.

It is a well know fact that if x` and y` are conditional ε-typical according the
Definition 2.20, then

|T `W,ε| ≤ 2`(H(Y |X)+ε).

The following lemma and its prove come from Dowsley and Nascimento [DN14].
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Lemma 2.22 Let W : X → Y be a discrete memoryless channel and x` ∈ X `,
y` ∈ Y` be the input and output strings of this channel. Let A be a random subset
of [`] such that |A| = δ`, 0 < δ ≤ 1. Let xA and yA be the restrictions of x` and y`

to the positions in the set A. If x` and y` are conditional ε-typical, then xA and yA

are conditional 2ε-typical for any ε > 0 and ` large enough.

Proof: By hypothesis x` and y` are conditional ε-typical, so for every symbols x
and y we have that ∣∣N(xy|x`y`)− `Px`(x)W (y|x)

∣∣ ≤ εn,

for a large enough `.

Given the conditional ε-typical strings x` and y`, the probability of selecting one

pair with the specific values x and y for the substrings xA and yA is N(xy|x`y`)
`

. We
have that

Px`(x)W (y|x)− ε ≤ N(xy|x`y`)
`

≤ Px`(x)W (y|x) + ε.

Therefore, by the Chernoff bound [Che52], for ` large enough with overwhelming
probability the number of pairs of x and y in the substrings xA and yA, N(xy|xAyA),
is limited by

δ` (Px`(x)W (y|x)− ε− ε′) ≤ N(xy|xAyA) ≤ δ` (Px`(x)W (y|x) + ε+ ε′) ,

for any ε′ > 0. Making ε′ = ε we have that the substrings xA and yA are conditional
2ε-typical.

2.5 Commitment Protocols

A commitment protocol is a family of two-party protocols indexed by the security
parameter n. Each protocol proceeds in two phases, commitment and opening, that
are executed between a committer Alice and a verifier Bob. In the commitment
phase, Alice commits to a message m, but without leaking any information about
m to Bob. Later on, Alice can execute the opening phase at any time she wishes
in order to disclose the message m to Bob. The security guarantee for Alice is that
nothing about m should be learned by Bob in the commitment phase, while the
security guarantee for Bob is that Alice should not be able to change the committed
message after the commitment phase. We proceed with a more detailed description
of the definitions and our model.

Both parties have access to local randomness and there is a bidirectional noiseless
channel between them. Depending on the specific scenario being analyzed in next
chapters, Alice and Bob will also have access to additional resources in the commit-
ment phase. All the messages generated by Alice and Bob are well-defined random
variables, depending on the value that Alice wants to commit to, m, and the local
randomness of the parties. For the sake of notation simplicity we will not explicitly
mention the dependence on the security parameter n.

Commitment Phase: Alice wants to commit to an input string m ∈ M which is
a realization of a random variable M . The parties interact using the available re-
sources. Let transCP(m) denote all the communication in this phase and viewCP

Bob(m)
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Bob’s view at the end of this phase.

Opening Phase: Alice sends Bob the string m̃ she claims she committed to and
the parties can then exchange messages in several rounds. Let transOP(m̃) denote all
the communication in this phase. In the end Bob performs a test

test
(
viewCP

Bob(m), transOP(m̃)
)

that outputs 1 if Bob accepts Alice’s commitment and 0 otherwise.

Security: A commitment protocol is called (λC, λH, λB)-secure if it satisfies the
following properties:

1. λC-correct: if Alice and Bob are honest, then for every possible m

Pr
[

no aborts and test
(
viewCP

Bob(m), transOP(m)
)

= 1
]
≥ 1− λC.

2. λH-hiding: if Alice is honest then

I
(
M ; viewCP

Bob(M)|viewBC
Bob

)
≤ λH,

where viewBC
Bob denotes Bob’s view before the start of the commitment phase.

3. λB-binding: if Bob is honest, then there are no m and m̃ 6= m̂ such that

Pr
[
test

(
viewCP

Bob(m), transOP(m̃)
)

= 1
]
≥ λB

and
Pr
[
test

(
viewCP

Bob(m), transOP(m̂)
)

= 1
]
≥ λB.

2.6 Oblivious Transfer

In an oblivious transfer protocol Alice inputs two string s0, s1 ∈ M and has no
output; while Bob inputs a choice bit c and outputs sc. As in the case of commitment,
it is assumed that both parties have access to local randomness, that there is a
bidirectional noiseless channel between them, and depending on the scenario there
will be additional resources available to them. The security parameter is n but will
be omitted from the notation for the sake of simplicity. Let viewOT

Alice(s0, s1; c) denote
the view of an Alice that uses strategy Alice and interacts with an honest Bob.
Similarly, let viewOT

Bob(s0, s1; c) denote the view of a Bob that uses strategy Bob and
interacts with an honest Alice.

Intuitively, the protocol is secure for Bob if viewOT
Alice(s0, s1;C) and C are indepen-

dent; and it is secure for Alice if Bob obtains no information about S1−C . However,
since we want to give a general security definition that also works in the scenario
where there exists a preliminary transmission phase (e.g., the Bounded Storage
Model), this is tricky to formalize, as a malicious Bob can proceed with a differ-
ent choice bit depending on the public random source and the messages exchanged
before Alice uses her secrets. We follow the approach of Ding et al. [DHRS04] for
defining the security.

In order to have more generality, the main part of the oblivious transfer protocol
is divided in two phase: the setup phase, which encompass all communication before
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Alice first uses her secrets, and the transfer phase, which happens from that point
on. Two pairs of inputs (s0, s1), (s′0, s

′
1) are called i-consistent if si = s′i. By the end

of the setup phase there should exist a random variable I, such that for any two
I-consistent pairs of inputs, the resulting view of Bob is statistically close.

Security: A protocol is called (λC, λB, λA)-secure if it satisfies the following prop-
erties:

1. λC-correct: if Alice and Bob are honest, then

Pr [ no aborts and s = sc ] ≥ 1− λC.

2. λB-secure for Bob: for any strategy Alice used by Alice,∥∥{viewOT
Alice(s0, s1; 0)

}
−
{
viewOT

Alice(s0, s1; 1)
}∥∥ ≤ λB.

3. λA-secure for Alice: for any strategy Bob used by Bob with input c, there exists
a random variable I, defined at the end of the setup stage, such that for every
two I-consistent pairs (s0, s1), (s′0, s

′
1), we have∥∥{viewOT

Bob(s0, s1; c)
}
−
{
viewOT

Bob(s
′
0, s
′
1; c)

}∥∥ ≤ λA.

2.7 Interactive Hashing and Binary Encoding of
Subsets

Interactive hashing was initially introduced in the context of computationally se-
cure cryptography [OVY93], but was later generalized to the information-theoretic
setting, and is particularly useful in the context of designing oblivious transfer
[CCM98, DHRS04, CS06, Sav07, PDMN11] and commitment protocols [SY11] with
unconditional security. In this primitive Bob inputs a string v ∈ {0, 1}` and both
Alice and Bob receive as output two strings v0, v1 ∈ {0, 1}` such that v0 6= v1. The
correctness requirement is that one of the two output strings, vd, should be equal to
v. The security guarantee for Alice is that one of the strings should be effectively
beyond the control of (a malicious) Bob. On the other hand, the security guarantee
for Bob states that (a malicious) Alice should not be able to learn d.

A variety of protocols for realizing interactive hashing have been proposed [CCM98,
DHRS04, NOVY98]. In this work it is used as a black box and the security of the
designed protocols only depend on the interactive hashing security properties.

Definition 2.23 (Interactive hashing) Interactive hashing is a protocol between
Alice and Bob in which only Bob has an input v ∈ {0, 1}`, and both parties output
v0, v1 ∈ {0, 1}` such that vd = v for some d ∈ {0, 1}. The protocol is called an
η-uniform (t, θ)-secure interactive hashing protocol if:

1. If both parties are honest, then the random variable V1−d is close to completely
random, i.e., V1−d is η-close to the uniform distribution on the 2` − 1 strings
different from vd.
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2. Alice’s view of the protocol is independent of d. Let Alice be a strategy for Alice
and viewIH

Alice(V ) be Alice’s view when the input is the random variable V . Then{
viewIH

Alice(V )|V = V0

}
=
{
viewIH

Alice(V )|V = V1

}
.

3. For any T ⊂ {0, 1}` such that |T | ≤ 2t, it should hold that after the protocol
execution between an honest Alice and a possibly malicious Bob,

Pr [V0, V1 ∈ T ] ≤ θ,

where the probability is over the parties’ randomness.

By only requiring V1−d to be close to the uniform distribution, this definition is
weaker than others given in the literature [Sav07]. However, it is sufficient to prove
our protocols’ security and allows for the possibility of using the constant-round
interactive hashing protocol of Ding et al. [DHRS04].

Lemma 2.24 ([DHRS04]) Let t, ` be positive integers such that t ≥ log `+2. Then
there exists a four-message η-uniform (t, 2−(`−t)+O(log `))-secure interactive hashing
protocol for η < 2−`.

The following lemma by Naor et al. [NOVY98] gives an 0-uniform interactive
hashing protocol, i.e., V1−d is uniformly distributed, that achieves near-optimal se-
curity [Sav07]. Having `− 1 rounds is its disadvantage.

Lemma 2.25 ([NOVY98]) There exists a 0-uniform (t, ψ ·2−(`−t))-secure interac-
tive hashing protocol for some constant ψ > 0.

The interactive hashing security properties guarantee that one of the outputs
is random; however, usually the two binary strings are not used directly in the
protocols, but as encodings of subsets of the positions of a tuple. Thus for the
protocol to succeed, both outputs v0 and v1 need to be valid encodings of subsets
containing `sub elements out of the `tup elements of the tuple. Cover showed [Cov73]

the existence of an efficiently computable one to one mapping F :
(

[`tup]
`sub

)
→ [

(
`tup
`sub

)
]

for every integer `sub ≤ `tup; thus making it possible to encode the set
(

[`tup]
`sub

)
in

binary strings of length ` = dlog
(
`tup
`sub

)
e. However, using such mapping in a straight

way may result in only slightly more than half of the strings being valid encodings
and thus in several repetitions of the protocol in order to guarantee correctness (as
in Cachin et al. [CCM98] for instance). Ding et al. [DHRS04] proposed a “dense”
encoding of subsets, ensuring that most `-bit strings are valid encodings. More
precisely, they showed the following result.

Lemma 2.26 ([DHRS04]) Let `sub ≤ `tup, ` ≥ dlog
(
`tup
`sub

)
e, i = b2`/

(
`tup
`sub

)
c. Then

there exists an injective mapping F :
(

[`tup]
`sub

)
× [i]→ [2`] with | Im(F )| > 2` −

(
`tup
`sub

)
.

Another possibility is using the modified encoding of Savvides [Sav07], in which
each string v ∈ {0, 1}` encodes the same subset as v mod

(
`tup
`sub

)
, thus implying that

all strings always encode valid subsets. With this encoding, each subset corresponds
to either 1 or 2 strings in {0, 1}`. Therefore the fraction of Bob’s subsets of interest
is at most the double of the fraction of his strings of interest.
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2.8 UC Framework

Here we present a brief discussion of the Universal Composability (UC) framework
of Canetti [Can01], please refer to [Can01, CR03] for further details. The main goal
of the UC framework is to analyze the security of cryptographic protocols under
arbitrary composition, i.e., it takes into consideration scenarios where many copies
of a protocol are executed concurrently with themselves and other protocols in a
complex environment, such as the Internet. The composition theorem ensures that
any protocol proven to be UC-secure can also be securely composed with copies of
itself and other protocols. Apart from guaranteeing security in a realistic scenario,
the UC framework also enables the modular design of complex applications.

A set of parties P1, . . . ,Pu, an adversary A and an environment Z interact with
each other. The environment is responsible for providing the inputs for the parties
and A, and for receiving their outputs. The adversary A is responsible for delivering
the messages between the parties (thus modeling that the adversary controls the
network scheduling) and may also choose to corrupt a set of parties, in which case
he gains control over them. All entities are modeled as Interactive Turing Machines.

The main insight of the UC framework is that Z captures all activity external to
the current execution of the protocol. To prove the security of a protocol, one first
defines an idealized version F of the functionality that the protocol is supposed to
perform. Then one shows that for every adversary A there exists a simulator S such
that no environment Z can distinguish between an execution of the protocol π with
the parties P1, . . . ,Pu and A, and an ideal execution with dummy parties that only
forward inputs/outputs, F and S. The ideal functionality F does what the protocol
should do in a black box manner, i.e., given the inputs, the ideal functionality
follows the primitive specification and returns the output as specified; however, the
functionality must also deal with the actions of corrupted parties, such as invalid
inputs and deviations from the protocol. Some interesting points are: S has no
access to the contents of the messages sent between a party and F if the party is
not corrupted; Z cannot see the messages sent between the parties and F and also
cannot see the messages sent between the parties in the real protocol execution. A
protocol π securely UC-realizes an ideal functionality F if for every adversary A
in the real world there exists a simulator S in the ideal world such that no Z can
distinguish an execution of the protocol π with the parties and A from an execution
of the ideal functionality F with the dummy parties and S. This is stated formally
in the following definition.

Definition 2.27 ([Can01]) A protocol π is said to UC-realize an ideal function-
ality F if, for every adversary A, there exists a simulator S such that, for every
environment Z, the following holds:

EXECπ,A,Z
c
≈ IDEALF ,S,Z

where EXECπ,A,Z(n) represents the view of Z in the real protocol execution with A
and the parties (with security parameter n) and IDEALF ,S,Z(n) represents the view
of Z in the ideal execution with the functionality F , the simulator S and the dummy
parties. The probability distribution is taken over the randomness of the parties.

Obtaining computational indistinguishability between real and ideal executions
guarantees that the protocol is secure against probabilistic polynomial time adver-
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saries. Even though this is enough for the security requirements of many proto-
cols and applications, it is interesting to achieve security against computationally
unbounded adversaries. In this thesis some of our protocols UC-realize the respec-
tive ideal functionalities with statistically indistinguishable, thus providing security
against attackers that have unlimited computational power.

It is a well-known fact that two-party computation and multi-party computation
with dishonest majority is only possible with additional assumptions, either about
bounds on resources available to the parties (e.g. polynomial time), or some setup
assumption (e.g. existence of a noisy channel or oblivious transfer, or the help of
some trusted third party). In the case of UC-secure protocols, the scenario is even
more strict: non-trivial two-party and multi-party functionalities cannot be real-
ized without setup assumptions [CF01, CLOS02]. Setup assumptions allowing the
realization of non-trivial functionalities include: existence of a common reference
string [CF01, CLOS02, PVW08], a public-key infrastructure [BCNP04] or noisy-
channels [DMQN08, DvdGMQN13], the random oracle model [HMQ04], signature
cards [HMQU05] and tamper-proof hardware [Kat07, DKMQ11, DMQN15]. Pre-
distributed correlated randomness, i.e., the commodity-based model, constitutes an
attractive setup assumption and is the one focused on this work.

We consider security against static adversaries, i.e., the set of corrupted parties is
fixed before the protocol execution and remains unchanged during the execution. In
the ideal functionalities the messages are public delayed outputs, meaning that the
simulator is first asked whether they should be delivered or not (this is due to the
modeling that the adversary controls the network scheduling). This fact as well as
the session identifications are omitted from our functionalities’ descriptions for the
sake of readability.

2.9 Commodity-based Cryptography

Inspired by the client-server distributed computation model, in which a powerful
server performs part of the most complex tasks for the clients, Beaver introduced
the commodity-based model [Bea97, Bea98b, Bea95], which is a setup assumption
and an alternative for obtaining highly efficient, unconditionally secure multi-party
computation. In this model there is a setup phase that is independent from the
protocol inputs and is performed prior to the protocol execution, possibly long before
the protocol inputs are even fixed. In this phase a trusted initializer pre-distributes
correlated data to the protocol participants. Thereafter, the trusted initializer does
not take part in the protocol execution and, in particular, he does not learn the
parties’ inputs. The trusted initializer is modeled here by an ideal functionality FDTI,
which is parametrized by an algorithm D that samples the correlated data to be
pre-distributed to the parties, see Figure 2.1 for details.

The main advantage of this model is that, for many problems, it allows to obtain
very efficient solutions while achieving unconditional security (in many cases even
perfect security). This comes essentially from the fact that, in these problems, the
most complex operations can be delegated to the trusted initializer who performs
them locally. More specifically, for those problems, the trusted initializer normally
pre-distributes instances of the desired functionalities computed on random inputs,
which the parties later on only have to derandomize to match their actual inputs.
Notably, this model has been used to construct very efficient protocols for primi-
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Functionality FDTI

FDTI runs with the parties P1, . . . ,Pu and is parametrized by an algorithm D.

Upon initialization run (D1, . . . , Du)← D. For i = 1, . . . , u, deliver Di to Pi.

Figure 2.1: The Trusted Initializer functionality.

tives as commitments [Riv99, BMSW02, NMQO+03], OT [Bea95, Bea97, Riv99],
verifiable secret sharing [NMQO+04, DMQO+11], inner product [DGMN11], string
equality [IKM+13], set intersection [IKM+13], secure linear algebra [DDvdG+16] and
oblivious polynomial evaluation [TND+15].

In the commodity-based model it is possible to obtain point-to-point secure au-
thenticated channels by using pre-distributed one-time pads and unconditionally
secure message authentication codes, as well as broadcast channels by using the
techniques of Pfitzmann and Waidner [PW96]. Given that OT is complete [Kil88],
one possibility is to use OT-based protocols to obtain general multi-party compu-
tation protocols; but this would imply a large overhead. Lower bounds on the OT
reductions are known both for the case of perfect security [Bea96, DM99] and sta-
tistical security [WW10]. Fitzi et al. [FGMv02, FWW04] investigated the types of
correlated data that can be useful for obtaining secure broadcast in the presence of
an honest majority, and thus also for secure multi-party computation with honest
majority [Bea90, RBO89, CDD+99]. Ishai et al. [IKM+13] studied the communi-
cation complexity of protocols based on correlated data and also presented general
possibility results for protocols with perfect security.

In practice this correlated data can be obtained in different ways: (1) it can
be distributed by a single trusted center that runs locally the sampler D during
the setup phase and delivers the data to the protocol participants; (2) it can be pre-
distributed by many, not entirely trusted centers that do not interact with each other
and do not need to know about each other existence. In this case one only needs a
majority of the centers to be honest [Bea97, Bea98b]; (3) or it can be pre-computed
by the parties using a multi-party computation protocol in order to emulate the
trusted initializer. In this case the overall security is only computational; the main
advantage is offloading the heavy computational steps to an offline phase that can
be executed at any time.

2.10 Matrix Multiplication

Given the operations that can be performed locally with the secret sharings, one
important operation that is missing is the secure multiplication of secret shared val-
ues. While this operation can be complex to perform in the plain model, in the
commodity-based model there is a very efficient and simple protocol due to Beaver
[Bea92, Bea98a]. In this section we present a generalization of his solution that can
deal with the multi-party, distributed multiplication of matrices which are repre-
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Functionality FDMM

FDMM runs with parties P1, . . . ,Pu and is parametrized by the size q of the ring
and the dimensions `1, `2 and `3 of the matrices to be multiplied.

Input: Upon receiving a message from a party with its shares of JXKq and JYKq ,
verify if the share of X is in Z`1×`2q and the share of Y is in Z`2×`3q . If it is not,
abort. Otherwise, record the shares, ignore any subsequent message from that
party and inform the other parties about the receipt.

Output: Upon receipt of the shares from all parties, reconstruct X and Y from
the shares, compute Z = XY and create a secret sharing JZKq to distribute to
the parties: the corrupt parties fix their shares of the output to any constant
values and the shares of the uncorrupted parties are then created by picking
uniformly random values subject to the correctness constraint. The shares of the
uncorrupted parties are only delivered if the adversary allows.

Figure 2.2: The distributed matrix multiplication functionality.

sented in the form of element-wise secret sharings. The parties have as inputs secret
sharings JXKq with X ∈ Z`1×`2q and JYKq with Y ∈ Z`2×`3q , and want to obtain as
output a secret sharing JZKq corresponding to Z = XY while leaking information
from neither the input values X and Y nor the output value Z. The trusted initial-
izer pre-distributes a random matrix multiplication triple to the parties, i.e., secret
sharings JUKq , JVKq , JWKq for U and V uniformly random in Z`1×`2q and Z`2×`3q ,
respectively, and W = UV. The parties then derandomize the random matrix mul-
tiplication triple during the protocol execution in order to compute the secret sharing
JZKq . Figure 2.2 describes the distributed matrix multiplication functionality FDMM

that is considered and Figure 2.3 presents the protocol πDMM that implements such
functionality.

Theorem 2.28 For static malicious adversaries corrupting any number of parties,
the distributed matrix multiplication protocol πDMM UC-realizes with perfect security
the functionality FDMM in the commodity-based model.

Proof: For verifying the correctness, first notice that

Z = XY = (U + D)(V + E) = UV + UE + DV + DE = W + UE + DV + DE

and therefore JZKq ← JWKq + EJUKq + DJVKq + DE really obtains a secret sharing
corresponding to Z = XY. The fact that the resulting shares are uniformly random
subject to the correctness conditions follows trivially from the properties of the pre-
distributed matrix multiplication triple.

The simulation is very simple and proceeds as follows. The simulator S runs inter-
nally a copy of the adversary A and reproduces the real world protocol execution
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Secure Distributed Matrix Multiplication Protocol πDMM

The protocol runs with parties P1, . . . ,Pu and is parametrized by the size q of
the ring and the dimensions `1, `2 and `3 of the matrices to be multiplied. The
trusted initializer chooses uniformly random U ∈ Z`1×`2q and V ∈ Z`2×`3q , computes
W = UV and pre-distributes secret sharings JUKq , JVKq , JWKq to the parties. The
parties have inputs JXKq with X ∈ Z`1×`2q and JYKq with Y ∈ Z`2×`3q , and interact
as follows:

1. Locally compute JDKq ← JXKq − JUKq and JEKq ← JYKq − JVKq , then open
D and E using a broadcast channel. A party aborts if it receives a message
with invalid format during the opening.

2. Locally compute the output JZKq ← JWKq + EJUKq + DJVKq + DE.

Figure 2.3: The protocol for secure distributed matrix multiplication.

perfectly for A. For that, it simulates the protocol execution with dummy inputs
for the uncorrupted parties. The leverage of the simulator is the fact that it can
simulate the trusted initializer functionality FDTI for A. Using this leverage, when-
ever a corrupted party broadcasts its shares of D and E in the simulated protocol
execution, S can extract the respective shares of X and Y to give to the distributed
matrix multiplication functionality FDMM. And whenever an honest party sends its
shares to the functionality, S simulates the broadcast messages for A by sending
random messages, which from A’s point of view are indistinguishable from the mes-
sages in the real protocol execution as the shares of U and V are uniformly random
and unknown to A. Given its knowledge about JUKq , JVKq , JWKq ,D and E by the
end of the simulated execution, S knows, for each corrupted party, which value its
share of the output is supposed to take, and therefore S can fix these values in FDMM

so that the sum of the uncorrupted parties’ shares is compatible with the simulated
execution. If the uncorrupted parties get their shares of the output in the simulated
protocol, S allows FDMM to deliver their shares.

Notation: We denote by πDM and πIP the protocol for the special cases of mul-
tiplication of single elements and inner-product computation, respectively.

Broadcast Channel: In the two-party case or if we restrict to honest-but-curious
adversaries, broadcast is trivially not necessary. In the remaining cases with dis-
honest majority, no termination can be guaranteed for the final protocols, so no
termination for the broadcast protocol is needed and we can use the simple protocol
of Damg̊ard et al. [DPSZ11, Section A.3].

