ENERGY MINIMIZATION
FOR MULTIPLE OBJECT
TRACKING

Dissertation approved by the
Fachbereich Informatik

in fulfillment of the requirements for the degree of
Doktor-Ingenieur (Dr.-Ing.)

by

ANTON MILAN
Dipl.-Inform.

born in Kiev, Ukraine

Examiner: Prof. Stefan Roth, PhD
Co-examiner: Prof. Dr. Konrad Schindler

Co-examiner: Dr. Ivan Laptev

Date of Submission: 4™ of April, 2013
Date of Defense: 16 of May, 2013

Darmstadt, 2014
D17y



Anton Milan: Energy Minimization for Multiple Object Tracking



ABSTRACT

ULTIPLE target tracking aims at reconstructing trajectories of sev-
M eral moving targets in a dynamic scene, and is of significant
relevance for a large number of applications. For example, predicting
a pedestrian’s action may be employed to warn an inattentive driver
and reduce road accidents; understanding a dynamic environment
will facilitate autonomous robot navigation; and analyzing crowded
scenes can prevent fatalities in mass panics.

The task of multiple target tracking is challenging for various rea-
sons: First of all, visual data is often ambiguous. For example, the
objects to be tracked can remain undetected due to low contrast and
occlusion. At the same time, background clutter can cause spurious
measurements that distract the tracking algorithm. A second chal-
lenge arises when multiple measurements appear close to one an-
other. Resolving correspondence ambiguities leads to a combinatorial
problem that quickly becomes more complex with every time step.
Moreover, a realistic model of multi-target tracking should take phys-
ical constraints into account. This is not only important at the level
of individual targets but also regarding interactions between them,
which adds to the complexity of the problem.

In this work the challenges described above are addressed by means
of energy minimization. Given a set of object detections, an energy
function describing the problem at hand is minimized with the goal
of finding a plausible solution for a batch of consecutive frames. Such
offline tracking-by-detection approaches have substantially advanced
the performance of multi-target tracking. Building on these ideas, this
dissertation introduces three novel techniques for multi-target track-
ing that extend the state of the art as follows:

The first approach formulates the energy in discrete space, building
on the work of Berclaz et al. (2009). All possible target locations are
reduced to a regular lattice and tracking is posed as an integer linear
program (ILP), enabling (near) global optimality. Unlike prior work,
however, the proposed formulation includes a dynamic model and
additional constraints that enable performing non-maxima suppres-
sion (NMS) at the level of trajectories. These contributions improve
the performance both qualitatively and quantitatively with respect to
annotated ground truth.

The second technical contribution is a continuous energy function
for multiple target tracking that overcomes the limitations imposed
by spatial discretization. The continuous formulation is able to cap-
ture important aspects of the problem, such as target localization or
motion estimation, more accurately. More precisely, the data term as

iii



well as all phenomena including mutual exclusion and occlusion, ap-
pearance, dynamics and target persistence are modeled by continu-
ous differentiable functions. The resulting non-convex optimization
problem is minimized locally by standard conjugate gradient descent
in combination with custom discontinuous jumps. The more accu-
rate representation of the problem leads to a powerful and robust
multi-target tracking approach, which shows encouraging results on
particularly challenging video sequences.

Both previous methods concentrate on reconstructing trajectories,
while disregarding the target-to-measurement assignment problem.
To unify both data association and trajectory estimation into a single
optimization framework, a discrete-continuous energy is presented in
Part III of this dissertation. Leveraging recent advances in discrete op-
timization (Delong et al., 2012), it is possible to formulate multi-target
tracking as a model-fitting approach, where discrete assignments and
continuous trajectory representations are combined into a single ob-
jective function. To enable efficient optimization, the energy is mini-
mized locally by alternating between the discrete and the continuous
set of variables.

The final contribution of this dissertation is an extensive discussion
on performance evaluation and comparison of tracking algorithms,
which points out important practical issues that ought not be ignored.
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ZUSAMMENFASSUNG

ULTI-TARGET Tracking beschaftigt sich mit der Problemstellung,
mehrere Objekte in einer dynamischen Szene zu verfolgen und
ist fiir eine Vielzahl von Anwendungen relevant. Im StrafSenverkehr
kann beispielsweise die Absicht eines Fufigangers von einem Fahr-
zeug aus erkannt werden, um einen unachtsamen Autofahrer zu war-
nen und somit Verkehrsunfélle zu reduzieren. Ein weiteres Beispiel
ist die Navigation autonomer Roboter, die ein Verstindnis der dyna-
mischen Umgebung voraussetzt. SchliefSlich konnen Todesopfer bei
Massenpaniken durch eine automatisierte Analyse von Menschen-
massen vermieden werden.

Bei dieser Problemstellung gibt es jedoch zahlreiche Herausforde-
rungen. Zundchst sind visuelle Daten oft mehrdeutig. Beispielswei-
se konnen Objekte aufgrund schlechter Kontrastverhiltnisse oder bei
Verdeckung unerkannt bleiben. Des Weiteren werden durch objekt-
dhnliche Strukturen im Hintergrund Fehldetektionen verursacht, die
den Trackingalgorithmus stéren. Eine zweite Herausforderung ent-
steht dann, wenn mehrere Messungen nahe beieinander liegen. Das
Auflosen der Mehrdeutigkeiten fithrt zu einem kombinatorischen Pro-
blem, dessen Komplexitdt mit jedem Zeitschritt rasant ansteigt. Zu-
satzlich sollen physikalische Rahmenbedingungen erfiillt werden, wel-
che sich nicht nur auf einzelne Trajektorien erstrecken, sondern auch
auf deren Zusammenspiel.

Diese Dissertation befasst sich mit dem Ansatz der Energiemini-
mierung, um den oben genannten Herausforderungen zu begegnen.
Ausgehend von einer Menge an Objektdetektionen wird eine Ener-
giefunktion, welche das vorliegende Problem umschreibt, minimiert,
um eine geeignete Losung fiir eine vorgegebene Bildsequenz zu fin-
den. Solche Tracking-by-Detection Ansétze haben erheblich zum Fort-
schritt des Multi-Target-Trackings beigetragen. Diese Arbeit baut auf
diesen Grundideen auf und stellt drei neue Methoden vor, die den
Stand der Technik wie folgt erweitern:

Der erste Ansatz basiert auf der Arbeit von Berclaz et al. (2009)
und formuliert die Energie im diskreten Raum. Die zuldssigen Ob-
jektpositionen werden dabei auf ein regelmafiiges Gitter beschrankt
und die Objektverfolgung wird als ganzzahlige lineare Programmie-
rung formuliert. Im Gegensatz zu fritheren Ansitzen beinhaltet die
hier vorgestellte Methode ein dynamisches Modell sowie zuséitzliche
Zwangsbedingungen, die es erlauben, schwachere Hypothesen direkt
auf der Ebene der Trajektorien zu unterdriicken. Diese Erweiterungen
verbessern die Ergebnisse sowohl qualitativ als auch quantitativ hin-
sichtlich annotierter Ground-Truth-Daten.



Der zweite technische Beitrag ist eine stetige Energiefunktion, die
durch die Diskretisierung entstehende Einschrankungen tiberwindet.
Die kontinuierliche Formulierung kann viele wichtige Aspekte des
Multi-Target-Trackings, wie etwa Objektlokalisierung oder Bewegungs-
schiatzung, exakter erfassen. Im Einzelnen werden der Datenterm und
Phadnomene wie gegenseitige Kollisionen und Verdeckung, das Aus-
sehen, die Dynamik und die Langlebigkeit der Objekte als stetige, dif-
ferenzierbare Funkionen modelliert. Das daraus resultierende nicht-
konvexe Optimierungsproblem wird lokal mittels Verfahren der kon-
jugierten Gradienten in Kombination mit speziell angepassten Spriin-
gen minimiert. Die sorgfiltigere Problembeschreibung stellt ein ro-
bustes Verfahren zur Verfolgung mehrerer Objekte dar und zeigt viel-
versprechende Ergebnisse auf besonders anspruchsvollen Videose-
quenzen.

Die beiden oben genannten Ansitze fokussieren sich auf die Re-
konstruktion der Trajektorien und lassen dabei die Zuweisungsaufga-
be auier Acht. Um sowohl das Korrespondenzproblem als auch die
Schitzung der Trajektorien in einem Optimierungsproblem zu verei-
nen, wird im dritten Teil dieser Dissertation eine diskret-kontinuier-
liche Energie prasentiert. Aktuelle Fortschritte in der diskreten Opti-
mierung (Delong et al., 2012) ermdglichen es, Multi-Target-Tracking
auf eine Art zu formulieren, bei der eine diskrete Zuordnung und
eine kontinuierliche Reprasentation des Zustands in einer gemeinsa-
men Zielfunktion vereint werden. Um eine effiziente Optimierung zu
ermoglichen, wird die Energie alternierend zwischen den beiden Va-
riablenmengen lokal minimiert.

Im abschlieffenden Teil werden wichtige Aspekte diskutiert, die
beim Evaluieren und beim Vergleich unterschiedlicher Tracking-Me-
thoden auftauchen, und die nicht vernachléssigt werden sollten.
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INTRODUCTION

No limits, Jonathan? he thought, and he smiled.
His race to learn had begun.

Jonathan Livingston Seagull
RicHARD Bacu

CONTENTS
1.1 The challenges of multi-target tracking 2
1.2 Motivation 4

1.2.1  Road safety 5

1.2.2  Visual surveillance 5

1.2.3 Robotics 6

1.2.4 Life sciences 6

1.2.5 Entertainment 7
1.3 Energy-based multi-target tracking 7
1.4 Contributions and outline 10

HE rapid advancement in technology has made machines and
computers ubiquitous in our everyday lives. With their ever in-
creasing computational capabilities combined with low camera prices,
image understanding is now an important part of many applications.
Computer vision, whose ultimate goal is to design models and develop
algorithms that allow computers to perceive and entirely understand
the visual world, has thus become a popular research area. Some
achievements in computer vision ranging from low-level tasks like
image deblurring to seemingly more complex ones like face detec-
tion or human pose estimation have been successfully employed in
consumer electronics. Nevertheless, human abilities of understand-
ing scenes and interpreting visual information are still superior to
current systems. Such high-level tasks include image classification,
semantic segmentation and object detection. This dissertation ad-
dresses the task of visually following multiple moving objects in a
dynamic scene, a task most often referred to as multiple object tracking,
or equivalently, multi-target tracking.

This chapter will introduce the reader to the topic and provide an
overview of the entire dissertation. We will first outline the problem
in its most general form and present the challenges to be overcome
in order to solve it. Before introducing the energy-based approach in
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The target class (e.g.
people, cars) is
assumed known.

INTRODUCTION

Figure 1.1: A schematic illustration of multi-target tracking. Given a set of
video frames, the task is to reconstruct the trajectories of all tar-
gets.

Section 1.3, we will motivate the importance of the problem in Sec-
tion 1.2 on the basis of several examples. Finally, Section 1.4 explicitly
states the scientific contribution to the problem at hand and gives a
detailed outline of the subsequent chapters.

1.1 THE CHALLENGES OF MULTI-TARGET TRACKING

Visual tracking usually refers to the process of following one single
object of interest, i.e. inferring its location, in a sequence of video
frames. Most methods addressing this task (e.g., Avidan, 2005; Babenko
et al., 2009; Kalal et al., 2010; Kwon and Lee, 2011) make two princi-
pal assumptions: i) the initial location of the target must be known
precisely, e.g. marked by the user in the first frame, and ii) there is
exactly one target to be tracked throughout the video. In contrast,
in a multi-target tracking setting the number of targets is unknown.
Moreover, their number changes over time as targets tend to appear
in the field of view and disappear at a later point in time. In addition,
a multi-target tracking system is expected to run automatically with-
out manual initialization. One way to define the task at hand is thus:

Given a video sequence, multi-target tracking equates to precisely

reconstructing the trajectory of every single, freely moving target in

the scene.
In other words, the aim is to determine the spatial location and to
identify the exact instance of each object of interest in a dynamic
scene at every time step. Note that it is not important for now
whether the trajectories are described on the image plane or in two-
dimensional, respectively three-dimensional world coordinates. This
choice is rather application dependent, as is the actual meaning of
target. Moreover, the notion of a trajectory is ambiguous in general
and may describe the trajectory of the center of mass, the center of
the object’s bounding box or any other meaningful point.

What is more important is the information that multi-target track-
ing provides for scene understanding. Obviously, a trajectory defines
the spatial location at any point in time while preserving the unique
identifier of a certain object. It also implicitly carries the information
about the object’s linear velocity (i.e. its speed) and acceleration. In
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addition, the temporal limits of a trajectory indicate when a target
entered and when it exited the scene. Finally, looking at more than
one trajectory at a time may provide useful information such as the
number of targets at a given time or the interaction between different
targets. We will now discuss some of the points that make this task
so challenging.

Let us, for now, look at the problem from a probabilistic point of
view (we will discuss the relation to energy minimization in more de-
tail later in Section 1.3). One way to approach this problem is to find
the most likely state of a predefined model given some observations.
This corresponds to computing the maximum a-posteriori (MAP) esti-
mate of the posterior distribution:

XMAP — arg max p(X[I), (1.1)

where X represents the state, i.e. the set of trajectories, and I is the ob-
served data, i.e. a sequence of video frames. If the state is defined in
a discrete space, its size usually grows exponentially with the num-
ber of frames. Optimization by simple enumeration of all possible
combinations is thus not possible in practice. Note that, although
the targets are in general assumed to move freely as stated above,
a correct formulation of the problem should include dependencies
between certain states. In particular, two simultaneous observations
that are sufficiently far apart cannot be caused by the same target.
Moreover, every observation must explain at most one target. These
dependencies arise from the physical constraints that an object can-
not be at two places at once and that two objects cannot occupy the
same physical space at the same time. In other words, the inference
of the problem from Eq. (1.1) amounts to maximizing a function of
several variables that are not independent.

Both modeling and inference are complicated even further due to
necessarily noisy observations. Not only is there localization uncer-
tainty but also the presence of false alarms caused by clutter and
missing evidence due to occlusions or other sources of failure must
be taken into account.

It may therefore be somewhat surprising that several formulations
claiming to find the globally optimal solution to the problem have
been proposed (Jiang et al., 2007; Zhang et al., 2008; Berclaz et al.,
2009; Andriyenko and Schindler, 2010; Pirsiavash et al., 2011). How-
ever, to achieve this, simplifying assumptions must be made. Perhaps
the most common simplification is to significantly restrict the search
space. One way is to only regard a short temporal interval at a time,
e.g. two neighboring frames, and to perform bipartite matching. An-
other, more common one is to force all objects to only move through
a finite set of predefined locations. The resulting combinatorial prob-
lems are then formulated such that standard optimization algorithms
can be directly applied to find the solution. It is important to note

MAP estimation is
equivalent to energy
minimization.

The terms obser-
vation, detection
and measurement
are used interchange-
ably throughout the
dissertation.
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Figure 1.2: Application examples for multi-target tracking. Next to common
scenarios involving (a) accident prevention, (b) surveillance or
(c) robotics, it can also be used to study animal behavior (d-e)
(Fletcher et al., 2011) or advance the research in microbiology (f)
(Keller et al., 2008).

that global optimality, although often achieved in practice, cannot
be guaranteed by some of these methods. Nevertheless, theoretical
bounds on the optimality may offer valuable information about the
quality of the obtained solution.

A different strategy to address the problem is to concentrate on de-
signing more accurate and less restrictive models (Khan et al., 2006;
Andriyenko and Schindler, 2011; Andriyenko et al., 2012). While rep-
resenting trajectories in continuous space enables a more natural de-
scription of the problem at hand, it also leads to highly complex opti-
mization problems that can only be solved to local optimality. In the
course of this dissertation we will discuss both extremes of the con-
flict between modeling accuracy and optimization convenience and
present three energy functions corresponding to different trade-offs
in terms of their domain and their complexity. But before turning to
the technical details, let us first motivate the practical importance of
multi-target tracking.

1.2 MOTIVATION

Tracking an object over time not only reveals its location at every
time step but also allows one to fully reconstruct its trajectory. Based
on this information it is possible to analyze the dynamic behavior
of an object and to make predictions into the future. Let us briefly
motivate why it is important to develop systems that are capable of
robustly keeping track of freely moving objects and how it is rele-
vant in science, entertainment and everyday life. The main focus of
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this dissertation is on applications related to visual surveillance that
are described in Section 1.2.2. One reason is that, next to reducing
the number of road accidents, this is probably the most sought-after
application, which has a great impact on our lives. In addition, all
models presented in this work are designed to analyze a batch of
frames at a time leading to offline tracking (cf. Section 1.3) and are
thus less suitable for time critical application such as driver assistance.
Nonetheless, even though all methods are tested on people tracking
scenarios, they are by no means limited to this specific target class.

1.2.1  Road safety

Although the numbers of road fatalities have been declining over the
last decade in developed countries, the risk of being involved in a
traffic accident still remains high. In 2010 over 1.3 million people were
killed and 50 million people were injured on the roads worldwide
according to the latest report by the International Transport Forum
(IRT, 2012). Almost all of these accidents were caused by human
failure, which is a clear indicator that an advanced technology could
help to reduce the road death toll by a large margin. Modern cars are
already equipped with high-tech electronics and a range of sensors
including radar, sonar and cameras to assist the driver in various
situations. Although it may still take several years until completely
autonomous cars find their way onto the streets, task-specific systems
such as lane control, traffic sign recognition and pedestrian detection
are becoming more standard in modern vehicles.

To successfully navigate through the world, it is essential to deter-
mine where all the surrounding objects are located and where they
are headed. This is exactly where multi-target tracking can be applied.
One or multiple cameras that are mounted on a car may capture the
surroundings while and a driver assistance system would keep track
of nearby cars and pedestrians. Should the vehicle be on a collision
course, it will alert the driver about the dangerous situation or even
apply the brakes to avoid an accident or at least mitigate its outcome.

1.2.2  Visual surveillance

In our modern society we are constantly being watched when mov-
ing through public space. The number of surveillance cameras in
stores or shopping malls, in train stations or in airports, in parks, on
the streets or in parking lots grows constantly. In London, the city
with probably the highest concentration of surveillance technology,
the number of CCTV cameras is estimated to be close to half a mil-
lion*. Let us for the moment put aside all the privacy issues and the
social and ethical aspects associated with CCTV monitoring — these

1 http://www.cctv.co.uk/how-many-cctv-cameras-are-there-in-london

Tracking models
developed in this
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related applications.
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will be thoroughly discussed in section 7.3. It is obvious that manual
supervision of all the captured data becomes impossible. As a conse-
quence, the demand for reliable automated people tracking rises.

There are many possible scenarios where observing the motion of
pedestrians becomes important. First, let us have a look at crime
prevention. Scenes where a person abandons a piece of luggage or
a group of people who behave aggressively or pose a danger may
be automatically detected. At crowded places like in a metro station
or at a soccer stadium a tracking system may detect a mass panic
and prevent casualties by automatically opening fire doors or other
emergency gates.

People tracking need not always be performed in real-time. Per-
forming offline analysis of large amounts of reconstructed trajecto-
ries may be useful for discovering areas where people tend to clump
together. This may give new insights on planning escape routes in
buildings. Another interesting application from the commercial view-
point is learning how people move within a grocery store or on a
shopping street. Obviously visual surveillance is not limited to mon-
itoring people. A system that is able to track cars on a busy inter-
section may adjust the traffic lights to enable a smoother flow and
prevent traffic jams or simply provide valuable information for long-
term traffic development in urban environments.

1.2.3 Robotics

Research in modern robotics has come a long way from manufactur-
ing helpers to humanoid robots®. Although it is still not possible to
fully replicate a human being by a machine, autonomous robots are
slowly finding their way into our lives. In static environments, sim-
ple obstacle detection may be sufficient for navigation. However, in
a constantly changing environment it is crucial to keep track of all
moving objects to make predictions about the intended motion and
avoid collisions. Certain applications, such as personal helper robots
for elderly people for instance, will require that the robot identifies
and follows one specific person, which makes robust tracking indis-
pensable.

1.2.4 Life sciences

ANIMAL BEHAVIOR. Multi-target tracking is also required in many
areas of scientific research. For instance, biologists are interested in
tracking schools of fish, flocks of birds (Straw et al., 2011) or bats
(Betke et al., 2007), ant colonies (Khan et al., 2006; Fletcher et al., 2011)
or large groups of fruit flies (Straw et al.,, 2011; Liu et al., 2012). Such
findings may give insight about animal behavior in situations like

2 http://world.honda.com/ASIMO
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foraging for food or being attacked by predators. One of the chal-
lenges here is the almost identical appearance of all individuals of a
certain species, hence, tracking systems must primarily rely on dy-
namic models to disambiguate between different targets. In addition,
the trajectories of flying or swimming targets must be reconstructed
in 3D, which necessitates the use of several cameras.

MICROBIOLOGY. Multi-target tracking can even be applied on a
molecular level. For example, inferring the precise motion of pro-
teins within a neuron may help us to better understand how our
brain works (Al-Bassam et al., 2012). Studying the dynamics and the
development of bacteria and other cells is crucial in drug discovery
and pathogenesis (Kluepfel, 1993; Xie et al., 2008; Debeir et al., 2005;
Lou and Hamprecht, 2011; Kausler et al., 2012). To make tracking pos-
sible, microscope videos taken over several hours or days are sped up,
which causes poor image quality due to camera shake or accidental
defocus. Further challenges include similar appearance, the lack of
clearly visible object boundaries and extensive occlusions. Moreover,
such tracking algorithms should allow phenomena such as cell divi-
sion, which are not present in more typical real-world applications.

1.2.5 Entertainment

Finally, tracking multiple objects can be used in television and enter-
tainment. Tracking players in soccer or ice hockey gives an objective
measure on the physical performance of each player and also allows
one to analyze the errors made during the match and develop bet-
ter playing strategies (Cai et al., 2006; Liu et al., 2009). With pow-
erful handheld devices such as smartphones and tablet computers
and soon also wearable head-up displays, the market for augmented
reality video games grows quickly. Here, multi-target tracking can
be applied to bring real world objects into the game or extend the
interface of human-computer interaction.

1.3 ENERGY-BASED MULTI-TARGET TRACKING

As already discussed in Section 1.1, solving the task of tracking multi-
ple targets is not straightforward. After stating the problem and mo-
tivating its importance, this section describes the general approach
to addressing this challenge that is followed throughout this disserta-
tion. A thorough review of the related literature is presented later in
Chapter 2.

