1,191 research outputs found

    Supervised Remote Robot with Guided Autonomy and Teleoperation (SURROGATE): A Framework for Whole-Body Manipulation

    Get PDF
    The use of the cognitive capabilities of humans to help guide the autonomy of robotics platforms in what is typically called “supervised-autonomy” is becoming more commonplace in robotics research. The work discussed in this paper presents an approach to a human-in-the-loop mode of robot operation that integrates high level human cognition and commanding with the intelligence and processing power of autonomous systems. Our framework for a “Supervised Remote Robot with Guided Autonomy and Teleoperation” (SURROGATE) is demonstrated on a robotic platform consisting of a pan-tilt perception head, two 7-DOF arms connected by a single 7-DOF torso, mounted on a tracked-wheel base. We present an architecture that allows high-level supervisory commands and intents to be specified by a user that are then interpreted by the robotic system to perform whole body manipulation tasks autonomously. We use a concept of “behaviors” to chain together sequences of “actions” for the robot to perform which is then executed real time

    Exploring Robot Teleoperation in Virtual Reality

    Get PDF
    This thesis presents research on VR-based robot teleoperation with a focus on remote environment visualisation in virtual reality, the effects of remote environment reconstruction scale in virtual reality on the human-operator's ability to control the robot and human-operator's visual attention patterns when teleoperating a robot from virtual reality. A VR-based robot teleoperation framework was developed, it is compatible with various robotic systems and cameras, allowing for teleoperation and supervised control with any ROS-compatible robot and visualisation of the environment through any ROS-compatible RGB and RGBD cameras. The framework includes mapping, segmentation, tactile exploration, and non-physically demanding VR interface navigation and controls through any Unity-compatible VR headset and controllers or haptic devices. Point clouds are a common way to visualise remote environments in 3D, but they often have distortions and occlusions, making it difficult to accurately represent objects' textures. This can lead to poor decision-making during teleoperation if objects are inaccurately represented in the VR reconstruction. A study using an end-effector-mounted RGBD camera with OctoMap mapping of the remote environment was conducted to explore the remote environment with fewer point cloud distortions and occlusions while using a relatively small bandwidth. Additionally, a tactile exploration study proposed a novel method for visually presenting information about objects' materials in the VR interface, to improve the operator's decision-making and address the challenges of point cloud visualisation. Two studies have been conducted to understand the effect of virtual world dynamic scaling on teleoperation flow. The first study investigated the use of rate mode control with constant and variable mapping of the operator's joystick position to the speed (rate) of the robot's end-effector, depending on the virtual world scale. The results showed that variable mapping allowed participants to teleoperate the robot more effectively but at the cost of increased perceived workload. The second study compared how operators used a virtual world scale in supervised control, comparing the virtual world scale of participants at the beginning and end of a 3-day experiment. The results showed that as operators got better at the task they as a group used a different virtual world scale, and participants' prior video gaming experience also affected the virtual world scale chosen by operators. Similarly, the human-operator's visual attention study has investigated how their visual attention changes as they become better at teleoperating a robot using the framework. The results revealed the most important objects in the VR reconstructed remote environment as indicated by operators' visual attention patterns as well as their visual priorities shifts as they got better at teleoperating the robot. The study also demonstrated that operators’ prior video gaming experience affects their ability to teleoperate the robot and their visual attention behaviours