If only a simplified version of the protocol is needed in which the output is still
distributed as a secret sharing, but the inputs are hold entirely by single parties,
lets say X by P1 and Y by P2, then it is possible to use the even more efficient
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Simplified Secure Distributed Matrix Multiplication Protocol π′DMM

The protocol runs with parties P1, . . . ,Pu and is parametrized by the size q of
the finite field and the dimensions `1, `2 and `3 of the matrices to be multiplied.
The trusted initializer chooses uniformly random U ∈ Z`1×`2q and V ∈ Z`2×`3q ,
computes W = UV and pre-distributes the secret sharing JWKq to the parties,
U to P1 and V to P2. P1 has input X ∈ Z`1×`2q and P2 has input Y ∈ Z`2×`3q .
The parties interact as follows:

1. P1 locally computes D← X−U and sends it to P2, who in turn computes
E← Y−V and sends it to P1. A party aborts if it receives a message with
invalid format.

2. Locally compute the output JZKq ← JWKq + EU + DV + DE, where the
second term is added locally by P1 and the last two terms locally by P2.

Figure 2.4: The simplified protocol for secure distributed matrix multiplication.

protocol π′DMM that is described in Figure 2.4. Table 2.1 presents a comparison of
the complexity in terms of the pre-distributed data, communication, and number of
additions and matrix multiplications performed between the two protocols.

Protocol πDMM Protocol π′DMM

Pre-distributed Data u(`1`2 + `2`3 + `1`3) `1`2 + `2`3 + u`1`3

Communication u(`1`2 + `2`3) broadcast `1`2 + `2`3 point-to-point
Matrix Multiplication 2u+ 1 2
Additions u(`1`2 + `2`3 + 2`1`3) + `1`3 `1`2 + `2`3 + 2`1`3

Table 2.1: Complexity of both distributed matrix multiplication protocols when exe-
cuted with u parties to multiply a matrix of dimension `1×`2 by a matrix
of dimension `2 × `3. The pre-distributed data and communication com-
plexities are expressed in terms of ring elements. The multiplications are
in terms of matrix multiplications with dimensions `1 × `2 and `2 × `3.
And the additions are in terms of ring element additions.

2.11 Other Technical Lemmas

This section comes from Dowsley et al. [DLN14, DLN15] and presents some useful
supporting lemmas that are used in the security proofs of our commitment and
OT protocols in the Bounded Storage Model with Errors, which are described in
Chapter 5.

The following is a basic fact that follows from simple counting.
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Lemma 2.29 Let 0 ≤ δ < 1/2 and let x, y ∈ {0, 1}` be such that HD(x, y) ≤ δ` and
H∞(X) ≥ α` where 0 < α < 1. Then H∞(Y ) ≥ (α− h(δ))`.

The next lemma shows that the restrictions of two tuples to random subsets of
their positions have relative Hamming distances that are close to the one between
the entire tuples.

Lemma 2.30 ([DLN15]) Let x, y ∈ {0, 1}`. Let S be a random subset of [`] of
size t and consider any 0 < ν. On one hand, if HD(x, y) ≤ δ`, then HD(xS , yS) <
(δ + ν)t except with probability e−tν

2/2. On the other hand, if HD(x, y) ≥ δ`, then
HD(xS , yS) > (δ − ν)t except with probability e−tν

2/2.

Proof: Lets begin with the first part of the lemma. By Lemma 2.10, a random
subset sampler is an (µ, ν, e−tν

2/2)-averaging sampler for any µ, ν > 0. Hence for any
f : [`]→ [0, 1] with 1

`

∑`
i=1 f(i) ≥ µ

Pr

[
1

|S|
∑
i∈S

f(i) ≤ µ− ν

]
≤ e−tν

2/2, (2.2)

Let

f(i) =

{
0, if xi 6= yi,

1, otherwise.

Fix µ = 1−δ. Note that 1
|S|
∑

i∈S f(i) = 1− HD(xS ,yS)
t

and 1
`

∑`
i=1 f(i) = 1− HD(x,y)

`
≥

µ. Thus by Equation (2.2)

e−tν
2/2 ≥ Pr

[
1

|S|
∑
i∈S

f(i) ≤ µ− ν

]

= Pr

[
1− HD(xS , yS)

t
≤ 1− δ − ν

]
= Pr

[
HD(xS , yS) ≥ (δ + ν)t

]
which proves the first part of the lemma.

The second part of the lemma uses the same idea, but now the function f is

f(i) =

{
0, if xi = yi,

1, otherwise.

Fixing µ = δ it holds that 1
|S|
∑

i∈S f(i) = HD(xS ,yS)
t

and 1
`

∑`
i=1 f(i) = HD(x,y)

`
≥ µ

and hence

e−tν
2/2 ≥ Pr

[
1

|S|
∑
i∈S

f(i) ≤ µ− ν

]

= Pr

[
HD(xS , yS)

t
≤ δ − ν

]
= Pr

[
HD(xS , yS) ≤ (δ − ν)t

]
which finishes the proof of the lemma.

The following statement of the birthday paradox is standard.
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Lemma 2.31 Let M,N ⊂ [`] be chosen independently at random with |M| =
|N | = 2

√
t`. Then

Pr [ |M ∩N| < t ] < e−t/4

Proof: See corollary 3 in Ding [Din01] for example.

The following useful lemma will also be employed in Chapter 5.

Lemma 2.32 ([AS04]) Let 0 < δ < 1/2. Then

δ∑̀
i=0

(
`

i

)
≤ 2h(δ)`.

Proof: It holds that

2−h(δ)` = 2(δ log δ+(1−δ) log(1−δ))`

= δδ`(1− δ)(1−δ)`

≤ δi(1− δ)`−i for i = 0, . . . , δ`.

where the last inequality is valid for δ < 1/2.

Hence

2−h(δ)`

δ∑̀
i=0

(
`

i

)
≤

δ∑̀
i=0

(
`

i

)
δi(1− δ)`−i = 1,

and this finishes the proof.

The following lemma by Rompel [Rom90] will be also useful.

Lemma 2.33 ([Rom90]) Suppose t is a positive even integer, X1, · · · , Xu are t-
wise independent random variables taking values in the range [0, 1], X =

∑u
i=1Xi,

µ = E[X], and A > 0. Then

Pr [ |X − µ| > A ] < O

((
tµ+ t2

A2

)t/2)
.





3. On the OT Capacity of GEC
Against Malicious Adversaries

A Generalized Erasure Channel is a combination of a discrete memoryless channel
and an erasure channel: independently from the input symbol, the output of each
transmission is an erasure with probability pε > 0. It can ben formally defined as
follows:

Definition 3.1 (Generalized Erasure Channel) A discrete memoryless chan-
nel {W : X → Y} is called a Generalized Erasure Channel (GEC) if the output
alphabet Y can be decomposed as Y0∪Y∗ such that W (y|x) does not depend on x ∈ X
if y ∈ Y∗. For a GEC and for all x ∈ X , y ∈ Y0, we denote W0(y|x) = 1

1−pεW (y|x)

where pε is the sum of W (y|x) for y ∈ Y∗.

GECs represent a very special case in the study of OT protocols based on noisy
channels. In general, the known techniques to implement OT from noisy channels
first use the noisy channel to emulate a GEC (in case it is not one) and then use
the GEC in the rest of the protocol; the exception being the very recent work of
Khurana et al. [KMS16]. Therefore, clarifying the OT capacity of GEC is a central
question.

Ahlswede and Csiszár [AC07, AC13] obtained upper and lower bounds on the
OT capacity of GECs against honest-but-curious adversaries. In the case of GECs
with erasure probability pε ≥ 1/2, the upper and lower bounds match and therefore
the OT capacity is determined. Pinto et al. [PDMN11] proved that for this case
these bounds can also be extend for the malicious adversaries case1, thus completely
characterizing the OT capacity of GECs with pε ≥ 1/2. In the case of GEC with
erasure probability pε < 1/2, the lower bound against honest-but-curious adversaries
established by Ahlswede and Csiszár does not match their upper bound and it was
unknown whether this OT rate could be achieved also when considering malicious
adversaries.

This chapter is based on [DN14] and shows the existence of an OT protocol based
on GECs with pε < 1/2 that is secure against malicious adversaries and achieves

1Of course, any upper bounds automatically extends from the honest-but-curious case to the
malicious one.

29
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the same OT rate as Ahlswede and Csiszár’s scheme against honest-but-curious
adversaries. In order to obtain our result we introduce a novel use of interactive
hashing that is suitable for dealing with the case of low erasure probability. The
techniques used by Pinto et al. [PDMN11] clearly do not apply in the case that
pε < 1/2 as they explicitly use the fact that the majority of the symbols received by
Bob are erasures.

3.1 Problem Statement

We consider malicious adversaries that can act arbitrarily. As Beaver [Bea95] pre-
sented an extremely efficient reduction from randomized OT to standard OT, for
simplicity, we consider OT with random inputs in this chapter. The input messages
come from M = {0, 1}m. In addition to the bidirectional noiseless channel, the
parties are connected by a GEC from Alice to Bob. The security definition used
was introduced in Section 2.6. The security parameter n determines the number of
times that the GEC W is used.

The OT rate of a protocol is given by ROT = m
n

. The OT capacity COT(W ) of the
channel W is the supremum of the achievable rates for protocols that use W and are
(λC, λB, λA)-secure with λC, λB and λA negligible in n. For a GEC {W : X → Y},
let CS(W0) denote the Shannon capacity of the discrete memoryless channel {W0 :
X → Y0}. The OT capacity of GECs with pε ≥ 1

2
was determined by Ahlswede and

Csiszár [AC07, AC13] for the case of honest-but-curious adversaries, and by Pinto
et al. [PDMN11] for malicious adversaries.

Theorem 3.2 ([AC07, PDMN11, AC13]) For a Generalized Erasure Channel
W with pε ≥ 1

2
, the OT capacity both in the case of honest-but-curious adversaries

as well as in the case of malicious adversaries is COT(W ) = (1− pε)CS(W0).

For the case of GECs with pε <
1
2
, a lower bound on the OT capacity against

honest-but-curious adversaries was obtained by Ahlswede and Csiszár [AC07, AC13].

Theorem 3.3 ([AC07, AC13]) For a Generalized Erasure Channel with pε <
1
2
,

a lower bound on the OT capacity in the case of honest-but-curious adversaries is
COT(W ) ≥ pεCS(W0).

Here we prove that the same OT rate can also be achieved against malicious
adversaries.

3.2 Our Lower Bound on the OT Capacity of GEC

Theorem 3.4 ([DN14]) For a Generalized Erasure Channel with pε <
1
2
, a lower

bound on the OT capacity for malicious adversaries is COT(W ) ≥ pεCS(W0).

The secure OT protocol that achieves such rate is presented below and belongs
to the lineage of protocols initiated by Crépeau and Savvides [CS06, Sav07], which
use interactive hashing as a central, efficient mechanism to ensure that (a malicious)
Bob is following the protocol rules without revealing to Alice his choice bit. Due to
the fact that in our case the non-erasure positions are the majority, our usage of the



3.2. Our Lower Bound on the OT Capacity of GEC 31

interactive hashing protocol is different from the previous protocols. The description
of the OT protocol πOTGEC is in Figure 3.1. The bit length of the OT input strings
is m = n[(µ− 5α)H(X)−µH(X|Y ∈ Y0)−µε− γ], where the constant are clarified
in the protocol description.

Theorem 3.5 ([DN14]) The OT protocol πOTGEC is (λC, λB, λA)-secure with λC, λB
and λA negligible in n.

Proof: Correctness: If both Alice and Bob are honest, Bob gets the correct out-
put value unless he aborts in the Good/Bad Sets step or he does not recover exactly
x̃Qc = xQc in the Output step. But the probability that Bob has to abort in the
Good/Bad Sets step is a negligible function of the security parameter n due to the
Chernoff bound [Che52]. Bob does not recover the correct x̃Qc = xQc if either xQc is
not jointly typical with yQc or if there exists another xQc that has gc(x

Qc) = gc(x
Qc)

and is jointly typical with yQc . The former case only occurs with negligible proba-
bility due to the definition of joint typicality. For the latter case, an upper bound on
the number of xQc that are jointly typical with yQc is 2µn[H(X|Y ∈Y0)+ε′], for 0 < ε′ < ε
and n sufficiently large. Therefore according to Lemma 2.14, for n sufficiently large,
with overwhelming probability gc(x

Qc) 6= gc(x
Qc) for all these other xQc that are

jointly typical with yQc . As all events that result in Bob not obtaining the correct
output only occur with negligible probability in n, the protocol is correct.

Security for Bob: In a GEC each input symbol x is erased with the same proba-
bility pε. Therefore Alice has no knowledge about the erasures and thus from Alice’s
point of view the tuples R0 and R1 are independent from the choice bit c. The only
other point where the bit c is used is to compute e = d ⊕ c in the Checking the
Partitioning step, but there it is xored with the bit d and Alice’s has no information
about d due to the security properties of the interactive hashing protocol.

Security for Alice: The proof of security for Alice follows the lines of Savvides’
proof [Sav07, Section 5.1], but we use new variants of the supporting definitions and
lemmas due to the fact that we use the interactive hashing protocol in a different
way.

Definition 3.6 For a tuple R of indices in [n], let u(R) be the number of indices
whose corresponding output was an erasure.

Definition 3.7 For a tuple of indices R and a subset T of the elements of R, let K
denote the corresponding indices. T is called good for R if u(K) < αn, otherwise
it is called bad for R.

The proof is divided in two cases as follows: (1) both u(R0), u(R1) ≥ 2αn, (2) either
u(R0) or u(R1) is less than 2αn.

Case 1: For proving Alice’s security in the first case we will need the following
lemmas.
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Secure OT Protocol πOTGEC based on GEC

1. (Parameter Setting) Alice and Bob select a positive constant α such that
3α < 1/2− pε and set β = 1/2− pε − α. Note that β > 2α.

2. (GEC Usage) Alice chooses xn randomly according to the probability dis-
tribution that achieves the Shannon capacity of W0. She sends xn to Bob
using the GEC, who receives the string yn.

3. (Good/Bad Sets) Bob divides the string yn into a set G of good indices
(those with y ∈ Y0) and a set B of bad indices (those corresponding to
erasures). The protocol is aborted if |G| < (1− pε − α)n.

4. (Partitioning) Bob chooses uniformly randomly a bit c and a `-bit string
v with ` = dlog

(
n/2
βn

)
e. He decodes v into a subset T of cardinality βn

out of n/2 elements using Savvides’ encoding scheme that is described in
Section 2.7. Then he partitions the n indices into two tuples of length n/2.
For the tuple Rc he picks randomly n/2 indices from G. For R1−c, he first
fills the positions of R1−c specified by the subset T randomly with unused
indices from G and then fills the rest of R1−c randomly with the n/2 − βn
indices that are still unused. Bob sends the descriptions of R0 and R1 to
Alice, who aborts if there are repeated indices.

5. (Interactive Hashing) Bob sends v to Alice using the interactive hashing
protocol from Lemma 2.24. Let v0 and v1 be the output strings, T0 and T1

the decoded subsets and d be such that vd = v.

6. (Checking the Partitioning) Let e = d⊕c. Define K0 as the indices contained
in R0 that are selected by T1−e and Q0 as the remaining indices in R0.
Similarly, define K1 as the indices contained in R1 that are selected by Te
and Q1 as the remaining indices in R1. Bob announces e, yK0 and yK1 .
For a fixed ε̂ > 0 Alice verifies if yK0 and yK1 are 2ε̂-jointly typical for the
channel {W0 : X → Y0} with her input on these indices (see Section 2.4 for
the considered definitions of typicality); aborting if this is not the case.

7. (Strings Transmission) Let µ = pε + α. Alice randomly chooses 2-universal
hash functions g0, g1 : X µn → {0, 1}µn[H(X|Y ∈Y0)+ε] with ε > 0 such that the
output length is integer and computes g0(xQ0) and g1(xQ1). In addition she
also randomly chooses 2-universal hash functions h0, h1 : X µn → {0, 1}ψn
with ψ = (µ − 5α)H(X) − µ(H(X|Y ∈ Y0) + ε) − γ and γ > 0 is such
that the output length is integer. Alice sends Bob g0(xQ0), g1(xQ1) and the
descriptions of g0, g1, h0, h1. She outputs s0 = h0(xQ0) and s1 = h1(xQ1).

8. (Output) Bob computes all possible x̃Qc that are jointly typical with yQc

and satisfy gc(x̃
Qc) = gc(x

Qc). If there exists exactly one such x̃Qc , then
Bob outputs sc = hc(x̃

Qc); otherwise sc = 0ψn.

Figure 3.1: OT protocol based on GEC.
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Lemma 3.8 ([DN14]) Let R be a tuple with n/2 distinct indices in [n] such that
u(R) ≥ 2αn. The fraction f of subsets T of cardinality βn that are good for R
satisfies f < (1− 2α)αn.

Proof: Using the probabilistic method, we prove that a subset T chosen uniformly
at random will be good for R with probability smaller than (1 − 2α)αn. One way
of choosing the resulting set of indices K is by picking sequentially at random, and
without replacement, βn indices out of the n/2 indices in R. For 1 < i < βn, the
probability pi that the i-th chosen index corresponds to a non-erasure given that K
does not have enough erasure indices so far for T to be considered bad for R (i.e.,
less than αn erasures) is upper bounded by

pi < 1− 2αn− αn
n/2

= 1− 2α.

Since for a subset T to be considered good for R it needs to correspond to at least
βn− αn non-erasure indices, we have that

Pr [ T is good for R ] < (1− 2α)βn−αn < (1− 2α)αn.

where the last inequality holds because β > 2α.

Lemma 3.9 ([DN14]) Let R0,R1 be tuples with n/2 distinct positions each such
that u(R0) ≥ 2αn and u(R1) ≥ 2αn. The fraction of strings v ∈ {0, 1}` that decode
to subsets T that are good for either R0 or R1 is no larger than 4(1− 2α)αn.

Proof: It follows from the previous lemma and the union bound that the fraction
f of subsets T that are good for either R0 or R1 is smaller than 2(1− 2α)αn. Then
the lemma follows straightforwardly from the fact that in the encoding scheme used
there are either one or two strings mapping to each set.

Since the fraction of the strings v ∈ {0, 1}` that are good for either R0 or R1 is
no larger than 4(1 − 2α)αn, we can set the security parameter t of the interactive
hashing protocol as

t = log(4(1− 2α)αn2`) = `+ αn log(1− 2α) + 2

and thus have by Lemma 2.24 that the interactive hashing protocol is (2−`)-uniform
(t, θ)-secure for

θ = 2−(`−t)+O(log `) = 2αn log(1−2α)+O(logn).

Hence, by the security of the interactive hashing protocol, the probability that both
v0 and v1 are good for either R0 or R1 is a negligible function of n, and so with
overwhelming probability one of the tuples (w.l.o.g. R0) will be such that u(K0) ≥
αn.

By Lemma 2.22, two n long strings are not jointly typical if they are not jointly
typical at a uniformly randomly chosen linear fraction of their positions. Hence Bob
only succeeds in Alice’s test in the Checking the Partitioning step (i.e., he can only
find yK0 that is jointly typical with Alice’s input) if he can correctly guess y’s values
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for the erasure positions that are jointly typical with Alice’s input on these positions.
Fixing an arbitrarily small ε̂ with CS(W0)/2 > ε̂ > 0, for n sufficiently large, there
are for these positions at most 2αn[H(Y ∈Y0|X)+ε̂] sequences of y’s values that are jointly
typical with Alice’s input, and there are at least 2αn[H(Y ∈Y0)−ε̂] typical sequences for
the y’s values, thus Bob’s success probability is less than

2αn[H(Y ∈Y0|X)−H(Y ∈Y0)+2ε̂] = 2−αn[CS(W0)−2ε̂],

which is a negligible function of n. Since Bob can only cheat with negligible proba-
bility in the case that both u(R0), u(R1) ≥ 2αn, the protocol is secure for Alice in
this case.

Case 2: We assume w.l.o.g. that R0 is the one with u(R0) < 2αn. The Chernoff
bound guarantees that |B| > (pε − α)n with overwhelming probability. If Te is bad
for R1, then, by the same reasons as above, we have that Bob can only successfully
pass the test performed by Alice in the Checking the Partitioning step (i.e., finding
yK1 that is jointly typical with Alice’s input) with negligible probability. But if
u(R0) < 2αn, u(K1) < αn and |B| > (pε − α)n, then u(Q1) ≥ (pε − 4α)n. Then
from Bob’s point of view, at least (pε− 4α)n = (µ− 5α)n of the positions in Q1 are
erasures and Alice only sends him µn[H(X|Y ∈ Y0) + ε] bits of information about
xQ1 through the output of g1. Hence

H∞(XQ1|VIEWOT
B̃ob

) > n[(µ− 5α)H(X)− µH(X|Y ∈ Y0)− µε]

and so the use of the 2-universal hash function h1 for extracting n[(µ− 5α)H(X)−
µH(X|Y ∈ Y0) − µε − γ] bits is secure according to Lemma 2.14. Therefore the
protocol is secure for Alice in this case as well.

Maximizing the OT rate: For n sufficiently large, α, ε and γ can be made
arbitrarily small without compromising the security, thus in the limit the strings’
length can be up to

m = npε[H(X)−H(X|Y ∈ Y0)].

Since the probability distribution used for X is the one achieving the Shannon ca-
pacity of W0, this is equal to npεCS(W0), thus proving Theorem 3.4.

3.3 Discussion

In this chapter it was proven that for OT protocols based on GECs with error
probability pε < 1/2 the known lower bound on the OT capacity against honest-
but-curious adversaries also holds in the case of malicious adversaries. In order to
prove this result, a novel usage of the interactive hashing technique suitable for chan-
nels with low erasure probability was established, which can be of interest in other
scenarios. The question of determining the exact OT capacity of the generalized
erasure channels with low erasure probability remains open, even for honest-but-
curious adversaries, and would be an interesting direction for future research given
the pivotal role of these channels in the known constructions of OT from noisy chan-
nels. Another interesting line of research would be developing new methodologies for
obtaining OT from noisy channels which circumvent the need of emulating a GEC
as a first step, as done in the very recent work of Khurana et al. [KMS16].



4. On the Commitment Capacity
of Unfair Noisy Channels

As discussed in the introduction, the existence of noisy channels is one of the physical
assumptions that enables to obtain unconditionally secure commitment protocols.
However, as pointed out by Damg̊ard et al. [DKS99], from a cryptographic perspec-
tive most of the protocols based on noisy channels have the disadvantage that they
rely on the assumption that a malicious party do not interfere with the channel to
try to modify its error probability.

Given this state of affairs, Damg̊ard et al. [DKS99] introduced the more realis-
tic channel named Unfair Noisy Channel, which is an generalization of the Binary
Symmetric Channel and deal with the previous problem. An Unfair Noisy Channel
is specified by two parameters, γ and δ, such that 0 < γ < δ < 1

2
and is denoted as

(γ, δ)-UNC. The honest parties only have the guarantee that the error probability
lies in the interval [γ, δ], but do not know the exact value; while a malicious party can
fix the error probability to any value in that range. This implies that any protocol
based on a (γ, δ)-UNC has to keep its correctness and security guarantees for any
error probability in the interval [γ, δ]. This channel can be formalized as follows:

Definition 4.1 (Unfair Noisy Channels [DKS99]) The (γ, δ)-UNC receives as
input a bit x and outputs a bit y. The transition probability of the (γ, δ)-UNC is
determined by an auxiliary parameter t whose alphabet are the real numbers in the
interval [γ, δ]. If the transmitter or the receiver is malicious, he can choose the
value of t; otherwise it is randomly chosen and is not revealed to the parties. The
transition probability is given by PY |XT (y, x, t) = 1− t if y = x and PY |XS(y, x, t) = t
if y 6= x.

A (γ, δ)-UNC can equivalently be seen as the concatenation of two Binary Sym-
metric Channels, WF with error probability γ and WV with error probability θ for
0 ≤ θ ≤ δ−γ

1−2γ
. The error probability of the channel WV can be controlled by a

malicious party and it is unknown in the case that both parties are honest.
Damg̊ard et al. [DKS99] proved that, on one hand, if δ ≥ 2γ(1−γ) then the (γ, δ)-

UNC is trivial and does not allow to build secure commitment protocols. On the
other hand, if δ < 2γ(1−γ) then there is a commitment protocol based on the (γ, δ)-

35
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UNC. In this chapter, which is based on [CDN16], we determine the commitment
capacity of the Unfair Noisy Channels.

