8 research outputs found

    Crowd Monitoring System

    Get PDF
    In this time when COVID-19 is expanding quickly, it is imperative to keep a separation from one another and avoid the group in this manner we can diminish the infection spread. Numerous individuals, deliberately or accidentally, gather and meander in the city. Screen every one of these exercises is intense. Our Smart COVID-19 Crowd Detection Camera using Computer Vision Technique will watch out for all exercises and distinguish any group on the spot. The gadget additionally can alarm the concerned authority about unnecessary social affairs. A functioning reconnaissance framework can recognize the distance among people and caution them in this manner we can diminish the spread of dangerous illnesses

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Facial Privacy Protection in Airborne Recreational Videography

    Get PDF
    PhDCameras mounted on Micro Aerial Vehicles (MAVs) are increasingly used for recreational photography and videography. However, aerial photographs and videographs of public places often contain faces of bystanders thus leading to a perceived or actual violation of privacy. To address this issue, this thesis presents a novel privacy lter that adaptively blurs sensitive image regions and is robust against di erent privacy attacks. In particular, the thesis aims to impede face recognition from airborne cameras and explores the design space to determine when a face in an airborne image is inherently protected, that is when an individual is not recognisable. When individuals are recognisable by facial recognition algorithms, an adaptive ltering mechanism is proposed to lower the face resolution in order to preserve privacy while ensuring a minimum reduction of the delity of the image. Moreover, the lter's parameters are pseudo-randomly changed to make the applied protection robust against di erent privacy attacks. In case of videography, the lter is updated with a motion-dependent temporal smoothing to minimise icker introduced by the pseudo-random switching of the lter's parameters, without compromising on its robustness against di erent privacy attacks. To evaluate the e ciency of the proposed lter, the thesis uses a state-of-the-art face recognition algorithm and synthetically generated face data with 3D geometric image transformations that mimic faces captured from an MAV at di erent heights and pitch angles. For the videography scenario, a small video face data set is rst captured and then the proposed lter is evaluated against di erent privacy attacks and the quality of the resulting video using both objective measures and a subjective test.This work was supported in part by the research initiative Intelligent Vision Austria with funding from the Austrian Federal Ministry of Science, Research and Economy and the Austrian Institute of Technology

    Energy Minimization for Multiple Object Tracking

    Get PDF
    Multiple target tracking aims at reconstructing trajectories of several moving targets in a dynamic scene, and is of significant relevance for a large number of applications. For example, predicting a pedestrian’s action may be employed to warn an inattentive driver and reduce road accidents; understanding a dynamic environment will facilitate autonomous robot navigation; and analyzing crowded scenes can prevent fatalities in mass panics. The task of multiple target tracking is challenging for various reasons: First of all, visual data is often ambiguous. For example, the objects to be tracked can remain undetected due to low contrast and occlusion. At the same time, background clutter can cause spurious measurements that distract the tracking algorithm. A second challenge arises when multiple measurements appear close to one another. Resolving correspondence ambiguities leads to a combinatorial problem that quickly becomes more complex with every time step. Moreover, a realistic model of multi-target tracking should take physical constraints into account. This is not only important at the level of individual targets but also regarding interactions between them, which adds to the complexity of the problem. In this work the challenges described above are addressed by means of energy minimization. Given a set of object detections, an energy function describing the problem at hand is minimized with the goal of finding a plausible solution for a batch of consecutive frames. Such offline tracking-by-detection approaches have substantially advanced the performance of multi-target tracking. Building on these ideas, this dissertation introduces three novel techniques for multi-target tracking that extend the state of the art as follows: The first approach formulates the energy in discrete space, building on the work of Berclaz et al. (2009). All possible target locations are reduced to a regular lattice and tracking is posed as an integer linear program (ILP), enabling (near) global optimality. Unlike prior work, however, the proposed formulation includes a dynamic model and additional constraints that enable performing non-maxima suppression (NMS) at the level of trajectories. These contributions improve the performance both qualitatively and quantitatively with respect to annotated ground truth. The second technical contribution is a continuous energy function for multiple target tracking that overcomes the limitations imposed by spatial discretization. The continuous formulation is able to capture important aspects of the problem, such as target localization or motion estimation, more accurately. More precisely, the data term as well as all phenomena including mutual exclusion and occlusion, appearance, dynamics and target persistence are modeled by continuous differentiable functions. The resulting non-convex optimization problem is minimized locally by standard conjugate gradient descent in combination with custom discontinuous jumps. The more accurate representation of the problem leads to a powerful and robust multi-target tracking approach, which shows encouraging results on particularly challenging video sequences. Both previous methods concentrate on reconstructing trajectories, while disregarding the target-to-measurement assignment problem. To unify both data association and trajectory estimation into a single optimization framework, a discrete-continuous energy is presented in Part III of this dissertation. Leveraging recent advances in discrete optimization (Delong et al., 2012), it is possible to formulate multi-target tracking as a model-fitting approach, where discrete assignments and continuous trajectory representations are combined into a single objective function. To enable efficient optimization, the energy is minimized locally by alternating between the discrete and the continuous set of variables. The final contribution of this dissertation is an extensive discussion on performance evaluation and comparison of tracking algorithms, which points out important practical issues that ought not be ignored
    corecore