Most multi-target approaches follow the so-called tracking-by-detection
paradigm, which originated several decades ago in the realm of radar
tracking (Morefield, 1977; Reid, 1979; Fortmann et al., 1980). In this
setting, a radar sweep is executed at discrete time steps providing
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each time a set of measurements that approximates the locations of
the nearby targets. In visual multi-target tracking the sweeps are re-
placed by a sequence of frames and a class specific object detector is
run on each image to obtain a set of observations. The task of multi-
target tracking is then twofold: the first is to determine the source
of each observation. A detection may be caused by a target that ex-
isted in the previous frame or a newly appearing one, in which case
it should be assigned a corresponding ID number of a target that had
been visible at some point or be identified as a new target with its
own unique ID, respectively. A detection may also be a false alarm
caused by background clutter containing no target at all, in which
case it should be discarded. This process of uniquely identifying
each observation is usually referred to as data association. If the detec-
tor was flawless at finding all targets and the targets moved slowly
relative to the frame rate, then solving the data association problem
would be sufficient to determine the location of each target at any
point in time. However, object detectors are not perfect in real-world
scenarios. The object is usually not localized precisely so that some
form of temporal smoothing is required to approximate the natural
motion. Moreover, detectors may produce errors, e.g. due to clutter
or occlusion (cf. Section 3.2). A simple interpolation may lead to
undesirable effects with implausible or crossing trajectories. In such
cases, it is thus necessary to address the second part of the problem:
trajectory estimation. Its primary objective is to reconstruct the entire
trajectory of each target. In practice this means to fill in the gaps
where no detections are present but also to adjust the exact course
of a trajectory, which tends to deviate from the measurements due to
imprecise target localization.

Tracking-by-detection methods can be coarsely classified into two
groups (cf. Figure 1.3 (left, middle)). The first one includes so-called
non-backscan or recursive methods that follow a (first-order) hidden
Markov model (HMM). The state, represented by a probability density
function, at any given time is usually estimated only relying on the
current observation and on the previous state. Such state estimation
techniques are thus often termed recursive Bayesian estimation or sim-
ply Bayes filters. Examples of such online tracking methods include
Kalman filters (Kalman, 1960) or particle filters (Doucet et al., 2001).
An additional procedure is required to resolve data association, i.e.
to determine which measurements guide which tracker. Examples
of such strategies include, e.g., bipartite graph matching or greedy
assignment algorithms.

Online state estimation methods (e.g., Kalman, 1960; Gordon et al.,
1993; Breitenstein et al., 2009) that only rely on past observations are
desirable for time crucial applications such as pedestrian safety or
robot navigation. However, intuitively it seems beneficial to exploit
more information for more accurate results. This consideration led
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Figure 1.3: Recursive vs. non-recursive state estimation. Recursive filter-
ing methods (left) estimate the state (black) one step at a time
(dashed line). Batch approaches (middle) infer the state for the
whole time span at one when all observations (gray) are avail-
able. In practice a temporal sliding window is often employed
(right) to process one batch from a longer sequence at a time.
The delay of the output is then equivalent to the length of the
temporal window.

to the development of tracking methods that belong to the group of
non-recursive state estimation, which is also examined in the course
of this dissertation. Although batch processing usually requires a
time delay between the currently acquired frame and the output of
the tracking algorithm, such techniques have proven to be more ro-
bust at bridging long-term occlusions because the state for all targets
is inferred jointly in a given time window. Moreover, the fact that
detections are obtained independently at each time step allows one
to avoid irreversible tracker drift. It is important to emphasize one
essential distinction between the two approaches. In the former case
of recursive state estimation a state prediction step is followed by
the state update in the light of new measurements. In contrast, in
batch methods all measurements are assumed to be known before-
hand and the state at time t depends on the situation before and after
t. Of course, analyzing extremely long video sequences at a time
is neither feasible nor reasonable. Firstly, even if the computational
complexity grows linearly with time, there is always a physical mem-
ory limit that prevents handling an arbitrarily large amount of input
data. Secondly, the current state usually only influences temporally
close events and it is thus not necessary to consider situations that are
far in the past or in the future. It is therefore common to divide the
entire video in several batches and only consider one time window at
a time. To ensure consistent trajectories between neighboring tempo-
ral windows, a small temporal overlap is accepted where trajectories
are constrained to be identical in both solutions.

9
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In Section 1.1 we posed the task of multi-target tracking as a max-
imum a-posteriori (MAP) problem that aims at maximizing the pos-
terior over all unknowns of the tracking problem. According to the
Boltzmann distribution (Landau and Lifshitz, 1969), the negative log-
arithm of the probability of a certain state is proportional to the Gibbs
energy of the system (Jaynes, 1957). Therefore, MAP estimation can be
performed by an inference technique called energy minimization. In a
nutshell, an energy is a scalar function

E:X—R (1.2)

that maps every possible state to a real value. The term originally
stems from molecular dynamics where the energy describes the en-
tropy of a system of molecules and reaches its minimum at the equi-
librium. Many problems in computer vision have also been approached
by energy minimization (Mumford and Shah, 1989; Boykov et al,,
2001).

Designing an energy function for a specific problem poses two chal-
lenges. On the one hand, the energy should describe the problem at
hand as accurately as possible, i.e. assigning high values to unlikely
states and low values to plausible ones, ideally attaining the global
minimum at the correct solution. On the other hand, it should be
computationally feasible to optimize. In particular, to be globally op-
timizable, a continuous energy function should be (pseudo-)convex,
while a discrete energy should satisfy the submodularity conditions
(Kolmogorov and Zabih, 2004). Unfortunately, most real-world com-
puter vision problems including multiple object tracking are too com-
plex to meet these requirements. In this dissertation, various ways of
approaching the problem of tracking multiple targets by energy mini-
mization are examined. The individual contributions and the outline
of the dissertation are listed in detail in the next section.

1.4 CONTRIBUTIONS AND OUTLINE

CONTRIBUTIONS. The goal of this work is to advance the state-
of-the-art in multi-target tracking. To this end, three different types
of energies that approach the task from different angles striking the
balance between modeling accuracy and the capability of achieving
global optimality during optimization are investigated (cf. Figure 1.4):

¢ The first approach (Fig. 1.4(a)) builds on the work of Berclaz
et al. (2009) and formulates the tracking problem entirely in a
discrete space. Although this results in an ILP which is hard
to optimize, a linear program relaxation simplifies the problem
such that it can be solved efficiently to (near) global optimality.

The idea of applying o-1 integer programming to solve the prob-
lem of multi-target tracking itself is not new. However, the ap-
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discrete state continuous state discrete-continuous state

Figure 1.4: Three types of energy functions are investigated in this disserta-
tion. A purely discrete approach (left), a continuous formulation
(middle) and a discrete-continuous optimization method (right).

proach described in Chapter 4 makes several contributions to
this line of thought. In particular, a dynamic model is intro-
duced into grid-based people tracking. To enable this, we pro-
pose to discretize the grid in a triaxial way to reduce the effect
of aliasing. Finally, we introduce additional constraints to the
objective function to shift non-maxima suppression to the level
of trajectories, thus allowing for more uncertainty in the likeli-
hood. As a result, the inferred trajectories exhibit a smoother,
more natural shape while at the same time producing fewer as-
sociation errors.

¢ To surpass any restrictions on the state space we propose a
global optimization method that is formulated entirely in con-
tinuous space (c¢f. Figure 1.4(b)). The main motivation for this
approach was to develop a fairly accurate model that captures
all important aspects of multi-target tracking. To this end, trajec-
tories are inferred entirely in continuous space by optimizing a
high-dimensional energy function using conjugate gradient de-
scent. To allow a variable number of targets, the optimization is
extended by a set of jump moves that help to better explore the
energy in various dimensionalities.

The model includes an observation likelihood and several phys-
ically motivated priors, such as the target’s dynamics, exclu-
sion and trajectory persistence. In addition, we design a global
occlusion model that is seamlessly integrated into the continu-
ous representation by modeling the target occupancy by two-
dimensional Gaussians. Similarly, we model the target appear-
ance in the continuous domain to easily fit the framework. De-
spite the highly non-convex behavior of the resulting energy
function we show that our optimization scheme is able to find
good local optima. This claim is supported by state-of-the-art
performance on several challenging datasets.

* Both the purely discrete energy formulation as well as the con-
tinuous one only deal with the task of trajectory estimation be-
cause the state is completely described by target locations only.
The data association in the classical sense, i.e. the assignment of
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targets to detections, is solved implicitly and is not directly in-
cluded in the optimization. On the contrary, our third approach
combines both aspects of the multi-target tracking problem into
one consistent energy. The state is represented by both discrete
and continuous variables. The motivation behind this approach
is to tackle both data association and trajectory estimation in one
unified framework. To achieve this, the first challenge is posed
as a graphical model where the solution to a multi-labeling
problem is found either by graph cut based optimization or by
message passing algorithms, depending on the complexity of
the exact formulation. Next to the purely discrete problem of
data association, all target trajectories are represented by piece-
wise cubic splines in continuous space. Through this combi-
nation, it is possible to account for both aspects within a sin-
gle optimization framework. To locally minimize the discrete-
continuous energy (cf. Figure 1.4(c)), an alternating optimiza-
tion procedure is employed where one set of variables is being
tixed while the other one is being optimized.

* Finally, we present a detailed discussion on the evaluation of
multiple target tracking approaches. Although a thorough ex-
perimental validation of any method is required in most scien-
tific work, an objective evaluation or comparison of a certain
multi-target tracking approach is not straightforward. The rea-
sons for this are varied, ranging from limited available data over
ambiguities in ground truth and in evaluation protocols to the
strong dependence on the object detector.

OUTLINE. The remainder of this dissertation is structured as fol-
lows. Chapter 2 reviews the previous work on multiple object track-
ing.

The main technical contribution is divided into three parts. Part I
(Chapter 4) deals with the discrete energy formulation and renders
our contribution to the ILP formulation for multi-target tracking. The
technical part of this chapter was previously published in (Andriyenko
and Schindler, 2010). Part II (Chapter 5) presents our entire continu-
ous energy framework including global occlusion reasoning and an
appearance model. This chapter is mostly based on (Andriyenko and
Schindler, 2011; Andriyenko et al., 2011). Part III then goes on to com-
bine both sides of the problem, namely data association and trajectory
estimation in a unified discrete-continuous optimization framework.
Chapter 6 first presents the main idea of the approach with a simpli-
fied energy that can be minimized by graph cuts and a closed-form
least-squares solution. This approach was partially presented in (An-
driyenko et al., 2012). It then goes on to introduce more sophisticated
components such as exclusion on the level of detections to ensure
plausible interpretation of the data. We also present a statistical anal-
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ysis of various energy components based on annotated data. Finally,
we extend the initial label cost formulation by proposing a pairwise
label cost. Note that such a graphical model can easily be used for
solving other problems that involve a variable number of labels with
mutual interaction. This extension of the discrete-continuous energy
formulation appeared in (Milan et al., 2013b).

In Chapter 7 we will discuss several issues that go beyond the
purely technical contribution of this work concerning more practical
aspects that we faced. In particular, we will deal with the problem
related to objectively evaluating and comparing multi-target track-
ing methods. Parts of this chapter appeared in (Milan et al., 2013a).
Furthermore, we will point out numerical issues that affect iterative
optimization methods presented in Chapters 5 and 6. Moreover, we
will discuss some of the known or potential issues that may arise with
this kind of technology.

The final chapter summarizes the contributions that were devel-
oped in this dissertation and presents a discussion on the relevance
and role of each individual approach as well as an outlook for possi-
ble future research direction.

13
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HE body of literature dealing with the problem of tracking mul-
tiple targets is enormous. Still, tracking and motion estimation
continue to be very active research topics. Currently, around 30 new
articles presenting novel tracking methods or improving existing ones
appear at each major computer vision conference.” It is thus not fea-
sible to give a complete review of all work on this topic within the
limits of this dissertation. In this chapter we will first look at the task
from a different point of view, namely in the context of perception
and cognition and briefly review some of the work on human track-
ing abilities. We will then look at the most important milestones in
multiple target tracking, in particular some of the first established
data association techniques. Finally, we will provide a thorough
overview of the important work closely related to visual multi-target
tracking, in particular people tracking. Please note that this chapter
provides a general review of the related work. A short discussion
of the methods that are relevant for each of our proposed strategies
will be presented at the beginning of the respective chapter. Also
keep in mind that many of the mentioned strategies overlap at one
point or another and it is therefore impossible to clearly categorize
each approach using one single keyword. The grouping is performed

1 http://www.cvpr201l.org/statistics
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Figure 2.1: In a typical multi-object tracking trial, the subject is shown a
number of targets (gray) along with some distractors (white).
Then all targets begin to move simultaneously. After a few sec-
onds the subject is asked to identify the targets.

based on the main underlying concept of each method, in particular
the nature of the state space representation and its inference.

2.1 TRACKING IN HUMAN PERCEPTION

Before getting into the realm of computer algorithms and models
aiming at solving the problem, let us first briefly turn to biological
approaches. Tracking moving objects is an ability that is present in
almost all living things that posses a visual sense. Although the exact
functionality of the human brain is not yet fully understood and we
cannot yet precisely point out how the tracking mechanism works
on the micro-scale, it is interesting to investigate the question on the
limitations of this skill. Research in neurophysiology and cognition
studies human attention and perception capabilities. In particular,
one is interested in finding out how many objects a human is able to
track correctly. This information may be useful for certain professions
such as air traffic controllers. To answer this question researchers
conduct what is called a multiple object trial (Pylyshyn and Storm,
1988). A test subject observes a number of moving objects having
identical appearances for a short period of time and is then asked
to identify the targets that had been highlighted in the beginning.
This procedure is illustrated in Figure 2.1. Although the maximal
number of targets that a human can track reliably strongly depends
on the speed and the proximity of targets, several studies suggest
that in a reasonable setting this number lies somewhere between four
and eight targets (Pylyshyn and Storm, 1988; Alvarez and Franconeri,
2007). In such tests the subject must be fully attentive at all times
because all objects look identical and there is thus no possibility of
re-identification by matching the appearance.

The efficiency of computer based tracking methods has steadily
improved over the recent years. Current approaches reach over 90%
accuracy on reasonably crowded datasets showing up to eight pedes-
trians (Henriques et al., 2011; Andriyenko et al., 2012), thereby achiev-
ing results similar to human performance. In more difficult cases
with dense crowds, the accuracy of automated systems drops signif-
icantly. However, in such scenarios, humans need to considerably
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slow down the video to correctly identify all targets by exploiting
very subtle cues of motion and appearance. For annotation purposes
each frame is examined thoroughly, and possibly several times, by
jogging through the sequence back and forth. It is thus reasonable
to state that modern computer systems already outperform human
capabilities in certain settings when it comes to real-time multi-target
tracking tasks.

2.2 RADAR AND SONAR TRACKING

Much of the early work on multi-target tracking originated from air
traffic or naval related applications (Morefield, 1977; Reid, 1979; Fort-
mann et al., 1980). In those early days, usually only radar or sonar
sensors were employed to obtain the measurements. The difficulties
arising from imperfect measurements such as imprecise object local-
ization or false alarms due to clutter were known and integrated in
those approaches. There are, however, two main differences with
respect to the data acquired and used in computer vision applica-
tions. On the one hand, visual data provides additional information
about the appearance of the object. Various cues such as color, tex-
ture, shape or size of an object may be used to disambiguate it from
other targets or to make the tracking more robust by directly incorpo-
rating them into the target’s state. On the other hand, radar or sonar
devices only provide information about the presence or the absence
of an object at a certain position. On the contrary, most object detec-
tors output a scalar value that in one way or another correlates to the
certainty about the presence of the object. Although it is not trivial to
correctly map this scoring value to the actual probability, it can still
be a helpful cue to guide a tracker.

2.3 GUIDED FILTERS

Tracking a target encompasses state estimation from noisy measure-
ments. Probably the most popular approach to this problem was
proposed by Kalman (1960) in the sixties and is widely known as the
Kalman filter (KF). In its native form, given a sequence of measure-
ments, the Kalman filter estimates the optimal state of a system in a
least squares sense and under certain assumptions. In particular, the
Kalman filter assumes a linear dependency for both the state transi-
tion and the observation model. Additionally, zero mean Gaussian
noise can be directly integrated into both components. The predic-
tion and update equations can then be derived to solve the problem
in closed form. To relax the linearity constraint, extensions such as
the extended Kalman filter (EKF) or the unscented Kalman filter (UKF)
(Julier and Uhlmann, 1997) have been proposed. The demand for non-
Gaussian models later led to the development of stochastic recursive

17
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state estimation techniques called particle filters (Gordon et al., 1993; Is-
ard and Blake, 1998; Doucet et al., 2000). Here, the state is represented
by a set of particles (or samples) allowing arbitrary multi-modal dis-
tributions which are approximated by sequential Monte Carlo (SMC)
importance sampling.

Although all of the above filtering techniques are intrinsically de-
signed to handle one dynamic system, i.e. one target, they are often
employed in multiple-target tracking. To achieve this, the state of
each target is estimated independently based only on those observa-
tions that are believed to have originated from the same target. In
other words, the data association problem is usually solved in a sep-
arate procedure. To this end, many different approaches have been
proposed, most of which include a so-called gating mechanism (Fort-
mann et al., 1980), motivated by the assumption that the objects” max-
imum speed is limited by physical constraints. Consequently, targets
cannot move arbitrarily far between adjacent scans. This technique
allows a significant reduction of the search space, by only consider-
ing measurements within a certain distance from the targets for the
assignment problem. The distance is usually determined by the esti-
mated uncertainty of the current prediction.

In the following we will give a coarse overview of some of the
more popular data association methods and briefly outline their core
principles. For a more thorough comparison and discussion as well as
formal derivations, please refer to Bar-Shalom and Fortmann (1988);
Cox (1993); Blackman and Popoli (1999).

GLOBAL NEAREST NEIGHBORS. One of the simplest data associ-
ation techniques is global nearest neighbors (GNN) (Blackman and
Popoli, 1999). Here, at each incoming data scan, the association hy-
pothesis with the highest probability for all targets is kept and all
the other ones are discarded. A similar method was employed by
Deriche and Faugeras (1990) to associate and track line segments ex-
tracted from object edges in a corridor environment. Obviously, this
naive method cannot be globally optimal and performs quite poorly,
especially when targets come close to one another or in presence of
false alarms or missing detections.

MULTIPLE HYPOTHESIS TRACKER. An obvious drawback of GNN
is that all information about previous measurements is discarded as
soon as the current time step has been processed. To remedy this,
Reid (1979) proposed a more sophisticated data association method:
the multiple hypothesis tracker (MHT). The idea is to keep all possi-
ble association events from the past observations in memory and to
choose the best one at each time step. The motivation behind this
exhaustive search algorithm is that any current ambiguity will be re-
solved at a later point in light of new evidence. This formulation pro-
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vides an optimal solution of the objective in theory, but is not feasible
in practice because the number of hypotheses grows exponentially
with time. A pruning strategy is therefore required. To only keep a
finite set of promising hypotheses, several alternatives exist: i) only
maintain a maximum number of the most probable solutions, ii) only
maintain solutions above a specified confidence value, or iii) discard
all hypotheses that reach longer than n scans into the past. Even with
these pruning techniques, the MHT algorithm is rarely used today due
to its poor complexity behavior in challenging situations with large
numbers of targets. Note that although the data is always processed
online after each new set of measurements, the MHT belongs to a class
of backscan tracking or deferred logic techniques where the final re-
sult is only obtained with a fixed temporal delay.

PROBABILISTIC DATA ASSOCIATION. A further class of techniques
is called probabilistic data association (PDA). As the name suggests,
probabilities for various sources of origin for each detection are accu-
mulated and propagated through time. In the simple case with only
one target, the probabilistic data association filter (PDAF), originally
proposed by Bar-Shalom and Jaffer (1972), computes and assigns a
probability that a certain measurement arose from that target or from
clutter. In contrast to the global nearest neighbors (GNN) approach,
the probabilistic assignment can much better deal with missing evi-
dence and false alarms. The extension to multiple targets was later
presented by Fortmann et al. (1983). The joint probabilistic data as-
sociation filter (JPDAF) follows a similar principle as the PDAF but as-
signs an array of values to each measurement where each one corre-
sponds to the probability that a particular target, respectively back-
ground clutter gave rise to that measurement. One serious limitation
of the classical JPDAF is that the number of targets needs to be known
in advance. To resolve this, an extension that allows track splitting
was later proposed by Bar-Shalom et al. (1991). Although these prob-
abilistic approaches bypass the exponential complexity of the MHT,
they only provide suboptimal solutions to the problem because all as-
sociation hypotheses are entirely summarized in the current time step,
i.e. the temporal observation horizon is reduced to one frame. Con-
sidering all possible hypotheses to ensure global optimality would
still lead to intractable inference.

One advantage of such probabilistic models is that their formula-
tion allows one to include quantities like the false alarm rate of the
detector or the true target density. It is thus possible to make pre-
dictions about the expected performance of a tracking system given
a certain scenario. Although this information may seem quite valu-
able from a theoretical point of view, such specifications are often
unreliable or can only be roughly estimated and are thus not always
applicable in practice.
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Note that global
need not mean
globally optimal but
rather refers to the
observation horizon
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frame.
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PARTICLE FILTERS. In most real world situations, the posterior
probability distribution in tracking problems exhibits a strongly multi-
modal behavior. To accurately approximate its shape and propagate
it through time, Isard and Blake (1998) use a set of weighted sam-
ples, which are updated upon new evidence. This conditional den-
sity propagation, or condensation, was one of the first algorithms for
visual tracking based on particle filters. Later, Vermaak et al. (2003)
proposed a mixture model, where the multi-modal distribution over
all targets is approximated by a certain number of components. This
prevents undesired merging of neighboring modes due to ambiguity.
However, special care must be taken to correctly estimate the number
of mixture components that are assumed to correspond to individual
targets. The work of Okuma et al. (2004) builds on the same idea of
mixture particle filters, but additionally employs AdaBoost to learn
target specific appearance models. The resulting boosted particle fil-
ter (BPF) is successfully applied to track ice hockey players in a short
clip.

Breitenstein et al. (2009) set aside the complex association problem,
concentrating on carefully designing a robust particle filter that learns
the appearance of each target online. To solve data association they
use a simple greedy strategy to select which detection should guide
which filter. In addition to a classic tracking-by-detection approach
they also exploit the intermediate detector output before applying
non-maxima suppression. A basic occlusion reasoning handles situ-
ations when a detector fails due to close proximity of nearby targets
by appropriately adjusting the likelihood.

2.4 BATCH PROCESSING TECHNIQUES

As already briefly discussed in Section 1.1, one way to classify multi-
target tracking approaches is to distinguish between online methods,
where the state is estimated at each time step (see previous section),
and offline or batch techniques, which consider an entire temporal
sequence at once. We will next review the literature that belongs to
the latter class, often referred to as global data association.

2.4.1  Measurement-based state representation

All methods described in this section have in common that the num-
ber of possible paths is limited by forcing the targets to follow the
detection responses. Even though special care is taken that the same
detector response is never associated with two different targets, such
approaches still lack proper exclusion modeling. Firstly, the actual
trajectories are usually computed in a post-processing step using the
Kalman filter, which may lead to overlapping target locations in the
final result. More important is the fact that trajectories are simply
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interpolated in case of missing detections which may directly result
in collisions between targets.

INTEGER PROGRAMMING. Early work by Morefield (1977) sug-
gests a o-1 integer program (IP)-based formulation, which is closely
related to the set packing problem. A binary vector whose dimen-
sion corresponds to the number of feasible tracks indicates which
tracks are to be selected and which measurements are discarded as
false alarms. Linear constraints ensure that only feasible solutions are
possible. The optimization of the o-1 problem is then carried out by
implicit enumeration, a back-tracking type algorithm. A similar idea
was later pursued by Storms and Spieksma (2000), but a more effi-
cient Lagrangian relaxation is proposed for minimizing the objective
function. This leads to a linear program (LP) relaxation of the problem
and can be solved by any available LP technique such as the Simplex
algorithm (Dantzig, 1998) or the interior point methods (Karmarkar,

1984).