Recently a variant of UNC known as Elastic Channel has been studied. On one
hand, it has two restrictions with relation to UNC: (1) only a corrupt receiver can ma-
nipulate the crossover probability to any value in the range [γ, δ]; (2) when both par-
ties are honest the crossover probability is always δ. On the other hand, commitment
(and even oblivious transfer) can be obtained for all parameters 0 < γ < δ < 1/2
[KMS16, CDLR16].

4.1 Problem Statement

Given the value of the (γ, δ)-UNC as a cryptographic resource, it is important to
study the most efficient way of using them and thus the question of investigating
their commitment capacity arises. Our goal here is to determine the commitment
capacity of Unfair Noisy Channels in the same way that Winter et al. [WNI03]
did for discrete memoryless channels and Nascimento et al. [NBSI08] did for the
Gaussian channels.

In our scenario, in addition to the bidirectional noiseless channel, the parties also
have available a (γ, δ)-UNC from Alice to Bob that is used n times during the
commitment phase, where n is the security parameter. In each of this n uses, Alice
inputs a symbol xi to the (γ, δ)-UNC and an output yi is delivered to Bob. Let Xn

be the random variable denoting the bit string sent through the (γ, δ)-UNC and Y n

the bit string received through the (γ, δ)-UNC.

Remark 4.2 We restrict our model to protocols where the public conversation does
not depend on the channel output Y n. This is indeed the case for all the protocols in
the literature. Moreover, the public communication is used solely to prevent Alice
from cheating, thus we see no reason for a commitment protocol based on noisy
channels to have its public communication depending on the channel output.

Definition 4.3 We say that two strings xn and yn are ε-compatible with a (γ, δ)-
UNC if, for ε > 0, HD(xn, yn) ≤ δn+ε. Similarly, two random variables Xn and Y n

are said to be compatible with a (γ, δ)-UNC if Pr [HD(Xn, Y n) > δn ] is negligible in
n.

The security definition considered is the one in Section 2.5, but the correctness is
required to hold for any possible error probability of the UNC (i.e., for any compat-
ible input and output of the UNC).1 The commitment rate of the protocol is given
by

Rcom =
log |M|

n
.

where M is the commitment message space.
A commitment rate is said to be achievable if, for λC, λH and λB negligible in n,

there exists a (λC, λH, λB)-secure commitment protocol that achieves this rate. The
commitment capacity of a (γ, δ)-UNC is the supremum of the achievable rates. Our

1For easiness of presentation the security of our protocol is argued in the stand-alone model, i.e.,
there is only one execution of the protocol. But the security of the commitment protocols based
on noisy channels can be extended to the UC framework [Can01] in which the protocols can be
composed and arbitrary protocols can be executed in parallel [DvdGMQN13, DMQN08].
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result is presented below and states the commitment capacity of the (γ, δ)-UNC.
The proof appears in sections 4.2 and 4.3.

Theorem 4.4 ([CDN16]) The commitment capacity of any non-trivial (γ, δ)-unfair
noisy channel is given by

h(γ)− h(θ), for θ =
δ − γ
1− 2γ

.

4.2 Protocol - Direct Part

We first prove the direct part of the theorem, i.e., we describe the protocol that
achieves the commitment capacity and prove its security. The protocol follows the
approach of Damg̊ard et al. [DKS99] and uses two rounds of hash challenge-response
in order to guarantee the binding property: the intuition is that the first round
reduces the number of inputs that Alice can successfully open to be polynomial in
the security parameter. The second round then binds Alice to one specific input.
The concealing condition is achieved using a 2-universal hash function Ext chosen
by Alice that is used to generate a secure key which is then applied as a one-time
pad to cipher c.

Let θ = δ−γ
1−2γ

and let ν > 0 be a parameter of the protocol. Let α1, α2, β

be parameters such that α1, α2 > 0, β > α1 + α2, and n(h(θ) + α1), nα2 and
n(h(γ)− h(θ)− β) are integers. In the following commitment protocol the message
space is M = {0, 1}n(h(γ)−h(θ)−β). The protocol πComUNC is described in Figure 4.1.

Theorem 4.5 ([CDN16]) For any h(γ) − h(θ) > β > 0, by setting the other
parameters appropriately and having n sufficiently large, the protocol πComUNC is
(λC, λH, λB)-secure with λC, λH and λB negligible in n and can achieve the commit-
ment rate h(γ)− h(θ)− β.

Proof: Correctness: The protocol fails for honest parties only if HD(xn, yn) >
δn+ νn or HD(xn, yn) < γn− νn. As the (γ, δ)-UNC has error probability less than
or equal to δ, the expectation of HD(xn, yn) is less than or equal to δn. Thus the
Chernoff bound guarantees that

Pr [HD(xn, yn) > δn+ νn ]

is a negligible function of n. For similar reasons,

Pr [HD(xn, yn) < γn− νn ]

is a negligible function of n.

Hiding: For any η > 0 and n sufficiently large, we have that

Hε
∞(Xn|G1(Xn), G2(Xn), Y n, G1, G2) ≥ H∞(Xn, G1(Xn), G2(Xn)|Y n, G1, G2)

−H0(G1(Xn), G2(Xn)|Y n, G1, G2)− log(ε−1)

= H∞(Xn|Y n, G1, G2)−H0(G1(Xn), G2(Xn)|Y n, G1, G2)− log(ε−1)

= H∞(Xn|Y n)−H0(G1(Xn), G2(Xn)|Y n, G1, G2)− log(ε−1)

≥ n(h(γ)− η)− n(h(θ) + α1 + α2)− log(ε−1)

= n(h(γ)− h(θ)− η − α1 − α2)− log(ε−1)
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Secure Commitment Protocol πComUNC

Commitment Phase: Alice wants to commit to the binary string m ∈M. The
parties proceed as follows:

1. Alice chooses a random binary string xn = (x1, . . . , xn) of dimension n and
for 1 ≤ i ≤ n sends the bit xi to Bob over the (γ, δ)-UNC.

2. Bob receives the string yn = (y1, . . . , yn) sent over the (γ, δ)-UNC, chooses
uniformly at random a function g1 of the class of 4n-universal hash functions
G1 : {0, 1}n→{0, 1}n(h(θ)+α1), and sends the description of g1 to Alice over
the noiseless channel.

3. Alice computes e1 = g1(xn) and sends it to Bob.

4. Bob chooses uniformly at random a function g2 of the class of 2-universal
hash functions G2 : {0, 1}n→{0, 1}nα2 , and sends its description to Alice
over the noiseless channel.

5. Alice chooses uniformly at random a two-universal hash function Ext :
{0, 1}n→{0, 1}n(h(γ)−h(θ)−β), computes d = m ⊕ Ext(xn) and e2 = g2(xn),
and sends d, e2 and the description of Ext to Bob over the noiseless channel.

Opening Phase: Alice wants to reveal the value of m̃ to Bob. The parties
proceeds as follow:

1. Alice sends to Bob over the noiseless channel the values x̃n and m̃ that she
claims to be the ones used in the commitment phase.

2. Bob checks if γn− νn ≤ HD(x̃n, yn) ≤ δn + νn, if g1(x̃n) = e1, g2(x̃n) = e2

and if m̃ = Ext(x̃n)⊕ d. Bob accepts if there are no problems in the tests.

Figure 4.1: The commitment protocol πComUNC.
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where the first inequality follows from the chain rule for smooth entropy, the first
equality from the fact that G1(Xn), G2(Xn) are functions of G1, G2 and Xn, the
second equality from the fact that Xn is independent of G1, G2 given Y n and the
last inequality follows from the facts that the error probability of the channel is at
least γ, the range of G1 has cardinality 2n(h(θ)+α1) and the range of G2 has cardinality
2nα2 .

Setting ε = 2−ψn (with ψ > 0), for n sufficiently large, the security of the key
obtained by applying the hash function Ext : {0, 1}n→{0, 1}n(h(γ)−h(θ)−β) to x fol-
lows from Lemma 2.14 as β > α1 + α2 and ψ and η can be arbitrarily small for n
sufficiently large. Note that having a negligible statistical distance is equivalent to
having a negligible mutual information [DPP98].

Binding: A dishonest Alice can cheat successfully only if she finds two different
strings xn and x̃n such that γn−νn ≤ HD(xn, yn) ≤ δn+νn, γn−νn ≤ HD(x̃n, yn) ≤
δn+νn, and both pass the sequentially performed hash challenge-response tests, for
arbitrarily small ν and sufficiently large n. We can assume without loss of generality
that Alice sets the error probability of the channel to γ when she sends xn. In the
typicality test an honest Bob accepts any string that is jointly typical with yn for
any error probability γ ≤ ρ ≤ δ. So Alice can cheat only if she finds two strings xn

and x̃n so that both pass the hash tests and are jointly typical with xn for Binary
Symmetric Channels with error probabilities 0 ≤ τ ≤ θ and 0 ≤ τ̃ ≤ θ. The number
of such jointly typical strings is upper bounded by 2n(h(θ)+ε′) for any ε′ > 0 and n
sufficiently large. We fix α1 > ε′.

Let the viable set denote the channel inputs that Alice can possibly open to Bob and
he would accept. If there were no hash checks, the viable set would have at most
2n(h(θ)+ε′) elements. Lets consider this initial viable set. The goal of the first round of
hash challenge-response is to, with overwhelming probability, reduce the number of
elements of the viable set to at most 8n+ 1. In this first round, Alice has to commit
to one arbitrary value e1 for the output of the hash function g1. Considering the j-th
viable string before this first round, we define Ij as 1 if that string is mapped to e1

by g1; and Ij = 0 otherwise. Let I =
∑

j Ij. Clearly µ = E[I] < 1 as α1 > ε′. Let e1

be considered bad if I is bigger than 8n+ 1. Given that g1 is 4n-wise independent,
by applying Lemma 2.33 with t = 4n and A = 2t = 8n, we get

Pr [ I > 8n+ 1 ] < O

((
tµ+ t2

(2t)2

)t/2)
< O

((
1 + t

4t

)t/2)
< O

(
2−t/2

)
.

Then the probability that any e1 is bad is upper bounded by

O
(
2n(h(θ)+α1)2−t/2

)
< O

(
2−n
)
.

But if the viable set contains at most 8n+ 1 elements after the first hash challenge-
response round, the probability that some of those collide in the second hash challenge-
response round is upper bounded by

(8n+ 1)2 2−α2n,

which is negligible in n.
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Commitment Rate: For n sufficiently large, α1 and α2 can be made arbitrarily
small, and thus β can also be made arbitrarily small while preserving the security of
the protocol. Therefore it is possible to achieve the commitment rate h(γ)−h(θ)−β
for any h(γ)− h(θ) > β > 0.

4.3 Converse

For proving the converse, we will assume a specific cheating behavior for Alice. As
we are interested in proving an upper bound in the commitment capacity, restricting
Alice’s behavior will only strength our result. Let k = log |M| and M be uniformly
random over M. Let Xn be a random variable representing the data Alice inputs
into the Unfair Noisy Channel. Assume, Alice sets the noise level of the Unfair
Noisy Channel connecting her to Bob to γ. Let Y n be a random variable obtained
by passing Xn through the Unfair Noisy Channel (Channel 1). Let Zn be a random
variable obtained by passing Xn through a Binary Symmetric Channel with error
probability equal to θ with 0 ≤ θ ≤ δ−γ

1−2γ
(Channel 2). Denote the conversation over

the public authenticated and noiseless channel by T .
In the case of commitments based on fair noisy channels, it was proved by Winter

et al. [WNI03] that after the commit phase is finished, if Bob is presented with
Alice’s inputs to the channel, Xn, he is able to obtain almost complete knowledge
on the committed value M . Here we will prove that in the case of Unfair Noisy
Channels if Bob is presented with a noisy version of Xn he is still able to compute
the committed value M with high probability.

Lemma 4.6 H(M |ZnT ) ≤ 1 + kp for p negligible in n.

Proof: Let M,Xn, Y n, Zn and T be defined as above. We first give a procedure so
that the commitment M can be estimated with high probability from Zn, Y n and
T .

The procedure is as follows. Let test be the test Bob performs during the opening
phase. Given Zn, Y n and T , compute the value m that maximizes

Pr [ test(Zn, Y n, T,m) = 1 ],

breaking ties in an arbitrary way. Because of the binding condition, we know that
no two different values m and m̃ will have

Pr
[
test

(
X
n
, Y n, T,m

)
= 1

]
≥ λB

and
Pr
[
test

(
X̃n, Y n, T, m̃

)
= 1

]
≥ λB

for all X̃n and X
n

compatible with Y n.

Moreover, from the correctness property of the protocol and from the fact that Zn

and Y n are compatible for the Unfair Noisy Channel in question, we know that for
the correct value m we have

Pr [ test(Zn, Y n, T,m) = 1 ] ≥ 1− λC.
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Thus, with high probability this procedure will give us the right committed value
m. Let p be the probability that this procedure returns a wrong value. Using Fano’s
inequality we get

H(M |ZnY nT ) ≤ h(p) + p log |M|
≤ 1 + p log |M|
≤ 1 + kp.

One can prove that the output of the channel Y n is not needed in the above described
procedure. Given the assumed independence of the public conversation T and Y n,
we have that given Zn one can locally simulate Y n by passing Zn through a Binary
Symmetric Channel with error probability γ. Denote the output of the simulated
channel by Y̌ n. Note that Y̌ n and Xn are compatible. Moreover, given the fact that
the public conversation is independent of Y n one has, from the correctness property,
that

Pr
[
test(Zn, Y̌ n, T,m) = 1

]
≥ 1− λC.

From bindingness we know that no two different values m and m̃ will have

Pr
[
test

(
X
n
, Y̌ n, T,m

)
= 1

]
≥ λB

and
Pr
[
test

(
X̃n, Y̌ n, T, m̃

)
= 1

]
≥ λB

for all X̃n and X
n

compatible with Y̌ n.

Again, using Fano’s inequality we get

H(M |ZnY̌ nT ) ≤ h(p) + p log |M|
≤ 1 + p log |M|
≤ 1 + kp.

Because the Markov chain MXn ↔ Zn ↔ Y̌ n holds, we have that H(M |ZnY̌ nT ) =
H(M |ZnT ), which proves our result.

We have that

k ≤ H(M |Y nT ) + λH

= H(M |Y nT )−H(M |ZnT ) +H(M |ZnT ) + λH

≤ H(M |Y nT )−H(M |ZnT ) + 1 + kp+ λH

= H(M |Y nT )−H(M |ZnT )−H(M |T ) +H(M |T ) + 1 + kp+ λH

= I(M ;Zn|T )− I(M ;Y n|T ) + 1 + kp+ λH

where the first inequality comes from the λH-hiding requirement and the second from
the previous lemma.

The expression I(M ;Zn|T )− I(M ;Y n|T ) is then developed using the same steps
as in Section V of the seminal work of Csiszár and Körner [CK78]; the details

are included for the sake of completeness. Let Zi denote Z1 . . . Zi and Ŷ i denote



42 4. On the Commitment Capacity of Unfair Noisy Channels

Yi . . . Yn. We expand I(M ;Zn|T ) starting from I(M ;Z1|T ) and I(M ;Y n|T ) starting
from I(M ;Yn|T )

I(M ;Zn|T ) =
n∑
i=1

I(M ;Zi|TZi−1)

=
n∑
i=1

[
H(Zi|TZi−1)−H(Zi|TZi−1M)

−H(Zi|TZi−1MŶ i+1) +H(Zi|TZi−1MŶ i+1)
]

=
n∑
i=1

[
I(MŶ i+1;Zi|TZi−1)− I(Ŷ i+1;Zi|TZi−1M)

]
=

n∑
i=1

[
I(M ;Zi|TZi−1Ŷ i+1)

+I(Ŷ i+1;Zi|TZi−1)− I(Ŷ i+1;Zi|TZi−1M)
]
.

Similarly we obtain

I(M ;Y n|T ) =
n∑
i=1

[
I(M ;Yi|TZi−1Ŷ i+1)

+I(Zi−1;Yi|T Ŷ i+1)− I(Zi−1;Yi|T Ŷ i+1M)
]
.

We have that
n∑
i=1

I(Ŷ i+1;Zi|TZi−1) =
n∑
i=1

n∑
j=i+1

I(Yj;Zi|TZi−1Ŷ j+1)

=
n∑
j=2

j−1∑
i=1

I(Yj;Zi|TZi−1Ŷ j+1)

=
n∑
j=1

I(Zj−1;Yj|T Ŷ j+1).

Similarly we can get that

n∑
i=1

I(Ŷ i+1;Zi|TZi−1M) =
n∑
j=1

I(Zj−1;Yj|T Ŷ j+1M).

Therefore

I(M ;Zn|T )− I(M ;Y n|T ) =
n∑
i=1

[
I(M ;Zi|TZi−1Ŷ i+1)− I(M ;Yi|TZi−1Ŷ i+1)

]
.

Letting L be a random variable uniformly distributed in {1, . . . , n} and independent

of MTXnY nZn, and setting U , TZL−1Ŷ L+1L, V , UM , X , XL, Y , YL and
Z , ZL we get that U ↔ V ↔ X ↔ Y Z form a Markov chain and

1

n

n∑
i=1

[
I(M ;Zi|TZi−1Ŷ i+1)− I(M ;Yi|TZi−1Ŷ i+1)

]
= I(M ;Z|U)− I(M ;Y |U)

= I(V ;Z|U)− I(V ;Y |U).
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Putting everything together, for any (λC, λH, λB)-secure commitment protocol with
λC, λH and λB negligible in n, there are U ↔ V ↔ X ↔ Y Z such that

k

n
≤ I(V ;Z|U)− I(V ;Y |U) + ε

where ε = 1+kp+λH
n

goes to 0 for n sufficiently large.

We now set θ = δ−γ
1−2γ

. In our case channel 2 is less noisy than channel 1, therefore
maximizing over all U ↔ V ↔ X ↔ Y Z we get

I(V ;Z|U)− I(V ;Y |U) = I(V ;Z)− I(V ;Y )− [I(U ;Z)− I(U ;Y )]

= I(X;Z)− I(X;Y )

−[I(X;Z|V )− I(X;Y |V )]− [I(U ;Z)− I(U ;Y )]

≤ I(X;Z)− I(X;Y )

≤ h(γ)− h(θ)

where the first inequality comes from the fact that both expressions in the brackets
are non-negative since channel 2 is less noisy than channel 1 and the second inequality
follows taking the maximum over X. Hence

k

n
≤ h(γ)− h(θ) + ε,

where ε goes to 0 for n sufficiently large and this completes the proof of the reverse.

4.4 Discussion

In this chapter we obtained the commitment capacity of the Unfair Noisy Channels.
Other open problems are to determine the range of parameters for which Unfair Noisy
Channels are non-trivial for performing OT as well as to obtain their OT capacity.
Deriving the commitment capacity of Weak Channels [Wul09] is also an interesting
open problem. In the case of Elastic Channels, for commitments from Alice to Bob,
the channel is essentially degraded to a Binary Symmetric Channel with crossover
probability γ and therefore the commitment capacity is h(γ). On the other hand,
we conjecture that the commitment capacity for commitments from Bob to Alice is
h(δ) − h(θ) for θ = δ−γ

1−2γ
. However, if either of the two restrictions of the Elastic

Channels in relation to unfair noisy channels is discarded (i.e., only the receiver being
able to set the crossover probability; and the crossover probability being fixed to δ
when both parties are honest), then we get back to the same commitment capacity
as for the Unfair Noisy Channels.





5. Commitment and OT in the
Bounded Storage Model with
Errors

The Bounded Storage Model (BSM) is an interesting model that allows to achieve
unconditionally secure protocols by making the assumption that the memory of the
parties (even the adversarial ones) are bounded and that a public random string
is available to the parties during an initial transmission phase. The security holds
even if the parties get infinite storage capacity after this transmission phase. Pro-
tocols for many cryptographic tasks such as key agreement [CM97, DM08], OT
[CCM98, Din01, HCR02, DHRS04] and commitment [SY11, Alv10] were obtained.
The weakness of the BSM is that it assumes that exactly the same random source
is available to all the protocol participants, but reliably broadcasting can be hard to
realize in practice. In this chapter we consider the more realistic BSM with errors, in
which errors can be present in the public random string in arbitrary positions (either
due to errors in the channel or deliberately introduced by an adversary); the only
guarantee is that the error frequency is not too big. Ding [Din05] developed the first
key agreement protocol in this model. This chapter is based on [DLN14, DLN15]
and presents the first protocols for commitment and OT in the BSM with errors.

5.1 Problem Statement

In the Bounded Storage Model with errors, a transmission phase is executed prior
to the realization of the protocol’s main part.

Transmission Phase: In this phase, Alice has access to a sample x ∈ {0, 1}` of an
α`-source X with 0 < α < 1 and Bob to x̃ ∈ {0, 1}` such that HD(x, x̃) ≤ δ`. Note
that this captures both the situation where the source is noisy and the situation
where the adversary controls part of the source. The classical assumption in the
Bounded Storage Model is that both parties have a memory bound during this
phase, but here we will be able to prove the security of our protocols even with

45
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a weaker assumption that only bounds the memory of one of the parties1 (which
one specifically depends on the protocol). If the memory bound is on Bob, for a

fixed γ < α, Bob computes a randomized function f̃(x̃) with output size at most
γ`, stores its output and discards x̃. Similarly if the memory bound is on Alice, she
computes a randomized function f(x) with output size at most γ`, stores its output
and discards x.

We show that techniques for the Bounded Storage Model with errors that Ding
[Din05] originally introduced in the context of key extension can also give us efficient
protocols for implementing OT. Our OT protocol only assumes a memory bound on
Bob. It is based on an efficient linear error correcting code proposed by Guruswami
and Indyk [GI02] that has rate σ and achieves the Zyablov bound. We show that as
long as σ > 1− α− γ the protocol works for noise levels δ as severe as

max
σ<σ̃<1

(1− σ̃)y

2
,

where y is the unique value in [0, 1/2] so that h(y) = 1 − σ/σ̃. If a random linear
error correcting code is used, an improved noise level can be tolerated

h(2δ) < α− γ,

but this improvement in the resilience comes at the price of making the protocol
inefficient from a computational complexity point of view as the problem of decoding
random linear codes is intractable. The protocol is described in Section 5.5.

Given that OT is complete, the OT protocol immediately gives us commitment
schemes. However, this is not the most desirable solution as the communication,
round and computational complexities of OT protocols are usually much higher than
the ones for commitment schemes. Moreover, it could be the case that commitment
protocols could work for different ranges of noise δ.

For the above reasons, we also design a direct construction of a commitment
protocol that does not rely on the framework proposed by Ding [Din05], does not
use error correcting codes at all, implements string commitment and has only one
message from Bob to Alice. Again, we assume that Bob has limited memory; no
limitations are impose on Alice whatsoever. The protocol, which is specified in
Section 5.2, is very efficient and simple and works for

h(δ) <
α− γ

2
.

We then show in Section 5.3 that it is possible to obtain a protocol that works for
a much larger range of noise

h(δ) < α− γ
at the cost of having one additional message in each direction and by using a family
of 4k-universal hash functions. Finally, we show in Section 5.4 that the use of
families of 4k-universal hash functions can be avoided by imposing a memory bound
on Alice, instead of Bob. This protocol is based on the interactive hashing protocol
of [DHRS04] (which was also used by Shikata and Yamanaka [SY11] for obtaining
commitment in the Bounded Storage Model without errors) and also works for

h(δ) < α− γ,
1In our protocols the honest parties do not need unlimited memory.
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Secure Commitment Protocol πComBSM

Transmission phase:

1. Alice chooses k positions from x uniformly at random. Similarly, Bob sam-
ples k positions from x̃. Let A and B denote their sets of positions.