    Augmenting Situated Spoken Language Interaction with Listener Gaze

    Get PDF
    Collaborative task solving in a shared environment requires referential success. Human speakers follow the listener’s behavior in order to monitor language comprehension (Clark, 1996). Furthermore, a natural language generation (NLG) system can exploit listener gaze to realize an effective interaction strategy by responding to it with verbal feedback in virtual environments (Garoufi, Staudte, Koller, & Crocker, 2016). We augment situated spoken language interaction with listener gaze and investigate its role in human-human and human-machine interactions. Firstly, we evaluate its impact on prediction of reference resolution using a mulitimodal corpus collection from virtual environments. Secondly, we explore if and how a human speaker uses listener gaze in an indoor guidance task, while spontaneously referring to real-world objects in a real environment. Thirdly, we consider an object identification task for assembly under system instruction. We developed a multimodal interactive system and two NLG systems that integrate listener gaze in the generation mechanisms. The NLG system “Feedback” reacts to gaze with verbal feedback, either underspecified or contrastive. The NLG system “Installments” uses gaze to incrementally refer to an object in the form of installments. Our results showed that gaze features improved the accuracy of automatic prediction of reference resolution. Further, we found that human speakers are very good at producing referring expressions, and showing listener gaze did not improve performance, but elicited more negative feedback. In contrast, we showed that an NLG system that exploits listener gaze benefits the listener’s understanding. Specifically, combining a short, ambiguous instruction with con- trastive feedback resulted in faster interactions compared to underspecified feedback, and even outperformed following long, unambiguous instructions. Moreover, alternating the underspecified and contrastive responses in an interleaved manner led to better engagement with the system and an effcient information uptake, and resulted in equally good performance. Somewhat surprisingly, when gaze was incorporated more indirectly in the generation procedure and used to trigger installments, the non-interactive approach that outputs an instruction all at once was more effective. However, if the spatial expression was mentioned first, referring in gaze-driven installments was as efficient as following an exhaustive instruction. In sum, we provide a proof of concept that listener gaze can effectively be used in situated human-machine interaction. An assistance system using gaze cues is more attentive and adapts to listener behavior to ensure communicative success

    Tutor In-sight: Guiding and Visualizing Students Attention with Mixed Reality Avatar Presentation Tools

    Get PDF
    Remote conferencing systems are increasingly used to supplement or even replace in-person teaching. However, prevailing conferencing systems restrict the teacher’s representation to a webcam live-stream, hamper the teacher’s use of body-language, and result in students’ decreased sense of co-presence and participation. While Virtual Reality (VR) systems may increase student engagement, the teacher may not have the time or expertise to conduct the lecture in VR. To address this issue and bridge the requirements between students and teachers, we have developed Tutor In-sight, a Mixed Reality (MR) avatar augmented into the student’s workspace based on four design requirements derived from the existing literature, namely: integrated virtual with physical space, improved teacher’s co-presence through avatar, direct attention with auto-generated body language, and usable workfow for teachers. Two user studies were conducted from the perspectives of students and teachers to determine the advantages of Tutor In-sight in comparison to two existing conferencing systems, Zoom (video-based) and Mozilla Hubs (VR-based). The participants of both studies favoured Tutor In-sight. Among others, this main fnding indicates that Tutor Insight satisfed the needs of both teachers and students. In addition, the participants’ feedback was used to empirically determine the four main teacher requirements and the four main student requirements in order to improve the future design of MR educational tools

    A gaze-contingent framework for perceptually-enabled applications in healthcare

    Get PDF
    Patient safety and quality of care remain the focus of the smart operating room of the future. Some of the most influential factors with a detrimental effect are related to suboptimal communication among the staff, poor flow of information, staff workload and fatigue, ergonomics and sterility in the operating room. While technological developments constantly transform the operating room layout and the interaction between surgical staff and machinery, a vast array of opportunities arise for the design of systems and approaches, that can enhance patient safety and improve workflow and efficiency. The aim of this research is to develop a real-time gaze-contingent framework towards a "smart" operating suite, that will enhance operator's ergonomics by allowing perceptually-enabled, touchless and natural interaction with the environment. The main feature of the proposed framework is the ability to acquire and utilise the plethora of information provided by the human visual system to allow touchless interaction with medical devices in the operating room. In this thesis, a gaze-guided robotic scrub nurse, a gaze-controlled robotised flexible endoscope and a gaze-guided assistive robotic system are proposed. Firstly, the gaze-guided robotic scrub nurse is presented; surgical teams performed a simulated surgical task with the assistance of a robot scrub nurse, which complements the human scrub nurse in delivery of surgical instruments, following gaze selection by the surgeon. Then, the gaze-controlled robotised flexible endoscope is introduced; experienced endoscopists and novice users performed a simulated examination of the upper gastrointestinal tract using predominately their natural gaze. Finally, a gaze-guided assistive robotic system is presented, which aims to facilitate activities of daily living. The results of this work provide valuable insights into the feasibility of integrating the developed gaze-contingent framework into clinical practice without significant workflow disruptions.Open Acces
    • …
    corecore