HIERARCHICAL DATA ASSOCIATION. Many algorithms that ana-
lyze a batch of frames at a time follow a similar strategy. Starting from
a set of short, yet confident tracks, or tracklets, longer trajectories are
built based on global information. This technique is also sometimes
referred to as tracklet association in literature.

Kaucic et al. (2005) link short tracklets across sensor gaps in aerial
traffic scenes by optimizing the matching matrix using the Hungarian
algorithm. Wu and Nevatia (2007) present a framework for detect-
ing and tracking partially occluded humans in surveillance scenarios.
They employ their previously developed edgelet detector (Wu and
Nevatia, 2005) to identify visible parts and apply a greedy strategy
to maximize their joint likelihood in each frame. Subsequently, data
association between adjacent frames forms track hypotheses that are
then grown to longer tracks taking their dynamic behavior and the
learned appearance into account. Similarly, Huang et al. (2008) per-
form data association on a three-level hierarchy starting from conser-
vative two-frame linking of overlapping detector responses. These
tracklets are then grown to longer ones based on a dynamic model
and a refined appearance computation. Finally, high-level data asso-
ciation infers scene information such as scene occluders and entry or
exit areas and produces final tracks using an alternating optimization
algorithm. Along the same line of thought, Li et al. (2009) employ ma-
chine learning techniques such as RankBoost and AdaBoost to auto-
matically learn the similarity score between tracklets in a supervised
manner instead of defining them heuristically. In a related way, Yang
and Nevatia (2012a) learn a CRF energy online while specifically con-
centrating on the difficulty of resolving ambiguities between similar
pairs of tracklets.
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Andriluka et al. (2008) are able to reliably detect and estimate the
pose of humans based on the pictorial structures model (Fischler and
Elschlager, 1973; Felzenszwalb and Huttenlocher, 2005) and generate
short tracklets using Gaussian process-based models. This allows
tracking through full, long-term occlusions by matching the walking
cycle of side view pedestrians. The same approach is also shown to
work well in 3D and in sequences with moving cameras (Andriluka
et al., 2010). In both cases, the Viterbi algorithm is used to infer the
optimal sequence of the underlying HMM.

NETWORK MODELS. A network-based global optimization scheme
was proposed by Jiang et al. (2007) who apply an integer linear pro-
gram (ILP) formulation to visual tracking of multiple targets instead
of only dealing with radar or sonar applications (Morefield, 1977). To
allow for occlusion, a special node is introduced where targets can
linger as long as no adequate detection is available. Besides tempo-
ral constraints that enforce plausible data interpretation, additional
layout constraints are used, motivated by the assumption that objects
maintain their relative distance to each other across time. The re-
laxed objective is convex and in most cases yields an integer solution
that corresponds to the global optimum. Another network-related
approach was formulated by Zhang et al. (2008). Two types of arcs
between detections describe the observation likelihood and the puta-
tive motion of a target and each node is connected to a source and to
a sink node. A globally optimal solution is then found in polynomial
time by a min-cost flow algorithm. Occlusion is again handled ex-
plicitly in a post-processing step by introducing new nodes into the
graph and reiterating the optimization. Their approach was later re-
fined by Pirsiavash et al. (2011) who could achieve linear complexity
by successively solving the shortest-path problem. Surprisingly, the
global optimum can still be reached by this apparently greedy ap-
proach. A multi-pass dynamic programming (DP) algorithm is used
to obtain a suboptimal solution even faster. This method is somewhat
reminiscent of the DP approach of Berclaz et al. (2006). However in
the latter case, the paths were constructed through a predefined grid
and not based on detection responses.

Brendel et al. (2011) pose the data association task as a maximum-
weight independent set (MWIS) problem. Temporally adjacent detec-
tion pairs form nodes in a graph and are then grown to longer trajec-
tories by iteratively choosing the best independent set of vertices, i.e. a
set of nodes that are not connected by any edge. The edges represent
constraints that ensure plausible data interpretation and physical con-
sistency. The locally optimal solution is obtained in polynomial time
by a customized MWIS algorithm. Zamir et al. (2012) form fully con-
nected graphs between all detections of the same person within a tem-
poral window. Each frame corresponds to a disconnected cluster of
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nodes representing targets or false alarms, respectively. The weights
between the nodes in different clusters carry information about the
appearance and motion of the targets. To obtain tracklets of the same
person, the generalized minimum clique problem (GMCP) is solved
locally for short time spans. The same procedure is then repeated to
generate long trajectories. Short- and long-term occlusions are han-
dled by introducing hypothetical nodes, similar to Zhang et al. (2008).

2.4.2  Explicit state representation

The methods described above entirely rely on detection responses
to derive the locations of targets. Even though reducing the state
space in this way is attractive from the optimization perspective, it has
one major drawback: The targets” actual locations are not considered
during optimization if no detections are present. In other words, if
the object detector fails due to occlusion or due to any other reason,
trajectories are usually interpolated, which may result in physically
impossible solutions with overlapping paths.

To remedy this shortcoming, all three approaches presented in
this dissertation explicitly represent the state (i.e. the location) of
each target, regardless of the fact whether the target is visible or
occluded. This section deals with previous approaches that follow
a similar strategy and explicitly incorporate the layout of the trajec-
tories into the optimization problem. Leibe et al. (2007) propose to
couple the two related tasks of object detection and trajectory estima-
tion. Following the minimum description length (MDL) paradigm, an
over-complete set of detections and trajectories is first generated and
a model selection mechanism that includes pairwise constraints be-
tween both detection and trajectory hypotheses is then formalized as
a unified quadratic boolean program (QBP) optimization framework.
The resulting problem contains non-submodular terms, which leads
to NP-hard optimization. To obtain a locally optimal solution the au-
thors therefore resort to an iterative procedure and heuristic pruning
techniques. Wu et al. (2012) also tackle both problems jointly, but
succeed in formulating a linear objective function that is easier to op-
timize. In addition, they adjust the behavior of the person detector
according to current data association. Mitzel et al. (2010) extend the
classic tracking-by-detection approach and apply level-set-based seg-
mentation to find the silhouette of a detected target. This information
is propagated through time by space warping, which results in an
additional low-level tracker. Besides keeping the trajectories alive in
case of detector failure, the level-set tracker can significantly speed up
the computation by only requesting new detections if necessary and
not at every frame. Horbert et al. (2011) further improve the level-set
tracking framework by using more sophisticated hierarchical segmen-
tation and accurately inferring foreground /background probabilities.
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However, their approach entirely forgoes interactions between targets,
an important aspect in multiple target tracking scenarios. Mitzel and
Leibe (2012) take a step beyond tracking only one single target class
and additionally identify carried objects. They use depth information
from stereo to match the point cloud of a target against a learned
pedestrian model using the iterative closest point (ICP) algorithm and
detect further objects like bags or strollers in regions where the mod-
els do not align.

MARKOV CHAIN MONTE CARLO SAMPLING. We now turn to a
different class of algorithms that rely on stochastic sampling tech-
niques. Particle filters offer a powerful tool for approximating a com-
plex probability distribution by sequential sampling (see Section 2.3).
However, they rely on the first-order Markov assumption, which may
impose a serious limitation on the model. Here we will look at some
multi-target tracking methods that use a more general sampling tech-
nique.

Khan et al. (2005) introduce a Markov random field (MRF) motion
prior to model the pairwise interaction between targets. This helps
to maintain the identities in complex situations with crossing trajec-
tories. The exponential complexity is approached by Markov chain
Monte Carlo (MCMC) sampling. Using a set of predefined moves,
the sampling scheme is able to handle a variable number of targets
by jumping between various dimensionalities. In their related work,
Khan et al. (2006) introduce the notion of merged and multiple mea-
surements that arise in real world visual tracking scenarios either
when several proximal objects give rise to one single measurement
or when one target produces two separate detections. Under the
assumption of a linear motion model and that the posterior can be
approximated by a mixture of Gaussians it is possible to marginalize
out the continuous target space and to apply the MCMC sampling to
resolve data association. Both works show encouraging results on
videos of ant colonies. Although the number of targets is quite high,
no occlusion takes place in such data because the bird’s-eye view
shows the entire target space.

A surveillance scenario showing several people is approached by
Markov chain Monte Carlo data association (MCMCDA) scheme pro-
posed by Oh et al. (2004). It accurately models probabilistic data
association and also employs stochastic sampling for inference. The
authors also prove that their algorithm converges to the full Bayesian
solution if given enough computational resources. Yu et al. (2007) ex-
ploit the spatio-temporal smoothness of motion and appearance and
allow for more complex dependencies between targets and measure-
ments than a simple one-to-one mapping. A data driven Markov
chain Monte Carlo (DDMCMC) sampling is employed to search the
non-trivial solution space of possible trajectories and data association.
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More recently, Benfold and Reid (2011) rely on stable and accurate
head detections of pedestrians in an urban environment. The infer-
ence also follows the MCMCDA and the multi-threaded design of their
system allows leveraging parallel computing power to achieve real-
time performance in high-definition videos. Wojek et al. (2010) sig-
nificantly improve the robustness of object detection in traffic scenes
from a moving on-board camera by aggregating evidence over mul-
tiple frames. Under the assumption that all objects reside on a com-
mon ground plane and by exploiting semantic labeling information,
the entire 3D scene, i.e. the location of pedestrians and cars as well as
the camera pose are inferred by reversible jump Markov chain Monte
Carlo (RIMCMC). Choi and Savarese (2010) follow a similar approach
but additionally model interaction between targets by using repulsive
and attractive forces, respectively. While they are able to reconstruct
long tracks of people maintaining their identities, the complex graph
structure significantly handicaps inference, leading to long computa-
tion times of few minutes per frame.

All of the above techniques use some form of jumps or moves, such
as adding or removing an object from the solution or changing the
current configuration to explore different discrete states. A similar
technique is also employed in our continuous minimization frame-
work presented in Chapter 5 of this dissertation.

DISCRETE GRID. A different way to reduce the search space of all
possible trajectories is to discretize the physical space to a regular
grid and force the targets to move along the grid cells. One of the
main advantages of such an approach is that the location of each tar-
get is always represented explicitly and does not entirely depend on
the presence of detections. Occlusions can thus be handled implicitly
within the global optimization without the need of adding hypothet-
ical or special occlusion nodes.

A general approach to finding the best set of k paths through a
trellis is described by Wolf et al. (1989) who employ the Viterbi al-
gorithm for inference but make rather strong assumptions about the
absence of missing or merged detections. Berclaz et al. (2006) use a
dynamic programming (DP) approach to track several individuals in
a relatively tight indoor environment. The evidence is accumulated
from multiple cameras. Although the trajectories are optimized one
at a time, a heuristically defined processing order ensures that the op-
timization is hardly ever trapped in local minima. In their later work,
Berclaz et al. (2009) still stick to the same ground plane discretization
but pose the optimization as an integer linear program (ILP). Binary
variables indicate the presence or absence of flow between two neigh-
boring cells while linear constraints ascertain that flow can neither
appear nor vanish, except at certain locations, e.g. along the border.
This allows the joint optimization for all trajectories within a time
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window. The LP relaxation yields an integer solution (except in rare
degenerate cases), thus the global optimum can be found efficiently.
Berclaz et al. (2011) reformulate the same system and solve it by the
k-shortest paths (KspP) algorithm by exploiting the special structure
of the problem. This novel formulation is much more efficient than
the general LP relaxation technique and can achieve real-time perfor-
mance in real-world scenarios. Finally, Ben Shitrit et al. (2011) enrich
the grid tracking idea with a long-range appearance model. To this
end, they design a multi-layered graph where each layer represents
a certain predefined identity group. To keep the inference tractable,
a KSP pass first significantly prunes the graph before the multi-layer
network optimization is approached. Although global optimality is
forfeited, the work shows remarkable results in long basketball se-
quences, where players, whose t-shirt number serves as a unique per-
son identifier, are tracked correctly during the course of very long
time spans without switching their identity.

Note that Part I of this dissertation is inspired by the ILP formula-
tion of Berclaz et al. (2009). In contrast to their original work, we ex-
tend the formulation to allow including a constant heading dynamic
model and a simple appearance model while still holding similar op-
timality conditions (Andriyenko and Schindler, 2010). The dynamic
model is achieved by extending the functionality of the binary indica-
tor variables to three consecutive frames allowing for measurement
of the target’s change of heading direction.

2.4.3 Merging and splitting

The classical task of multiple target tracking requires the exact tra-
jectory of each target to be reconstructed. Obviously this task be-
comes difficult or even infeasible when targets come close to each
other causing complete occlusions. This effect becomes more severe
when background subtraction is used for detecting moving objects
(cf. Section 3.2). In this case, blobs will eventually merge into one
since such techniques are unable to disambiguate between partially
occluded targets. Some work, as described below, therefore forfeits
the precise solution and resorts to a coarser approximation where tar-
gets are merged into groups when they are close to each other and
split later.

Nillius et al. (2006) construct a Bayesian network called a track
graph, where nodes represent either single-target trajectories or merged
multi-people tracks. To solve the final problem, a message propaga-
tion algorithm finds the track of each person through the graph. To
keep the inference tractable the graph complexity is reduced by re-
moving dependencies that are distant in time. Perera et al. (2006)
follow up on the work of Kaucic et al. (2005) and link tracklets across
long occlusion gaps. However, they additionally model track merg-
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ing and splitting to allow for merged measurements. Henriques et al.
(2011) also build on a graph with merge/split nodes but solve the
complete problem in polynomial time where the matching is per-
formed by the Hungarian algorithm and the plausible number of ob-
jects in each group is ensured by a polynomial time min-cost flow cir-
culation algorithm. Although the presented results are quite impres-
sive, it is impossible to directly compare the performance to standard
multi-target tracking methods since the individual tracks of merged
targets remain undefined until the targets split apart.

2.5 RELATED AREAS OF APPLICATION

In this section, we will review selected work in areas related to multi-
target tracking.

2.5.1 Multi-camera networks and handover

A surveillance system typically consists of more than just one camera.
A whole network of pan-tilt-zoom (PTZ) cameras may be deployed to
observe most corners of an area of interest. In such cases it may be
desirable to not only track the targets in one view, but to also identify
the same target across different, possibly non-overlapping fields of
view. This task is referred to as handover, since one camera ‘passes’ a
target to a different camera. Depending on the exact camera layout,
a simple dynamic model or a learned appearance model of the target
may be used as cues to reconstruct the global trajectories.

Given a set of trajectories that are obtained by a particle filter inde-
pendently in each view, Meden et al. (2012) pose the handover task as
a global optimization problem and solve it by MCMC sampling. Idrees
et al. (2012) go beyond the standard re-identification problem and ac-
tually reconstruct the hidden trajectories that lie outside the field of
view of any camera. To this end, a global cost function that incor-
porates certain constraints such as collision avoidance, smoothness
or target following is minimized. The inferred scene structure and
the targets” dynamics clearly outperform a simple constant velocity
assumption.

2.5.2  Social behavior and crowd analysis

A substantial amount of work exists that deals with the analysis of
individual trajectories or the combined solution. The applications
range from discovering social roles between individuals to activity
recognition and prediction of single objects and crowd behavior.
Rodriguez et al. (2011) use a per pixel confidence value of a dis-
criminatively trained head detector in conjunction with a crowd den-
sity estimator of Lempitsky and Zisserman (2010). A binary energy
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that forces the number of objects to agree in both cases is then min-
imized in a greedy fashion. Tracking is based on a robust associa-
tion scheme proposed by Everingham et al. (2006), where correspon-
dence between detections is established by counting relevant trajecto-
ries generated by a Kanade-Lucas-Tomasi (KLT) feature point tracker
(Shi and Tomasi, 1994). Inspired by the advances in crowd simula-
tion and based on the fact that people usually head towards a deter-
mined destination, Pellegrini et al. (2009) propose a more sophisti-
cated formulation of the targets” dynamics that goes beyond a simple
first-order Markov model. Taking into account scene structure and
collision avoidance, social behavior of individuals as well as between
different pedestrians can be predicted reasonably well for several fu-
ture frames. Ge et al. (2012) concentrate on identifying groups of
pedestrians that are socially related. To this end, the geometric con-
stellation between individually obtained trajectories is analyzed and
groups are constructed by a bottom-up clustering approach. A some-
what similar problem is posed by Choi and Savarese (2012). However,
they approach both problems, multi-person tracking and social anal-
ysis, jointly. The rather complex discrete optimization is handled by
a combination of belief propagation and branch-and-bound methods.
Amer et al. (2012) aim at detecting and classifying actions and activi-
ties of individuals as well as groups of people. Using high definition
video footage they are able to digitally zoom in to recognize fine
details and zoom out for a more general overview of the scene. Ac-
tivity forecasting is a task recently introduced by Kitani et al. (2012).
By leveraging most recent advances in semantic scene understand-
ing (Munoz et al., 2010) and reinforcement learning (Abbeel and Ng,
2004), it is possible to predict entire trajectories far into the future
from as little as a single detection.
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HIs chapter serves as an introduction to the technical part of this
dissertation. First, all necessary notation used throughout the
document is outlined. We then briefly review the pedestrian detec-
tor that is employed for obtaining object hypotheses. Finally, we will
discuss the experimental setup that is used for measuring the per-
formance of the newly developed methods. In particular, we will
consider the datasets and have a closer look at the metrics that are
employed for quantitative evaluation.

3.1 NOTATION

Although each method will require its own set of symbols and nota-
tion, a general notation is introduced here to avoid repetition in each
chapter. For quick reference, all notation is summarized in Table 3.1.

Each one of the three methods presented in this dissertation per-
forms energy minimization to estimate the state of all objects within
a certain time window. Depending on the exact formulation and the
application, this window can either stretch through the entire avail-
able video sequence or contain only a small subset of consecutive
frames. In either case, we will refer to the length of the temporal
window, i.e. the number of frames under consideration, as F. To re-
fer to a specific frame we use the superscript t € {1,...,F}, while a
specific target is denoted with the subscript i € {1,..., N}, where N
is the total number of targets. Since N varies over time, we specify
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Symbol | Description

X | world coordinates of all targets in all frames
X! | world coordinates of target i in frame t
image coordinates of target i in frame t
) | world coordinates on the ground plane
(x,y) | image coordinates
F | total number of frames
N | total number of targets
si, eq | first, respectively last frame of trajectory i
F(i) | number of frames where target i is present
(t) | number of targets in frame t
(

t) | number of detections in frame t

D! | world coordinates of detection g in frame t

Table 3.1: Notation.

the number of targets that are present in frame t with N(t). The
state containing the locations of all targets in all frames is denoted
X. Depending on the experimental setup, the state can either be in-
ferred in image space, or on the ground plane in world coordinates.
To avoid confusion, we use lowercase to refer to image locations and
capital letters for 3D positions. The temporal limits, i.e. the first and
final frame of trajectory i are denoted s; and e;, respectively, which
in turn means that the temporal span where a target is present can
be written as F(i) = e; — sy + 1. Finally, D(t) denotes the number of
detector responses in frame t and Dy is the location of one specific
detections.

3.2 OBJECT DETECTION

The main focus of this dissertation is to investigate various approaches
to multi-target tracking. Like most state-of-the-art methods, we fol-
low the tracking-by-detection paradigm, meaning that we rely on
a pre-processing step that generates an independent set of object
candidates. Although this detection procedure is entirely indepen-
dent from all three tracking approaches that are presented in this
work, this section provides a brief overview of several useful detec-
tor choices, including the HOG-based detector that is used throughout
this dissertation.

BACKGROUND SUBTRACTION. Early tracking approaches, (e.g., Kau-
cic et al., 2005), employed background subtraction methods (Stauffer
and Grimson, 1999) to obtain regions of moving objects. After learn-
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(a) (b) (© (d)

Figure 3.1: Pedestrian detectors may fail for various reasons including (a-
b) low contrast, (c) strong pose variation, (d) occlusion or (e-f)
clutter. Note that in the last case it is not even clear whether a
mannequin in a display window should be regarded as a false
positive.

ing a background model for each pixel, it is possible to determine
the presence of an object by comparing the intensity value of the cur-
rent input to the background model. To reduce the effect of noise, a
heuristic smoothing procedure is usually carried out to obtain con-
nected regions or blobs. This has several critical drawbacks. The first
assumption is that the background remains more or less fixed over
time. On the one hand this prohibits the use of moving cameras,
for instance in cars or on robots. But even in a typical surveillance
setting, the environment can change rather abruptly due to dynamic
lighting conditions leading to strong deviations in intensity values.
A second assumption is that all targets move uninterruptedly all the
time, which, of course, is quite restricting since still objects may blend
with the background and thus remain undetected. Finally, if certain
parts of a target and the background have similar colors, the target
will inevitably produce several disconnected regions. A more com-
plex tracking model is then required to deal with such ambiguous
splitting and merging situations.

HISTOGRAMS OF ORIENTED GRADIENTS. Recent progress in ob-
ject detection has enabled robust localization of pedestrians in more
or less unconstrained environments. A common practice, which is
simple, yet powerful, is a technique called sliding window, which is not
much more than a brute force search over the entire image. Broadly
speaking, the same question is asked about every rectangular area in
an image: does this image patch contain the object or not? Pedestri-
ans are assumed to be standing or walking upright and usually resem-
ble a vertical structure. Therefore, the aspect ratio and the orientation
of the bounding box is fixed and the search is only performed across
all locations and all scales.

One of the most popular sliding window detectors to date remains
the one introduced by Dalal and Triggs (2005). The image informa-
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Figure 3.2: Exemplar detections used as input for our multi-target tracking.
The detector’s confidence is reflected in the line width of each
box. Some of the detector failures such as false alarms, false
negatives or poorly localized bounding boxes are indicated with
red, yellow and white arrows, respectively.

tion extracted from each window forms a feature vector that is based
on local gradient histograms. This approach is therefore known as
histogram of oriented gradients (HOG). In a nutshell, the functional-
ity of a HOG detector can be summarized as follows: Each window
is subdivided into groups of neighboring pixels, called cells, from
which local gradients are computed. Neighboring cells form larger
units, called blocks, where the histograms are normalized to provide
invariance to image contrast. Finally, a support vector machine (SVM)
serves as a classifier to determine whether a feature vector represents
a pedestrian or not. Although the general idea may seem rather sim-
ple, a complete implementation of this approach contains many im-
portant details such that best performance can only be achieved by
carefully designing each one of the components. Some extensions
have since been proposed that, generally speaking, concentrate on
designing additional features including optic flow (Dalal et al., 2006),
color self-similarity (Walk et al., 2010a) or pixel disparities computed
from stereo images (Walk et al., 2010b).

DEFORMABLE PART-BASED MODELS.  While HOG-based detectors
are still widely used today for detecting pedestrians, they have sev-
eral crucial limitations. One of them is the monolithic structure that
only allows for small deformations up to a certain degree. If, however,
one is interested in detecting less symmetric objects such as people
in general, whose posture may significantly deviate from an upright
walking pedestrian, this single-template-based approach is likely to
fail. A further deficiency is sensitivity to partial occlusion, which may
lead to detector failures.