Commitment phase:

1. Alice announces A to Bob.

2. Bob chooses g
$← G and sends its description to Alice.

3. Alice computes p ← g(xA), u
$← {0, 1}r, y ← Ext(xA, u) and z = m ⊕ y,

and sends (z, p, u) to Bob in order to commit to m.

Opening phase:

1. Alice sends m′ and w to Bob, which are defined as m′ = m and w = xA in
the case that she is honest.

2. Let C = A∩ B, c = |C|. Bob verifies whether c ≥ n, HD(wC, x̃C) ≤ (δ + ζ)c,
p = g(w) and m′ = Ext(w, u) ⊕ z. If any verification fails Bob outputs 0,
otherwise he outputs 1.

Figure 5.1: The commitment protocol πComBSM.

but has extra rounds of communication and implements bit rather than string com-
mitment.

The techniques we use in our results are standard in the field: extractors, error-
correcting codes, typicality tests, sampling, etc. However, to the best of our knowl-
edge, this is the first time that these techniques are combined to obtain commitment
and OT protocols in the memory bounded model with errors. Moreover, the study
of how much adversarial noise can be tolerated in this model and its relation to
round complexity is also original, as far as we know. Interestingly, the noise levels
tolerated by our protocols are different for OT and commitment schemes. This con-
trasts sharply with the noiseless situation where either one has every possible secure
two-party computation or nothing at all.

5.2 A Simple String Commitment Protocol

Next we present a quite simple string commitment protocol that only involves one
message from Bob to Alice. The security definition for commitment that is consid-
ered is the one discussed in Section 2.5 and a memory bound is imposed on Bob.
The idea of our commitment protocol is the following. First, Alice and Bob sample
a number of bits from the public random source. Alice then extracts some private
randomness from her sample and uses it as an one-time pad to conceal her commit-
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ment before sending it to Bob; thus guaranteeing the hiding property. Additionally
she computes a hash of her sample, where the hash function is chosen by Bob, and
sends it to Bob; this hash together with the tests performed by Bob during the
opening phase guarantee the binding property. In the opening phase, Alice sends
her committed value and her sampled string. Bob then performs a number of checks
for consistency.

The security parameter is n and k is set as k = 2
√
`n. Fix ε′ > 0 and let

ρ = α − γ − 1+log(1/ε′)
`

. Fix τ such that ρ
3
≥ τ > 0, and 1 > ω, ζ > 0 such that

ρ− 3τ > ω > 2h(δ + ζ) and δ + ζ < 1/2. Let κ = (ρ− 3τ − ω)k and `m = (1− ψ)κ
for ψ > 0. The commitment message space isM = {0, 1}`m . The protocol πComBSM,
whose detailed description is in Figure 5.1, assumes that the following functionalities,
which are possible due to the lemmas in Section 2.3, are available to the parties:

− A family G of 2-universal hash functions g : {0, 1}k → {0, 1}ωk.

− A (κ, εExt)-strong extractor Ext : {0, 1}k × {0, 1}r → {0, 1}`m , for an arbitrary

εExt > e−k/2
O(log∗ k)

.

Remark 5.1 Note that it should hold that 2h(δ) < ω + 3τ < ρ < α − γ, so the
protocol is only possible if 2h(δ) < α− γ.

Theorem 5.2 ([DLN15]) The protocol πComBSM is (λC, λH, λB)-secure for λC, λH
and λB negligible in n.

Proof: Correctness: It is clear that if both Alice and Bob are honest, the protocol
fails only in the case that c < n or HD(xC, x̃C) > (δ + ζ)c. By Lemma 2.31, c ≥ n
except with probability at most e−n/4. By Lemma 2.30, HD(xC, x̃C) ≤ (δ+ζ)c except
with probability at most e−cζ

2/2, which is negligible in n if c ≥ n.

Hiding: After the commitment phase, (a possibly malicious) Bob possesses (z, p, u,

A), g and the output of a function f̃(·) of x̃ with |f̃(x̃)| ≤ γn for γ < α. The only
random variable that can provide mutual information about M when conditioned
on X̃ is Z, but we prove below that Z is almost uniform from Bob’s point of view,
and so it works as an one-time pad and only negligible information can be leaked.

By Lemma 2.6,

Rε′

∞(X|f̃(X̃)) ≥ α− γ − 1 + log(1/ε′)

`
= ρ.

Since Alice chooses A randomly and this is an (µ, ν, e−kν
2/2)-averaging sampler for

any µ, ν > 0 according to Lemma 2.10, by setting µ = ρ−2τ
log(1/τ)

, ν = τ
log(1/τ)

, we have
by Lemma 2.9 that

Rε′′+ε′

∞ (XA|A, f̃(X̃)) ≥ ρ− 3τ,

where ε′′ is a negligible function of k.

It holds that

Hε′′+ε′

∞ (XA|G(XA),A, U,G, f̃(X̃)) = Hε′′+ε′

∞ (XA|G(XA),A, f̃(X̃))

≥ Hε′′+ε′

∞ (XA|A, f̃(X̃))−H0(G(XA))

≥ (ρ− 3τ − ω)k

= κ.



5.3. Extending the Feasibility Region 49

Therefore, setting ε′ and εExt to be negligible in n, the use of the strong extractor to
obtain y that is xored with the message guarantees that only negligible information
about the committed message can be leaked according to Definition 2.11.

Binding: The protocol is binding if, after the commitment phase, Alice cannot
choose between two different values to successfully open. Let σ = δ+ζ. The only way
Alice can cheat is if she can come up with two strings w,w′ such that g(w) = g(w′),
HD(wC, x̃C) ≤ σc and HD(w′C, x̃C) ≤ σc (with c ≥ n). If this happens, it holds
that either there are two strings w,w′ such that g(w) = g(w′), HD(w, x̃A) ≤ σk and
HD(w′, x̃A) ≤ σk; or Alice without knowing the set B that together with A deter-
mines C can compute w such that HD(w, w̃A) > σk and HD(wC, x̃C) ≤ σc. We prove
below that the probability that Alice succeeds in cheating decreases exponentially
with the security parameter n (or, equivalently in k, c). First the probability that
there exists two different strings w,w′ both within Hamming distance σk from x̃A

and such that g(w) = g(w′) is upper bounded by

Pr

∃w,w′ s.t.


w 6= w′

g(w) = g(w′)
HD(w, x̃A) ≤ σk
HD(w′, x̃A) ≤ σk

 =
∑

w : HD(w,x̃A)≤σk

∑
w′ 6=w : HD(w′,x̃A)≤σk

2−ωk

≤ 2−(ω−2h(σ))k,

where Lemma 2.32 was used to obtain the inequality. By design, it holds that
ω > 2h(σ) and therefore the probability that Alice successfully cheats by finding
two strings that are at distance at most σk from x̃A and hash to the same value is
negligible in k.

Now considering the second case, by assumption w has Hamming distance (σ+ψ)k
from x̃A for some ψ > 0. Since Bob is honest, B is chosen randomly. Hence
Lemma 2.30 can be applied and thus the probability that HD(wC, x̃C) ≤ σc is smaller
than e−cψ

2/2.

Remark 5.3 In the case of non-rushing adversaries that behave honestly in the
commitment phase, it is possible to relax the condition 2h(δ) < α−γ to h(δ) < α−γ.
This follows from the fact that, in order to break the binding condition, the adversary
has to find a string that has small Hamming distance and hashes to one specific value,
instead of finding any two strings with small Hamming distance that hash to the
same value.

5.3 Extending the Feasibility Region

We next present a more elaborate version of the protocol that has more rounds of
communication, but works for h(δ) < α − γ even if the adversaries are not honest
during the commitment phase. The memory bound is still on Bob. The idea for
guaranteeing the binding property is to use two rounds of hash challenge-responses
in order to guarantee the binding condition. Consider the initial set of viable strings
that Alice can possibly send to Bob during the commitment phase and would pass
the Hamming distance test. The first hash challenge-response round binds Alice to
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Secure Commitment Protocol πComBSME

Transmission phase:

1. Alice chooses uniformly k positions from X. Similarly, Bob samples k posi-
tions from X̃. We call their sets of positions A and B, respectively.

Commitment phase:

1. Alice announces A to Bob.

2. Bob chooses g1
$← G1 and sends its description to Alice.

3. Alice computes p1 ← g1(xA) and sends it to Bob.

4. Bob chooses g2
$← G2 and sends its description to Alice.

5. Alice computes p2 ← g2(xA), u
$← {0, 1}r, and y ← Ext(xA, u). She then

computes z = m⊕ y and sends (z, p2, u) to Bob in order to commit to m.

Opening phase:

1. Alice sends m′ and w to Bob, which are defined as m′ = m and w = xA in
the case that she is honest.

2. Let C = A ∩ B, c = |C| and wC be the restriction of w to the positions
corresponding to the set C. Bob verifies whether c ≥ `, HD(wC, x̃C) ≤
(δ + ζ)c, p1 = g1(w), p2 = g2(w) and m′ = Ext(w, u)⊕ z. If any verification
fails Bob outputs 0, otherwise he outputs 1.

Figure 5.2: The commitment protocol πComBSME.

one specific output of the hash function, and thus restrict the set of viable strings to
be polynomial in the security parameter. The second hash challenge-response round
then binds Alice to one specific value for the commitment. This approach was used
before in a different context [DKS99].

The security parameter is n and k is set as k = 2
√
`n. Fix ε′ > 0 and let

ρ = α − γ − 1+log(1/ε′)
`

. Fix τ such that ρ
3
≥ τ > 0, and ω1, ω2, ζ > 0 such that

ρ − 3τ > ω1 + ω2, ω1 > h(δ + ζ), and δ + ζ < 1/2. Let κ = (ρ − 3τ − ω1 − ω2)k
and for ψ > 0, `m = (1 − ψ)κ. The message space is V = {0, 1}`m . The protocol
πComBSME, whose detailed description is in Figure 5.2, assumes that the following
functionalities, which are possible due to the lemmas in Section 2.3, are available to
the parties:

− A family G1 of 4k-universal hash functions g1 : {0, 1}k → {0, 1}ω1k.

− A family G2 of 2-universal hash functions g2 : {0, 1}k → {0, 1}ω2k.

− A (κ, εE)-strong extractor Ext : {0, 1}k × {0, 1}r → {0, 1}`m , for an arbitrary
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εE > e−k/2
O(log∗ k)

.

Remark 5.4 Note that it should hold that h(δ) < ω1 + 3τ < ρ < α − γ, so the
protocol is only possible if h(δ) < α− γ.

Theorem 5.5 ([DLN15]) The protocol πComBSME is (λC, λH, λB)-secure for λC, λH
and λB negligible in `.

Proof: Correctness: Same as in Theorem 5.2.

Hiding: Follows the same lines as in Theorem 5.2. The difference is that here
κ = (ρ− 3τ − ω1 − ω2)k in order to account for the entropy loss due to the output
of both hash functions g1 and g2 (instead of κ = (ρ − 3τ − ω) in Theorem 5.2 that
accounts for the output of a single hash function g).

Binding: The protocol is binding if, after the commit phase, Alice cannot choose
between two different values to successfully open. Let σ = δ + ζ. The only way
Alice can cheat is if she can come up with two different strings w,w′ that pass
all tests performed by Bob during the opening phase. Either HD(w, x̃A) ≤ σk
and HD(w′, x̃A) ≤ σk; or Alice can compute w (without knowing the set B that
together withA determines C) such that HD(w, x̃A) > σk and HD(wC, x̃C) ≤ σc. The
probability that Alice succeeds in cheating in the latter case can be upper bounded
as in Theorem 5.2. Below we upper bound her cheating success probability in the
former case and prove that it decreases exponentially with the security parameter n
(or, equivalently in k).

Let the viable set dynamically denote the strings that Alice can possibly send to Bob
with non-negligible probability of successful opening. Before the first round of hash
challenge-response, the viable set consists of all w such that HD(w, x̃A) ≤ σk. Now
lets consider an arbitrary fixed value p1 for the output of the first hash. Considering
the j-th viable string before the first hash challenge-response round, define Ij as 1 if
the j-th viable string is mapped by g1 to p1; otherwise Ij = 0. And define I =

∑
j Ij.

Clearly µ = E[I] < 1, as g1 is chosen from a 4k-universal family of hash functions
with range of size {0, 1}ω1k for ω1 > h(δ+ ζ). Let p1 be called bad if I is bigger than
8k+1. Using the fact that g1 is 4k-wise independent and applying Lemma 2.33 with
t = 4k and A = 2t = 8k, we get

Pr [ I > 8k + 1 ] < O

((
tµ+ t2

(2t)2

)t/2)
< O

((
1 + t

4t

)t/2)
< O

(
2−t/2

)
.

Then the probability that any p1 is bad is upper bounded by

O
(
2ω1k2−t/2

)
< O

(
2−k
)
.

If the viable set is reduced to at most 8k+ 1 elements after the first hash challenge-
response round, then the probability that some of those collide in the second hash
challenge-response round is upper bounded by

(8k + 1)2 2−ω2k,

which is negligible in k.
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Secure Bit Commitment Protocol π′ComBSM

Transmission phase:

1. Alice chooses uniformly randomly k positions from x. Similarly, Bob samples
k positions from x̃. We call their sets of positions A and B, respectively.

Commit phase:

1. Bob announces B to Alice. Alice computes D = A ∩ B. If |D| < n, Alice
aborts. Otherwise, Alice picks a random subset C of D of size n.

2. Alice computes the dense encoding v of C (as a subset of B). Alice and
Bob interactively hash v, producing two strings v0, v1. They compute the
subsets C0, C1 ⊂ B that are respectively encoded in v0, v1. If either encoding
is invalid, they abort.

3. Alice sends p = m⊕ d to Bob, where d is such that vd = v.

Open phase:

1. Alice sends m′ and x′C
′

to Bob, which are defined as m′ = m and x′C
′

= xC

in the case that she is honest.

2. Bob computes d′ = p⊕m′ and checks whether HD(x′C
′
, x̃Cd′ ) ≤ (δ + ξ)n. If

the verification fails Bob outputs 0, otherwise he outputs 1.

Figure 5.3: The alternative bit commitment protocol π′ComBSM.

5.4 Alternative Bit Commitment Protocol

In this section we impose a memory bound on Alice instead of Bob and design a bit
commitment protocol which works for h(δ) < α − γ even against adversaries that
misbehave in the commitment phase. The central idea is to use interactive hashing
to perform the bit commitment in a similar way to what was done by Shikata and
Yamanaka [SY11] in the case of the Bounded Storage Model without errors.

The security parameter is n and k is set as k = 2
√
`n. The commitment message

space is M = {0, 1}. Fix ε′ > 0 and ξ > 0 such that δ + ξ < 1/2, and let

ρ = α − γ − 1+log(1/ε′)
`

. Fix 0 < ζ < 1 and τ such that ρ
3
≥ τ > 0. Let µ = ρ−2τ

log(1/τ)
,

ν = τ
log(1/τ)

and ε′′ = e−nν
2/2 − 2−Ω(τ`), where the last term comes from Lemma 2.9.

Fix j ≥ n (log k + 1) and j−O(n) ≥ t ≥ j−ζ log(1/(ε′+ε′′)). The protocol π′ComBSM,
which is described in Figure 5.3, works if h(δ + ξ) < ρ − 3τ and uses the following
functionality, which is possible due to the lemmas in Section 2.7:

− An 2−j-uniform (t, 2−(j−t)+O(log j))-secure interactive hashing protocol with in-
put domain V = {0, 1}j and an associated dense encoding of subsets F for
tuples of size k and subsets of size n.
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Theorem 5.6 ([DLN15]) The protocol π′ComBSM is (λC, 0, λB)-secure for λC and λB
negligible in n.

Proof: Correctness: If both participants are honest, the protocol fails only in the
following cases: (1) |D| < n; (2) HD(xC, x̃C) > (δ + ξ)n or (3) either v0 or v1 is an
invalid encoding of a subset. By Lemma 2.31, |D| ≥ n except with probability at
most e−n/4. By Lemma 2.30, HD(xC, x̃C) ≤ (δ+ ξ)n except with probability at most
e−nξ

2/2. Finally, since vd = v is the encoding of C, one of the two outputs of the
interactive hashing protocol is always a valid encoding. The other output v1−d is
2−j-close to distributed uniformly over the 2−j − 1 strings different from vd. Since it
is a dense encoding, Lemma 2.26 implies that the probability that it is not a valid
encoding is thus less than or equal to

2−j +

(
k
n

)
2j − 1

≤ 2−j + 2n log k−j+1 ≤ 2−n log k−n + 2−n+1 ≤ 2−n+2

for j ≥ n (log k + 1). Putting everything together this proves the correctness.

Hiding: There are two possibilities: either the protocol does not abort; or it aborts
due to |D| < n or an invalid encoding. If the protocol aborts, Alice still has not
sent p = m ⊕ d, so Bob’s view is independent from M . On the other hand, if the
protocol does not abort, then v1−d is a valid encoding of some set C ′. Due to the
security properties of the interactive hashing protocol and the dense encoding of
subsets, Bob’s view is then consistent with both

1. Alice committing tom and C being the subset for which she knows the positions
of x, and

2. Alice committing to 1 − m and C ′ being the subset for which she knows the
positions of x.

Hence Bob’s view is independent of M and the protocol is 0-hiding.

Binding: The strategy of the proof is to show that there exists i ∈ {0, 1} such that
XCi has high enough min-entropy from Alice’s point of view so that she cannot guess
a string x̂Ci that is close enough to x̃Ci with non-negligible probability. In that case
she will not be able to successfully use this output of the interactive hashing during
the opening phase and will be forced to use the other output. By the bounded
storage assumption, the bounded information f(X) stored by Alice is such that
|f(X)| ≤ γ` with γ < α. Then, by Lemma 2.6,

Rε′

∞(X|f(X)) ≥ α− γ − 1 + log(1/ε′)

`
= ρ.

Since Bob is honest, B is randomly chosen. Lets consider a random subset C̃ of
B such that |C̃| = n. This is an (µ, ν, e−nν

2/2)-averaging sampler for any µ, ν > 0
according to Lemma 2.10. By setting µ = ρ−2τ

log(1/τ)
, ν = τ

log(1/τ)
, we have by Lemma 2.9

that
Rε′+ε′′

∞ (X C̃|B, C̃, f(X)) ≥ ρ− 3τ,

for ε′′ = e−nν
2/2 − 2−Ω(τ`). For ε̃ = (ε′ + ε′′)1−ζ , let BAD be the set of C̃’s such

that R∞(X C̃|B, C̃, f(X)) is not ε̃-close to (ρ − 3τ)-min entropy rate. Due to the
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above equation the density of BAD is at most (ε′ + ε′′)ζ . Then the size of the set
T ⊂ {0, 1}j of strings that maps (using the encoding scheme) to subsets in BAD is
at most (ε′ + ε′′)ζ2j ≤ 2t. Hence the properties of the interactive hashing protocol
guarantee that with overwhelming probability there will be an i such that

Rε̃
∞(XCi |B, Ci, f(X), TIH) ≥ ρ− 3τ,

where TIH are the messages exchanged during the interactive hashing protocol.

However, if h(δ+ ξ) < ρ− 3τ and the min-entropy rate is at least ρ− 3τ , then fixing
0 < ε̂ < ρ − 3τ − h(δ + ξ), for large enough n, the probability that Alice guesses
one of the strings x̂Ci that would be accepted by Bob as being close enough to x̃Ci is
upper bounded by

2(h(δ+ξ)−ρ+3τ−ε̂)n

which is a negligible function of n.

By fixing the parameters as small as possible, in the limit for large enough n the
protocol works for values α, γ, δ which satisfy h(δ) < α− γ.

5.5 Oblivious Transfer Protocol

For our OT protocol the memory bound is on Bob. The idea of the protocol is that
initially both parties samples some positions from the public random source. Then
an interactive hashing protocol (with an associated dense encoding) is used to select
two subsets of the positions sampled by Alice. Bob’s input to the interactive hashing
is a subset of positions for which he has also sampled the public random source. The
other subset is out of Bob’s control due to the security properties of the interactive
hashing protocol. Finally the positions specified by the two subsets are used as input
to a fuzzy extractor in order to obtain one-time pads. Bob sends one bit indicating
which input string should be xored with which one-time pad. Intuitively, the security
for Alice is guaranteed by the fact that one of the subsets is out of Bob’s control and
will have high min-entropy given his view, thus resulting in a good one-time pad;
the security for Bob follows from the security of the interactive hashing.

The OT protocol is defined in Figure 5.4. The security parameter is n and k
is set as k = 2

√
`n. Fix ε′, ε̂ > 0 and ξ > 0 such that 1/4 > δ + ξ > 0 and

let ρ = α − γ − 1+log(1/ε′)
`

. Fix 0 < ζ < 1 and τ such that ρ
3
≥ τ > 0. Let

µ = ρ−2τ
log(1/τ)

, ν = τ
log(1/τ)

and ε′′ = e−nν
2/2 − 2−Ω(τ`), where the last term comes

from Lemma 2.9. Fix j ≥ n (log k + 1) and j − O(n) ≥ t ≥ j − ζ log(1/(ε′ + ε′′)).
For σ depending on δ + ξ (see code rate comments below), fix κ and mF such that

κ = ρ + σ − 3τ − 2mF − 1 − 1+log(1/ε̂)
n

and 0 < mF < κ. The OT message space is
M = {0, 1}mFn. It is assumed that the following functionalities, which are possible
due to the lemmas in Sections 2.3 and 2.7, are available to the parties:

− A pair of functions Ext : {0, 1}n×{0, 1}r → {0, 1}mFn×{0, 1}q and Rec : {0, 1}n×
{0, 1}r × {0, 1}q → {0, 1}mFn that constitutes an (κn, εExt, δ + ξ, 0)-fuzzy ex-

tractor where q = (1−σ)n, εExt is an arbitrary number with εExt > e−n/2
O(log∗ n)

.

− An 2−j-uniform (t, 2−(j−t)+O(log j))-secure interactive hashing protocol with in-
put domain V = {0, 1}j and an associated dense encoding of subsets F for
tuples of size k and subsets of size n.
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Secure OT Protocol πOTBSM

Transmission phase:

1. Alice picks uniformly randomly k positions from x. Similarly, Bob samples
k positions from x̃. We call their sets of positions A and B, respectively.

Setup phase:

1. Alice sends A to Bob. Bob computes D = A ∩ B. If |D| < n, Bob aborts.
Otherwise, Bob picks a random subset C of D of size n.

2. Bob computes the encoding v of C as a subset of A. Alice and Bob in-
teractively hash v, producing two strings v0, v1. They compute the subsets
C0, C1 ⊂ A that are respectively encoded in v0, v1. If either encoding is
invalid, they abort.

Transfer phase:

1. Bob sends p = c⊕ d, where d is such that vd = v.

2. For i ∈ {0, 1}, Alice picks ri
$← {0, 1}r, computes (yi, qi)← Ext(xCi , ri) and

zi = si⊕p ⊕ yi, and sends (zi, ri, qi) to Bob.

3. Bob computes y′ ← Rec(x̃C, rd, qd) and outputs s = y′ ⊕ zd.

Figure 5.4: The OT protocol πOTBSM.

Recall (Remark 2.17) that there is a tradeoff between the fraction of errors δ + ξ
that the fuzzy extractor can tolerate and the rate σ of the code used in the con-
struction. The construction given in Theorem 4 of [GI02] has linear-time encoding
and decoding and achieves the Zyablov bound: for given 1 > σ > 0 and µ > 0, the
code has rate σ and

δ + ξ ≥ max
σ<σ̃<1

(1− σ̃ − µ)y

2
(5.1)

where y is the unique number in [0, 1/2] with h(y) = 1− σ/σ̃ and δ + ξ the amount
of errors that can be corrected by the code. In order for κ to be positive, we need
to have ρ+ σ > 1. Since ρ approaches α− γ from below in the asymptotic limit, an
upper bound for δ is obtained by setting σ > 1−α+ γ and µ = 0 in Equation (5.1).