The deformable part-based model (DrM) developed by Felzenszwalb
et al. (2010) addresses both issues by treating the object as a constel-
lation of individual parts that are spatially dependent. It builds on
the pictorial structures idea, originally introduced by Fischler and
Elschlager (1973). The entire object itself is treated as a root node that
is connected to a certain number of smaller parts that are arranged in
a certain star-shaped layout. The locations of the individual parts are
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not known during training and treated as hidden variables within a
latent sVM framework. Even though the DPM also builds on HOG fea-
tures, it can better handle large deformation and partial occlusions.
Recent tracking approaches that directly integrate occlusion handling
(Shu et al., 2012; Izadinia et al., 2012) often employ the DPM as object
detector.

IMPLICIT SHAPE MODEL. Another object detection approach that
relies on object parts is the implicit shape model (1SM) developed by
Leibe et al. (2008a). However, it follows a slightly different method-
ology. First, a visual vocabulary is learned for a specific object class.
To this end, small image patches are sampled around interest points
and clustered together to form a codebook, which stores information
about appearance, location and scale of an object part. During de-
tection, the learned visual words cast probabilistic votes in Hough
space for the center of the object. The modes of these votes in the (x,
y, scale)-space are then found by mean-shift clustering. Furthermore,
these modes can be backprojected onto the image to produce a fore-
ground segmentation. Since the implicit shape model solely relies on
small patches to represent the object, it requires the object to be large
enough which cannot always be guaranteed in typical surveillance
settings. It is therefore rarely used nowadays in tracking-by-detection
systems (Leibe et al., 2007; Breitenstein et al., 2009).

3.3 DATASETS

To demonstrate the applicability of a computer vision approach to
real-world situations, it is indispensable to test the performance of
any method on realistic data. Obviously, using data as diverse as
possible to cover all potential scenarios is advantageous. This avoids
over-fitting and shows robustness to various situations. In practice,
however, this is challenging for a variety of reasons. First, supervised
learning and quantitative evaluation both require the data to be man-
ually annotated, which is tedious and costly. Second, the amount
of resources is always limited such that only a subset can be used
to evaluate the performance. Having these constraints, choosing the
‘right” data is not always trivial. Some criteria for this choice should
be:

* Openness. It is important that the data that is used for presenting
the performance of any method is freely available so that it can
be used by others for comparison.

e Variability. The dataset should be sufficiently versatile to show
that a method is capable of handling various scenarios.

¢ Complexity. It may not make much sense to show near flawless
performance on an easy dataset. Instead, it is beneficial to eval-
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Figure 3.3: Three views of the campusz (top) and terracex (bottom) sequences.
On the right-hand side, 12 seconds of ground-truth trajectories
are plotted from the bird’s-eye view.

uate rather challenging datasets and point out the limitations of
a method.

In this section, several video sequences are presented that will later be
used to show the functionality of the proposed tracking approaches.

EPFL. The computer vision lab at EPFL in Lausanne, Switzerland,
offers several people tracking datasets, all of which are filmed by
several cameras.

The four sequences campus1, campus2, terracer and terrace2 (Berclaz
et al., 2006; Fleuret et al., 2008) show up to six people walking around
outdoors around an area of about 10 by 15 meters (see Figure 3.3).
The cameras are positioned in three, respectively four different cor-
ners at a height of about two meters. Although people frequently
become completely occluded in one view, every person is usually vis-
ible by one or more other cameras. A homography matrix is given as
camera calibration. The ground truth provided by the authors is only
given at discrete grid points and only every 25 frames. To quantita-
tively assess the performance more accurately, we provide continuous
annotations both in the spatial and in the temporal domain. A short
fragment is depicted on the right hand side of Figure 3.3.

Note that correctly aggregating evidence from multiple overlap-
ping fields of view is not trivial. In our experiments in Chapter 4 we
follow a simple strategy where the detections from individual views
are accumulated independently in world coordinates and weighted
according to the number of views they are visible in.

PETS. The First IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance, better known as PETS, was held
in the year 2000. Since then, several datasets in various surveillance
settings have been recorded and published, each with the goal of
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Figure 3.4: The PETS sequences exhibit strong variability in people count, for-
mation, walking behavior and lighting. The cumulative trajec-
tories in world coordinates (bottom) are plotted for a 12-second
period.

creating a common benchmark to compare different approaches for
various applications. The most recent one from 2009 (Ferryman and
Shahrokni, 2009) is still widely used by the computer vision com-
munity. The data was recorded at the campus of the University of
Reading, UK. A total of eight calibrated cameras were used to record
pedestrians walking or running around an intersection. The data of
one view is withheld by the organizers to be used solely for testing.
This dissertation mainly concentrates on monocular people tracking.
Hence, only the first view of the entire setup will be used.

The entire benchmark consists of 18 sequences that are divided
in three sets: people count, people tracking and event recognition.
The most popular sequence for people tracking, 52.L1, has been used
extensively in the past. Although people walk close together causing
occlusion and sometimes randomly change their moving direction
and speed, recent approaches (Henriques et al., 2011; Andriyenko
et al.,, 2012) achieve near flawless performance on this sequence.

To show the strength of our methods described in Chapters 5 and
6, we thus step up to the more challenging sequences. The crowded
scenarios show up to 42 people simultaneously. The motion behav-
ior of the pedestrians ranges between practically random (S2.L2) to
quite regular (S3.L2-1). Some example frames from four sequences
are shown in Figure 3.4. Using several different scenarios offers a
good way to show the robustness of a tracking method.

The PETS organizers do not intend to release the annotations be-
cause the workshop is usually organized as a challenge. For everyone
outside the challenge we have annotated many of the 18 sequences
and make all ground truth data publicly available with the hope that
the evaluation on the more challenging scenarios will become more
commonplace in future research.
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TUD-Stadtmitte ETHMS Bahnhof ETHMS Sunny Day
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Figure 3.5: Example frames from the TUD and the ETH Mobile Scene datasets.
The bottom row shows ground truth trajectories for a time span
of about 12 seconds. Note that the ground truth for the ETHMS
sequences is plotted in image space.

TUD. Although the two previous datasets, EPFL and PETS, show
real video footage, the people are volunteers who were asked to walk
in a certain way. In contrast, the three sequences of the TUD dataset
show ‘real’ pedestrians filmed on the street. In this dissertation, only
the TUD-Stadtmitte sequence (Andriluka et al., 2010) is used because
it offers a camera calibration, which allows one to perform the track-
ing in world coordinates. TUD-Stadtmitte is a short video showing
a busy pedestrian street in Darmstadt, recorded from a rather low
viewpoint (see Figure 3.5). There are two main challenges. On the
one hand, people occlude each other for longer periods leading to
large detection gaps. On the other hand, the low perspective makes
3D estimation rather inaccurate, which poses a challenge for recon-
structing exact trajectories. Interestingly, there exist several sets of
publicly available annotations for this sequence that strongly deviate
from each other. This issue will be discussed more thoroughly in
Section 7.1.

ETH MOBILE SCENE. Finally, we test our discrete-continuous en-
ergy minimization scheme from Chapter 6 on two widely used se-
quences of the ETH dataset (Ess et al., 2008). These were recorded
from a moving platform, where a stereo camera was placed at a
height of about one meter from the ground (cf. Figure 3.5). Although
a rough camera pose can be estimated using structure-from-motion,
it is rather unreliable. Therefore, we will apply our tracker directly in
image space on this dataset.
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AN OVERVIEW OF PUBLIC DATASETS. For the sake of complete-
ness, Table 3.2 presents an overview over popular, publicly available

Table 3.2: An overview of some of the most popular multi-target tracking
datasets. Only sequences with publicly available identity preserv-
ing annotations are listed here.
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5§
g c E s S
= £ §E § &8 % g 3=
Dataset # = &8 & 5 == § % 8
CAVIAR! 26 seq. 37224 25 low Im 2 - - V
EPFL? passageway 2500 25 low low 4 - - V
lab1 3750 25 low med 4 - - V
lab2 3750 25 low med 4 - - V
campus1 2000 25 low low 3 - -
campus2 1400 25 low low 3 - - V
terrace1 5010 25 low med 4 - - V
terracez 4480 25 low med 4 - - V
PETS 093 S1.L1-1 221 7 med hi 7 - - V
S1.L1-2 241 7 med hi 7 - - V
S1.L2-1 201 7 med hi 7 - - V
S1.L2-2 131 7 med hi 7 - - V
S2.L1 794 7 med med 7 - - V
S2.1L2 436 7 med hi 7 - - V
S2.L3 200 7 med hi 7 - - V
S3.MF1 107 7 med low 7 - - V
TUD# Campus 71 25 med med 1 - - -
Crossing 200 25 med med 1 - - -
Stadtmitte 179 25 med med 1 - - V
ETHMS5 Bahnhof 999 14 med med 1 VvV VvV V
Sunny Day 354 14 med med 1 v VvV V
AVG® TownCentre 4500 25 hi med 1 - - V
PNNL” ParkingLot 1000 25 hi med 1 - - -

benchmark datasets for multiple object tracking that are frequently
used in literature to show the strength of state-of-the-art approaches.

1 http:
2 http:
3 http:
4 http:

http:
5 http:
6 http:

//homepages.inf.ed.ac.uk/rbf/CAVIARDATAL

//cvlab.epfl.ch/data/pom

/ /www
//www
//www
//www
/ /www

.cvg.rdg.ac.uk/PETS2009
.d2.mpi-inf.mpg.de/andriluka_cvpr08

.d2.mpi-inf.mpg.de/node/428
.vision.ee.ethz.ch/~aess/dataset
.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_

headpose/project.html
7 http://crcv.ucf.edu/data/ParkingLOT
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3.4 METRICS FOR QUANTITATIVE EVALUATION

To quantitatively measure the performance of one method and option-
ally to compare it with others, a clearly defined protocol is required.
Unfortunately, objectively assessing the quality of a multi-target track-
ing solution is not an easy task. Furthermore, the ‘perfect’ solution,
or ground truth, is needed to serve as reference. We will discuss these
issues and related challenges in Section 7.1. In this section, we will
only present various protocols that are currently used for evaluating
multi-target tracking.

3.4.1 CLEAR MOT

To evaluate the correctness of any tracker at least three entities need
to be defined:

e the tracker output (or hypothesis) J{, which is the result of the
tracking algorithm;

¢ the correct result, or ground truth §7; and

* a distance measure d that measures the similarity between the
true target and the prediction.

Note that these requirements are kept very general without any as-
sumptions on the concrete representation or on the exact definition
of the distance function.

Intuitively, one wishes to incorporate and grade every possible er-
ror that a solution may contain. One of the protocols that follow
this goal is the CLEAR MOT evaluation (Bernardin and Stiefelhagen,
2008). It emerged from the Classification of Events, Activities and
Relationships (CLEAR) Workshop® in 2006 and has since been widely
accepted as a standard evaluation tool by the tracking community.
The two proposed quantities, MOTA and MOTP on the one hand mea-
sure the number of errors that occur during tracking, and on the
other hand assess the tracker’s precision, i.e. its ability to localize the
target in the image. Let us now take a closer look at the different
components that give rise to these quantities.

MOT ACCURACY. As in object detection, the two most common
errors in multi-target tracking are false positives (FP) and false neg-
atives (FN). The former correspond to spurious tracking results that
do not match any ground truth trajectory, while the latter ones are
annotated targets that are not identified by the tracker. To determine
whether a target is being tracked, a correspondence between true tar-
gets and hypotheses must be established. This is usually done in
a greedy manner, however, not independently in each frame but in

8 http://clear-evaluation.org
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and false negatives —
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the literature.
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consideration of temporal matching. More precisely, if and only if a
target is not tracked, it is assigned the closest unmatched hypothe-
sis. Otherwise, the correspondence from the previous frame is main-
tained. To decide, whether a track is a potential candidate for a match,
a distance between all hypotheses and all targets must be computed.
If the distance between a track-object pair is small enough, they can
potentially be matched. Note that this procedure to compute the cor-
respondences is application and representation specific. If both the
output and the annotations are described by bounding boxes, then
usually the PASCAL criterion

bbox(H) Nbbox(GT)

d(3,57) = bbox(H) Ubbox(5T)”

(3.1)

i.e. the intersection over union (Jaccard index) or the relative overlap
of the true and the predicted bounding boxes, determines the similar-
ity between the two, where 0 means no overlap and 1 means that both
bounding boxes are identical. The most common threshold for con-
sidering a pair correct is 0.5. For 3D tracking, it may be more reason-
able to compute the correspondence ppmm
directly in world coordinates (cf. Fig- =
ure 3.6). In this case, the Euclidean dis-
tance between the centroids of two ob-
jects gives a suitable estimate. For peo-
ple tracking, the foot position, i.e. the
center of the bottom edge of the bound-
ing box, is used as the target’s centroid

Fig. 3.6: Measuring correspon-

and a threshold of 1 meter is used. dence as bounding
Recall that the goal of multi-target box overlap (2D) or

tracking is not only to find all objects as distance on the

and suppress all false alarms but also ground plane (3D).

to correctly follow each object over time. In other words, the recon-
structed trajectory should adhere to one specific object from the mo-
ment of entry until it exits the scene. Whenever there is a mismatch
between a hypothesis and the corresponding ground truth trajectory,
an identity switch (ID) occurs, which is counted as an error. A simple
example illustrating these three error types is depicted on the left-
hand side of Figure 3.7. Although temporally-aware target-to-tracker
matching suppresses unnecessary identity switches, it may lead to
undesirable artifacts, as illustrated in Figure 3.7 (right).

Let us now formally define the Multiple Object Tracking Accu-
racy (MOTA). Let FP(t), FN(t) and ID(t) denote the number of false
positives, missed targets and identity switches at time t, respectively.
Further, let NgT(t) denote the number of annotated targets at time t.
Then the MOTA score is computed as

Y, (FP(t) FEN(D) 4+ ID(t))
2> ¢« NgT(t)

MOTA =1— (3.2)
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ID switch

Figure 3.7: Illustration of the CLEAR MOT components. Events that are clas-
sified as correct are denoted with solid circles. Errors are indi-
cated with empty circles. The influence of track to ground truth
assignments is illustrated on the right: A ‘wrong’ decision at the
beginning of a trajectory leads to persistent errors over the whole
sequence.

Note that if a solution contains no errors, i.e. the numerator sums
up to 0, then the accuracy equals 100%. This value decreases as the
number of failures increases. The MOTA score can also result in neg-
ative values and is in fact unbounded (from below). Allowing for a
negative accuracy may seem unnatural, but this can only occur when
the number of errors is larger than the number of targets in the scene,
which only rarely happens in practice.

Combining the quality of a tracking result into a single number
has both positive and negative consequences. On the one hand, it
enables a simple comparison. On the other hand, the strengths and
weaknesses of a particular method may become concealed. It is there-
fore preferable to present all available numbers, as we will see, e.g.,
in Table 5.7.

MOT PRECISION. The MOTA described above measures the discrete
number of errors made by the tracker. On the contrary, the Multiple
Object Tracking Precision (MOTP) avoids such hard decisions and in-
stead estimates, how well a tracker localizes the targets. Again, in its
general form it is defined as

23(9759{3@))

t,i
Z mt 4 (33)
t

MOTP =

where §Tt and f}{;m are the target and its associated hypothesis, re-
spectively, and m; is the number of matches at time t. Intuitively,
it provides the average distance over all matched pairs. In 2D, this
number directly represents the average overlap of matched bounding
boxes while for the evaluation in 3D we normalize it to the hit/miss
threshold such that it provides a percentage value between 0 and
100%. We point out that MOTP is a rather rough estimate of the per-
formance because it heavily relies on the quality of the annotations
which are often inaccurate or even ambiguous.
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GT ---- Track —

Mostly tracked Mostly lost Fragmentation

Figure 3.8: Trajectory-level measures defined by Li et al. (20009).

3.4.2 Further metrics

Next to the widely used CLEAR metrics, other performance measures
have been introduced in the literature.

TRAJECTORY-BASED MEASURES. Wu and Nevatia (2006) describe
a set of measures that assess the performance on entire trajectories
rather than on a frame-by-frame basis. Their definition has later been
refined (Li et al., 2009) to capture some ambiguous cases. For our
evaluation, we follow the latter, more precise formulation.

A target is often correctly tracked only for a certain period and not
for its entire presence in the scene. To quantify this property, a trajec-
tory can be classified as mostly tracked (MT), partially tracked (PT)
and mostly lost (ML). A target is considered mostly lost when it is
found by the tracker during less than 20% of its presence. Similarly, a
target is mostly tracked when at least 80% of its ground truth trajec-
tory is found. Consequently, all other trajectories are partially tracked.
Note that identity switches do not play any part in the computation
of these figures.

Finally, track fragmentations count how many times a ground truth
trajectory changes its status from ‘tracked” to ‘not tracked’, i.e. each
time it is lost by the current hypothesis. These three trajectory-based
measures are illustrated in Figure 3.8.

CONFIGURATION DISTANCE AND PURITY. Smith et al. (2005) also
integrate standard errors and measures such as false positives, false
negatives, precision or recall in their evaluation protocol. In addi-
tion, they propose a more detailed inspection of each tracker, each
trajectory and the configuration state. In particular, they allow multi-
ple tracker-to-target assignments but count these as multiple trackers
or multiple objects errors. The configuration distance measures the
difference between the number of predicted and true targets and in-
dicates the bias towards more false alarms or towards missed targets.
Further measures like tracker or object purity are somewhat related
to the mostly tracked definition above, but provide a more detailed
evaluation on the produced hypotheses and not only on the ground
truth trajectories. Since these metrics are rarely used in the literature,
we do not employ them in this dissertation.
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SUMMARY. To summarize, there is no single objective measure for
quantitative evaluation of a multi-target tracking algorithm that incor-
porates all possible cases. Many proposed protocols follow a similar
intuition, but are somewhat ambiguous in their exact definitions. As
a result, the computed numbers usually give a fair assessment of the
overall performance, but may vary depending on the concrete imple-
mentation of the evaluation software. Please refer to Section 7.1 for a
more detailed study on this subject.
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Part I
TRACKING IN DISCRETE SPACE
Multi-target tracking is formalized as an integer linear

program by discretizing the location space to a regular
grid.
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As discussed in Section 1.3, many approaches to multi-target track-
ing address the problem at hand by reducing the search space
to a finite set. In this chapter, we follow this line of thought and build
on a recently proposed formulation by Berclaz et al. (2009). To that
end, the search space is discretized to a regular grid, where each grid
cell is connected to its neighbors in adjacent frames, thereby form-
ing feasible paths for the targets. These connections are modeled by
binary variables, where 1 indicates that a target moves along the cor-
responding edge, and o means that there is no motion along this edge.
Additional constraints prevent multiple occupancy of any individual
cell as well as abrupt interruptions of trajectories in the middle of
the grid. The resulting integer linear program (ILP) is then relaxed
to a linear program (LP) and solved to (near) global optimality by
well established optimization techniques. This work has previously
appeared as (Andriyenko and Schindler, 2010).

4.1 INTRODUCTION

Based on the observation that tracking performance can be hampered
by local optima of the underlying objective, a recent key challenge in
multi-target tracking research has been to develop schemes that are
able to find (nearly) global maxima of the posterior over the set of
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trajectories. To make this possible, these schemes restrict the set of
permissible target locations to a finite set, in such a way that the
problem becomes amenable to global optimization. A-priori, the set
of possible locations is infinite, or at least very large: targets can move
anywhere within the observed region. There are two main strategies
to restrict possible target locations to a reasonably small set: either
candidate locations are found by thresholding and/or NMS of the ob-
servation likelihood; or the tracking region is sampled on a regular
grid.

The dominant strategy so far has been the first one: the image ev-
idence — typically the output of object detection or background sub-
traction (see Section 3.2 for details) — is used to identify the most
promising target locations per frame. These serve as input for the
tracker, which links them to trajectories. A limitation of this strat-
egy is that candidate locations are implicitly assumed to correspond
perfectly with true target positions; there is no concept of localiza-
tion uncertainty. Another problem is that the space is sampled only
at promising locations, hence target locations are not even defined
in case of missing evidence (e.g. if two targets were both missed by
the observation model, it is no longer checked whether they would
collide in that frame).

A regular discretization of the observation area is attractive because
the state (i.e. target locations) is defined explicitly at each time step,
even when no evidence from the object detector is available, thus al-
lowing for principled probabilistic modeling. A disadvantage is that
in order to keep tracking computationally tractable, the grid needs
to be significantly coarser than typical image resolutions, which in-
troduces aliasing. A particularly undesirable consequence of the dis-
cretization is that the space is no longer isotropic — the smoothness of
a trajectory depends on its alignment with the grid, and jagged tra-
jectories complicate the usage of reasonable dynamic models, which
favor smooth motion.

This chapter describes a global optimization approach to multi-
target tracking on a regular grid, with an a-priori unknown number of
targets. In particular, the contributions compared to previous work
are:

* A “re-introduction” of the dynamic model, which has tradition-
ally been an integral part of tracking, but was dropped in pre-
vious work in order to achieve objective functions that can be
solved to (near) global optimality. Specifically, we include a con-
stant heading prior (cf. Section 4.2.4).

¢ To best utilize the dynamic model and achieve smoother, more
accurate trajectories despite the discrete setting, the location
space is sampled on a hexagonal lattice, rather than a rectan-
gular one (see Section 4.2.5).
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Symbol | Description

X, | discrete X, Y-location u
S(u) | all neighbors of u

Kt | tracklet over {X! 1, X%, X5}

K | set of all tracklets

B | set of all indicator variables

t t

Cuvw | log-likelihood ratio for By,

Table 4.1: Additional notation used in this chapter.

¢ The non-maxima suppression (NMS) is performed during track-
ing rather than independently in every frame, allowing the tracker
to recover the most likely locations in the light of all evidence,
rather than the locally best guess per frame (cf. Section 4.2.3).

Despite the proposed extensions the resulting maximization of the
posterior can still be written as an integer linear program (ILP), by an
extension to the formulation of Berclaz et al. (2009). The ILP is solved
efficiently through linear programming relaxation, in most cases to
global optimality.

4.2 TRACKING ON A DISCRETE GRID

In the following we give a detailed description of the proposed multi-
view tracking method. We start with the formulation of maximum
a-posteriori trajectory estimation as an integer linear program (ILP).
Next, we introduce the observation model, a probabilistic variant of
tracking-by-detection designed for tracking targets observed from mul-
tiple viewpoints in world coordinates. Furthermore, we propose to
include non-maxima suppression in the tracker, rather than viewing
it as a preprocessing step. We then write the dynamic model as a lo-
cal soft constraint, by penalizing the changes between consecutive
motion vectors. In this form it can be re-introduced into the ILP-
formulation of multi-target tracking. Finally, we move to an impor-
tant technical issue: in the discrete setting the dynamic model suffers
from grid aliasing, hence it is more effective to quantize locations to
a hexagonal rather than a rectilinear grid.