Alternatively, there is a construction based on random linear codes which achieves
a better bound, namely, the Gilbert-Varshamov bound: for a given relative distance
υ and µ > 0, the code has rate σ ≥ 1 − h(υ) − µ. Applying again the constraint
that ρ+σ > 1 and that ρ→ α−γ in the asymptotic limit, and using the fact that a
code that can correct δ` errors has relative distance υ = 2δ+1/`→ 2δ, this gives an
upper bound for δ: we must have h(2δ) < α−γ. However, as noted in Remark 2.17,
the random linear code construction does not have efficient decoding. It is an open
question whether an efficient construction can achieve better parameters than the
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one from [GI02].

Theorem 5.7 ([DLN15]) The protocol πOTBSM is (λC, 0, λA)-secure for λC and λA
negligible in n.

Proof: Correctness: The probability of an abort is analyzed first. The protocol
will abort if either |D| < n, or if one string obtained in the interactive hashing
protocol is an invalid encoding of subsets of A. By Lemma 2.31, Pr [ |D| < n ] <
e−n/4. Since vd = v, which is the encoding of C, one of the two outputs of the
interactive hashing protocol is always a valid encoding. The other output v1−d is
2−j-close to distributed uniformly over the 2−j − 1 strings different from vd. Since it
is a dense encoding, Lemma 2.26 implies that the probability that it is not a valid
encoding is thus less than or equal to

2−j +

(
k
n

)
2j − 1

≤ 2−j + 2n log k−j+1 ≤ 2−n log k−n + 2−n+1 ≤ 2−n+2

for j ≥ n (log k + 1). If no aborts happens and both parties are honest, then s = sc
if and only if Rec(x̃C, rd, qd) = yd. By the properties of the employed fuzzy ex-
tractor, this last event happens only if HD(xC, x̃C) ≤ (δ + ξ)n. By Lemma 2.30,
HD(xC, x̃C) > (δ+ ξ)n with probability at most e−ξ

2n/2. Putting everything together
this proves the correctness.

Security for Bob: There are two possibilities: either the protocol aborts or not.
If the protocol aborts in the setup phase, Bob still has not sent p = c⊕ d, so Alice’s
view is independent from C. On the other hand, if the protocol does not abort,
then v1−d is a valid encoding of some set C ′. Due to the properties of the interactive
hashing protocol, Alice’s view is then consistent with both

1. Bob choosing c and C, and

2. Bob choosing 1− c and C ′.
Hence Alice’s view is independent of C and the protocol is perfectly secure for Bob.

Security for Alice: There should be an index i (determined at the setup stage)
such that for any two pairs (s0, s1), (s′0, s

′
1) with si = s′i, Bob’s view of the protocol

executed with (s0, s1) is close to his view of the protocol executed with (s′0, s
′
1). The

view of Bob is given by the function computed from the public random source f̃(x̃)
along with all the messages exchanged and his local randomness.

The proof’s strategy is to show that for i, XC1−i has high enough min-entropy, given
Bob’s view of the protocol, in such a way that Y1−i is indistinguishable from a
uniform distribution. Indistinguishability of Bob’s views will then follow.

By the bounded storage assumption, |f̃(x̃)| ≤ γ` with γ < α. Then, by Lemma 2.6,

Rε′

∞(X|f̃(X̃)) ≥ α− γ − 1 + log(1/ε′)

`
= ρ.

Since Alice is honest, A is randomly chosen. Lets consider a random subset C̃ of
A such that |C̃| = n. This is an (µ, ν, e−nν

2/2)-averaging sampler for any µ, ν > 0
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according to Lemma 2.10. By setting µ = ρ−2τ
log(1/τ)

, ν = τ
log(1/τ)

, we have by Lemma 2.9
that

Rε′+ε′′

∞ (X C̃|A, C̃, f̃(X̃)) ≥ ρ− 3τ,

for ε′′ = e−nν
2/2 − 2−Ω(τ`). For ε̃ = (ε′ + ε′′)1−ζ , let BAD be the set of C̃’s such

that R∞(X C̃|A, C̃, f̃(X̃)) is not ε̃-close to (ρ − 3τ)-min entropy rate. Due to the
above equation the density of BAD is at most (ε′ + ε′′)ζ . Then the size of the set
T ⊂ {0, 1}j of strings that maps (using the encoding scheme) to subsets in BAD is
at most (ε′ + ε′′)ζ2j ≤ 2t. Hence the properties of the interactive hashing protocol
guarantee that with overwhelming probability there will be an i such that

Rε̃
∞(XC1−i |A, C1−i, f̃(X̃), TIH) ≥ ρ− 3τ,

where TIH are the messages exchanged during the interactive hashing protocol. We
now show that XC1−i has high min-entropy even when given Zi, Yi, Qi. We can see
(Zi, Yi, Qi) as a random variable over {0, 1}(2mF+1−σ)n. Then, by Lemma 2.6,

Rε̂+
√

8ε̃
∞ (XC1−i |A, C1−i, f̃(X̃), TIH , Zi, Yi, Qi) ≥ ρ+σ−3τ−2mF−1−1 + log(1/ε̂)

n
= κ.

Thus setting ε′ and ε̂ to be negligible in n, the use of the (κ`, εExt, δ + ξ, 0)-fuzzy
extractor to obtain Yi that is used as an one-time pad guarantees that only negligible
information about si⊕p can be leaked. Thus the protocol is λA-secure for Alice, for
λA negligible in n.

5.6 Discussion

This chapter presented the first protocols for commitment and oblivious transfer
in the Bounded Storage Model with Errors, thus extending the previous results
existing in the literature for key agreement [Din05]. As expected, our protocols
work for a limited range of values of the noise parameter δ. The allowed range for
our commitment schemes is different than the one for the OT protocol. For the case
of commitment schemes, the range of noise that could be tolerated depended on the
round complexity of the proposed protocols: extra rounds helped tolerating a more
severe noise.

There are many open questions that follow our results here:

− To prove the impossibility of commitment protocols when h(δ) ≥ α− γ.

− To obtain efficient OT protocols that work for the range of noise achieved by
our protocols based on random linear codes.

− What is the best range of noise that can be achieved by non-interactive com-
mitment protocols?

− Is there an intrinsic difference in the level of noise tolerated by bit commitment
and OT protocols?





6. Privacy-Preserving Learning

The contents of this chapter are based on [CDNN15] and deal with the problem
of obtaining a privacy-preserving protocol for computing a linear regression model
from a training dataset that is distributed among many parties. Our results are
information-theoretically secure and work in the commodity-based model. The on-
line phase of our protocol is extremely efficient, having solely modular additions and
multiplications. It improves the execution time from days [HFN11] to seconds. If a
trusted initializer is not available or desirable, we present a solution for substituting
the trusted initializer by a secure multi-party computation protocol executed among
the parties during an offline phase. Note that this offline phase (and so the combined
protocol in this case) is only computationally secure. Despite involving more compu-
tationally intensive operations, the offline phase consists essentially of independent
computations over random data. Therefore it is embarrassingly parallelizable and
gains proportional to the number of available cores can be obtained, making even
the offline phase practical.

Linear regression models the relationship between some input variables and a
real valued outcome. It is a quite popular technique in statistical analysis and
machine learning [SSBD14] due to some appealing characteristic that it exhibits such
as: intuitiveness, efficiency of the training phase, ability to fit the data reasonably
well for many problems, and the simplicity of the model that helps prevent it from
overfitting to a specific set of training examples. Similarly to other machine linear
models, the standard algorithm for obtaining a linear regression model assumes that
all the training data is directly available to the party computing it. However, in
many scenarios the training data is distributed among many parties that cannot or
will not share their dataset due to many economical reasons or privacy legislation.
One prominent example is the healthcare ecosystem. It is widely acknowledged that
big data analytics can revolutionize the healthcare industry, among other things, by
optimizing healthcare spending at all levels from patients to hospitals to governments
while improving overall population health. In practice, however, a major obstacle
for applying machine learning techniques in such scenario is the need of data that
is split over many different owners – healthcare providers, hospitals, and medical
insurance companies – who do not want to or legally cannot share their data with
outside entities. Consequently, it is important to develop privacy-preserving machine
learning protocols. We deal particularly with privacy-preserving protocols for linear

59
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regression.
As already mentioned in the Introduction, many works deal with the topic of

secure linear regression, but most of them do not even try to achieve the level of
security that is normally considered in modern cryptography. The pioneering work
of Hall et al. [HFN11] actually aim at obtaining a high level of security. It consid-
ers the framework of secure two-party protocols with simulation-based definitions
of security, as in [Gol04]. We should however remark that as some of the build-
ing blocks do not realize the exact functionalities, but rather approximations, they
should have considered the framework of Feigenbaum et al. [FIM+01, FIM+06] for
dealing with secure approximations. We should additionally point out that their
truncation protocol has a small (correctable) problem (see [CDNN15] for details).
The performance of our solutions compares favorably with theirs. Their computing
time for solving the linear regression problem for 51K input vectors, each with 22
features, is two days [HFN11]. The online phase of our protocol solves this problem
in a few seconds. Even when considering the running time of the offline phase of
our computationally secure protocol, by exploiting its embarrassingly parallelization
property, the overall running time is still in the order of minutes for such a number
of features and vectors.

Nikolaenko et al. [NWI+13] considered a different scenario in which the parties
encrypt the training data and upload the ciphertexts to a third party. This third
party, with the help from a semi-honest Crypto Service Provider that performs the
heavy cryptographic operations, then computes the regression model. Their solu-
tion is based on homomorphic encryption and garbled circuits and assumes that the
Crypto Service Provider do not collude with other parties. Note that the Crypto
Service Provider actively engages in the protocol execution, in strong contrast with
a trusted initializer, which does not engage in the protocol execution after the setup
phase. Our online phase is still much faster than the protocol presented by Niko-
laenko et al. [NWI+13]. Even when we add up the offline phase and the online
phase running times, in the case of our computationally secure protocol, when mul-
tiple cores are available for the offline phase computations, the overall running time
is less for our protocol.

We assessed our secure linear regression by implementing and analyzing the results
using ten real datasets. We chose a variety of different datasets based on their
number of features and instances. Some of our datasets have millions of vectors. We
are unaware of any other work on secure linear regression where real datasets of this
size have been analyzed before. For example, in [HFN11] and in [NWI+13], the real
datasets used had thousands of vectors.

Outline

This chapter is structured as follows: after explaining our model in Section 6.1, we
present a high level overview of our protocol for secure linear regression in Section 6.2.
Next, we provide details on how we deal with real numbers in Section 6.3 and on our
secure computation of the inverse of matrices in Section 6.4. In Section 6.5, we sum-
marize how these building blocks fit together in our information-theoretically secure
protocol, while in Section 6.6 we explain how to substitute the trusted initializer and
obtain a computationally secure protocol. In Section 6.7 we present runtime results
of both protocols on ten different datasets, with a varying number of instances and
features, showing a substantial speed-up compared to existing work. We conclude
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with some final remarks in Section 6.8.

6.1 Model

Adversarial Model

In this work we consider the problem in which a set of parties P1, . . . ,Pu, given their
inputs, want to securely compute a function without leaking any information other
than the result. The security is defined by comparing a real world and an ideal world.
In the real world the parties executes a protocol π and an adversary A controls the
corrupted parties in the protocol execution. The output of the real world is formed
by joining the output of the uncorrupted parties with the protocol view of A. In the
ideal world there is an ideal functionality F which takes the inputs from the parties
and gives the outputs to them. And there is a also a simulator S that by only learning
the inputs and outputs of the corrupted parties, generates a simulated view of the
protocol execution. The output of the ideal world is formed by joining the output
of the uncorrupted parties with the simulated view of S. A protocol π securely
computes the functionality F if for every adversary A, there exists a simulator S,
such that the joint outputs of the real and ideal worlds are indistinguishable. The
considered indistinguishability can be either statistical or computational; resulting
respectively in statistical or computational security. The advantage of defining the
security using the simulation paradigm is that it allows for the sequential composition
of protocols. We deal with honest-but-curious adversaries, which were the ones
considered in other privacy-preserving classification protocols so far.

Secure Approximations

Note that the secure computation of an approximation f of a target function f can
reveal more information than the target function itself. Imagine for instance the
case where the output of f is equal to the output of f in all bits except one, in
which f encodes one bit of the input of one party. To ensure that the approximation
f does not leak additional information we use the framework of Feigenbaum et al.
[FIM+01, FIM+06] for private approximations. Only deterministic target functions
f are considered, but the approximations f can be randomized.

Definition 6.1 (ε-approximation) The functionality f is an ε-approximation of
f if for all possible inputs x, |f(x)− f(x)| < ε.

Definition 6.2 (Privacy with respect to f) The functionality f is functionally
private with respect to f if there is a simulator S such that for all possible inputs x,

{S(f(x))}
s
≈ {f(x)}.

Note that functional privacy is a property from the functionality f itself, and not
from any protocol implementing it. It captures the fact that the approximation
error is independent from the inputs when conditioned on the output of the exact
functionality.
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6.2 Overview

Assume that we have a set of training examples (real vectors)

(a1(xi), a2(xi), . . . , am(xi), yi),

where aj(xi) is the value of the input attribute aj for the training example xi (i =
1, . . . , t) and yi is the associated output. The goal is to leverage these training
examples to predict the unknown outcome for a previously unseen input as accurately
as possible. To this end, we want to learn a linear function

y = β1a1(x) + β2a2(x) + . . .+ βmam(x) + b

that best approximates the relation between the input variables a1(x), a2(x), . . . ,
am(x) and the response variable y. Throughout this paper we assume that all
variables are real numbers and that we aim to find real values for the parameters
β1, β2, . . . , βm and b that minimize the empirical risk function

1

t

t∑
i=1

((β1a1(xi) + β2a2(xi) + . . .+ βmam(xi) + b)− yi)2, (6.1)

which is the mean squared error over the training instances. For notational conve-
nience, we switch to the homogenous version of the linear function and we use vector
notation, i.e. let

− xi = (a0(xi), a1(xi), a2(xi), . . . , am(xi)), with a0(xi) = 1 for all i ∈ {1, . . . , t}
and

− β = (β0, β1, . . . , βm), with β0 = b.

Using 〈β,xi〉 to denote the dot product of β and xi, minimizing (6.1) amounts to
calculating the gradient and comparing it to zero, i.e. solving

2

t

t∑
i=1

(〈β,xi〉 − yi)xi = 0. (6.2)

The solution to (6.2) is1

β = (XTX)−1XTy (6.3)

with

X =


x1

x2

. . .
xt

 and y =


y1

y2

. . .
yt

 .

The scenarios that we are interested in are those in which the training data is not
owned by a single party but is instead distributed across multiple parties who are
not willing to disclose it. Our experiments in Section 6.7 correspond to scenarios in
which X is partitioned column-wise across two honest-but-curious parties, i.e. Alice
and Bob have information about different features of the same instances, and Bob
has the vector y. However, as will become clear below, our protocols work in all

1Assuming that XTX is invertible
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scenarios in which the parties hold secret sharings JXKq and JyKq as input, regardless
of whether they are sliced column-wise, row-wise, or distributed in any other way.

Here we give an overview of our solution. The basic idea is to reduce the problem of
securely computing linear regression to the problem of securely computing products
of matrices. The protocol for computing products of matrices works only for elements
of the matrices belonging to a finite field. Thus, the parties should be able to map
their real-valued fixed precision inputs to elements of a finite field (as described in
Section 6.3).

1. Offline phase: in the information-theoretically secure protocol, the players
receive correlated data from the trusted initializer. In the case of the compu-
tationally secure protocol, they run the protocol described in Section 6.6.

2. Online Phase:

a) The players map their fixed precision real valued inputs to elements of a
finite field as described in Section 6.3.

b) The players compute over their shares using the protocols for matrix
multiplication (described in Section 2.10) and for computing the inverse
of a Covariance Matrix (described in Section 6.4) in order to obtain shares
of the estimated regression coefficient vector.

c) The players exchange their shares of the estimated regression coefficient
vector and reconstruct it.

After presenting the building blocks in Sections 6.3 and 6.4, we reiterate the
information-theoretically secure and the computationally secure protocols for linear
regression against honest-but-curious adversaries at a more concrete level of detail
in Sections 6.5 and 6.6 respectively.

6.3 Dealing with Real Numbers

The security proof of the (matrix) multiplication protocol presented in Section 2.10
essentially relies on the fact that the blinding factors are uniformly random in Zq. If
one tries to design similar protocols working directly with integers or real numbers,
there would be a problem, since it is not possible to sample uniformly in Z or R.
Similarly, in protocols that use homomorphic encryption as building blocks, the
encryption is normally done for messages which are members of a finite group. But
in secure protocols for functionalities such as linear regression one needs to deal with
inputs which are real numbers. Thus it is necessary to develop a way to approximate
the computations on real numbers by using building blocks which work on fields Zq.

We adapt the method of Catrina and Saxena [CS10] with a fixed-point represen-
tation. Let k, e and f be integers such that k > 0, f ≥ 0 and e = k−f ≥ 0. Let Z〈k〉
denote the set {x ∈ Z : −2k−1 + 1 ≤ x ≤ 2k−1− 1}. The fixed-point data type with
k bits, resolution 2−f , and range 2e is the set Q〈k,f〉 = {x̃ ∈ Q : x̃ = x̂2−f , x̂ ∈ Z〈k〉}.
The signed integers in Z〈k〉 are then encoded in the field Zq (with q > 2k) using the
function

g: Z〈k〉→Zq, g(x̂) = x̂ mod q.

In secure computation protocols using secret sharing techniques, the values in Zq
are actually shared among the parties. Using this encoding, we have that x̂ + ŷ =
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Functionality FTrunc

FTrunc is parametrized by the size q of the field and the dimensions `1, `2 of the
input matrix. It reduces the resolution of each element of the matrix by 2−f .

Input: Upon receiving a message from a party with its shares of JWKq for the
matrix W whose elements should be truncated, record the share, ignore any sub-
sequent message from that party and inform the other parties about the receipt.

Output: Upon receipt of the shares from all parties, recover W from the shares.
For each element w of W, compute ŵ = g−1(w mod q), sample u ∈ {0, 1} such
that Pr [u = 1 ] = (ŵ mod 2f )/2f , and then fix in the output matrix T the ele-
ment in the same row and column to t = g

(⌊
ŵ
2f

⌋
+ u
)
. Create a secret sharing of

JTKq to distribute to the parties. Before the output deliver, the corrupt parties
fix their shares of the output to any constant values. The shares of the uncor-
rupted parties are then created by picking uniformly random values subject to
the correctness constraints.

Figure 6.1: The distributed approximate truncation functionality.

Truncation Protocol πTrunc

Let n be a statistical security parameter. The protocol is parametrized by the size
q > 2k+f+n+1 of the field and the dimensions `1, `2 of the input matrix. At the
setup, the trusted initializer picks a matrix R′ ∈ F`1×`2q with elements uniformly
random in {0, . . . , 2f − 1} and a matrix R′′ ∈ F`1×`2q with elements uniformly
random in {0, . . . , 2k+n−1}. He then computes R = R′′2f +R′ and creates secret
sharings JRKq and JR′Kq to distribute to the parties. The parties input is JWKq
such that for all elements w of W it holds that w ∈ {0, 1, . . . , 2k+f−1 − 1} ∪ {q −
2k+f−1 + 1, . . . , q − 1}.

1. Locally compute JZKq ← JWKq + JRKq and then open Z.

2. Compute C = Z + 2k+f−1 and C′ = C mod 2f where these scalar op-
erations are performed element-wise. Then compute the secret sharing
JSKq ← JWKq + JR′Kq −C′.

3. For i = ((q + 1)/2)f , locally compute JTKq ← iJSKq and output the shares
of T.

Figure 6.2: The truncation protocol.
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g−1(g(x̂) + g(ŷ)), where the second addition is in Zq, i.e., we can compute the
addition for signed integers in Z〈k〉 by using the arithmetic in Zq. The same holds
for subtraction and multiplication.

For the fixed-point data type we can do additions using the fact that w̃ = x̃+ ỹ =
(x̂ + ŷ)2−f , so we can trivially obtain the representation of w̃ with resolution 2−f

by computing ŵ = x̂ + ŷ, i.e., we can do the addition of the fixed-point type by
using the addition in Z〈k〉, which itself can be done by performing the addition in
Zq. The same holds for subtraction. But for multiplication we have that w̃ =
x̃ỹ = x̂ŷ2−2f , and therefore if we perform the multiplication in Zq, we will obtain
(if no overflow occurred) the representation of w̃ with resolution 2−2f . For the
signed integers representation to be independent from the amount of multiplication
operations performed with the fixed-point data, we need to scale the resolution of w̃
down to 2−f .

We use a slightly modified version of the truncation protocol of Catrina and Saxena
[CS10]. The central idea is to reveal the number w to be truncated, but blinded by
a factor r which is from a domain exponentially bigger than the domain of the value
w and so statistically hides it. The value r is generated in such way that the parties
obtain shares of both r itself as well as of r′ that represents the f least significant
bits of r. The parties can then reveal w + r and compute shares of the truncated
value by using local computations. We describe in Figure 6.2 a truncation protocol
πTrunc that is a generalization of this idea to truncate all elements of a matrix at
once. The functionality FTrunc that captures the approximate truncation without
leakage is described in Figure 6.1.

Theorem 6.3 ([CDNN15]) The truncation protocol πTrunc securely computes the
approximate truncation functionality FTrunc against honest-but-curious adversaries.

Proof: Correctness: Note that for any element w of W, the operations performed
on it to obtain the truncated value only depends on elements of other matrices
that are on the same row and column. Therefore we analyze the correctness by
considering one element w of W and the respective elements of the other matrices,
denoted r, r′, c and c′ respectively. Let ŵ = g−1(w mod q). We have that ŵ ∈
{−2k+f−1 + 1,−2k+f−1 + 2, . . . , 2k+f−1 − 1}. Let b = ŵ + 2k+f−1 and let b′ = b
mod 2f . We have that b ∈ {1, . . . , 2k+f − 1} and since k > 0 also that

b′ = b mod 2f = ŵ + 2k+f−1 mod 2f = ŵ mod 2f .

Since r < 2k+f+n and q > 2k+f+n+1 we have that c = b+ r and thus

c′ = (b′ + r′) mod 2f = b′ + r′ − u2f

where u ∈ {0, 1} and Pr [u = 1 ] = Pr
[
r′ ≥ 2f − b′

]
= (ŵ mod 2f )/2f with the

probability over the choices of the random r′. Hence

c′ − r′ = g(ŵ mod 2f − u2f ),

w + r′ − c′ = g(ŵ − (ŵ mod 2f ) + u2f ) = g

(⌊
ŵ

2f

⌋
2f + u2f

)
,

(w + r′ − c′)((q + 1)/2)f = g

(⌊
ŵ

2f

⌋
+ u

)
,
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since the multiplicative inverse of 2f in Zq is ((q + 1)/2)f . Therefore the shares
output by the parties are correct.

Security: The only messages exchanged are to open Z = W + R, but since R has
elements that are uniformly random in {0, . . . , 2k+f+n − 1} and W’s elements are
in {0, 1, . . . , 2k+f−1 − 1} ∪ {q − 2k+f−1 + 1, . . . , q − 1}, we have that the statistical
distance between the probability distributions of the elements of Z and R is at most
2−n and the matrices are statistically indistinguishable. The simulation strategy is
very simple and consists of opening a secret sharing of a matrix whose elements are
uniformly random in {0, . . . , 2k+f+n − 1}.

Theorem 6.4 ([CDNN15]) FTrunc is an 1-approximation2 and is functionally pri-
vate with respect to an exact truncation functionality that computes the truncation
using the floor function.

Proof: The only difference between the two functionalities is that in the approximate
truncation an error factor u is present in the shared output of each element. But note
that u ∈ {0, 1} and Pr [u = 1 ] = (ŵ mod 2f )/2f , but u is independent from the
specific shares used to encode g(ŵ). Thus the protocol rounds ŵ/2f to the nearest
integer with probability 1−α, where α is the distance between the real number ŵ/2f

and the nearest integer.