4.2.1  Tracking as integer linear program

The proposed formulation extends the ILP-formulation of multi-target
tracking introduced in recent work (Jiang et al., 2007, Zhang et al,,
2008; Berclaz et al., 2009). The possible target locations are discretized
to a finite set of sites X, = (X, Yu). Among those sites, a neighbor-
hood system 8 is defined, where a site’s neighbors {X, : v € 8(u)}
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Figure 4.1: lllustration of a single tracklet BY_,, connecting neighboring

cells in three consecutive frames.

are all sites than can be reached from X,, in a single time step (see

Fig. 4.4).
Tracklets are triplets Next, we define a tracklet K¥,,,,,, as an allowable path over 3 consec-
defining the target’s utive frames, i.e. a set of three sites
locations in three
consecutive frames. Kt = {X}L—], Xt, X;[qu} (4.1)

such that v € §(u) and w € §(v). A single tracklet is illustrated in Fig-
ure 4.1. The set of all index triplets (uvw) for all frames that produce
a valid tracklet is denoted K. For each tracklet K}, there exists a cor-
responding indicator variable BY,,,,,. The set of all indicator variables
is denoted B. They are the variables of our optimization problem
and take on values B!, €{0, 1}, where B!, =1 means that tracklet
Kt is part of some trajectory, and BY,,,, =0 means that it is not part
of any. The reason for introducing the tracklets is that the dynamic
model cannot be included efficiently when operating directly on the
sites X!, as will become clear in Section 4.2.4.

Based on the observed evidence R, each indicator variable is as-

signed a goodness-of-fit

P(B!,.,, = 1IR)
t =1 uvw

uvw

(4.2)

which compares the hypotheses B!, =1 and B, =0 in light of
the observation model (Sec. 4.2.2) and the dynamic model (Sec. 4.2.4).
Thus, multi-target tracking amounts to maximizing the log-odds-ratio
of all indicator variables B under three additional constraints:

1. continuity: tracklets must form continuous trajectories — when-
ever a certain tracklet is used in a solution, i.e. BY,,,, = 1, there
must be exactly one tracklet Kt} in the next time step, which is
also used. Targets entering or leaving the tracking area are mod-
eled by two virtual source and sink sites, which are neighbors of
all boundary sites and can emit, respectively absorb, targets.

2. collision avoidance: no two tracklets can have the same midpoint

X!; whenever a tracklet K¥,,,,, is selected, all other tracklets K, ,

must be discarded.
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3. extended collision avoidance: no two tracklets can start in directly
adjacent cells; whenever a tracklet K¥,,, is selected, all other

tracklets K{,,,, with s € §(u) must be discarded.

This results in the following optimization problem with the vector B
of all indicator variables B}, as argument:

B}(LP = arg mBaX Z (Chvw ’ Bhvw) (43)
uvwekK,t
subject to:
D> Bhw= D> BUL (continuity) ~ (4.4)
s:svwekK zzvwzeK
Z B, < 1 (collision avoidance) (4.5)
s,z:svzeK
Z Bi,,, < 1 (ext. collision avoidance) (4.6)
se8(u)
Bli,., € {01} (domain of variables) (4.7)
Yuww € K, t.

We will discuss the motivation behind the additional exclusion con-
straints (Eq. (4.6)) later in Section 4.2.3.

OPTIMIZATION. Maximizing Eq. (4.3-4.7) belongs to the class of
integer linear programs, which are hard to optimize in general. A
common way to address the combinatorial complexity in practice is
to relax it to a linear program by replacing the condition B},,,,, € {0, 1}
with 0 < BY,,, < 1. The relaxed problem can be efficiently solved
with the simplex algorithm or an interior-point method. Moreover, if
all variables B}, at the relaxed optimum B7 , take on integer values,
then it is also a global optimum of the original problem, B , = Bj| p.
Even if the solution is not completely integral, then in practice the
optimality gap is small, and only a tiny fraction of non-integer vari-
ables remains (in our experiments <0.2%), and these are clustered
in relatively small connected components of the neighborhood sys-
tem. Hence, an optimum of the ILP can be found using a branch-and-
cut method with the relaxation as bounding function (“mixed integer
programming”), or by “probing”, i.e. rounding some non-integer val-
ues and solving for the others while monitoring the objective value
C (a similar strategy is known as QPBO-P in the graph cuts con-
text (Rother et al., 2007)). The branch-and-cut algorithm that was
used in our case is outlined in Section A.1.
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Figure 4.2: LP-relaxation can yield non-integral solutions due to the addi-
tional exclusion constraints (left) or due to graph pruning (right).
See text for a detailed discussion.

The maximum a-posteriori set of trajectories Kj;, over the ob-
served time window @ corresponds to the set of variables from By
with the value of 1:

Kitp = {(ww), UBLyny = 1} 49

In practice, the time interval @ is bounded by the available storage
and computation power. The number M of variables and constraints
to be stored grows linearly with @, and the average-case computa-
tional complexity of LP-solvers is polynomial (in practice even linear)
in M, too (see e.g. Gondzio, 2012). A practical solution is to solve
Eq. (4.3) for overlapping time intervals and constrain the solutions to
be consistent by fixing the first frame. Empirically, intervals of ® =30
frames are sufficient.

HALF-INTEGRAL SOLUTIONS. Our experience shows that the LP-
solution By is integral in most cases. This is, perhaps, not surpris-
ing, since all indicator variables Bq on a junction-free path Q have
the same value, i.e. they are either all Bq = 0 or Bq = 1 because
of the continuity constraint; Bq will always be integral, because the
total contribution of the path to the objective value is Bq ) cq, which
attains its maximum at Bq=0for } cq <0,and at Bq=1 for } cq >0.
If a path were to split into two branches Q and R at any point and con-
verge again at a later point, then one branch would get all the weight,
whereas the other would be suppressed. Only in a pathological case,
where the likelihood of both branches is identical, any linear combi-
nation of Bq ) cq+(1—Bgq) Y cr will have the exact same objective
value. This is, however, highly unlikely in practice.
We observed two types of scenarios, where the LP-relaxation yields
B* is half-integral if ~ half-integral solution. The first one (cf. Figure 4.2 (left)) occurs at the
all values are 0, 3 or  beginning (respectively at the end) of the temporal window. In this
! Lei'nztf;r; example, the optimal integer solution for the first frame chooses the
paths A and D, which yields the objective value 5. Note that choosing
B and D, i.e. setting Bg =Bp =1, is not feasible since it would violate
the exclusion constraint from Eq. (4.6). The global optimum of the

LP-relaxation is 5.5 and is attained at BA = Bg = Bc = Bg = %
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The second case (cf. Figure 4.2 (right)) only happens if the set of can-
didate tracklets is heuristically pruned (see Sec. 4.3). In the depicted
situation, much of the contribution to the total objective resides be-
tween two similar paths that run in parallel alongside each other over
several frames. However, an integer solution that includes both paths
D and E cannot be found because the necessary set of tracklets D
(dotted line) has been pruned away. Therefore, the optimal solution
is again half-integral with B, = Bg = B¢ = Bg = %

4.2.2  Observation model

Tracking is formulated in world coordinates for the general case of
multiple cameras observing the scene from different viewpoints. Multi-
camera setups greatly improve tracking accuracy when the camera
positions are low over the ground, such that one has to accept inaccu-
rate depth estimates as well as frequent occlusions. Our framework
includes single-view tracking as a special case, by setting the num-
ber of cameras to 1. As usual, the posterior is split into an obser-
vation likelihood and a motion prior. Furthermore, the observation
is decomposed into two parts, measuring object detection response,
respectively color similarity:

P(BL,.,=1R) x Po(R[B!,,,=1)-PA(R|B,,,=1)-P(Buyw=1).
(4.9)

OBJECT DETECTION. To measure the support of targets in the im-
age data, the popular HOG detector (Dalal and Triggs, 2005), which
is described in Section 3.2, is employed. The detector scans the im-
ages 1%, (taken from viewpoints ¢y at all three frames of the tracklet)
over all positions x and scales s with a binary classifier trained to
discriminate people from background, and returns for every location
and scale a classification score RY,. The scores are mapped from im-
age locations (x,s) to locations X and target heights h in the world
coordinate system with appropriate projections, and aggregated over
all views and the three frames to obtain the total evidence R for a
tracklet.

The evidence at this point depends not only on B}, but also on
the person height h, via the detection scale s. In principle, one could
track directly in the (X, h)-space, with a constraint that the height of
any given person should not change over time. To reduce the com-
putational burden, a Gaussian prior is placed on the person height
instead, and marginalized out,
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Figure 4.3: The evidence P(B!,,,,IR) has smooth peaks, which are not pre-
cisely localized. (left) tracking results in four views. (right) birds-
eye view of the scene. Note that the correct position for the green
subject is not the one with the highest score. The presented algo-
rithm avoids per-frame decisions and chooses the best location
during tracking.

APPEARANCE. The generic object model is complemented with a

target-specific appearance model to better distinguish different tar-

gets. To this end, we demand that the color distribution of a target

The Bhattacharyya ~ varies slowly over short time spans. All sites of a tracklet K!,,,,, are
coefficient for two  projected back to the respective image locations x, and at each loca-
normalized histo- o0 5 color histogram is extracted. The histograms of consecutive
grams is defined as R . X .
o \/W s%tes in a tracklet are then compar‘ed with the th-attacha.ryya coeffi-
cient dg, and the results are combined over all pairs of sites and all

viewpoints ¢y :

d tfll t d t/ t+1
PA(R[BL,,,=1) Hexp (— B Xy x"); B Xy, Xy )>. (4.11)
Cvy B

4.2.3 Exclusion constraints

Exclusion constraints between different tracklets ensure plausible in-
teractions between the targets. The simplest form of constraint, which
has been widely used in multi-target tracking, is the collision avoidance
implemented by Eq. (4.5). However, exclusion constraints can also be
applied over larger neighborhoods, to incorporate NMS in the tracking
framework rather than do it at the frame level, such that the retained
location is the one which is optimal for the entire time interval, rather
than for a single frame.

A main limitation of most tracking schemes is that non-maxima
suppression is carried out on a per-frame basis. The evidence P(R|BY,,,,)
measured by the observation model is in practice not a set of perfect
spikes, but a smooth distribution with peaks, which are not well lo-
calized, see Figure 4.3. To remedy this, the distribution is replaced by
its modes, found by some mode-seeking procedure like mean-shift
or morphological erosion. Traditional non-maxima suppression thus
commits to a location without taking into account the fact that tar-
get locations should be consistent over time. Instead, we propose to
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integrate NMS into tracking, rather than detection: the detector out-
put is left to be ambiguous around the modes, and the optimization
can choose which location is most likely, given also evidence from
neighboring frames and the dynamic model.

However, in this context an additional difficulty arises: some form
of “sharpening” of the modes is required, otherwise targets with
strong image evidence will have one or several “ghosts” following
them along their trajectory. These false positives link the weaker, but
nevertheless strong evidence belonging to the same mode. In other
words, a prior is required that formalizes the intuition that plaits of
intertwined trajectories are unlikely. To this end, a number of ad-
ditional constraints (c¢f. Eq. (4.6)) are introduced, which prohibit not
only collisions of targets at the same location, but also tracklets start-
ing at immediately neighboring locations (which amounts to the as-
sumption that the grid sampling distance is smaller than the minimal
possible distance between two targets). These constraints prevent tar-
gets from moving too close to one another, and also avoid trajectories
crossing in such a way that a collision would happen in the empty
space between two grid locations.

It is important to note that the effect of the prior is not the same as
single-frame NMS: under the exclusion constraints the optimization
is free to choose a target location X*, which is not a maximum of the
detection score in frame t, in order to achieve a smoother trajectory,
or to avoid collisions with other targets.

4.2.4 Dynamic model

An important component of tracking is the dynamic model, which
encodes prior knowledge about likely motion patterns of the tracked
objects. Using such dynamic models — mostly assuming constant
heading, constant velocity or constant acceleration — has a long and
successful tradition, however such models have been dropped in grid-
based tracking (Berclaz et al., 2006, 2009).

To overcome this, we extend the grid-based formulation to incorpo-
rate the constant heading model, i.e. we assume that objects tend not to
change their motion direction. A prerequisite for the ILP formulation
is that the objective function Eq. (4.3) be linear. To preserve the lin-
earity, the motion prior P(B!,,,, = 1) must be formulated such that it
can be computed locally for each variable (i.e. its contribution must be
part of the unary terms). This is the reason why we have introduced
the tracklets: checking for constant heading requires two consecutive
motion vectors, and hence three consecutive sites, thus the variables
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must cover at least three consecutive frames. Given the two motion
vectors
Xy —Xu Xw — Xy
myv= 1Y, — Yy |- myw = | Yy, — Y,

1 1

in a tracklet K{,,,,, one can model the prior by penalizing the heading
change o between them, measured in (X, Y, t)-space. The tracklet is
assigned a probability that grows inversely with «?, such that devia-

tions from the constant-heading assumption are penalized, as desired:

t o
P(Biyw=1) x exp <—20(2X> , (4.12)
where
-
muvmvw
X = arccos ——¥_————, 1
oy Pty (4.13)

Note that the angle « is computed in (X, Y, t)-space. The method
can be trivially extended to favor constant velocity by penalizing the
difference between m,, and m,,,, however we found the angle to
work better, probably because of the varying step length on a discrete
grid.

The obvious effect of the dynamic model is that smoother, more
accurate trajectories are estimated in the presence of inaccurate or
weak evidence. Beyond its original purpose, the dynamic model also
has a more subtle benefit on the optimization: by penalizing tracklets
with strong heading changes, the motion prior sharpens the poste-
rior, and thus the objective function C. As a consequence, the relax-
ation gap narrows, and fewer non-integer values occur. This effect
is particularly strong in difficult circumstances, when the evidence
P(R|BL,,, = 1) is rather flat, such that the potential target locations
spread out over a large number of tracklets. Therefore the dynamic
model drastically reduces computation time (in our experiments by
at least a factor of 10). In some cases the number of non-integer val-
ues without motion prior even becomes so high that it is no longer
tractable to find an integral solution with branch-and-cut or probing.

4.2.5 Hexagonal discretization

To make tracking amenable to global optimization with ILP, in the
spirit of Jiang et al. (2007); Berclaz et al. (2009), the location space X
must be discretized to a finite set of locations. As explained above,
the presented method does not heuristically prune the per-frame like-
lihood P(R|BY,,,) to a small set of permissible locations, but rather
samples the ground plane in a regular lattice. A natural choice, which
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Figure 4.4: The 8-neighborhood (1) and the 12-neighborhood (b) in a recti-
linear and in a hexagonal tiling, respectively. The bottom row
shows the aliasing effect of an example trajectory on a rectan-
gular grid (c) and a hexagonal grid (d) with the same sample
density.

has been used in previous work, is a rectilinear grid, similar to the
image grid. Unfortunately, such a grid has a strong preference for
the two canonical directions along the x- and y-axes, whereas target
trajectories in other directions exhibit severe aliasing.

Aliasing is not a big problem in the absence of a dynamic model,
but together with the proposed motion model it creates difficulties:
to check the deviation from constant heading locally, one needs to
rely on the vectors between the grid locations, thereby penalizing tra-
jectories which are not grid-aligned and hence continuously change
directions. To alleviate this effect and boost the positive effect of
the dynamic model, we propose to use instead a hexagonal tiling of
the ground plane, inducing a tri-axial neighborhood system. In this
grid, the 8-neighborhood is replaced by a 12-neighborhood, which
reduces staircasing artifacts, and allows one to better enforce the
constant heading assumption, see Figure 4.4. The hexagonal tiling
has been used in other contexts in image processing and computer
vision (Miller, 1999; Middleton and Sivaswamy, 2005), precisely be-
cause it has more preferred directions and reduces aliasing artifacts.
Note that the change of sampling grid does not impair data quality:
the transformation is performed when mapping the target probabili-
ties from images to the world coordinate system, so there is no addi-
tional resampling step that would further blur the data.
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Figure 4.5: An example of graph pruning. All tracklets with low likelihood
(middle) are removed from the solution space (left). The corre-
sponding frame is shown on the right.

4.3 IMPLEMENTATION

Before discussing the experimental setup, let us briefly turn to some
implementation issues.

PRUNING AND CACHING. Recalling the MAP formulation from Eq.
(4.3), the goal is to find a vector B* that maximizes the objective func-
tion subject to certain constraints. The binary vector B corresponds
to the set K of all possible triples between neighboring cells for each
frame within a time window. Assuming a lattice size of Gx x Gy cells
and a sequence length @, the dimensionality of B is approximately

Bl ~ Gx x Gy x |8|* x @, (4.14)

where [3] is the number of neighbors of each cell. In a typical set-
ting with a 50 x 50 grid, ® = 30 frames and a 12-neighborhood, the
length of the parameter vector of the optimization problem amounts
to |B| &~ 107. The number of constraints is much lower since it is not
dependent on the cardinality of the chosen neighborhood. Nonethe-
less, the problem is too large to be handled at once, even for modern
Lpr-solvers.

To reduce the problem size, a pruning technique is employed. The
main assumption is that low-likelihood tracklets that have no high
detection score in their vicinity will not be part of the final solution
and may be discarded a-priori. In our implementation, we remove a

tracklet Kt,,,, from the solution space if

t
1. Cypw < 0q and

2. max P(R|BY,,, =1) < 0p.
8(v)
An example frame is shown in Figure 4.5. This strategy reduces the
number of variables by over 90%, allowing for efficient optimization.
Unfortunately, this may also lead to pruning too many tracklets in
occluded areas leading to non-optimal solutions.
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A large fraction of the entire optimization process is occupied by
constructing the variables (i.e. tracklets) and the corresponding con-
straints. This step can be significantly sped up if the lattice remains
unchanged over time, which is the case here. Therefore, we found it
beneficial to save the tracklet indices and the constraint matrices once
they are computed and to load them for all successive time windows.

LINEAR PROGRAMMING SOLVERS. We experimented with several
software packages to solve the ILP problem from Eq. (4.3). Since the
entire framework is developed in MATLAB, our first choice was its na-
tive linear programming routine linprog. Unfortunately it turned out
to be rather slow for our problem size, even after excessive pruning.
Moreover, it only solves the relaxed version of the problem such that
further iterations are needed to resolve the non-integer values of the
obtained solution. The binary integer programming solver bintprog
showed even worse performance in terms of computation time and
could not be used in our case.

The GNU Linear Programming Kit (GLPK)" offers an acceptable al-
ternative to MATLAB’s methods. This open source package is suit-
able for large-scale optimization problems and offers a MATLAB in-
terface, which allows a fast and uncomplicated integration into exist-
ing projects. An even better option is the SCIP* software package
(Achterberg, 2009). Using pre-processing heuristics, it is approxi-
mately four times faster than GLPK when solving (mixed) integer
problems and can be used free of charge for academic purposes.
Moreover, its interface allows one to replace the native linear solver
by another one that may be more suitable for a specific problem.

4.4 EXPERIMENTS

In this section, experiments on five different public multi-view video
sequences are presented. Sequences campusi and campusz (Berclaz
et al., 2006) were both recorded from 3 different camera viewpoints,
and have 2000, respectively 1400 frames showing up to 6 people mov-
ing outdoors. Sequences terracer and terrace2 (Fleuret et al., 2008)
were both recorded from 4 viewpoints, and have 2000 frames each
with up to 6 people, also moving freely outdoors. Finally, for monoc-
ular tracking we use the first view of the sequence PETS-S2L1 from
the PETS 2009 benchmark. The sequence is better suited for single-
view tracking because of the elevated viewpoint. The entire dataset
contains 52 individual trajectories, which were manually annotated
and used as ground truth. Please refer to Section 3.3 for more details
on the chosen datasets.

1 http://www.gnu.org/software/glpk
2 http://scip.zib.de
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We set the grid resolution to 35cm in world units. The size of the
tracking area in the two terrace sequences is approximately 7.8 x 11.0
meters yielding a grid size of 23 x 32 = 736 cells for the hexagonal
case. Both campus sequences have similar extents and require a dis-
cretization in 28 x 28 = 784 locations. The PETS sequence shows a
much larger area of ~ 19 x 15.8 meters. Consequently, the same reso-
lution requires a grid size of 55 x 53 = 2915 individual cells per frame.
Due to the low target speed, we processed only every other frame of
PETS-S2L1 and every 6" frame in the remaining four sequences, such
that targets move approximately one grid unit from one frame to the
next.

All experiments have been carried out with the same set of pa-
rameters. The two free parameters of our method are the standard
deviations o0« and og, which govern the relative influence of detec-
tion score, color similarity, and dynamic model (cf. Sections 4.2.2
and 4.2.4). To keep the optimization tractable for long sequences,
we follow the usual strategy and process overlapping time windows.
This adds two further parameters, the number of frames ® per win-
dow, and the overlap Q. We set ® =30 (when processing every 6
frame at 25 fps, this amounts to ~7 seconds) and Q=10.

4.4.1  Qualitative Results

Figure 4.6 shows example results from the sequences terracer and

S2L1. Targets are tracked successfully over many frames, new tar-

gets entering the scene are initialized automatically. Especially the

middle column shows an example of many targets moving in a small

space. People are often occluded simultaneously in several views.

Long-term occlusion is a main cause of failure, such as for the person

Grid locations close  marked in cyan. Note that the corresponding trajectory is interrupted

to image borders  in the middle of the tracking area. The reason here is that the target

allow for entering steps outside the field of view of three out of four cameras, while at

and exiting the . . . L. .

tracking area.  the same time being occluded in the remaining fourth view (cf. Frame
1748 in Figure 4.6).

In the PETS-S2L1 sequence, up to 8 targets are tracked in monocular
video over a large area of interest. Note the false positive on the
tripod (light blue) near the image center: persistent false detections
on background objects are the dominant cause of false positives, since
they tend to appear frequently on the same structures and, being
static, fulfill the constraints of the dynamic model.

4.4.2  Comparison to previous work

The trajectories estimated by the presented method are directly com-
pared to those of Berclaz et al. (2009), which have been extracted from
their published results. Their method is based on a similar ILP formu-
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lation, but on a rectilinear grid. Moreover, the binary state variables
in their formulation represent target motion that only extends over
two consecutive frames, thereby precluding the use of any reasonable
dynamic model.

Figure 4.7 shows sample trajectories from both methods, with simi-
lar grid resolutions. The middle row shows the results of Berclaz et al.
(2009), while the plots on the bottom depict trajectories obtained with
the proposed method. The examples illustrate how late non-maxima
suppression, together with the dynamic model, avoids implausible
jittering and produces trajectories that are more accurate with re-
spect to annotated ground truth (top row). We emphasize that the
improvement is due to the combination of all modeling choices: late
non-maxima suppression preserves the necessary evidence for flexi-
ble target placement, while the dynamic model on a hexagonal grid
supplies the constraints to handle the extra flexibility.

4.4.3 Quantitative evaluation

In the following, our tracker is quantitatively evaluated against the
baseline ILP tracker without dynamic model and operating on a rec-
tilinear grid with either the standard 9-neighborhood (8 neighbors
and the central location itself) or a larger 21-neighborhood. We use
our own implementation for all experiments. To quantify the perfor-
mance of the presented tracker, three types of metrics are employed.
The popular CLEAR MOT metrics are thoroughly discussed in Sec-
tion 3.4. We also report the raw number of track fragmentations and
identity switches. Moreover, we measure the smoothness of the esti-
mated trajectories by the average angle between the segments of all
tracklets. The evaluation results are summarized in Figure 4.8, where
each metric type is presented in one row. The left column shows the
average results on four multi-view sequences, while on the right the
performance on the monocular PETS S1L2 dataset is displayed. The
number of neighbors for each method is indicated in parentheses.
The average angle between all trajectory segments measured in
(X,Y,t)-space (cf. Eq. (4.13)) is plotted in the bottom row of Figure 4.8
for all three settings described above. As expected the discussed
model (dyn, hex) greatly improves trajectory smoothness yielding an
average angle of less than 10 degrees. Without the dynamic model
the aliasing artifacts introduced by the discretization lead to many
go-degree or 135-degree turns, as illustrated in the middle row of
Figure 4.7. Simply extending the neighborhood from 9 to 21 neigh-
bors reduces the average angle by ~ 30 to 50 percent because more
tracklets with a finer granularity regarding their motion change are
available. Unfortunately, this also leads to a higher computational
cost. As we discussed in Section 4.1, the number of variables grows
quadratically with the size of the chosen neighborhood. Our expe-
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rience shows that going from a 9- to a 21-neighborhood takes ~ 5
times longer to compute the solution due to the larger size of the ILP.
The proposed hexagonal discretization hardly increases the neighbor-
hood size, while at the same time providing a more flexible set of
tracklets, which is favorable for a dynamic model. This combination
of using a tri-axial grid and taking into account the targets” dynam-
ics yields a five- to six-fold reduction in the average angle between
consecutive trajectory segments. As discussed in the previous sec-
tion, such smooth trajectories match the ground truth quite closely
(cf. Figure 4.7).

The smoother trajectories also improve tracking accuracy as can bee
seen in the top row of Figure 4.8. This can be explained by the fact
that the smoothness prior mitigates the effect of inaccurate and uncer-
tain evidence. If a target is partially occluded, the detector is likely to
either produce a poorly localized response with respect to the actual
target position, or fail completely providing only noise in the out-
put. In this case, the baseline ILP formulation chooses the most likely
target location for each cell that satisfies the linear constraints, but
disregarding whether the target’s motion remains physically plausi-
ble or not. In contrast, the proposed dynamic model favors smooth
motion, which is more likely to occur in real-world situations, there-
fore improving the performance. In our experiments, Multiple Object
Tracking Accuracy (MOTA) (measuring false negatives, false positives,
and identity switches) increases by 10-20%. Using 21 instead of 9
neighbors also improves accuracy, but is still inferior to our result,
while taking longer to compute, as already discussed above. Multi-
ple Object Tracking Precision (MOTP) (measuring the localization er-
ror) improves insignificantly, because the metric is dominated by the
alignment error due to the discrete location grid. One possible way
to address this limitation is to describe trajectories in their natural
continuous domain. Two approaches following this direction will be
presented in Chapters 5 and 6.

Finally, there is a dramatic reduction of fragmented tracks and iden-
tity switches (=50% for the monocular case, 80-90% for the multi-
view case). The numbers for both scenarios are shown in Figure 4.7
(middle row). Trajectory fragments are generated when the tracker
drifts away from a target, which is less likely if late non-maxima sup-
pression and the motion prior can correct inaccuracies of the evidence.
Identity switches happen when data association fails for targets very
close to one another. This is especially prominent when two persons
with similar appearance walk alongside each other for an extended
time interval. In such a case, the tracker of each target can switch to
the other target and then back again several times, causing multiple
errors. The motion prior improves correct data association, because
it favors the option with more plausible dynamics.
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4.5 DISCUSSION

This chapter presented an algorithm for tracking a varying number
of targets on a discrete location grid. Multi-target tracking is cast
as integer linear programming, and solved through LP-relaxation, in
most cases to global optimality. The remaining non-integer values are
resolved using branch-and-cut methods (see Section A.1). Compared
to previous research in this direction, we argue that tracking should
use the original target evidence as input and perform non-maxima
suppression during trajectory estimation. Moreover, an approach to
include standard dynamic models in the ILP-formulation is demon-
strated. As expected, best results are achieved on a hexagonal rather
than a rectilinear grid in this setting. The experimental comparison
on public benchmark videos confirms that beyond its theoretical ap-
peal the proposed formulation delivers better tracking results and
achieves superior performance in quantitative comparisons.

However, the question remains whether the benefits of global opti-
mization outweigh the rather strong restriction that is posed on the
state space. The next chapter will address this very issue by dropping
the discretization and shifting entirely to a continuous formulation.
In particular, a more accurate and less restrictive objective function is
developed at the cost of global optimality.
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terrace1 terrace1 PETS-S2L1

Figure 4.6: Tracking results obtained with the proposed ILP algorithm. The
left and middle columns are from the terracez sequence, the right
column is from PETS-S2L1. Displayed are three sample frames
(1%t-3" row), and a bird’s-eye view of target trajectories (last row).
The displayed frames are marked (top (O, middle <}, bottom O).
See Section 4.4.1 for details.
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Figure 4.7: Improved trajectories with the proposed model. (top) manually
annotated ground truth for 200 frames of sequence terrace1. (cen-
ter) trajectories reconstructed by state-of-the-art tracking without
dynamic model (Berclaz et al., 2009). (bottom) trajectories esti-
mated by the presented system with dynamic model on a hexag-
onal grid.
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Figure 4.8: Tracking performance. (top) CLEAR metrics — higher is better.
(middle) fragmentation and ID switches — lower is better. (bottom)
smoothness — lower is better. Globally optimal tracking benefits
significantly from dynamic models on the hexagonal grid, both
in multi-view (left column) and in the monocular setting (right
column,).



Part II

TRACKING IN CONTINUOUS SPACE

Each target is represented by its continuous coordinates
and a high-dimensional non-convex energy function is de-
signed to naturally describe the problem of multi-target
tracking.







TRACKING MULTIPLE TARGETS BY CONTINUOUS
ENERGY MINIMIZATION

The truth will set you free, but first it will make
you miserable.
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N the previous chapter we discussed a multi-target tracking ap-
proach based on minimization of a discrete objective function. More
precisely, all targets were restricted to move across disjoint cells of a
regular lattice. Short 3-frame tracklets were represented by binary
variables and combined with linear constraints to formulate an inte-
ger linear program (ILP). Fortunately, due to the nature of the prob-
lem, the LP-relaxation led to globally optimal solutions in most cases.
This chapter presents a rather different approach. We pose the
question whether global optimality of a necessarily approximate mod-
elis a suitable strategy to follow. In particular, a more complex energy
function is defined in continuous space to explicitly address many
crucial aspects of multi-target tracking, which have previously been
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forgone to preserve (near) global optimality of the solution. Moreover,
a fast minimization scheme based on gradient descent and greedy
discontinuous jumps is presented to explore scattered areas of the
solution space.

The presented formulation of a continuous energy function for
multi-target tracking including a global occlusion model has previ-
ously been published in (Andriyenko and Schindler, 2011; Andriyenko
et al., 2011). An extended version of this work has been submitted
to the IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) for a second revision and is currently under review.

5.1 INTRODUCTION

Multi-target tracking is relevant for many important applications (cf.
Section 1.2). Despite enormous progress in recent years, the task of
robustly keeping track of targets over time to date remains challeng-
ing, particularly in many real-world scenarios. Noisy observations,
occlusions and the combinatorial problem of data association are some
of the many challenges to overcome. Moreover, motion, appearance,
and visibility of objects are influenced by mutual dependencies that
have to be taken into account. From a probabilistic point of view this
entails inference — often maximum a-posteriori (MAP) — in a posterior
distribution over several variables that have complex dependencies.
As we already discussed in Section 1.1, the resulting optimization
problem is highly non-convex (in case of a continuous domain) or
non-submodular (in the discrete case), and thus cannot be optimized
globally without major simplifying assumptions.

Yet, several recent multi-target tracking formulations aim to obtain
a (nearly) globally optimal set of trajectories within a temporal win-
dow (Jiang et al., 2007; Zhang et al., 2008; Berclaz et al., 2009; An-
driyenko and Schindler, 2010; Pirsiavash et al., 2011; Henriques et al.,
2011; Ben Shitrit et al., 2011). We discussed one of these approaches in
the previous chapter. In order to make (near) global optimization pos-
sible and efficient, the state space is reduced by restricting possible
target locations to a finite set and the energy function is simplified.
While global optimality undoubtedly has many benefits, we must
also not lose sight of the actual purpose of formulating multi-target
tracking as an energy minimization problem: the energy should ade-
quately reflect the task at hand so that low-energy solutions are close
to the true situation. Unfortunately, in the realm of multi-target track-
ing, typical specifications of the desirable aspects do not lead to mod-
els that can be globally optimized.

In this chapter, we investigate the question whether it is really ben-
eficial for multi-object tracking to find the global minimum of an
overly restricted energy function. In contrast to previous work, the
goal of this chapter is to design the objective function such that it
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offers a more complete representation of the various aspects of the
problem. The energy is defined in continuous space and depends on
the locations and motion of all targets in all frames, including cases
where image evidence is missing, and explicitly includes physical
constraints, such as smoothness of motion and mutual exclusion. It
is beneficial to model these terms in the continuous domain, since
this allows describing the true situation more closely than in a dis-
crete setting. The price to pay is having to forgo global optimality,
since such a complex model of multi-target tracking is unlikely to be
convex or submodular. Nevertheless, local optima of our energy yield
better results in practice, both visually and in terms of a quantitative
evaluation with respect to ground truth.

To make the optimization efficient, all energy terms are formu-
lated as functions that can be computed and differentiated in closed
form. Hence, computationally efficient gradient-based optimization
methods can be applied. To find strong local minima and to reduce
the influence of the initialization, we run standard conjugate gradi-
ent descent from several starting points. Additionally, this purely
continuous minimization is extended by a set of trans-dimensional
jump moves, which enable the search to escape the initial basin of
attraction and explore a larger region of the energy landscape (see
Figure 5.1 for an illustration). To support the claim that accurate
modeling might be more important than optimality guarantees for
tracking performance, we run extensive experiments on various pub-
lic datasets and show state-of-the-art results quantitatively measured
by standard multi-target tracking metrics.

The main contribution of this chapter is an energy-based model of
multi-target tracking that

* is defined over all target locations (in continuous space) and all
video frames in a given time window;

e includes per-frame detection evidence, appearance, dynamics,
persistence, and collision avoidance;

* explicitly handles partial as well as full inter-object occlusion;
and

* can be computed and differentiated efficiently in closed form.

Furthermore, we provide an empirical study on the influence of all
major parameters of the model, and an analysis of various optimiza-
tion strategies for model inference, ranging from greedy search to
more randomized and sampling-based algorithms.

5.2 MULTI-TARGET TRACKING IN CONTINUOUS SPACE

Although the notation was already formally introduced in Section 3.1
and summarized in Table 3.1, the main components are briefly re-
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EX)

Figure 5.1: A schematic illustration of our continuous energy minimization.
Starting from different initializations (red and blue), the energy
is minimized by alternating between conjugate gradient descent
(circles) and discontinuous jumps (dotted arrows).

viewed at this point for the reader’s convenience. The state vector
X consists of (X,Y) coordinates of all N targets in all F frames. Sub-
scripts and superscripts (X}) are used to refer to a specific target at a
certain time. Finally, to differentiate between world coordinates and
image space coordinates, we use capital letters for the former, and
lowercase for the latter.

5.2.1  Continuous energy

Although by no means the only way of performing inference, energy
minimization methods — in one form or another — have become quite
popular for multi-target tracking (Leibe et al., 2007; Zhang et al., 2008;
Berclaz et al., 2009; Rodriguez et al., 2011). Their common goal is
to set up a function that assigns every possible solution a cost (the
“energy”) and then (approximately) find the state with the lowest
cost. An energy function for a certain application can be defined in
many ways.

In computer vision one often faces two major problems: (1) The
input data is “noisy” and requires robust models; (2) an accurate
representation that captures all relevant nuances of the real situation
quickly becomes very complex. Together, these two issues tend to
produce complicated and highly non-convex objective functions (cf.
Section 5.3). One is thus faced with a dilemma: Should the energy
function be simplified until it is easily optimizable, or should it rather
have the power to capture the complex situation, at the cost of less
graceful mathematical properties? In the current chapter, we investi-
gate the latter alternative for the case of tracking multiple objects in
video. The energy we propose has been developed with an emphasis
on precisely describing multi-object tracking. Algorithmic consider-
ations were limited to keeping the function differentiable in closed
form and thus efficient for gradient-based optimization. It turns out
that for the case of multi-target tracking such an approach is rather
successful.
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Figure 5.2: The observation model minimizes the distance between the de-
tections (gray blobs) and the estimated trajectories.

Our energy function is a linear combination of six individual terms:

E=Eget + (XEapp + [3Edyn +VEexc + 6F—per + €Ereg- (5.1)

The data term E4et keeps the solution close to the observations; the
term E,pp captures the appearance of different objects to disambiguate
data association; the three priors E4yn, Eexc and Eper promote plausible
motion and enforce physical constraints; the regularizer Ereg keeps
the solution simple and prevents over-fitting. The aim is then to find
the state X* that minimizes the high dimensional continuous energy
from Eq. (5.1):

X* = arg min E(X). (5.2)
XeRd

Depending on the length of the sequence and the number of targets,
the dimension of the search space d normally takes on values be-
tween 103 and 10?. In the remainder of this section we explain each
individual term and its functionality in more depth. The influence of
the individual terms is examined in Section 5.5.1 by adjusting their
respective weights or discarding them entirely. The separate contri-
bution of each term to the energy is visualized as heat maps in Fig-
ure 5.12 at the end of Section 5.2.3.

5.2.1.1 Observation model

In this work we concentrate on people as tracking targets, and follow
the well established tracking-by-detection approach. Likely pedes-
trian locations are found with a sliding-window linear SVM detector
(Dalal and Triggs, 2005; Walk et al., 2010a). More details can be found
in Section 3.2. Detection peaks are determined by non-maxima sup-
pression (NMS) and projected onto the ground plane of the world
coordinate system, where they form the image evidence for track-
ing. We limit ourselves to using non-maxima suppressed detections
to reduce the computational cost, but note that this is not a major lim-
itation of our approach; it could easily be extended to use a per-pixel
target likelihood instead (cf. Breitenstein et al., 2009). The intrinsic
and extrinsic camera parameters required for the projection are con-
stant for static cameras and can be inferred by structure-from-motion
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for moving cameras (as done, e.g., in Ess et al. (2009) for multi-target
tracking). Hence, the requirement of a calibrated camera does not
pose a major limitation and enables more accurate modeling of target
dynamics and interaction. y

The main purpose of the data term
is to keep the trajectories close to the
observations (cf. Figure 5.2). In other
words, the energy should be minimal
when the location of each target pre- j7’
cisely matches a detection. To capture
the localization uncertainty of the ob-
ject detector, the energy smoothly in-
creases with the distance between the
estimated object location X} and a de-
tection location Dy. This behavior is
modeled by an isotropic (inverse) bell-shaped function centered at
the detector output,

E(X)

Figure 5.3: The term Ege; in
one dimension.

N e D(t)
* 2
Eget(X) = Z Z A— Z w];”)q,gw . (53)
i=1t=s; g=1

Each detection Dy is weighted by its confidence wy, and the scalar s
accounts for the object size, i.e. the area on the ground plane occupied
by that object. It is set to 35cm for pedestrian tracking. The offset A
is added uniformly to all existing targets to penalize all those with
no image evidence. This penalty, however, must not be applied if a
target is occluded and consequently cannot possibly be “seen” by the
detector. It is therefore scaled by the fraction of the visibility v of
that target:

N ej D(t)
2
EaeeX) =) Y |viA=D) (U;”Xit,gw : (5.4)
i1 t—s; g—1

One slice of the energy term Ege is illustrated schematically in Fig-
ure 5.3. The global occlusion reasoning including the computation of
v is explained in detail in Section 5.2.2. We also defer the discussion
of the appearance term to Section 5.2.3, as it relies on the visibility
fraction of individual targets.

5.2.1.2 Dynamic model

A defining property of tracking (as opposed to independent object
detection per frame) is that objects move slowly relative to the frame
rate, and in most cases also smoothly. This gives rise to constraints
on the target motion, captured by a dynamic model. A simple con-
stant velocity model that minimizes the distance between consecutive
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t+1 1

y
.
»

Figure 5.4: The dynamic model penalizes strong deviations between adja-
cent motion vectors and enforces constant velocity.

velocity vectors (cf. Figure 5.4) is powerful enough to capture the mo-
tion of objects in many real scenarios:

. ielz th 2Xt+1 +Xt+2H . (5.5)

i=1 t=s;

On one hand, the dynamic model helps reducing identity switches by
favoring straight paths. On the other hand, the detections are often
misaligned and do not form smooth curves. Naive smoothing might
yield visually pleasing results, but is not appropriate to achieve high
data fidelity and thus high tracking precision. The dynamic model as
part of a global energy function can be seen as a form of “intelligent
smoothing”, yielding trajectories that are natural and smooth, while
at the same time avoiding collisions and not drifting too far away
from the actual observations.

5.2.1.3 Mutual exclusion

Collision avoidance is a crucial aspect when tracking multiple targets
(cf. Section 5.5.1 and Fig. 5.17). In our model a continuous penalty is
applied to configurations in which two targets come too close to each
other:

exc Z Z Xt”z (5.6)

t= 11];&1

Note that the penalty is closely related to the intersection of the tar-
get volumes, which is also used by some authors (Ess et al., 2009), but
our variant goes to infinity in the impossible case when both objects
occupy the same 3D space. Besides enforcing the obvious physical
constraint, a mutual exclusion term also ensures that one piece of
image evidence can be explained by at most one target. This is es-
pecially important when dealing with soft likelihoods that exhibit a
smooth falloff around the detection peaks (i.e., target locations are not
clamped to the exact location of the detector output), since otherwise
the same peak could give rise to multiple trajectories (see Figure 5.5).

Our formulation of the exclusion model can handle two notoriously
difficult problems: On one hand, the pairwise distance between all
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Figure 5.5: The exclusion model prevents collisions between targets by pe-
nalizing their mutual proximity.

targets is taken into account at all frames. Hence, two targets cannot
occupy the same space, even if both are occluded. On the other hand,
if one detection of two neighboring targets is missing, the targets will
be pushed apart just as much as needed to avoid a physically impossi-
ble situation. Tracking on a discrete grid does not allow intermediate
steps and the entire trajectory may be discarded.

Note that our approach does not perform an explicit assignment
between target hypotheses and measurements (detections). Data as-
sociation is indirectly achieved, mainly by two continuous terms —
observation and mutual exclusion. Such soft assignments produce vi-
sually more pleasing trajectories due to their continuous representa-
tion. However, the concrete measurement-to-target assignment prob-
lem remains unsolved. We will see in Chapter 6 how both tasks can
be approached simultaneously by energy minimization.

5.2.1.4 Trajectory persistence

Missing evidence can lead to track fragmentation or abrupt track ter-
mination in the middle of the tracking area. To encourage trajectories
to start and end along image borders or along a predefined perime-
ter, tracks that do not obey this requirement are penalized. To keep
the term both robust and smooth, we use a sigmoid centered on the
border of the tracking area:

1

te{sieqt

where b(X;*) and b(X{*) measure the distance of the first, respectively
last known location of target i to the closest border of the tracking
area and the parameter g represents the soft entry margin and is set
to g = 1/s in all experiments.

5.2.1.5 Regularizer

Finally, a regularizer is needed to prevent the number of targets from
growing arbitrarily large so as to better fit the data. To that end,
we simply penalize the number of existing targets. It turns out that
including the trajectory length into the regularization term leads to
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Tracking Area Tracking Area
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Figure 5.6: To suppress abrupt termination of trajectories in case of missed
detections, the persistence term raises the energy value in cases
where the start, respectively end point of a trajectories lies far
from the border of the tracking area.

better performance, because solutions with many short tracks are less
likely. These two terms are combined to form

N

Ereg(X) = N+ Z1 F(11) (5.8)
Note that the second term can be weighted individually to adjust the
importance of the lengths of the trajectories. Although empirically
this leads to slightly better performance on some test sequences, we
prefer to set it uniformly to 1 in all our experiments. Having fewer
parameters facilitates the search for a good parameter set and avoids
over-fitting.

5.2.2  Global occlusion reasoning

Occlusion reasoning plays an important role in many areas of com-
puter vision, including pose estimation (Sigal and Black, 2006; Eich-
ner and Ferrari, 2010), and object detection (Wu and Nevatia, 2005;
Enzweiler et al., 2010; Wojek et al., 2011). The reason why occlusion
modeling improves results is consistent in all cases: the knowledge
that the observed object is only partially (or not at all) visible predicts
that less evidence will be found in the image, and the appraisal of the
evidence can be adapted accordingly.

Having introduced the basic tracking framework, we now turn to
our explicit occlusion reasoning scheme. In typical real-world sce-
narios three different types of occlusion take place: (1) in crowded
scenes, targets frequently occlude each other causing inter-object oc-
clusion; (2) a target may move behind static objects like trees, pillars,
or road signs, which are all examples of common scene occluders; (3)
depending on the object type, extensive articulations, deformations,
or orientation changes may cause self-occlusion. All three types of oc-
clusion reduce — or completely suppress — the image evidence for a
target’s presence, and consequently incur penalties in the observation
model. Specifically, in our tracking-by-detection setting they cause
the object detector to fail and thereby increase Eqet. However, simply
treating occlusion as missing data, i.e. ignoring the fact that the observed
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Figure 5.7: A typical example of inter-object occlusion. In the proposed oc-
clusion model targets are represented as anisotropic Gaussians
in image space (red, green, blue), whereas pairwise occlusions
between all targets (cyan, yellow) are approximated by products
of Gaussians.

occluder actually predicts the lack of evidence, can seriously impair tracking
performance.

Consequently, explicit occlusion handling is important for success-
ful multi-target tracking. Unfortunately, principled modeling of oc-
clusion dependencies is rather tricky as the following example illus-
trates (see Fig. 5.7):

If target A is at location Xp, then target B at Xg is occluded; but if

A is a bit further to the left and B slightly further to the right, then

B is partially visible; however then it would partially occlude target

G etc.
In order to deal with situations where dynamic targets occlude each
other, the main task is to overcome the difficulties that arise from the
complex dependence between a target’s visibility and the trajectories
of several other targets, which could potentially block the line of sight.
An explicit occlusion model thus leads to complicated objective func-
tions, which tend to be difficult and inefficient to optimize. Therefore,
most previous approaches either ignore the issue altogether, or resort
to some form of greedy heuristic, usually separating target localiza-
tion from occlusion reasoning.

We present a method that tightly couples both trajectory estima-
tion and explicit inter-object occlusion reasoning. Note that it can
be trivially extended to handle scene occluders. Not surprisingly,
taking into account occlusions directly during trajectory estimation
significantly reduces the number of missed targets and lost tracks —
especially in highly crowded environments.

5.2.2.1  Analytical global occlusion model

Our approach handles mutual occlusion between all targets with a
closed-form, continuously differentiable formulation. Since this pro-
cedure is identical for each frame, the superscript t is omitted for
better readability.
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Figure 5.8: Schematic illustration (in 1D) of targets” overlap as a function
of the occluder’s position. In case of bounding boxes (a), the
overlap oy; is non-differentiable on the borders. In contrast, our
occlusion term z;; is a Gaussian.