6.4 Computing the Inverse of a Covariance Matrix

In order to be able to compute the linear regression from a design matrix and the
response vector we need to compute the inverse of the covariance matrix. Let A be
a covariance matrix. In order to compute A−1 we use a generalization for matrices
of the Newton-Raphson division method. The algorithms for division of fixed-point
numbers are divided in two main classes: digit recurrence (subtractive division)
and functional iteration (multiplicative division). The Newton-Raphson division
method is from the functional iteration class, which is more amenable to secure
implementation and converges faster. Additionally this method is self correcting, i.e.,
truncations errors in one iteration decrease quadratically in the next iterations. The
inverse of a number a is computed by defining the function h(x) = x−1−a and then
applying the Newton-Raphson method for finding successively better approximations
to the roots of h(x). The iterations follow the form:

xs+1 = xs(2− axs).

This algorithm can be generalized for computing the inverse of the matrix A. A
numerical stable iteration for computing A−1 is [HFN11, GH06]:

c = trace(A)

X0 = c−1I

Xs+1 = Xs(2−AXs)

where I is the identity matrix with the same dimensions as A. Note that A is a
covariance matrix and thus it is positive semi-definite and the trace of A dominates

2in the representation, 2−f in the fixed-point data type.
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Protocol for Computing the Inverse of the Covariance Matrix πMatInv

The protocol is parametrized by the size q of the field. Let A ∈ Z`×`q be the
encoding in Zq of a covariance matrix where the elements are fixed-point numbers.
The parties have as input a secret sharing JAKq .

1. The parties locally compute shares of c = trace(A) by adding the values of
the elements in the main diagonal of their shares of A.

2. The parties use the Newton-Raphson division method to obtain a secret
sharing of c−1 with resolution 2−f . The subtractions can be performed
locally and the multiplications using the distributed (matrix) multiplication
functionality FDMM followed by the approximate truncation functionality
FTrunc.

3. The parties use the generalized Newton-Raphson method to obtain a secret
sharing of A−1 with resolution 2−f for the elements. The subtractions can
be performed locally and the multiplications using the distributed matrix
functionality FDMM followed by the approximate truncation functionality
FTrunc.

Figure 6.3: The protocol for securely and distributively computing the inverse of the
covariance matrix.

the largest eigenvalue of A. It is convenient to use c = trace(A) because the trace
of A can be computed locally by parties that have shares of A. To compute c−1

the Newton-Raphson is also used with x0 set to an arbitrarily small value, as the
convergence happens if the magnitude of the initial value is smaller than that of c−1.

Note that in our case we use this method to compute securely the inverse of the
covariance matrix, i.e, each party has a share of the covariance matrix as input and
should receive as output random shares of its inverse, but no additional information
should be learned by the parties. Hence we cannot perform a test after each iteration
in order to check if the values already converged with resolution 2−f (and thus stop
the iterations at the optimal point) because this would leak information about the
input based on how many iterations were performed. We have to use an upper bound
γ on the number of iterations such that all possible covariance matrix converges with
resolution 2−f in γ iterations. A very conservative upper bound is γ = 2k [HFN11].

The parties use the protocol described in Figure 6.3 to securely compute the
inverse of a shared covariance matrix. We emphasize that the truncation used is the
approximate one, but the Newton-Raphson method is self-correcting.
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6.5 Linear Regression

We consider the setting in which there are a design matrix X̃ and a response vector
ỹ. We are interested in analyzing the statistical regression model

ỹ = X̃β̃ + ε,

and therefore want to compute the estimated regression coefficient vector

β = (X̃T X̃)−1X̃T ỹ

The design matrix is a t×m matrix where the elements are of the fixed-point data
type with precision 2−f and range 2k−f (i.e., X̃ ∈ Qt×m

〈k,f〉) and the response vector

ỹ ∈ Qt
〈k,f〉. Let X̂ ∈ Zt×m〈k〉 be the element-wise representation of X̃ as signed integers

and let X ∈ Zt×mq be the element-wise encoding of X̂ as elements of the field Zq.
Define ŷ and y in the same way from ỹ.

It is assumed that the parties hold shares of X and y. They can then use the
protocols for matrix multiplication, truncation and covariance matrix inversion that
were described in the previous sections in order to compute shares of

β = (XTX)−1XTy

Then they only need to reveal their final shares and convert the result back to the
fixed-point data type in order to get β. In more details:

1. Online Phase:

a) The players map their fixed precision real valued inputs to elements of
a finite field as described in Section 6.3 and create the shares of X as
described above.

b) They compute XTX by using the matrix multiplication protocol πDMM

(described in Section 2.10). Once the multiplication is finished they ran
the truncation protocol πTrunc.

c) They compute the inverse of XTX by running the protocol for computing
the inverse of a covariance matrix (described in Section 6.4). Within the
covariance matrix inversion protocol there are several calls to the matrix
multiplication and truncation protocols.

d) They run the matrix multiplication and the truncation protocols twice to
obtain (XTX)−1XT and finally (XTX)−1XTy.

e) The players exchange their shares of the estimated regression coefficient
vector and reconstruct it.

f) The coefficients β obtained by the players are mapped back from finite
field elements to real values with finite precision.

The security of the composed protocol follows from the secure sequential com-
position of the subprotocols using the facts that πDMM securely implements the
distributed matrix multiplication functionality FDMM and πTrunc securely computes
the approximate truncation functionality FTrunc. It is assumed that a big enough k
is used so that no overflow occurs and hence the correctness of the protocol follows.
The final protocol implements the linear regression functionality FReg, described in
Figure 6.4, that upon getting the shares of the design matrix X and the response
vector y, compute β = (XTX)−1XTy and output β to the parties.
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Functionality FReg

Input: Upon receiving a message from a party with its shares of the design matrix
X and the response vector y, record the shares, ignore any subsequent message
from that party and inform the other parties about the receipt.

Output: Upon receipt of the shares from all parties, recover the design matrix
X and the response vector y, compute β = (XTX)−1XTy and output β to the
parties.

Figure 6.4: The linear regression functionality.

6.6 Removing the Trusted Initializer

If a trusted initializer is not desired, it is possible to obtain solutions in which the
parties compute themselves the correlated data during an offline phase. Creating
multiplication triples is a well studied problem [DPSZ12, DKL+13, DSZ15, Pul13].
Below we present one possible solution for the case of two honest-but-curious parties,
which is the case considered in our experiments. The idea is to use the homomorphic
properties of the Paillier’s encryption scheme [Pai99]. For two large prime numbers p
and p′, the secret key of the Paillier’s cryptosystem is sk = (p, p′). The corresponding
public key is pk = N = pp′ and the encryption of a message x ∈ ZN is done by picking
a random r ∈ Z∗N2 and computing Enc(pk, x) = (N + 1)xrN mod N2. The following
homomorphic properties of the Paillier’s encryption scheme are used:

Enc(pk, x) · Enc(pk, y) = Enc(pk, x+ y mod N) and

Enc(pk, x)y = Enc(pk, xy mod N).

Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) where the second is given
in clear and the first is encrypted element-wise (i.e., Enc(pk, xi) are revealed), one
can compute a ciphertext corresponding to the inner product:

Enc(pk, 〈x,y〉 mod N) =
n∏
i=1

Enc(pk, xi)
yi .

The idea for computing the necessary correlated data for the distributed matrix
multiplication protocol is to use the above fact in order to compute the non-local
multiplication terms. Bob has a pair of public/secret keys for the Paillier’s encryp-
tion scheme and sends to Alice the element-wise encryption under his own public
key of the elements of the column/row that needs to get multiplied. Alice, having
the plaintext corresponding to her own values on the appropriate column/row, can
compute an encryption of the inner product under Bob’s public key. She then adds
a random blinding factor and sends the ciphertext to Bob, who can decrypt it, thus
yielding distributed shares of the inner product between Alice and Bob. The protocol
is described in Figure 6.5. Its security follows trivially from the IND-CPA security
of the Paillier’s encryption scheme [Pai99].
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Pre-distribution Protocol πPRED

The protocol is parametrized by the dimensions n1, n2, n3 of the matrices to be
multiplied. Bob holds a Paillier’s secret key sk, whose corresponding public-key is
pk. For a matrix X, x[i, j] denote the element in the i-th row and j-th column.

1. Bob chooses uniformly random ABob ∈ Zn1×n2
N and BBob ∈ Zn2×n3

N , element-
wise encrypts them under his own public key and send the ciphertexts to
Alice.

2. Alice chooses uniformly random AAlice ∈ Zn1×n2
N , BAlice ∈ Zn2×n3

N and T ∈
Zn1×n3
N . For i = 1, . . . , n1, j = 1, . . . , n3, Alice computes the ciphertext

c̃[i, j] = Enc (pk, t[i, j]) ·

·
n2∏
k=1

(
Enc (pk, bBob[k, j])

aAlice[i,k] · Enc (pk, aBob[i, k])bAlice[k,j]
)

and sends them to Bob. Alice outputs AAlice, BAlice and −T.

3. Bob decrypts the ciphertexts in order to get the matrix C = (AAliceBBob +
ABobBAlice + T). Bob outputs ABob, BBob and C.

Figure 6.5: The protocol for pre-distributing the correlated data.

Note that the values r and r′ that are distributed by the trusted initializer for per-
forming the truncation protocol can be trivially computed by the parties themselves
using distributed multiplications.

6.7 Experiments

We assessed our secure linear regression algorithm by implementing it and analyzing
the results using ten real datasets and the case of two honest-but-curious parties, Al-
ice and Bob. We chose a variety of different datasets based on the number of features
and the number of instances (see Section 6.7). We used C++ as our programming
language which we augmented with the BOOST libraries for functionality such as
lexical cast for type casting and asio for work with sockets. We also made use of
the GMP and NTL libraries within C++ to implement our protocols. We built our
system on top of a Microsoft Azure G4 series machine with Intel Xeon processor E5
v3 family, 224GB RAM size, 3072GB of disk size and 16 cores. Finally, we chose
Ubuntu 12.04 as our operating system. We have merged the matrix multiplication
and truncation protocols within one protocol for implementation purposes.

The online phase (Section 6.7) is very fast and capable of handling millions of
records within less than an hour, which is a huge improvement to the previous
results. We only use addition and multiplication of matrices on our online phase
which makes it simple and easy to manage.
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In the case when a trusted initializer is not desired one can use our computa-
tionally secure protocol, at the cost of having a costier offline phase (Section 6.7).
However, because Alice and Bob only work over random inputs during the offline
phase, the encryption, decryption and mathematical operations are all embarassingly
parallelizable.

Datasets

All our datasets are contained within the UCI repository3, with the exception of the
State Inpatient Database (WA) which is provided by HCUP4. The UCI repository
includes 48 regression task datasets from which we chose 9. Our datasets range
in size from 395 instances to over 4 million and from 7 attributes to 367, and are
summarized in Table 6.1.

Gas Sensor Array Under Dynamic Gas Mixtures
This dataset represents data from 16 chemical sensors exposed to ethylene and
CO mixtures at various concentration levels in the air. We added together the
concentration of ethylene and the concentration of CO to create one continuous
response variable of gas concentration and removed the time feature from the
dataset. We then designated the first 8 sensor readings to Alice and the second
8 to Bob. This left us with a total of 4,208,261 sets of 16 sensor readings to
different total concentrations of ethylene and CO.

Communities and Crime We used 122 attributes describing 1,993 communities and
their law enforcement departments in 1990 to create this dataset. The goal
with this dataset is to predict the number of violent crimes per capita for each
community. All missing values present in the dataset (of which there were
36,850 distributed throughout 1,675 different communities and 22 different
attributes) were replaced with 0s. These missing values were largely relevant
to the communities’ police departments. We also removed 5 variables that
were present in the original data but described by the UCI documentation as
non-predictive, namely state, county, community, community name, and fold.
The final 122 attributes were then divided in half between Alice and Bob.

Auto MPG This dataset contains attributes describing 398 automobiles in attempt
to predict MPG (miles per gallon) for each. We removed the car name attribute
which was present in the original data and were left with 7 predictive features.
We then replaced the 6 missing horsepower values with 0s. In the end we
designated the cylinders, displacement, and horsepower features to Alice and
the weight, acceleration, model year, and origin features to Bob.

BlogFeedback In an attempt to predict the number of comments a blog post will
receive in the upcoming 24 hours, this dataset originally had 280 attributes.
Since our complete dataset must be linearly independent, to enable the in-
version of XTX required in our protocol, we removed 57 of these original
attributes leaving us with 223 predictors describing 52,397 blog posts. An
example of such a feature would be the binary indicator of whether or not a

3UC Irvine Machine Learning Repository
https://archive.ics.uci.edu/ml/datasets.html

4http://www.ahrq.gov/research/data/hcup/

https://archive.ics.uci.edu/ml/datasets.html
http://www.ahrq.gov/research/data/hcup/
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blog post was published on a Sunday. There are binary indicators of whether
publication occurred on any of the other days of the week and therefore this
feature, publication on a Sunday, is linearly dependent on the other six. Fi-
nally, the dataset was divided column wise, designating 111 attributes to Alice
and the other 112 to Bob.

Wine Quality This dataset takes 11 attributes related to the white variant of Por-
tuguese “Vinho Verde” wine which are used to predict the quality score of
4,897 wines. We designated the fixed acidity, volatile acidity, citric acid, resid-
ual sugar, chlorides, and free sulfur dioxide features to Alice and the total
sulfur dioxide, density, pH, sulphates, and alcohol features to Bob.

Bike Sharing In this dataset we took attributes describing a certain hour and day
and attempted to predict the number of users for a bike sharing system. We
removed the record index which was present in the original data as well as the
count of casual users and the count of registered users and targeted the total
rental bikes used (casual+registered) for our prediction. We were left with 13
predictors of 17,379 hour/day combinations which were used to model bike use.
Alice received information on the dates, seasons, years, months, hours, and
holidays while Bob was given information on weekdays, working days, weather
situations, temperatures, feel temperatures, humidities, and windspeeds.

Student Performance We used 30 attributes describing 395 students across two
schools to create this dataset. The goal with this dataset is to predict the
final grade of each student in their math class. We removed two columns from
the original dataset – one detailing students’ performances in the first period
and one detailing their performances in the second period. We identified the
student’s final grade as our sole response variable. The final 30 attributes were
then divided evenly between Alice and Bob.

YearPredictionMSD In this dataset we have attributes describing audio features
of 515,344 songs and we aim to predict the release year of each song. We
kept all 90 features that were present in the original data provided by the UCI
repository. In allocating the data we gave Alice the first 45 features and the
second 45 to Bob.

State Inpatient Database (WA) From the HCUP State Inpatient Database (WA)
we extracted attributes describing 25,180 beneficiaries who had at least one
hospital admission within the state of Washington during the first nine months
of the year between the years 2009 and 2012. The goal with this data is to
predict the cost each beneficiary will incur in the final three months of the same
year. We extracted demographic, medical, and previous cost information from
the original data and replaced any missing values with a 0 value. We then
designated the age, gender, race, number of chronic conditions, length of stay,
and number of admits attributes to Alice. Bob was given a Boolean matrix of
comorbidities as well as previous cost information.

Relative Location of CT Slices on Axial Axis In an attempt to predict the rela-
tive location of a CT slice on the axial axis of the human body, the original
dataset had 384 attributes describing CT images. Since our complete dataset
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Dataset Number Number of Training Time: Data Training Time: Using
Name of Rows Columns Shared in the Clear Proposed Secure Protocol

Student Performance 395 30 0.3 sec 11.7 sec
Auto MPG 398 7 0.09 sec 1.2 sec

Communities and Crime 1,993 122 9 sec 147 sec
Wine Quality 4,897 11 0.9 sec 5.2 sec
Bike Sharing 17,379 13 3.7 sec 16.5 sec

State Inpatient Database (WA) 25,180 36 21 sec 93 sec
BlogFeedback 52,397 223 1,800 sec 9,000 sec

Relative Location of CT Slices on Axial Axis 53,500 367 6,000 sec 30,000 sec
YearPredictionMSD 515,344 90 3,800 sec 18,000 sec

Gas Sensor Array Under Dynamic Gas Mixtures 4,208,261 16 1,100 sec 4,500 sec

Table 6.1: Actual time required (in seconds) for the online phase of the secure pro-
tocol to build a predictive linear regression model.

must be linearly independent, we removed 17 of these original attributes leav-
ing us with 367 predictors describing 53,500 CT images. We then divided this
dataset column wise, designating 183 attributes to Alice and the other 184 to
Bob.

Online Phase

We present in Table 6.1 the running times for the online phase of our protocol build-
ing a predictive linear regression model. Our online phase is very fast, computing a
linear regression model for a matrix of over 4 million rows and 16 columns in under
one hour. The regression coefficients computed with our secure protocol agree to
the 5th decimal digit with regression coefficients computed without any security.

We briefly work out the theoretical complexity of computing β = (XTX)−1XTy
with our online protocol. If our dataset (which is denoted by X in this formula),
has m features and t records, then the total runtime for computing the β values is
O(tm2) which means that the number of records in the dataset has only a linear
effect on the run time of our implementation.

We used NTL for matrix multiplication with modular arithmetic. We also used
GMP (the GNU Multi-Precision library) in conjunction with NTL to increase our
performance. In the NTL library, the basic algorithm is used.

Note that (XTX) is a square matrix with both dimensions equal to m, and for
datasets in which the number of features is small relative to the number of records,
computing (XTX)−1 is very fast and negligible in respect to, for example, computing
XTX. Our online phase is faster and independent from the trusted party unlike
similar implementations, such as Nikolaenko et al.’s implementation [NWI+13].

Computationally Secure Offline Phase

In the pre-processing of the computationally secure offline phase of the matrix mul-
tiplication protocol πDMM, we use Paillier for encryption and decryption, but any ad-
ditive homomorphic encryption scheme can be used. The downside of these schemes
is that their encryption and decryption times are computationally intensive and, if
the given dataset is large, the pre-processing phase can take a long time. This is-
sue can be tackled by noticing that Alice and Bob, during this phase, only perform
simple computations over random, independent data and thus one can use heavy
parallelization to speed-up the running time.
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Dataset Number Number of Offline Time Offline Time Offline Time
Name of Rows Columns With 16 Cores With 64 Cores With 256 Cores

Student Performance 395 30 20 sec 6 sec 2 sec
Auto MPG 398 7 4 sec 1 sec 0.3 sec

Communities and Crime 1,993 122 400 sec 100 sec 30 sec
Wine Quality 4,897 11 100 sec 30 sec 10 sec
Bike Sharing 17,379 13 350 sec 100 sec 30 sec

State Inpatient Database (WA) 25,180 36 1,500 sec 400 sec 100 sec
BlogFeedback 52,397 223 15,000 sec 4,000 sec 1,000 sec

Relative Location of CT Slices on Axial Axis 53,500 367 30,000 sec 10,000 sec 3,000 sec
YearPredictionMSD 515,344 90 70,000 sec 20,000 sec 6,000 sec

Gas Sensor Array Under Dynamic Gas Mixtures 4,208,261 16 100,000 sec 30,000 sec 10,000 sec

Table 6.2: Estimated time required (in seconds) for the offline phase of the secure
protocol to build a predictive linear regression model.

For a dataset with t records and m features, in order to get coefficients securely
and correctly, we use i = 50 iterations in the computation of inversion. Overall, we
need 5tm+ (3i+ 3)m2 +m+ 3i encryptions and tm+ (i+ 1)m2 + t+ i decryptions.
We also have two matrix multiplications and 3 matrix additions between encryption
and decryption. Each encryption in an Azure VM takes about 0.005 seconds for
each core. It is then easy to see that the encryption phase is the bottleneck of
the pre-processing phase and easily parallelizable. Since we have 5tm number of
encryptions, by multiplying this number to the runtime of a single encryption time
divided by number of cores, a good estimate of the pre-processing phase is achievable.

The estimated running time for the offline phase is given in Table 6.2. These
estimated results are a huge improvement when compared to the previous result
[HFN11] which took two days given a dataset with only about 50,000 records and
are comparable to the total running time presented in [NWI+13] in the case of 256
cores.

6.8 Discussion

In this chapter we presented an information-theoretically secure protocol for privacy-
preserving linear regression in the commodity-based model. The protocol has an
offline phase where a trusted initializer pre-distributes random correlated data to
the parties. The trusted initializer never engages again in the protocol. The online
phase is orders of magnitude faster when compared to previous solutions in the
literature [NWI+13, HFN11]. When a trusted initializer is not desirable or available,
it is possible to substitute it with an computationally secure offline phase that is
run between the parties. This offline phase is completely parallelizable, making it
practical when a large number of cores is available.

One interesting direction for future work is trying to obtain practical protocols for
linear regression that are secure against stronger types of adversaries, such as covert
and malicious adversaries. One technique that can possibly help in achieving such
goal is the compute with MACs approach [BDOZ11, DPSZ12, DKL+13].
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Data-driven machine learning classification has the ability to vastly improve the
quality of our daily lives, but raises privacy issues from the point of view of both the
user Alice as well as the model owner Bob. In this chapter, whose contents are based
on [CDH+16, DDKN15], we deal with the scenario in which Alice holds some data
that she wants to classify using a model hold by Bob, but the protocol should be
such that Bob learns nothing about Alice’s data and Alice learns as little as possible
about Bob’s model. In other words, we tackle the problem of evaluating machine
learning classifiers in a privacy-preserving way.

Our contributions

We show new privacy-preserving protocols for evaluating decision trees, hyperplane-
based and Naive Bayes classifiers. Our protocols compare favorably against previ-
ous results [BPTG15, BPTG14, WFNL15]. The results are proven in the so-called
commodity-based model and our online phase is unconditionally secure; that is, if the
commodities are provided in an information theoretically secure fashion, the overall
protocol will be information theoretically secure. Finally, differently from previously
proposed solutions [BPTG15, BPTG14, WFNL15] the online phase of our protocols
solely use modular additions and multiplications. No modular exponentiations are
ever required. Our solutions are secure in the honest-but-curious model, which is
consistent with the previous works in the area.

The main idea behind our solutions is to decompose the problem of obtaining
privacy-preserving classifiers into the problem of obtaining secure versions of a few
building blocks: distributed multiplication, distributed comparison, bit-decomposi-
tion of shares, distributed inner product and argmax computation, and oblivious
input selection. We then either use the most efficient available versions of these
protocols or propose new, more efficient ones. In more detail, the main contributions
are:

− A novel protocol for computing private scoring of decision trees where Bob
learns nothing about Alice’s data and Alice learns only the depth of Bob’s de-
cision tree. Moreover, only modular additions and multiplications are required.
In previous solutions [BPTG15, BPTG14, WFNL15], either modular exponen-
tiations and fully homomorphic encryption are required [BPTG15, BPTG14] or

75
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Paillier encryption-based private comparison schemes and Oblivious Transfer
protocols (both requiring modular exponentiations) are required [WFNL15].

− Demonstration that applying our new building blocks to get decision tree and
hyperplane-based classifiers improves the efficiency. We implement the cases
of decision trees, support vector machines and logistic regression. We evaluate
the implementation on 7 real data benchmark datasets from the UCI Machine
Learning repository and present of the obtained accuracies and running times.

Model

For the sake of generality, some of the protocols in this chapter are presented consid-
ering u parties P1, . . . ,Pu, despite the fact that our application in this chapter only
deal with two parties. The adversaries considered in this chapter are honest-but-
curious and static (as in all other practical privacy-preserving classification protocols
so far). Honest-but-curious adversaries follow the protocol instructions correctly, but
try to learn additional information. A static adversary means that the set of cor-
rupted parties is fixed before the protocol execution and remains unchanged during
the execution. For a version of the UC composition theorem for this scenario please
refer to the Theorem 4.20 of Cramer et al. [CDN15].