RELATIVE OVERLAP. Let us for now assume that each target i is
associated with a binary indicator function

1, B(X;
o= XEPXY (59)
0, otherwise,

which is 1 on the bounding box B(X;) of target i. The total image area
of target i is thus given as [ 0;(x) dx. To compute the relative area of
target i that is occluded by target j, we simply have to calculate the
(normalized) integral of the product of both indicator functions:

1

W Joi(x)oj (x) dx (5.10)

Note that we assume here that target j is in front of target 1, we will
address the more general case below. If we define the target visibility
using the relative area as given in Eq. (5.10), then the visibility is not
differentiable w.r.t. the object positions of X; or Xj, which precludes
gradient-based optimization methods (cf. Figure 5.8(a)).

To address this issue we here propose to use a Gaussian “indicator”
function Nj(x) := N(x; ¢i, Ci). Besides achieving differentiability, this
is further motivated by the fact that a Gaussian blob is a crude, but
reasonable approximation for the shapes of many objects (see Fig. 5.7
for an illustration). In our case, each person in image space is repre-
sented by an anisotropic Gaussian with mean ¢; = x; and covariance

o (i o <O>>

with s; being the target’s height on the image plane. As before, we
compute the area of overlap by integrating the product of the two
“indicator” functions, here Gaussians:

zij = JNi(x) - Nj(x) dx. (5.11)
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Figure 5.9: Target i has a non-zero overlap with j and with k. However, it
is only occluded by j. Hence, the overlap is weighted with a
sigmoid o (dotted line) centered on y;.

Besides differentiability, the choice of Gaussians allows this integral
to be computed in closed form. Conveniently, the integral is another
Gaussian (Brookes, 2005): zij = N(cy; ¢j, Ci;) with Cy5 = C; + Cj (see
Fig. 5.8(b) for a schematic illustration). Since we are interested in the
relative overlap that corresponds to the fraction of occlusion between
two targets, we compute it using the unnormalized Gaussian

Vij = exp (—%[ci—cj]TCi—;[ci—cj]), (5.12)

which is differentiable w.r.t. ¢; and ¢; and has the desired property
that Vi; = 1 when ¢; = ¢;. Moreover, due to the symmetry of Gaus-
sians we have Vj; = Vj;.

DEPTH ORDERING. To also take into account the depth ordering
of potentially overlapping targets, we could make use of a binary in-
dicator variable, which once again has the issue of making the energy
function non-differentiable. We once more replace it with a continu-
ous, differentiable version and use a sigmoid along the vertical image
dimension centered on y; (cf. Figure 5.9):

1
 Texp(yi —yj)

04 (5.13)
Note that this definition assumes a common ground plane as well
as a camera at a rather low viewpoint and in standard landscape
or portrait orientation, such that the depth order corresponds to the
order of the targets’ y-coordinates (it is however straightforward to
extend the idea to more general setups). Also note that if we assume
small variation in target size, then the occluder will always appear
larger than the occluded object on the image plane and hence will
entirely cover the farther target if their center points coincide.

visiBILITY. To define the overall visibility of each target, we first
define an occlusion matrix O = (Oyj);; with Oy =035 - Vi5,1 # j and
0ii =0. The entry in row i and column j of O thus corresponds to (a
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Figure 5.10: The appearance model takes color information into account and
prefers similar regions to belong to the same trajectory.

differentiable approximation of) the fraction of i that is occluded by j.
Disregarding cases where multiple occluders cover the same limited
fraction of a target, we can now approximate the total occlusion of
ias Z]- Oyj. A straightforward definition of the visible fraction of i
would thus be

max | 0,1 — Z 0y | - (5.14)
J

However, to avoid the non-differentiable max function, we prefer an
exponential function and define the visibility for target i as

vi(X) =exp ( — Z Oij) . (5.15)
j

This definition allows us to efficiently approximate the visible area
by taking into account mutual occlusion for each pair of targets. Fur-
thermore, by consistently using appropriate differentiable functions
the entire energy has a closed form and remains continuously differ-
entiable.

LIMITATIONS. The main limitation of this approach is that targets
are represented with a simple oval shape. However, our experiments
show that the actual fraction of occlusion can be estimated quite reli-
ably even for pedestrians, despite their non-rigid, articulated motion.

5.2.3 Appearance model

The appearance of an object may provide important cues for disam-
biguating it from the background and from other objects. This aspect
has previously either been ignored (Berclaz et al., 2009; Andriyenko
and Schindler, 2011; Andriyenko et al., 2011), or addressed only in
the discrete setting (Zhang et al., 2008; Kuo et al., 2010; Ben Shitrit
et al.,, 2011). Here, we present a novel appearance term that is contin-
uously differentiable in closed form, thus admitting gradient-based
optimization.

Assuming that an object’s color remains constant over time and
that lighting changes slowly, our appearance model imposes a higher
penalty in cases of abrupt changes. To maintain the benefits of the
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Figure 5.11: Instead of extracting and comparing full bounding boxes (b), we
propose to weigh the area using anisotropic Gaussians (c). The
energy remains differentiable, and the influence of undesired
background pixels is reduced.

continuous formulation, it is desirable to describe the appearance
of an object analytically. To ensure that the energy remains smooth
without costly interpolation, we propose to use Gaussian weighted
regions (cf. Figure 5.11). This not only ensures differentiability, but
a closed-form gradient. This is also motivated by the fact that the
object of interest typically occupies the central area inside the bound-
ing box. The background pixels along the borders and in the corners
are therefore naturally downweighted, while the pixels closer to the
center receive higher weights.

Formally, the Gaussian weighted histogram count of the image re-
gion occupied by target i in frame t is defined as

(&) = 3 [NOGRL £ - Ha ()], (5.16)
X
where H;, is a binning function
1, if I(x) falls into bin n

Hn(x) = (5.17)
0, otherwise,

and X is the center of the target’s bounding box. We employ the
widely used Bhattacharyya coefficient

# bins
BCX!) = Y y/ha(x!) xha(x1). (5.18)

for histogram comparison. In our experiments a standard RGB color
histogram with 16 bins per channel yields the best results. Obviously,
the appearance of a target will change if it becomes occluded and thus
should not be taken into account. We therefore reduce the influence
of the appearance term in such cases by weighting the histogram
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15

Figure 5.12: Per target contributions to the individual energy components
rendered as heat maps, accumulated across 150 consecutive
frames. The value range for each component and combined
entire energy is indicated by a color bar. Note the large penalty
of the exclusion term E¢yc for the two targets moving alongside
each other, and the higher energy values induced by Egy, in
sections with high curvature.

deviation with the geometric mean of the visibilities (cf. Section 5.2.2)
of the two bounding boxes:

AC(X;) =v{(X) - (1 —BC(X})) (5.19)

with

X0 = 1/ () v (X)), (5.20)

Instead of simply adding this penalty to the energy, we found it to
be beneficial in practice to use a soft threshold to better discriminate
between true matches with a high similarity, i.e. low energy value,
and identity switches. To that end, the final appearance term uses a
sigmoid:

N ei—1
S 1
EapX) =) ) 1+exp(a; —az * AC(XY)) (5-21)

i=1 t=s;y

The parameters ay, a, are determined by a least squares fit to a small
subsample of the available data.

Our appearance model is designed to fit gradient based optimiza-
tion methods. As we show in Section 5.5, including appearance sig-
nificantly reduces the number of identity switches and track fragmen-
tations, though not increasing the average accuracy on the chosen
datasets. Moreover, it forces the tracker to follow the targets more
closely thereby increasing the tracking precision. We believe that ap-
pearance will be even more helpful in high resolution videos — where
targets usually provide more color information — or in situations with
stronger appearance variation than in existing benchmarks.
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(@) (b)

(© (d)

Figure 5.13: Illustration of the non-convexity of the continuous tracking for-
mulation. To get from the light blue solution (weaker optimum)
to the dark blue one (stronger optimum) in a continuous state
space one has to overcome a ridge of high energy. (1,b) Keeping
Egyn low incurs high penalties in Eps as one moves away from
the observations. (c,d) Keeping Egps low incurs high penalties
in Egyn as the paths gets distorted to fit the observations. With
a peaked likelihood intermediate cases are even worse.

5.3 OPTIMIZATION

The energy in Eq. (5.1) described in Section 5.2.1 is clearly not con-
vex. In fact, it is not unlikely that a realistic model of multi-target
tracking cannot be convex: It is easy to construct examples that have
two virtually equal minima separated by a ridge of high energy (cf.
Figure 5.13). The main reason for this behavior is the high-order de-
pendence between variables caused by physical constraints.

To minimize the energy function in Eq. (5.1) locally, we use the stan-
dard conjugate gradient method. Upon convergence, a jump move is
executed (unless it would increase the energy), which may change
the dimensionality of the model (see Figure 5.1 for a schematic illus-
tration). The jumps give the optimization a high degree of flexibility
— the initial solution need not even have the correct number of tar-
gets. To speed up the optimization process, all trajectories are given
the chance to execute a certain jump at the same time. Based on our
experience, the order in which the jumps are executed is not crucial,
because the optimization may choose to perform an inverse move to
find the way towards a lower energy. Please refer to Section 5.5.2 for
an empirical study on various optimization strategies.
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Figure 5.14: The proposed jump moves make continuous optimization more
flexible, allowing a variable number of targets. Even a poor
initial configuration can be used to recover the true trajectories.
The ground truth is rendered in gray.

Our data-driven strategy for changing the dimension of the state
vector is reminiscent of reversible jump Markov chain Monte Carlo
methods (Green, 1995), which have been applied to multi-target track-
ing in various ways (Ge and Collins, 2008; Benfold and Reid, 2011; Wu
et al.,, 2011). A crucial difference to traditional Monte Carlo sampling
is that our method is deterministic: It exploits the advantages of gra-
dient descent over sampling within one mode, and performs jumps
according to a prescribed schedule, only if they decrease the energy.
The energy minimization algorithm is summarized in Algorithm 1.

5.3.1 Transdimensional jumps

To escape weak local minima we introduce six types of jump moves,
which change the configuration of the current solution, thereby alter-
ing the dimension of the current state Xcurr. By jumping to different
regions of the search space while always lowering the energy, the op-
timization is able to find much stronger local minima. An example
of an optimization run with jumps is shown in Figure 5.14. Here, a
weak trajectory (black) is removed entirely while a new one (green) is
initialized. Note that each jump leads to a configuration with a lower
energy.
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GROWING AND SHRINKING. The time span during which a target
is visible in the target area can be changed by growing or shrinking
its trajectory. To extend the trajectory’s length, it is simply linearly
extrapolated in space-time (both forward and backward).

Let X; = X{"*®* denote the current state of the i trajectory defined
between frames s; and e;. To evaluate the energy Enew = E(Xnew), the
trajectory is extrapolated backwards for t frames resulting in

X; = (X5t xg) (5.22)

leading to the new state

Xnew = (jQN Xj) Uxi- (523)
A1

The procedure for forward extrapolation is analogous with
X; = (X, X{Herh), (5.24)

Shortening is achieved by simply discarding t past or future positions
of a target: X; = X%, respectively X; = X{¥"*"*. Such growing
and shrinking steps help to pick up lost tracks and weed out spurious
trajectories.

MERGING AND SPLITTING. Allowing merging and splitting of tra-
jectories can effectively improve data association, i.e. eliminate iden-
tity switches and track fragmentations. Splitting at time t is imple-
mented by breaking a path Xy in two:

Xi = Xpvt, X5 =X (5.25)

if the split yields lower energy. Merging is executed if two paths
can be smoothly connected into one with lower energy, preserving
physically plausible motion:

1

- rlisi—
Xi = (Xi, Xen , Xj). (5.26)

Especially merging is a powerful tool to overcome temporary tracker
failure due to weak evidence or occlusion.

ADDING AND REMOVING. New trajectories can be generated at
locations with strong detections, which are not yet assigned to any
trajectory. To that end, the detection with the maximum confidence
wg that does not have a trajectory nearby is found

(t, g) = argmax {wlr D] —X{|| > 2s Vi} (5.27)
T,))

and a new track is started conservatively with three consecutive frames
at the same location:

X~ = (DY, DY, D}). (5.28)
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Algorithmus 1 : Continuous energy minimization

input :S initial solutions, detections D
output : Best of < S solutions

fors < 1to S do
while — converged do
for m € {grow, shrink, add, remove, merge, split} do
fori< 1to N do
try jump move m on trajectory i
(greedy parameter selection)

if Enew < Eold then
perform jump move m

end
end
perform conjugate gradient descent
end
end

end
return arg miny_ E(X;)

Note that such short 3-frame tracklets can grow or merge with exist-
ing ones at a later stage.

An entire trajectory is removed if its total contribution to the en-
ergy is above a certain threshold, meaning that it reduces the overall
likelihood of the current state, rather than increasing it. Adding helps
to find missing trajectories not picked by the original tracking solu-
tion, whereas removal discards trajectories which have been pushed
to a state with little evidence, unreasonable dynamics, and/or overlap
with other trajectories.

We repeatedly iterate through the six different move types in a
fixed, prescribed order (see Alg. 1). For each move type, the move
parameters — e.g. the number of frames a trajectory is grown or the
time step at which a trajectory is split — are optimized independently
for each trajectory in a greedy fashion. It is important to note, how-
ever, that the optimization is not entirely greedy, since the move type
order is fixed; thus it is not guaranteed that every step leads to the
largest energy decrease. Please see Section 5.5.2 for a study on vari-
ous optimization techniques.

5.3.2 Initialization

Like any non-convex optimization, the result depends on the initial
value from which the iteration is started. However, the described
exploration strategy greatly weakens this dependency compared to a
pure gradient method. By allowing jumps to low-energy regions of
the search space, even if they are far away from the current state, the
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Correlation between Energy and Tracking Accuracy

-1200¢ 1100
-1300f \ \ 00000 s L 2 5 @ s _Z_ _T_. @
_--:_:__=_. :—‘—-"’90
14000 B P _SociiioTT _
> : 180 &
o <
5 —1500r 5
LU I E
;;l ’70
-1600
-1700f 160
—— Energy
0 100 200 300 400

Iteration

Figure 5.15: Four optimization runs started from four different initializa-
tions on the sequence S2Li. The proposed energy (solid)
correlates well with tracking performance w.r.t. ground truth
(dashed). Energy values have been scaled uniformly for ease of
visualization.

attraction to local minima is reduced: the weaker a minimum is, the
more likely it gets to find a jump out of its basin of attraction that
lowers the energy.

Empirically, even a trivial initialization with no targets works rea-
sonably well, however takes many iterations to converge. Instead, we
propose to rather use the output of an arbitrary, simpler tracker as a
more qualified initial value. In our experiments we used per-target ex-
tended Kalman filters (EKFs), where the data association is performed
in a greedy manner using a maximum overlap criterion. Note that
the EKF trackers are not intended to achieve the best possible perfor-
mance but rather to quickly generate a variety of starting value. This
is accomplished by running the trackers several times with different
parameters. Naturally, if time does not play a crucial role, other, pos-
sibly more sophisticated solutions, such as the ILP-tracker from Chap-
ter 4, can be used as initialization.

Usually, different starting values converge to similar, albeit not
identical solutions (see Fig. 5.15).

5.3.3 Goodness of local minima

In the beginning of Section 5.3 we outlined why an accurate contin-
uous energy for multi-target tracking can hardly be convex. In our
case it is not only impossible to guarantee global optimality, but it is
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Figure 5.16: Initialization with ground truth (dashed) and with EKF (solid).

also intrinsically difficult to assess how close or how far the obtained
solution is from the global minimum. Still, it is useful to gain at least
some insights on the goodness of the local minima found.

Previous work on stereo revealed some interesting insights con-
cerning the same issue. One of them was that the energy value of
the ground truth annotation is always larger than solutions found
by optimization techniques like belief propagation (BP) or graph cuts
(Tappen and Freeman, 2003; Kolmogorov and Rother, 2006). Intu-
itively, we can expect similar behavior for the problem of multi-target
tracking for the following reasons.

First, we have to deal with missing data. Trajectories of undetected
targets will increase the energy, which will be explained below in
more detail. Second, annotations are created manually and thus will
never be perfectly aligned with the detector output. Consequently,
ground truth tracks will in general have a higher data energy than
fitted trajectories. Finally, ground truth annotations are not always
smoothed temporally and therefore induce extremely high energy
values for the dynamic model.

One way to determine the global minimum is to densely sample the
continuous state space on a minimalistic toy example. This is, how-
ever, impractical for realistic scenarios, even for the relatively simple
ones. Instead, we compare the results of our standard approach with
those obtained when the optimization is initialized with the ground
truth “solution’. The plots on three exemplar sequences are illustrated
in Figure 5.16. Obviously, it is not guaranteed that a ground-truth-
initialized optimization converges to the global optimum of the en-
ergy. But at least one can expect to find good local minima in this
way, which can be employed to quantitatively estimate the goodness
of the found solution.

We make several notable observations. As hypothesized above, the
energy value of the ground truth (dashed line at iteration 0) is far
away from any energy minimum. Moreover, the relative gap between
the solutions from the two initializations roughly corresponds to the
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E E MOTA MOTA FP FN 1D
init end init end end end end

Seq. (init) ‘

Sz2L1 (GT) | -1594.9 -2027.1  100.0 98.8 23 24 0
(EKF) | -435.1 -2006.9 67.7 92.1 33 272 7
S22 (GT) 20.8 -1682.8 100.0 61.5 87 3123 8
(EKF) | 8906.6 -1609.5 28.7 51.2 118 3896 65
SiL1 (GT) | -311.4 -868.1 100.0 66.7 10 848 2
(EKF) | -1483 -843.9 33.1 61.5 16 972 7

Table 5.1: Per sequence results with different initial values.

difference in performance as measured by MOTA. This shows that the
energy appears to give a fairly accurate representation of the prob-
lem. Finally, starting from the ‘correct’ solution, the optimization
requires many fewer iterations to converge and leads to a better final
performance in all three cases. However, starting from a ground-truth
initialization the optimization stays within the same basin of attrac-
tion only on the relatively easy sequence (52L1). The large amount of
missing data in the other two drive the optimization towards a less
accurate solution. This may seem somewhat surprising and contra-
dictory to the claim that the proposed energy presumably describes
the tracking problem more accurately.

Let us take a closer look at the reason for this behavior. The pro-
posed energy combines a-priory knowledge with input data to com-
pute the goodness of a particular solution. Ignoring one of these two
components would result in strong overfitting or in biased solutions,
respectively. It is reasonable to assume that in general, enough data
is available to support the hypotheses and overrule the priors. This is
not the case for the crowded sequences S2L2 and S1L2, where the ma-
jority of pedestrians remain undetected due to occlusion. Here, exclu-
sion, dynamics, persistence and regularization, all impose a penalty,
while no data is present to explain the trajectory hypotheses. There-
fore, most of the existing targets are removed from the solution, which
better meets the a-priory assumptions.

Overall, the presented experiment confirms that better performance
can be achieved by both providing better starting values and design-
ing more powerful optimization techniques. The detailed results for
each sequence are listed in Table 5.1.

5.4 IMPLEMENTATION

Before presenting the experiments we would like to point out some
implementation details.
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CONTINUOUS OPTIMIZATION. We use Carl Rasmussen’s imple-
mentation® with its default parameters to perform conjugate gradi-
ent descent on the energy. In this setting, the Polack-Ribiere formula
is employed for determining the search directions, while the Wolfe-
Powell conditions and the slope ratio method are used for estimating
the step size. For each search direction, a line search with a maximum
of 20 function evaluations is performed using second- and third-order
polynomial approximations of the objective function. We limit the
gradient descent to a maximum of 30 iterations because it is usually
sufficient to get close enough to a local optimum such that meaning-
ful discrete jumps can be executed.

TRACKING AREA. In order to compute the distance to valid en-
try and exit points to enforce persistent trajectories (cf. Eq. 5.7), the
boundary of the tracking area needs to be known. For our purposes
we define a rectangular area on the ground so as to facilitate the
computation of the distances. Targets outside its limits are excluded
from the solution. This is, however, not a major limitation because
the quadrilateral formed by the forward-projected image borders can
easily be used instead as tracking area.

RUN TIME. Given the detections, our current MATLAB/MEX im-
plementation takes approximately 1s/frame to obtain one solution
using explicit occlusion reasoning. Without the expensive occlusion
computation, the optimization runs an order of magnitude faster,

achieving near real-time performance. Unfortunately, computing color

information and its derivatives for all pixels significantly slows down
the optimization. While this can still be improved, the use of the ap-
pearance term is thus only recommended if computation time does
not play a crucial role.

CONVERGENCE. As stated in Alg. 1, the energy is minimized until
there is no jump that leads to a lower energy. Convergence is usually
reached quickly (after 5 to 10 iterations). We set a maximum of 15
iterations because of timing constraints. Note that in some cases the
results may still improve with more computational resources.

PARAMETERS. Although the precise parameter values are highly
dependent on the implementation at hand, we state them here for
completeness. The weights « through e are set to {.1,.02,.5,.7,.7} and
A=.1 in all our experiments including the appearance term. Turning
it off (i.e. setting & = 0) also requires both  and e to be decreased
slightly to a value of .6 to achieve best results. Finally, the setting for
the basic energy without occlusion handling (no OM) benefits from
the values 3 =.03,y =0=¢€¢=.6,A = .075. Note that these parame-

1 http://www.gatsby.ucl.ac.uk/~edward/code/minimize/minimize.m
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Parameter Description noOM OM FULL 2D

o appearance 0 0 0.1 0

& dynamics 0.03  0.02 0.02 2

Y exclusion 0.6 0.5 0.5 1

d persistence 0.6 0.6 0.7 1

€ regularizer 0.6 0.6 0.7 0.5

A offset 0.075 0.1 0.1 0.1

s target size 35 [cm] 20 [px]

Table 5.2: Typical parameter settings for running the continuous energy-
based multi-target tracking.

ter settings have been chosen conservatively and are not necessarily
optimal for any particular dataset (cf. Figure 5.17). An overview of
typical settings for all three variants is provided in Table 5.2. The
rightmost column also states the default parameter set for tracking
on the image plane (2D).

Our complete implementation together with all the necessary addi-
tional data, including detector output and ground truth, can be freely
obtained online.?

5.5 EXPERIMENTS

In Section 5.2 we introduced an energy function that has been con-
ceived with the primary goal of accurately reflecting the actual behav-
ior of multiple interacting targets (cf. Figure 5.15). As a consequence,
the energy minimization can only be solved to local optimality, and
there are no theoretical guarantees about the goodness of the solu-
tion. Our claim is that minimizing this function will nevertheless on
average yield higher tracking accuracy. To empirically support this
claim we performed an extensive experimental evaluation on various
datasets.

Before presenting detailed quantitative results, we first analyze our
approach in two regards: First, we examine the influence of the indi-
vidual energy terms on the tracking performance and the robustness
of the chosen parameters to variations of their respective values. (cf.
Section 5.5.1 and Figure 5.17). Next, we compare different optimiza-
tion strategies and their influence on the convergence rate and the
final result. (cf. Section 5.5.2).
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Figure 5.17: Influence of individual parameters on tracking performance.
Each plot shows the relative change in performance (measured
by MOTA) by changing the weight of a single energy compo-
nent while keeping the other ones fixed. The results shown here
are averaged over all datasets and normalized for better read-
ability. The error bars indicate the standard deviation around
the mean. The parameter value used in our experiments is
marked with a circle. As can be seen our choice of parameters
is rather conservative and does not correspond to the best set.
This is an indication that the model has not been over-tuned on
the given test data.