Outline

Section 7.1 explains the machine learning classifiers that are considered in this work.
We then present in Section 7.2 the building blocks that are used in the privacy-
preserving classifiers: a secure distributed comparison protocol, a secure argmax
protocol, a secure bit-decomposition protocol and an oblivious input selection pro-
tocol. After that, Section 7.3 describes the privacy-preserving classifiers and Sec-
tion 7.4 the experiments that we performed to assess their performance. Section 7.5
explains how the pre-distributed data can be generated by the parties if no trusted
initializer is available (or desirable). Finally, Section 7.6 compares our solution with
the related work and Section 7.7 presents our concluding remarks.

7.1 Machine Learning Classifiers

In this section we briefly review the machine learning models for which we propose
privacy-preserving scoring protocols in Section 7.3. Our presentation and notation
is similar to that of Bost et al. [BPTG15, BPTG14].

Decision Trees

Decision trees are non-parametric, discriminative classifiers1. Alice holds an input
vector x = (x1, . . . , xt) ∈ Rt consisting of t features. The classification algorithm
consists of a mapping C: Rt→{c1, . . . , ck} on x. The result of the classification
C(x) is one of the k possible classes c1, . . . , ck. The model is a tree structure and is

1Being non-parametric means that the structure of the model is not completely fixed, the model
can grow in size to accommodate the complexity of the training data. Being discriminative
means that the model learns boundaries between the classes.
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held by Bob. Each internal node of the tree structure tests the value of a particular
feature against a corresponding threshold and branches according to the results.
Each leaf node specifies one of the k classes. The result of the classification is the
class associated with the leaf reached from traversing the tree.

In all our secure protocols a full tree is assumed. In the case where a decision
tree is not full, one can always fill it with dummy nodes to obtain a full tree. It is
assumed, without loss of generality, that the trees are binary.

Bob’s model isD = (d,G,H,w), where d is the depth of the tree, G: {1, . . . , 2d}→
{1, . . . , k} is a mapping from the indices of the leaves to the indices of the classes,
H: {1, . . . , 2d − 1}→{1, . . . , t} is a mapping from the indices of the internal nodes
(always considered in level-order) to the indices of Alice’s input features and w =
(w1, . . . , w2d−1) with wi ∈ R contains the thresholds corresponding to each internal
node. For each internal node vi with 1 ≤ i ≤ 2d − 1, let zi be the Boolean variable
denoting the result of comparing xH(i) with wi, which is one if xH(i) ≥ wi and zero
otherwise. The classification process goes as follows:

− Starting from the root node, for the current internal node vi, evaluate zi. If
zi = 1, take the left branch; otherwise, the right branch.

− The algorithm terminates when a leaf is reached. If the j-th leaf is reached,
then the output is cG(j).

Hyperplane-Based Classifiers

Hyperplane-based classifiers are parametric, discriminative classifiers. For a setting
with t features2 and k classes, the model consists of k vectors w = (w1, . . . ,wk) with
wi ∈ Rt and the classification result is obtained by determining, for Alice’s feature
vector x ∈ Rt, the index

k∗ = argmax
i∈[k]
〈wi,x〉,

where 〈·, ·〉 is the inner-product.
Hyperplane-based classifiers are very common in machine learning. They can be

obtained, for example, through maximizing the margin (as in support vector ma-
chines, which are explained below), perceptron learning, Fisher linear discriminant
analysis and least squares optimization. All these techniques result in hyperplane-
based classifiers for which the privacy-preserving scoring protocols we propose in
Section 7.3 are applicable.

Support vector machine (SVM) learning is a method for training classifiers based
on different types of kernel functions – polynomial functions, radial basis functions,
etc. An SVM is characterized by a linear separating hyperplane which maximizes
the margins between the classes [DBK+96]. The decision boundary is maximized
with respect to the data points from each class (known as support vectors) that
are closest to the decision boundary. Support vector machines are a particular case
of hyperplane-based classifiers. For the particular case of an SVM classifier with
two classes c+ and c−, we can rephrase hyperplane-based classifiers as follows. Alice
holds an input vector x, Bob holds a model (a, b), where a is an t-dimensional vector
(the weight vector) and b is a real number. The result of the classification is obtained
by computing

sign (〈x, a〉+ b) ,

2We can have one of the features being 1 in order to account for constants.
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where sign (y) is + if y > 0 and − otherwise.
Logistic Regression is a classifier that models the posterior probability of the class

given the input features by fitting a logistic curve to the relationship between them
[NJ01]. As such, logistic regression model outputs can be interpreted as probabilities
of the occurrence of a class. When the response is a binary variable with class labels
c+ and c−, then for a new input instance x, a trained logistic regression model
outputs the probabilities

PC|X(c−|x) =
1

1 + exp(〈x, a〉+ b)

and PC|X(c+|x) = 1− PC|X(c−|x), where the weight vector a and the real number b
are learned during the logistic regression model training process. The class decision
for the given probability is then made based on a threshold value which is often set
to 0.5: if PC|X(c+|x) ≥ 0.5, then we predict that the instance belongs to the positive
class, and otherwise we predict the instance belongs to the negative class. In this
case the classification can be done by computing

sign (〈x, a〉+ b) .

Naive Bayes Classifier

The Naive Bayes classifier is a parametric, generative classifier. Generative classifiers
try to learn the distribution of the individual classes instead of only boundaries
between them (as in discriminative classifiers). The Naive Bayes classifier uses the
Bayes’ rule and makes a conditional independence assumption that says that the
features are independent when conditioned on the class. The model then consists
of the probability distribution of the classes PC and the conditional probability
distribution of the each feature conditioned on the classes PXi|C . The classification
result is obtained by determining, for Alice’s feature vector x = (x1, . . . , xt) ∈ Rt,
the index

k∗ = argmax
j∈[k]

{
logPC(cj) +

t∑
i=1

logPXi|C(xi|cj)

}
,

where the logarithms are used for stability reasons. On one hand, the prediction
using this model can be poor compared to discriminative classifiers if the conditional
independence assumption does not hold. On the other hand, this model works better
with low amount of training data [NJ01] (discriminative classifiers can overfit the
data).

7.2 Building Blocks

7.2.1 Secure Distributed Comparison

For performing secure distributed bitwise comparison we use the protocol of Garay
et al. [GSV07] with secret sharings in the field Z2. That protocol has dlog `e + 1
rounds and uses 3` − blog `c − 2 multiplications. The protocol will be denoted by
πDC and it securely implements the distributed comparison functionality FDC that
is described in Figure 7.1. For a detailed description of the protocol see the original
paper of Garay et al. [GSV07] or Section 4.3.3 of De Hoogh’s PhD thesis [dH12].
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Functionality FDC

FDC runs with parties P1, . . . ,Pn and is parametrized by the bit-length ` of the
values being compared.

Input: Upon receiving a message from a party with its shares of JxiK2 and JyiK2

for all i ∈ {1, . . . , `}, record the shares, ignore any subsequent messages from that
party and inform the other parties about the receipt.

Output: Upon receipt of the inputs from all parties, reconstruct x and y from
the bitwise shares. If x ≥ y, then create and distribute to the parties the secret
sharing J1K2 ; otherwise the secret sharing J0K2 . Before the deliver of the output
shares, the corrupt parties fix their shares of the output to any constant values.
In both cases the shares of the uncorrupted parties are then created by picking
uniformly random values subject to the correctness constraint.

Figure 7.1: The distributed comparison functionality.

7.2.2 Secure Argmax

Suppose that the parties P1, . . . ,Pu have bitwise shares of a tuple of values (v1, . . . , vk)
and want one of them, let’s say P1, to learn all the arguments m ∈ {1, . . . , k} such
that vm ≥ vj for all j ∈ {1, . . . , k}, but no party should learn any vj or the relative
order between the elements. The parties just want P1 to learn

m = arg max
j∈{1,...,k}

vj.

The argmax functionality Fargmax is described in Figure 7.2. Using our protocol
for secure distributed comparison it is possible to give simple and practical solutions
for securely computing this function. A first idea, which optimizes the number of
communication rounds, is to have the parties comparing in parallel each ordered pair
of vectors and then using the result of the comparisons to determine the argmax.
Note than when considering all executions of the comparison protocol involving a
specific value vj as the first argument, they will all return one if and only if the value
is a maximum. The protocol πargmax is described in Figure 7.3.

Theorem 7.1 ([CDH+16]) The argmax protocol πargmax UC-realizes the argmax
functionality Fargmax against honest-but-curious adversaries in the commodity-based
model.

Proof: Correctness: The correctness follows trivially as for a maximum value, all
comparison involving it as the first argument will return one, and so the product of
the comparison results will also be one and the index will be added to the output.
For all values which are not a maximum, at least one comparison will return zero,
and so the product will be zero and the index will not be added to the output.



80 7. Privacy-Preserving Classifiers

Functionality Fargmax

Fargmax runs with parties P1, . . . ,Pu and is parametrized by the bit-length ` of the
values being compared and the number k of values being compared.

Input: Upon receiving a message from a party with its bitwise shares of Jvj,iK2

for all j ∈ {1, . . . , k} and i ∈ {1, . . . , `}, record the shares, ignore any subsequent
messages from that party and inform the other parties about the receipt.

Output: Upon receipt of the inputs from all parties, reconstruct the values vj
from the bitwise shares vj,i, compute m = argmaxj∈{1,...,k} vj, and send m to P1.

Figure 7.2: The argmax functionality.

Secure Argmax Protocol πargmax

Let ` be the bit length of the k values to be compared. The trusted initializer
pre-distributes all the correlated randomness necessary for the execution of the
instances of the distributed multiplication and comparison protocols. The parties
have as input bitwise shares Jvj,iKq for all j ∈ {1, . . . , k}, i ∈ {1, . . . , `} and proceed
as follows:

1. For all j = 1, . . . , k and n ∈ {1, . . . , k} \ j, the parties compare in parallel
Jvj,iK2 and Jvn,iK2 (i = 1, . . . , `). Let Jwj,nK2 denote the output obtained.

2. For all j = 1, . . . , k, the parties computed in parallel JwjK2 =∏
n∈{1,...,k}\jJwj,nK2 .

3. The parties open wj for P1. If wj = 1, P1 append j to the value to be output
in the end.

Figure 7.3: The secure argmax protocol.
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Security: The first two steps only involve invocations of the distributed comparison
πDC and multiplication πDM protocols, while the last step only opens one bit of in-
formation per index, indicating whether it corresponds to a maximum value or not;
but this information is exactly the information contained in the output of the func-
tionality Fargmax; hence the security of the protocol follows easily. Using the fact that
πDC UC-realizes FDC and πDM UC-realizes FDMM, the simulator S runs internally a
protocol execution for the adversary A in which he simulates the ideal functionalities
and uses dummy inputs for the uncorrupted parties. Using this leverage, it is trivial
for S to extract the inputs of the corrupted parties in order to give to Fargmax. If P1

is corrupted, S can then use the output it gets from Fargmax to adjust the output of
the simulated protocol by picking an uncorrupted party and changing its share of
each wj appropriately before the opening. Z has no advantage in distinguishing the
real and ideal worlds.

Optimization: The round complexity for performing the multiplications in the
second step can be improved by using a binary tree approach: the multiplicands
are inserted as leaves of a binary tree and then we proceed upwards attributing to
each internal node the value corresponding to the multiplication of its two children.
Using this method the second step can take dlog k − 1e rounds.

We also present in Figure 7.4 an alternative argmax protocol π′argmax that focus on
optimizing the usage of the underlying multiplication and comparison protocols (in-
stead of the number of rounds) and is based on the idea of iterating the comparison
protocol over all values while always keeping tracking in form of bitwise secret shar-
ings of the highest value found so far and its argument. The protocol π′argmax realizes
a slightly modified version F ′argmax of the argmax functionality that only outputs the
smallest index corresponding to a maximum.

Theorem 7.2 ([CDH+16]) The argmax protocol π′argmax UC-realizes the argmax
functionality F ′argmax against honest-but-curious adversaries in the commodity-based
model.

Proof: The correctness follows trivially as we are simply iterating over the values
while keeping track of the maximum value found so far and its argument, as one
would do in the standard algorithm that is not concerned with any secure require-
ment. The simulation strategy follows the same lines as before.

7.2.3 Secure Bit-Decomposition

This section deals with the problem of converting from shares JxKq of a value x in
a large ring Zq to shares of JxiK2 in Z2, where x` · · ·x1 is the binary representa-
tion of x. The bit-decomposition functionality Fdecomp is described in Figure 7.5.
The usefulness of such functionality comes from the fact that it allows to convert
from a representation that allows the efficient execution of algebraic operations to
a representation that allows the efficient execution of Boolean operations (such as
a comparison). We present in Figure 7.6 a bit-decomposition protocol πdecomp that
is specialized for the two-party case with q = 2`. Alice and Bob know shares a and
b, respectively, such that x = a + b mod 2`. Note that Alice also knows the bit
string representation of a, i.e., a` . . . a1, and Bob similarly knows b` . . . b1. The main
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Secure Argmax Protocol π′argmax

Let ` be the bit length of the k values (v1, . . . , vk) to be compared. Let
g = dlog2 ke. The trusted initializer pre-distributes all the correlated randomness
necessary for the executions of the distributed comparison and multiplication pro-
tocols. The parties have as input secret sharings Jvj,iK2 for all j ∈ {1, . . . , k} and
i ∈ {1, . . . , `}. The bit string max ∈ {0, 1}` stores the maximum value found
until the current point and the bit string argmax ∈ {0, 1}g its argument. Both
are stored in the form of bitwise secret sharings and are initialized with the values
v1 and 1 respectively. The protocol proceeds as follows:

1. For j = 2, . . . , k:

a) Compare the values max and vj using the bitwise shares and protocol
πDC. Let JcK2 denote its output.

b) For i ∈ {1, . . . , `}, compute JmaxiK2 ← JcK2JmaxiK2 + (1− JcK2)Jvj,iK2 .

c) For f ∈ {1, . . . , g}, compute JargmaxfK2 ← JcK2JargmaxfK2 + jf (1 −
JcK2) where jg . . . j1 is the bit string representing the number j.

2. Open the secret sharings JargmaxpK2 to P1 so that it can recover argmax.

Figure 7.4: The alternative secure argmax protocol.

observation is that the difference between the sum of a = a` . . . a1 and b = b` . . . b1

modulo 2` and two bit strings that xor to the bit string x` · · ·x1 is exactly equal to
the carry bits.3 Therefore we use a carry computation to obtain the bitwise secret
sharings JxiK2 starting from a` . . . a1 and b` . . . b1.

Theorem 7.3 ([CDH+16]) Over a ring Z2`, the bit-decomposition protocol πdecomp

UC-realizes the bit-decomposition functionality Fdecomp for the special case of two
players against honest-but-curious adversaries in the commodity-based model.

Proof: Correctness: The protocol implements a full adder logic ci = (ai∧bi)∨((ai⊕
bi)∧ ci−1), which can be similarly expressed as ci = ¬(¬(ai∧ bi)∧¬((ai⊕ bi)∧ ci−1))
to obtain the carry bit string. By adding ci−1 into yi, we convert from bit strings
that sum to x modulo 2` to bit strings that xor to x, thus obtaining the shares of xi
modulo 2.

Security: The only non-local operations are the invocations of the distributed mul-
tiplication protocol πDM, which UC-realizes FDMM. Therefore the security follows
essentially from the security of that protocol. S runs a copy of A and simulates
an execution of the protocol using dummy inputs for the uncorrupted party. Since
S is the one simulating the distributed multiplication functionality FDMM, it can
easily extract the corrupted party’s share of the input in order to give it to Fdecomp

3The protocol is similar to the one of Laud and Randmets [LR15], see the related works in
Section 7.6 for more details.
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Functionality Fdecomp

Fdecomp runs with parties P1, . . . ,Pu and is parametrized by the bit-length ` of
the value x being converted from additive sharings JxKq in Zq to additive bitwise
sharings JxiK2 in Z2 such that x = x` · · ·x1.

Input: Upon receiving a message from a party with its share of JxKq , record
the share, ignore any subsequent messages from that party and inform the other
parties about the receipt.

Output: Upon receipt of the inputs from all parties, reconstruct the value x =
x` · · ·x1 from the shares, and for i ∈ {1, . . . , `} distribute new sharings JxiK2 of
the bit xi. Before the output deliver, the corrupt parties fix their shares of the
outputs to any constant values. The shares of the uncorrupted parties are then
created by picking uniformly random values subject to the correctness constraints.

Figure 7.5: The bit-decomposition functionality.

Secure Two-Party Bit-Decomposition Protocol πdecomp

Let ` be the bit length of the value x to be reshared. All distributed multiplications
using protocol πDM will be over Z2 and the required correlated randomness is pre-
distributed by the trusted initializer. The parties, Alice and Bob, have as input
JxKq for q = 2` and proceed as follows:

1. Let a denote Alice’s share of x, which corresponds to the bit string a` . . . a1.
Similarly, let b denote Bob’s share of x, which corresponds to the bit string
b` . . . b1. Define the secret sharings JyiK2 as the pair of shares (ai, bi) for
yi = ai + bi mod 2, JaiK2 ← ai and JbiK2 ← bi.

2. Compute Jc1K2 ← Ja1K2Jb1K2 using πDM and locally set Jx1K2 ← Jy1K2 .

3. For i = 2, . . . , `:

a) Compute JdiK2 ← JaiK2JbiK2 + 1

b) JeiK2 ← JyiK2Jci−1K2 + 1

c) JciK2 ← JeiK2JdiK2 + 1

d) JxiK2 ← JyiK2 + Jci−1K2

4. Output JxiK2 for i ∈ {1, . . . , `}.

Figure 7.6: The secure two-party bit-decomposition protocol.
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and also derive the corrupted party’s shares of the outputs in order to fix then in
Fdecomp. Consequently Z is unable to distinguish this ideal world from the real world
interaction with A and parties executing πdecomp.

Optimization: The idea to optimize the number of rounds to logarithmic is to
compute speculatively (using secret sharings). In the first iteration the bit strings
are divided in blocks of size 1 and the values of xi and ci are computed speculatively
using both ci−1 = 1 and ci−1 = 0 for all i except i = 1, for which we know that there
is no carry in and so only one computation is needed. The second iteration divides
the bit strings in blocks of size 2 and uses the information from the previous iteration
to compute xi+1xi and ci+1ci speculatively using both ci−1 = 1 and ci−1 = 0 (except
for the least significant block that only needs one computation). The third iteration
proceeds analogously with blocks of size 4 by joining the blocks of size 2, and so on.
After dlog `e+ 1 iterations one gets the desired bit strings x` . . . x1 and c` . . . c1. The
first iteration uses 3` instances of the multiplication protocol and needs two rounds
of communication as there are pairs of sequential multiplications, all other iterations
only need one round of communication and use 2` multiplications each. Therefore in
total the optimized protocol has 2 + dlog `e rounds and uses 2`dlog `e+ 3` instance
of the multiplication protocol.

7.2.4 Oblivious Input Selection

In our applications there are also circumstances in which Alice holds a vector of
inputs x = (x1, . . . , xt) and Bob holds an index k, and they want to obtain bitwise
secret sharings of xk for further uses in the protocol, but without revealing any
information about the inputs or k. The oblivious input selection functionality FOIS,
which captures this task, is described in Figure 7.7. In Figure 7.8 a protocol πOIS

realizing this functionality is explained. This idea was previously used by Toft
[Tof07, Tof09b], where it was called “secret indexing”.

Theorem 7.4 ([CDH+16]) The oblivious input selection protocol πOIS UC-realizes
the oblivious input selection functionality FOIS against honest-but-curious adver-
saries in the commodity-based model.

Proof: Correctness: Straightforward to verify.

Security: Similarly to the previous proofs, S uses the fact that the only messages
exchanged are for performing the distributed multiplications and the leverage of
being able to simulate FDMM in order to simulate an execution of the protocol to
A and at the same time being able to extract the inputs and the output shares of
a corrupted party in order to forward to FOIS. By doing so, S makes Z unable to
distinguish this ideal world with interactions with S and FOIS from the real world
with A and the parties executing the protocol πOIS.

7.3 Privacy-Preserving Classifiers

We now present our privacy-preserving classifiers using the building blocks from the
previous sections.



7.3. Privacy-Preserving Classifiers 85

Functionality FOIS

FOIS runs with Alice and Bob and is parametrized by the size t of the input vector
x = (x1, . . . , xt) and the bit-length ` of each input xj.

Input: Upon receiving a message with the input vector x = (x1, . . . , xt) from
Alice, store them, ignore any subsequent messages from her and inform Bob that
the inputs were received.

Output: Upon receipt of the selected index k ∈ [t] from Bob, distribute bitwise
sharings Jxk,iK2 for i ∈ {1, . . . , `} and ignore any subsequent messages. Before the
output deliver, the corrupt party fix its shares of the outputs to any constant val-
ues. The shares of the uncorrupted parties are then created by picking uniformly
random values subject to the correctness constraints.

Figure 7.7: The oblivious input selection functionality.

Oblivious Input Selection Protocol πOIS

Let ` be the bit length of the inputs to be shared and t the dimension of the
input vector. The trusted initializer pre-distributes all the correlated randomness
necessary for the executions of πDM over Z2. Alice has as input a vector of values,
x = (x1, . . . , xt), and Bob has as input k ∈ [t], the index of the desired input
value. They proceed as follows:

1. Define yk = 1 and, for j ∈ {1, . . . , t} \ {k}, yj = 0. For j ∈ {1, . . . , t}
and i ∈ {1, . . . , `}, let xj,i denote the i-th bit of xj. Let JyjK2 ← yj and
Jxj,iK2 ← xj,i.

2. For i = 1, . . . , `, compute JziK2 ←
∑t

j=1 JyjK2Jxj,iK2 using the distributed
multiplication πDM over Z2.

3. Output JziK2 for i ∈ {1, . . . , `}.

Figure 7.8: The oblivious input selection protocol.
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Figure 7.9: Example of decision tree with 7 nodes and 2 classes.

Secure Decision Trees

Here, Alice inputs x = (x1, . . . , xn) ∈ Rn and the classification algorithm will result
in one of the k possible classes c1, . . . , ck. Bob holds the model D = (d,G,H,w),
where d is the depth of the tree, G maps the leaves to classes, H maps internal nodes
(always considered in level-order) to input features and w is a vector of thresholds.
Each internal node of the tree structure tests the value of a particular feature against
a corresponding threshold and branches according to the results. Each leaf node
specifies a class. In all our secure protocols, we assume without loss of generality
that we have a full binary tree. In case a decision tree is not full, one can always fill
it with dummy nodes and obtain a full one. Let zi be the Boolean variable denoting
the result of comparing xH(i) with wi. We recall the classification algorithm:

− Starting from the root node, for the current internal node vi, evaluate zi. If
zi = 1, take the left branch; otherwise, the right branch.

− The algorithm terminates when a leaf is reached. If the j-th leaf is reached,
then the output is cG(j).

Similar to Bost et al. [BPTG15], the classification can be expressed as a poly-
nomial PG: {0, 1}2d−1→{1, . . . , k} that depends on the mapping G from the leaves
to the classes. On input z = (z1, . . . , z2d−1), PG gives the classification result. This
polynomial is a sum of terms such that each term corresponds to one possible path
in the tree: the term corresponding to path taken by x in the tree evaluates to the
classification result (i.e., the class associated to that leaf), while the remaining terms
evaluate to zero. For example, for the tree portrayed in Figure 7.9, the polynomial
PG that represents the tree is: PG(z1, z2, z3) = z1z2c1 +z1z̄2c2 + z̄1z3c1 + z̄1z̄3c2 where
x̄ denotes 1− x.

The idea of our secure protocol is that, for each internal node, Alice and Bob use
the oblivious input selection protocol πOIS to obtain bitwise secret sharings of the
value xH(i) that will be compared against the threshold wi of this node. Note that,
as Alice does not learn any information from the execution of πOIS, she does not
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Functionality FDT

FDT is parametrized by the tree depth d, which is revealed to Alice.

Input: Upon receiving the feature vector x from Alice or the decision tree model
D = (d,G,H,w) from Bob, store it, ignore any subsequent message from that
party, and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties, evaluate the decision tree
D with the input x. Let j be the reached leaf. Output G(j) to Alice.

Figure 7.10: The decision tree functionality.

Secure Decision Tree Protocol πDT

Alice has as input a feature vector x and Bob has a decision tree model D =
(d,G,H,w). Alice and Bob proceed as follows:

1. For i = 1, . . . , 2d − 1, Alice and Bob obtain bitwise secret sharings of xH(i)

by using πOIS with inputs x1, · · · , xn from Alice and input H(i) from Bob.

2. For i = 1, . . . , 2d− 1, Alice and Bob securely compare xH(i) and wi. For the
input wi, Bob inputs its bit representation and Alice inputs zeros. Let JziK2

denote the result.

3. For j = 0, . . . , 2d−1, let jd . . . j1 be the binary representation of j with d bits
and let bα . . . b1 for α = dlog ke be the binary representation of G(j+ 1)− 1.
For r = 1, . . . , α, initialize Jyj,rK2 with the shares (0, br). Initialize u = 1
and s = d. While s > 0 do:

a) For r = 1, . . . , α, Jyj,rK2 ← Jyj,rK2(JzuK2 + js).

b) Update u← 2u+ js and s← s− 1.

4. For all r = 1, . . . , α compute JσrK2 ←
∑2d−1

j=0 Jyj,rK2 and open σr to Alice.
Alice reconstructs σ from the bit string σα . . . σ1 and outputs k∗ = σ + 1.

Figure 7.11: The protocol for secure evaluation of a decision tree.
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know which feature will be used in the comparison at each internal node. Then the
comparisons are performed using the secure distributed comparison protocol πDC

in order to obtain z, which is then used to evaluate the polynomial PG using the
secure multiplication protocol πDM and local addition of secret sharings. The only
information leaked about the tree structure to Alice is its depth d. The decision tree
functionality FDT is described in Figure 7.10 and a more detailed description of the
protocol πDT realizing FDT is in Figure 7.11.

Theorem 7.5 ([CDH+16]) The decision tree protocol πDT UC-realizes the decision
tree functionality FDT against honest-but-curious adversaries in the commodity-based
model.

Proof: Correctness: For each leaf j ∈ {1, . . . , 2d}, the secret sharings Jyj−1,rK2

with r = 1, . . . , dlog ke obtained in step 3 correspond to a binary representation of
the index of its associated class (offset by 1) if j is the leaf that would be reached by
using the model D on input x; otherwise they correspond to zeros as at least one of
the terms JzfK2 +js in the multiplication would be zero. Thus in step 4, by summing
all Jyj−1,rK2 for j ∈ {1, . . . , 2d}, opening the results and adding 1, Alice obtains the
result of the classification k∗.

Security: Alice learns the depth d of the tree in order to allow the execution, but
this is leaked by FDT as well. In the first three steps messages are only exchanged in
order to execute the sub-protocols πOIS, πDC and πDM respectively, which UC-realize
the functionalities FOIS, FDC and FDMM respectively. Then the last step simply
reveals the bit string encoding the class that was the result of the classification to
Alice. The simulation strategy is similar to the one in the previous sections. The
simulator S internally runs a protocol execution for the adversary A in which S
simulates FOIS, FDC and FDMM and uses dummy inputs for the uncorrupted parties.
Using this leverage S can easily extract the inputs of the corrupted party, x in case
Alice is corrupted or D = (d,G,H,w) in case Bob is corrupted, in order to forward
to FDT. In case Alice is corrupted, upon learning the correct output from FDT, S can
adjust appropriately Bob’s shares of σr in the simulated protocol in order to match
the right result. With this simulation strategy, Z cannot distinguish the ideal and
real worlds.

Optimization: All independent operations are run in parallel and the round
complexity of step 3(a) can be reduced using techniques similar to the previous
sections.

Secure Hyperplane-Based Classifiers

A privacy-preserving hyperplane-based classifier is easily achievable using our build-
ing blocks. The classification result of hyperplane-based classifiers is given by the
index

k∗ = argmax
i∈[k]
〈wi,x〉.

Thus, one just needs to represent the model and features in Zq, compute each inner
product between wi and x by using πIP, input the results into the bit-decomposition
protocol πdecomp and then into the argmax protocol πargmax.
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In the specific case of SVM, Alice holds an input vector x, Bob holds a model
(a, b), where a is an t-dimensional vector (the weight vector) and b is a real number.
The result of the classification is obtained by computing

sign (〈x, a〉+ b) ,

where sign (y) is + if y > 0 and − otherwise. The overall idea for obtaining privacy-
preserving SVM classifiers is as follows: Alice inputs her personal vector x and Bob
inputs his model vector a to the secure distributed inner product protocol πIP. After
that, the result is run through the bit-decomposition protocol πdecomp. The resultant
bitwise shares, together with b, are used in the comparison protocol πDC to determine
the final result, which is then opened to Alice as her prediction.

To score a logistic regression classifier with threshold 0.5 one needs to check
whether the expression

log

(
PC|X(c+|x)

PC|X(c−|x)

)
is positive or not, where

PC|X(c−|x) =
1

1 + exp(〈x, a〉+ b)
.

This boils down to computing sign (〈x, a〉+ b), where x is the input feature vector,
and the a and b are vectors defining the logistic regression classification model (held
by Bob). Therefore, the protocol used to privately evaluate a logistic regression
model is exactly the same as the one described in the support vector machines
section.

The security of these compositions follows from the security of the sub-protocols
and the fact that no values are ever opened before the final result; each party only
sees shares, which appear completely random.

Secure Naive Bayes Classifier

In the case of the Naive Bayes classifier the classification is done by computing the
index

k∗ = argmax
j∈[k]

{
logPC(cj) +

t∑
i=1

logPXi|C(xi|cj)

}
.

If the features have finite alphabets, then a privacy-preserving classifier can be
obtained as follows. First Bob expresses the log of the probabilities as bit-strings.
The oblivious input selection protocol πOIS is then used to share the appropriate
PXi|C(xi|cj) without revealing xi to Bob (Bob inputs the conditional probability for
each possible value of xi, and Alice selects the appropriated one to be shared). The
terms to be given as input to the argmax are then compute locally using secret
sharing additions, and finally πargmax is used to compute the output.

7.4 Experiments

For decision trees, SVM and logistic regression models we report accuracy (calculated
using 10-fold cross validation) for 7 different datasets within the UCI Repository4.

4UC Irvine Machine Learning Repository https://archive.ics.uci.edu/ml/datasets.html

https://archive.ics.uci.edu/ml/datasets.html
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We also report average classification time for an instance in each dataset when fol-
lowing our privacy-preserving protocol as well as average time required when the
classification is done in the clear. Note that the bit-length used to express the val-
ues should be large enough as not to compromise the accuracy of the algorithms. It
is no real gain for applications if the performance is improved at the cost of drasti-
cally decreasing the accuracy, therefore the accuracy is also reported.

Support Vector Machine: For this study, we tested SVM with a linear ker-
nel, and we report the results for accuracy for 7 different datasets from the UCI
repository. We leveraged the e1071 package within R [MDH+15], setting type to
‘C-classification’, indicating our problems were classification tasks.

Decision Trees: Our implementation used the classification and regression tree
algorithm (CART) [BFOS84] in R [TAR15]. The minimum deviance (mean squared
error) is used as the test parameter for proceeding with a new split. That is, adding
a node should reduce the error by at least a certain amount. For our models, we set
the complexity parameter to 0.01 and report the corresponding accuracy.

Logistic Regression: For our experimentation, we used R’s base glm function
[R C15], setting the family parameter to binomial(link=“logit”) to obtain a logistic
regression model.

The following datasets were chosen for our experimentation:

1. Breast Cancer Wisconsin (Diagnostic): The goal with this dataset is to
classify 568 different tumors as malignant or benign. Each tumor is character-
ized by 30 different continuous features derived from an image of the tumor
(i.e. perimeter, area, symmetry, etc.).

2. Pima Indians Diabetes: This dataset includes 767 females of at least 21
years of age, all with Pima Indian decent, and we wish to identify those with
diabetes. We leverage 8 different continuous features which describe each
woman’s health (examples: body mass index, diastolic blood pressure).

3. Parkinsons: Here, the task is to differentiate between patients with and
without Parkinsons. To this end, the dataset includes 22 features, all of which
are measures derived from voice recordings of 195 different patients (example:
average vocal fundamental frequency).

4. Connectionist Bench (Sonar, Mines vs. Rocks): The goal with this
dataset is to differentiate whether 207 sonar signals were bounced off of a
metal cylinder vs. a roughly cylindrical rock. Each of the 60 features is within
the range of 0.0 to 1.0 and represents energy within a particular frequency
band over a certain period of time.

5. Hill-Valley: The task for this dataset is to identify hills vs. valleys in terrain.
Each of the 100 continuous features is a point on a 2-D graph. We chose the
dataset which did not contain any noise.

6. LSVT Voice Rehabilitation: This dataset includes 126 patients who have
undergone voice rehabilitation treatment and we wish to determine the success
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of their treatment, i.e. whether their phonations are considered acceptable or
unacceptable. To do this, we leverage 312 features, each of which is the result
of a different speech signal algorithm.

7. Spambase: Here, the goal is to identify 4,600 emails as either spam or not
spam. This dataset includes 57 features which describe the contents of each
email (examples: word frequencies, number of capital letters).

Implementation Details

To generate preliminary results, the privacy-preserving algorithms were implemented
in Java, and compared against a simple implementation without any privacy preser-
vation. For our experiments with the privacy-preserving classifiers, a general bit
length, `, of 64 bits was used for representing all the inputs and throughout all
calculations, as this allowed for a good trade off between complexity and space for
precision. For some trials, a smaller bit length might have served with sufficient
precision.

All values had to be converted to integers to properly work in the proposed algo-
rithms. This was accomplished by choosing a multiplier value and applying it to the
features and the weights for SVM and logistic regression or the thresholds for de-
cision trees and rounding any remaining decimals. Furthermore, since calculations
were done over a ring, any negative values had to be expressed as their additive
inverses. This means in addition to precision considerations, the bit length must
be selected in such a way that the positive values and negative values will remain
distinctly separate in the lower half and upper half of the values, respectively. This
allows us to differentiate between positive and negative values by comparing against
2`−1 instead of 0.

Table 7.1 presents the results for the case of decision tree classifiers and Table 7.2
for SVM and logistic regression classifiers. These results were generated using a
laptop computer with 16 GB DDR4 RAM at 2133 MHz and an Intel Core i7 6700HQ
at 2.6 GHz. For each dataset the average was computed using more than 10000
scorings.

Analysis and Comparisons to Previous Results

Next we analyze our experimental results and compare then with the previous works.

Decision Trees: the computing time for running our protocol for the privacy-
preserving evaluation of decision trees is at most 13 milliseconds for trees of depth
up to 9. In Bost et al. [BPTG15], for evaluating a tree of depth 4, the computing
time is in the order of a few seconds. Our protocol has 11 rounds of communication
or less for trees with depth up to 9, while their number of interactions is always over
30, even for trees of depth 4. In the case of the protocols for computing decision
trees of Wu et al. [WFNL15], the computing time for a tree with depth 4 is around
100 ms. The communication complexity of our protocol for a decision tree of depth
4 and 8 features is around 3KB, while the results in [WFNL15] are around 100KB
and in [BPTG15] are around 3MB for trees of the same dimension. As stated in
these previous works, solutions based on general purpose multiparty computation
frameworks have a much poorer performance than their specific protocols (and hence
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Dataset Depth Number Accuracy Classification Time Classification Time Communication Complexity
of Tree of Features in the Clear (ms) Secure Protocol (ms) Uplink+Downlink (kB)

Breast Cancer 4 30 95.95% 0.07 + 1 RTT/2 3.20 + 10 RTT/2 7.96
Diabetes 9 8 77.18% 0.02 + 1 RTT/2 9.11 + 11 RTT/2 95.94

Parkinson’s 4 22 88.72% 0.40 + 1 RTT/2 3.62 + 10 RTT/2 6.09
Connectionist Bench 4 60 73.91% 0.10 + 1 RTT/2 9.64 + 10 RTT/2 14.99

Hill-Valley 3 100 49.83% 0.14 + 1 RTT/2 4.85 + 9 RTT/2 11.37
LSVT rehabilitation 3 310 79.37% 0.75 + 1 RTT/2 12.79 + 9 RTT/2 34.34

Spambase 6 57 88.89% 0.10 + 1 RTT/2 9.33 + 11 RTT/2 60.04

Table 7.1: Results of the experiments for the decision tree classifiers. The classifica-
tion time is given as the computing time plus the number of half roundtrip
times (RTT/2).

Dataset Number Accuracy Classification Time Classification Time Communication Complexity
of Features in the Clear (ms) Secure Protocol (ms) Uplink+Downlink (kB)

SVM
Breast Cancer 30 97.71% 0.06 + 1 RTT/2 3.47 + 16 RTT/2 0.92

Diabetes 8 77.05% 0.02 + 1 RTT/2 3.04 + 16 RTT/2 0.57
Parkinson’s 22 87.18% 0.04 + 1 RTT/2 3.36 + 16 RTT/2 0.79

Connectionist Bench 60 74.70% 0.10 + 1 RTT/2 4.12 + 16 RTT/2 1.39
Hill-Valley 100 57.59% 0.17 + 1 RTT/2 4.89 + 16 RTT/2 2.01

LSVT rehabilitation 310 80.16% 0.51 + 1 RTT/2 9.16 + 16 RTT/2 5.29
Spambase 57 92.72% 0.10 + 1 RTT/2 4.06 + 16 RTT/2 1.34

Logistic Regression
Breast Cancer 30 95.95% 0.07 + 1 RTT/2 3.55 + 16 RTT/2 0.92

Diabetes 8 77.31% 0.02 + 1 RTT/2 3.06 + 16 RTT/2 0.57
Parkinson’s 22 85.13% 0.04 + 1 RTT/2 3.35 + 16 RTT/2 0.79

Connectionist Bench 60 74.40% 0.11 + 1 RTT/2 4.16 + 16 RTT/2 1.39
Hill-Valley 100 60.07% 0.16 + 1 RTT/2 4.97 + 16 RTT/2 2.01

LSVT rehabilitation 310 53.17% 0.49 + 1 RTT/2 9.64 + 16 RTT/2 5.29
Spambase 57 92.70% 0.10 + 1 RTT/2 4.17 + 16 RTT/2 1.34

Table 7.2: Results of the experiments for the SVM and logistic regression classifiers.
The classification time is given as the computing time plus the number of
half roundtrip times (RTT/2). All datasets only have two classes.

than the solutions presented here as well).

Support Vector Machines: We run the protocols proposed in [DDKN15] with
the building blocks presented in this paper. While there are no implementation times
given in [DDKN15], it is clear that our implementations have a significant impact
in the performance. The number of rounds is usually the most important factor
in determining the latency of these protocols and we reduce the round complexity
from linear to logarithmic in the input length. Compared to the implementations
described in Bost et al. [BPTG15] the computation times are about 50ms for 30
and 47 features. In our case for 30 features, the computing time is less than 4 ms.
Our number of rounds is larger: our solution takes 16 rounds, while their solution
takes 7 rounds. If the roundtrip time is the major factor in the total time their
solution is preferable to ours. The main reason for the elevated round complexity in
our solution is the bit decomposition protocol, which is not needed in their work.

Logistic Regression: The efficiency of the logistic regression protocol is the
same as the support vector machine one.

7.5 Removing the Trusted Initializer

Our protocols assume that pre-distributed data is made available to the players by a
trusted initializer: random binary multiplication triples (binary Beaver triples) in the
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case of decision trees and Naive Bayes classifier; and random binary multiplication
triples and random inner product evaluations for hyperplane-based classifiers.

In case a trusted initializer is not available or desirable, Alice and Bob can run pre-
computations during a setup phase. In the case of the protocol evaluating decision
trees or Naive Bayes classifier, to obtain the binary random multiplication triples,
Alice and Bob can run oblivious transfer protocols on random inputs. The outcome
of these evaluations can be easily transformed in the random binary multiplication
triples (see, for instance, [NNOB12]). The nice point of this solution is that oblivious
transfer can be extended efficiently by using symmetric cryptographic primitives
[IKNP03, KK13, ALSZ13]. The online phase of our protocols would remain the same
- using solely modular additions and multiplications. Therefore, even considering
the offline phase, our protocol would still be substantially more efficient than the
protocols proposed in [BPTG15, BPTG14] and in [WFNL15]. We also remark
that the protocol for evaluating decision trees in [BPTG15, BPTG14] does not
allow its computationally heavy steps (Paillier encryptions and uses of a somewhat
homomorphic encryption scheme) to be pre-computed. We also note that while the
oblivious transfer executions in [WFNL15] could also be pre-computed, the Paillier
encryption scheme would still be needed in the online phase.

7.6 Related Works

In this section we compare our results with the related work.

Privacy-Preserving Scoring of Machine Learning Classifiers: General
(non-application specific) privacy-preserving protocols for privately scoring machine
learning classifiers were proposed just recently by Bost et al.[BPTG15, BPTG14] for
the case of hyperplane-based classifiers, Naive Bayes and decision trees and Wu et
al. [WFNL15] for decision trees and random forests.

De Hoogh et al. [dHSCodA14] introduced the most efficient protocol for privacy-
preserving training of decision trees with categorical attributes only. They also
presented a protocol for privacy-preserving scoring of decision trees. Their protocol is
designed for categorical attributes. It does not scale well for fined-grained numerical
attributes - the complexity of the protocol increases exponentially on the bit-length
representation of a category.

Many classification problems are characterized by numerical attributes, such as
age, temperature, or blood test results, or by a combination of numerical and cat-
egorical attributes. The well known top down algorithms to induce decision trees
from data (ID3, CART) can easily be extended to include numerical attributes as
well. This is typically done with a binary split at internal nodes, e.g. instances with
“cholesterol level ≤ p” go down the left branch, and instances with “cholesterol level
> p” go down the right. The threshold p is chosen dynamically at each node as
the tree is grown, and, unlike with categorical attributes, a numerical attribute may
appear more than once in the same tree branch, but with different thresholds. For
instance, in the branch below the node “cholesterol level ≤ p”, a new node “choles-
terol level ≤ p∗” may appear, with p∗ a smaller threshold than p. The process of
dynamically choosing and refining thresholds adds to the expressivity of decision
trees with numerical values, making the hypothesis space of such trees far richer
than that of decision trees with categorical values.
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Bost et al. [BPTG15, BPTG14] implemented hyperplane-based and Naive Bayes
classifiers by using a secure protocol for computing the inner product based on the
Paillier encryption scheme and a comparison protocol that also relies heavily on that
encryption scheme.

The decision tree protocol of Bost et al. [BPTG15, BPTG14] is divided in two
phases. In a first stage Paillier-based comparison protocols are run with Alice in-
putting a vector containing her features and Bob inputting the threshold values of
the decision tree. On a second stage, fully homomorphic encryption is used to pro-
cess the outcomes of the comparison protocols run in the first stage. It is claimed
that the protocol leaks nothing about the tree (we will show that in a more realistic
attack scenario this is not true) and the second stage is round-optimal. However, the
computations to be performed are heavy and the first stage involves many rounds
(in total their protocol typically has more rounds than ours). In our solution, we
allow the depth of the tree to be leaked, but avoid altogether using Paillier and fully
homomorphic encryption. In our solution, the online phase for evaluating decision
trees uses solely modular additions and multiplications.

Wu el at. [WFNL15] proposed protocols for decision trees and random forests
that are based on an original comparison protocol using Paillier encryption scheme
and oblivious transfer. The Paillier encryption scheme uses modular exponentiation
and oblivious transfer protocols normally use operations that are as expensive as
public-key cryptographic primitives. As already pointed out our solutions use, in
the online phase, solely additions and multiplications over a ring.

All the published results for privacy-preserving machine learning classification are
secure in the honest-but-curious model.

How much information is leaked about the decision trees in [BPTG15,
BPTG14] and in [WFNL15]: In the protocol in [BPTG15, BPTG14], theoreti-
cally nothing is ever leaked about the tree. However, if an adversary can measure
the time it takes for Bob to do the evaluation of the decision tree protocol, clearly
the deeper the tree the longer the computation becomes. Therefore, some informa-
tion about the depth of the tree is leaked if this side channel attack is considered.
Therefore, in our solution we do not loose much by giving away the depth of the
tree to an adversary. In [WFNL15], the depth of the tree is also leaked.

Bit-Decomposition Protocols: The best solution for bit-decomposition, in
terms of round complexity, is a constant-round solution by Toft [Tof09a], which has
round complexity equal to 23. Veugen noted in [Veu15] that for a certain range of
practical parameters (number of input bits less than 20), a protocol with a linear
number of rounds in the length of the input could outperform the solution presented
by Toft [Tof09a]. Veugen proposed a protocol that has a linear number of rounds
in `, where ` is the length of the input in bits. Veugen also proposed a way to
reduce the number of rounds of this protocol by a factor of β, obtaining a round
complexity equal to `/β at the cost of performing an exponential (in β) number of
multiplications in a pre-processing phase.

The bit-decomposition protocol used in this work is over binary fields and runs in
2+dlog `e rounds. For practical values of ` (less than 100 typically), it is always better
than Toft’s and Veugen’s solutions. The number of multiplications to be performed
in our the online phase, 2`dlog `e + 3`, is less than the 31`dlog `e + 71` + 30d

√
`e

multiplications in the case of Toft’s protocol. While Veugen’s protocol can have a
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fast online phase, requiring only 3` − 2β multiplications for `/β rounds, it requires
an exponential (in β) number of multiplications in the offline phase.

The protocol of Schoenmakers and Tuyls [ST06] has the same number of rounds
and roughly half as many multiplications as the protocol used here. However the
multiplication are in Zq for big q while our multiplications are in Z2. Hence our
multiplications are faster and communicate less data. In addition, in our case OT
extension can be directly used for the pre-computation if a trusted initializer is not
available. For more details about Schoenmakers and Tuyls’ protocol see the original
paper or Section 4.3.5 of De Hoogh’s PhD thesis [dH12].

A restriction of our protocol is that it only works for operations modulo a power
of 2. As we need no modular inversions in our privacy-preserving machine learning
protocols this imposes no problem at all. The bit-decomposition protocol of Laud
and Randmets [LR15] for the case of three parties with at most one corruption is
similar to one here. It first reduce the original problem to a new one between two-
parties, and then uses the adder idea to obtain bitwise shares. Although the protocol
is not fully specified in [LR15], we believe that the authors intended to use the same
adder computation as here.

7.7 Discussion

This chapter presented a protocol for privacy-preserving classification of decision
trees, and improvements to the performance of previously proposed protocols for
general hyperplane-based and Naive Bayes classifiers. Our protocols work in the
commodity-based model. The pre-distributed data can be distributed during a setup
phase by a trusted initializer to the parties. In the case a trusted initializer is not
available or desirable, the parties can pre-compute this data by themselves, during
a setup phase, with the help of well-known computationally secure schemes.

Our solutions are very efficient and use solely modular addition and multipli-
cations. We present accuracy and runtime results for 7 classification benchmark
datasets from the UCI repository.





8. Conclusion

This thesis exposed some results about the uses of correlated data in cryptography
from theoretical and practical points of view.

On the theoretical side, there are still many open questions regarding the OT and
commitment capacities of many other noisy resources. For instance, determining the
OT capacity of unfair noisy channels, or the capacities of elastic channels. Addition-
ally, there are still open problems regarding the optimal way of using the underlying
resourses in order to obtain other cryptographic primitives.

From a practical perspective, correlated data can possibly be used to obtain very
efficient protocols for other machine learning problems as well as problems in other
fields. This is an interesting direction for future works. One additional inviting
direction for further investigation is determining which other forms of correlated
data can be used to achieve even more efficient protocols.

Overall, we believe that cryptography based on correlated data is a promising area
that deserves further research efforts.
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