5.5.1 Parameter study

Manually tweaking several parameters is both tiresome and time-
consuming. Ideally, model parameters should be learned automati-
cally from example data, however that would require a large amount
of annotated ground truth. We thus had to resort to determining the
model parameters manually, which is not only tedious, but carries the
danger of over-fitting. To mitigate this, we use only one parameter
set for all test sequences, even though they exhibit strong variations
both visually and in terms of target behavior.

To examine the influence of each individual weight of the energy in
Eq. (5.1), we run our tracking algorithm and modify the correspond-
ing parameter while keeping all the other ones fixed. In Figure 5.17,
for each term, the relative change in performance, as measured by
MOTA, is plotted against the parameter value. For illustration, the
average mean-normalized value is shown along with error bars, de-
picting the variation between various sequences. Note that even a
relatively drastic scaling of the weights (e.g., by a factor of 1/2 or 2)

2 http://www.gris.tu-darmstadt.de/~aandriye/contracking
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Figure 5.18: Energy minimization with different optimization techniques on
four exemplar sequences (see text for a detailed explanation of
the individual strategies). Our proposed optimization scheme
described in Section 5.3 corresponds to O4. The final tracking
accuracy w.r.t. ground truth is reported in parentheses for each
case.

hardly affects the overall performance. The strongest decline can be
observed when y — the weight for target exclusion — is set too low.
This once again demonstrates the importance of explicitly modeling
the spatial dependencies to avoid situations with overlapping targets.
Moreover, we can conclude that the results are stable over a range of
settings and tracking performance is only slightly affected by param-
eter changes within a reasonable range.

5.5.2 Optimization strategies

There are many possible ways of integrating discontinuous jump moves
into an optimization scheme. To understand this choice, we conduct a
set of experiments that vary in the way the jumps are selected and ap-
plied. They show that the exact choice is not critical, and that the opti-
mization scheme described in Section 5.3 is a reasonable compromise
between fast convergence and low energy. To this end, we compare
our results to those obtained with five modified energy minimization
algorithms ranging from greedy to random (cf. Figure 5.18).

To better understand their differences, let us first recall our origi-
nally proposed scheme (Section 5.3). We alternate between two dis-
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tinct algorithms: (1) Purely continuous conjugate gradient descent,
which runs until convergence or to a maximal number of iterations
(here set to 30, which suffices to get close to a local minimum), and
(2) discontinuous jump moves that are executed for all trajectories at
once. Note that the move parameters (e.g. the number of frames to ex-
tend) are determined independently for each target i € {1...N} such
that the jump leads to the largest decrease of the energy value. We
now examine the influence of five alternative jump move strategies;
the gradient descent is left unchanged. Figure 5.18 shows the results.

1. Out of all possible move types and trajectories, the most greedy
strategy O1 always chooses the best possible modification of
the current configuration, i.e. the one that yields the largest de-
crease of the energy value. Both the trajectory to be modified as
well as the move type and its parameters are determined anew
after each iteration. Note that only one trajectory is modified be-
tween two continuous optimization runs, which generally leads
to slower convergence.

2. The less greedy Oz chooses the move type that maximally re-
duces the energy as applied to all trajectories, rather than only
one as for O1. This is similar to our proposed algorithm, how-
ever, here the move order is not predefined but chosen in a
greedy manner after each iteration. This often leads to a fast en-
ergy drop within the first few iterations. However, the reached
minimum is usually not as strong as the one found with a more
random strategy, such as O4.

3. To evaluate the effect of greedily choosing trajectories, O3 uses
a predefined move order. The difference to our method (Ogy) is
that instead of modifying all trajectories at once, the best one
is picked greedily. This severely limits the possible state space
changes. Consequently, the search largely stays within one re-
gion of the solution space and continuous minimization is not
able to descend much further. As a result, this optimization
leads to extremely slow convergence.

4. Og4a also uses a prescribed move order, but modifies all trajec-
tories at each iteration, which significantly speeds up the opti-
mization process. The only difference between our proposed
scheme (O4) and Oga is that a different prescribed order of the
jump moves is used. As expected, these two strategies are very
close in terms of convergence rate and the achieved results. This
shows that the move order does not play a crucial role on aver-
age.

5. Finally, O5 represents the most random strategy. First, the move
type is picked randomly each time. Moreover, a ‘bad’ jump
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Method MOTA MOTP MT ML FM ID Rc Prc
FULL 61.4 67.8 11 11 17 24 657 95.1

discr. 52.2 62.4 9 11 34 42 622 89.3
cont. 41.4 68.2 3 17 14 15 44.7 94.5
EKF 39.8 66.3 3 18 16 13 43.1 94.5

Table 5.3: Average results of a purely discrete (discr.) vs. purely continuous
(cont.) optimization.

that increases the energy is accepted with probability p, which
is in turn decreased with time: p = e~005itr This strategy
is reminiscent of simulated annealing methods. We find that
allowing jumps towards higher energy regions delays the search
and does not lead to stronger minima. A more conservative
strategy, such as Oy, finds its way towards regions of a lower
energy more quickly and more reliably.

From our results (Figure 5.18) we can thus conclude that differ-
ent optimization schedules lead to minima with a comparable energy.
The crucial aspect is to include jump moves to escape weak local min-
ima, since a purely continuous optimization is only able to search
within a small local neighborhood of the state space in case of non-
convex energies. However, the exact order, frequency, and selection
of jumps is of minor importance.

Finally, Table 5.3 shows two further experiments where we either
turn off the gradient descent based optimization and only perform
the proposed discontinuous jumps (discr.) or vice versa (cont.). As
expected, a purely continuous optimization only slightly improves
the accuracy over the EKF initialization by quickly terminating in
the same local minimum. On the other hand, the purely discrete
optimization does a good job by sampling varying configurations
of the solution space but is at the same time rather constrained to
the present shape of trajectories, since only non-moving targets can
be created, while the linear extrapolation disallows reconstructing
curved trajectories. Only by combining the two schemes (full) is it
possible to reach good optima of the proposed energy.

5.5.3 Number of targets

Due to the discrete jump moves (see Section 5.3.1), the optimization
is able to automatically infer the number of trajectories in a given
sequence, independent from the initial solution. In this section, we
investigate the question whether estimating the crowd density could
help to guide the minimization procedure to a better result. A similar
strategy was proposed by Rodriguez et al. (2011).
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weight B,y  MOTA MOTP MT ML FM ID Rc Prc

n=20.0 55.6 63.9 12 12 21 25 613 03.7
n=1.0 46.0 62.6 12 10 35 43 632 783
n=0.1 58.7 63.1 13 10 24 33 64.8 93.5

Table 5.4: Average results on four sequences. Our basic method (top row)
compared to the extended energy with the constraint (5.29) on the
number of targets.

To this end, an additional energy term

F
Ent =7 ) [Ngt(t) —N(t)] (529)
t=1

is introduced, that penalizes per-frame absolute differences between
the number of targets in the current state N(t) and the actual number
of targets present in the scene at each time Ngt(t). Note that for
this experiment, we rely on the true person count extracted from the
ground truth. In a more realistic scenario, an object density estima-
tion method can be used instead (Lempitsky and Zisserman, 2010).

Table 5.4 lists average results on four sequences (TUD-Stadtmitte
and PETS S2.L1, S2.L2, S1.L2-1). Setting 1 = 0 amounts to the con-
tinuous energy from Eq. (5.1) with the default parameter set without
occlusion modeling. Surprisingly, simply adding E. significantly
degrades the overall performance (=~ 10 percentage points). This can
be explained by the fact that the optimization is forced to insert ad-
ditional targets into crowded scenes, where the majority of targets
is missed by the object detector due to severe occlusion. Since any
information on target locations is entirely discarded in such cases,
spurious trajectories are spawned across the entire area, which leads
to extremely low precision.

Carefully tuning the weight of E. slightly improves the average
recall, mostly because the isolated detection responses — that are oth-
erwise considered as false alarms — are explained by additional tra-
jectory snippets. This is why the number of track fragmentations and
identity switches increases.

In summary, this experiment shows that the proposed model does
not benefit from the information about the number of targets present
in the scene. Presumably, a formulation that relies on a dense like-
lihood (cf. Breitenstein et al., 2009), rather than on non-maxima sup-
pressed NMS detections, could profit by this additional knowledge.

5.5.4 Comparison to ILP

Before presenting an exhaustive quantitative evaluation of our method,
we first compare it to the discrete integer linear program (ILP) ap-
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ILP Continuous

Figure 5.19: Tracking results of the integer linear program (ILP)-formulation
(left) and continuous energy minimization (right). Trajectories
appear much smoother in the latter case because they are not
constrained to discrete grid locations.

proach from Chapter 4. To that end, we run both methods using
the same pedestrian detector (Walk et al., 2010a) on three sequences:
TUD-Stadtmitte, PETS-S2L1 and PETS-S3-MF1. In more crowded sce-
narios, the number of variables in the discrete formulation increases
dramatically such that the resulting large-scale optimization cannot
be solved efficiently by non-commercial ILP-solvers.

An example frame from both approaches is shown in Figure 5.19.
Note the accurate alignment of bounding boxes on targets 1 and 5
(red and magenta) when the state is represented in continuous space.
The reconstructed trajectories remain smooth over time because they
do not rely on discretization. Note that, despite using a dynamic
model within the ILP-formulation, a trajectory can suffer from unde-
sirable jittering when a target moves parallel to one of the grid axes
but in between two rows of cells, such as target number 12 (yellow).

Average quantitative results are summarized in Table 5.5. The drop
in recall for the ILP approach can be explained by a too strict prun-
ing, such that too many tracklets are removed from the solution space
when a target is occluded for several frames in a row. A more conser-
vative pruning strategy may recover more targets but is not feasible
in practice due to the increased size of the integer program. As ex-
pected, MOTP (measuring the alignment error between ground truth
and tracker output) rises by almost 10 percentage points without dis-
cretizing the state space. The continuous method can thus clearly
show its advantages.

Method MOTA MOTP MT ML Recall Precision
ILP 71.2% 685% 87 o 783%  93.0%
Cont. 82.2% 77.1% 107 o 89.7% 92.8%

Table 5.5: Average results on three sequences.
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PETS-S2L2 PETS-S1L1-2 TUD-Stadtmitte

= | )

1 b
4. i

Figure 5.20: Qualitative tracking results of the presented method (FULL).

5.5.5 Qualitative results

Figure 5.20 shows example frames of our full model on three datasets.
The region outside the tracking area is grayed out. The presented con-
tinuous energy minimization approach is able to accurately recon-
struct full trajectories in rather challenging scenarios. For example,
in S1L1-2 (middle column), targets 1, 3 and 7 (red, blue and black) are
correctly tracked throughout the entire sequence. In the more chal-
lenging case (S2L2) targets move more randomly inside the tracking
area causing frequent occlusions. Moreover, more targets are missed
by the detector due to poor lighting conditions. Nonetheless, the re-
constructed trajectories provide a reasonable estimate for the overall
situation. Finally, the rightmost column shows a scene filmed from
a low view point, which leads to rather inaccurate target localization
on the ground plane. This causes track number 1 (red) to jump from
one person to a more distant one (between rows 2 and 3). Note that,
although in world units they may be several meters from one another,
they are only separated by few pixels on the image.

5.5.6 Quantitative evaluation

Our method is validated on seven challenging, publicly available
video sequences. Six of them are part of the PETS 2009/2010 bench-
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Sequence Method ‘ MOTA MOTP| MT ML FP FN ID FM Rcll Presn Fa/F

mean (G1) Det - - - - 900.7 158.0 - - 89.1 60.6 2.7
(low density) FULL 86.1 76.1 | 11.7 0.3 52.0 140.7 5.0 3.0 91.6 94.7 0.2
(23 GT tracks) OM | 856 748 | 117 0.0 | 1180 950 83 53 | 930 931 0.3
no OM 85.6 176.6 | 11.0 0.3 35.0 1487 7.0 5.0 88.9 96.5 0.1

KSP 69.9 68.8 | 80 1.3 883 3213 6.0 123 | 783 903 0.3

BPF 45.4 682 | 87 03 566.7 317.0 34.0 43.7 | 81.1 706 1.5

EKF 64.3 722 | 4.7 03 60.0 504.7 9.0 123 | 70.7 932 0.2

mean (G2) Det - - - - 1331.8 1919.5 - - 56.5 66.4 4.4
(high density) FULL | 47.8 58.2 | 15.8 15.2 | 291.5 1919.8 54.8 37.0 | 551 89.7 1.0
(49 GT tracks) OM | 476 59.1 | 16.8 13.8 | 337.8 1873.0 56.5 43.5 | 557 88.9 1.1
no OM 45.3 59.7 | 12,5 15.0 | 203.0 2154.5 59.8 40.0 | 50.8 91.9 0.7

KSsp 31.0 620 | 80 285 | 1000 3121.8 10.0 17.2 | 335 93.5 0.3

BPF 30.1 627 | 6.2 21.5 | 2570 2773.8 91.8 143.5 | 36.9 884 0.8

EKF 233 60.0 | 1.5 29.5 85.2 3274.5 20.0 53.2 | 251 94.9 0.2

Table 5.6: Average quantitative results on all datasets. Due to the large vari-
ability in the number of targets, we report averages over the easier
((Gz), first three datasets in Table 5.7) and the four more challeng-
ing sequences (Gz2) separately. We additionally report the average
performance of the underlying people detector. See Section 5.5.6
for more details.

mark (Ferryman and Shahrokni, 2009; Ferryman and Ellis, 2010) and
one is from the TUD dataset. All datasets and the evaluation metrics
are presented and described in detail in Section 3.3 and in Section 3.4,
respectively.

For clarity, the quantitative results for all metrics are presented in
two separate tables. Table 5.6 shows the average performance of all
methods (including the average detector performance (Det)), while
Table 5.7 reveals a detailed breakdown on each individual sequence.
Since the data exhibits a strong variability in person count, we com-
pute the average performance for two separate groups of sequences:
An easier set (G1), containing less than 10 individuals per frame,
and a more challenging group (G2), where up to 42 pedestrians are
present simultaneously. Please note that we use the same set of pa-
rameters for each approach on all seven sequences.

We report the results of six methods: The full model including oc-
clusion reasoning and the appearance model, denoted as FULL (see
also Figure 5.20 for a visual illustration). For comparison, we also
report results of our method without appearance term, both with-
out (no OM, Andriyenko and Schindler (2011)) and with occlusion
modeling (OM, Andriyenko et al. (2011)). Note that the results for
these two previous methods improve upon those presented in the
respective previous publication. The results are compared to those
of a state-of-the-art discrete tracker (Berclaz et al., 2011), based on
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the k-shortest paths (KSP) algorithm on a regular grid as well as to a
well-known boosted particle filter (BPF) method (Okuma et al., 2004).
Finally, the tracking results of an extended Kalman filter (EKF) serve
as a baseline.

OCCLUSION (0M). As expected, explicitly taking occlusion into ac-
count increases the overall tracking accuracy (MOTA) over the most
basic continuous formulation. In all cases, the number of missed tar-
gets is reduced significantly. This is most prominent in the difficult
case 5212, where approximately 8oo more targets are found through
explicit occlusion reasoning, which amounts to about two targets per
frame (cf. FN in Table 5.7). However, in less dense tracking scenarios
(G1) occlusion computation cannot show its benefits, because pedes-
trians are fully visible most of the time. In fact, the accuracy only
improves on the TUD-Stadtmitte sequence, where pedestrians are fre-
quently fully occluded due to the low viewing angle (see Figure 5.20).
In the other two cases (S2L1 and S3-MF1), the higher number of false
positives causes the overall accuracy to drop around three percentage
points such that, on average, the MOTA stays at 85.6% both with and
without occlusion modeling. On the other hand, in crowded environ-
ments the accuracy increases by over 2 percentage points on average
(from 45.3% to 47.6%), and over 5 percentage points in the most diffi-
cult case (PETS-52L2), achieving a MOTA of 57.2%. There, the number
of identity switches (120) may seem rather high. However, given the
complexity of this sequence with a per-frame average of 19 targets be-
ing inside the tracking area, one identity switch every 3 to 4 frames is
tolerable. Within the same group (G2), the number of mostly tracked
targets rises by 35%, while having almost 10% fewer trajectories that
are mostly lost without modeling occlusions. In less dense sequences,
no ground truth target is tracked for less than 20% of its length, i.e.
all trajectories are either fully or partially recovered.

APPEARANCE (FuLL). Compared to our full tracking system in-
cluding occlusion reasoning (OM), the appearance model forces some
parts of the tracks to be removed, thereby raising the amount of
missed targets by ~ 5% on average. At the same time, the num-
ber of ID swaps is almost halved for the low density group (G1) and
still reduced by ~ 3% in the difficult cases. A similar trend can be
observed for track fragmentations (FM). Only three interruptions of
ground truth trajectories are counted on average for G1. More promi-
nent is the effect on false alarms. The use of the appearance model
weeds out 56% of all false positive detections in less dense scenarios,
yielding a false alarm rate (Fa/F) of only 0.2 targets per frame. The
number of false positives still remains higher than in the most basic
case (no OM) because taking occlusions into account drives the op-
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timization towards more “hallucinated” targets without any image
evidence.

Even though including the appearance model does not lead to
higher combined accuracy score in every single case, it turns out to
improve the performance on average and must not be ignored when
the correct identification of targets is crucial.

K-SHORTEST PATHS (Ksr). For a comparison to tracking on a dis-
crete grid (Berclaz et al., 2011), the detections are projected onto the
ground plane and the target evidence is distributed to all neighboring
cells according to a normal distribution. The corresponding parame-
ters have been manually determined to yield the best possible results.
Discrete global optimization clearly outperforms the recursive tracker
(EKF) in terms of accuracy, by recovering more trajectories while better
keeping track of the target identities. However, the proposed continu-
ous scheme outperforms the discrete tracker on all sequences. More-
over, the spatial discretization limits the achievable precision. This
becomes most apparent in the low density setting (G1) where targets
can be localized more precisely by the detector. Here, the MOTP score
is 3.4% lower than that of a Kalman filter and 6.5% lower than our
best result (FULL).

BOOSTED PARTICLE FILTER (BPF). To compare our method to an-
other baseline we use a recent implementation3 of the boosted parti-
cle filter (BPF) (Okuma et al., 2004), where we tuned the parameters
to achieve the best possible results. While this method recovers sub-
stantially more tracks than the Kalman filter, it struggles to suppress
persistent false alarm detections, which in turn leads to a low pre-
cision value. Note, however, that this approach operates entirely in
image space and does not require any camera calibration.

5.6 DISCUSSION

In this chapter we have presented a continuous energy minimization
framework for multi-target tracking, which includes explicit occlu-
sion reasoning and appearance modeling. Contrary to many previ-
ous non-recursive tracking methods, the aim here was to forgo the
goal of achieving (near) globally optimal solution of the objective
and instead model (most of) the crucial aspects of tracking multi-
ple targets as closely as possible. All components are modeled by
closed-form, continuously differentiable functions, which allow for
an efficient evaluation of the gradient in closed form. The resulting
non-convex energy is minimized by both, a local gradient descent
search and a set of discontinuous jump moves. Although the energy
can only be minimized locally, an extensive experimental evaluation

3 http://www.cs.ubc.ca/~okumak/research.html
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5.6 DISCUSSION

on several challenging datasets showed that our approach leads to
very competitive results, both visually and in terms of quantitative
evaluation with respect to ground truth. Although the novel, differ-
entiable appearance model does not lead to a consistent accuracy im-
provement across all sequences, it significantly reduces the number
of false positives and identity switches, which are an important factor
in a number of applications, such as surveillance and video analysis.

One of the main drawbacks of the approach described in this chap-
ter remains the highly non-convex optimization problem that can
only be solved locally. Although the proposed jump moves offer a
great flexibility, they are executed greedily and only one jump at a
time. In some situations, a local minimum can only be escaped by
performing two (or more) discrete jumps of different types simul-
taneously, e.g. entirely removing one trajectory and instantaneously
connecting two other ones to fill in the resulting gap. Such ‘high-
order” moves seem conceivable, but a naive implementation would
lead to complex combinatorial problems that cannot be solved fast
enough for practical applications. A further limitation is the absence
of explicit data association. For some applications it may be useful
to cluster the detector responses into groups that belong to the same
individuals, for example to learn their appearance.

Both these issues are addressed in the third and final part of this
dissertation. Chapter 6 will introduce a combined discrete-continuous
energy formulation for multi-target tracking.
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Sequence Method | MOTA MOTP| MT ML | FP FN ID FM | Rcll Prcsn Fa/F
PETS-Sz2L1 FULL 90.6 80.2 | 21 1 59 302 11 6 92.4 98.4 o0.07
(795 frames) oM 88.6 76.9 | 21 o0 259 171 19 12 | 95.7 03.6 0.33
(<8 targets) no OM 91.6 79.3 | 21 0 53 262 16 11 | 934 98.6 o0.07
(23 GT tracks) KSP 803 720 | 17 2 126 641 13 22 | 838 96.3 0.16
BPF | 488 1733 | 16 1 1257 689 78 81 | 828 722 158
EKF 68.0 76.5 9 1 65 1173 25 30 | 70.3 97.7 0.08
Stadtmitte FULL | 711 655 7 0 92 108 4 84.7 86.7 o0.51
(179 frames) OM 73.4 65.0 7 0 83 102 85.6 87.9 0.46
(<5 targets) no OM 68.0 67.1 5 1 49 172 4 75.7 91.6  0.27
(9 GT tracks) KSP | 458 56.7 11 117 261 5 15 | 63.1 79.2 0.65
BPF 19.7 54.8 4 0 324 222 18 43 | 684 59.7 1.82
EKF 58.2 583 3 o0 115 172 2 6 75.1 81.9 0.65
PETS-S3-MF1  FULL 96.7 82.7 7 0 5 2 0 o0 97.7 99.0 0.05
(107 frames) OM | o947 826 7 0 12 12 3 1 97.7 97.7 0.11
(<7 targets) no OM 97.1 83.4 7 0 3 12 0 o0 97.7 99.4 0.03
(7 GT tracks) KSP 83.7 77.8 6 1 22 62 o0 87.9 954 o0.21
BPF 67.9 765 6 o 119 40 6 7 | 922 799 1.12
EKF 66.7 81.9 2 0 o 169 o0 1 66.7 100.0 0.00
PETS-S212 FULL 56.9 59.4 | 28 12 622 2881 99 73 | 655 89.8 1.43
(436 frames) OM | 572 597 | 31 8 772 2684 120 87 | 67.9 88.0 177
(<33 targets) no OM 51.9 60.1 18 11 434 3473 115 86 | 584 91.8 1.00
(74 GT tracks) KSP | 242 60.9 7 40 | 193 6117 22 38 | 26.8 921 0.44
BPF 33.1 59.8 8 17 | 657 4690 236 393 | 43.8 84.7 1.51
EKF 28.6 60.3 2 32 280 5565 74 116 | 32.9 90.7 0.64
PETS-S2L3 FULL | 45.4 64.6 9 18 169 1572 38 27 | 51.8 90.9 o0.70
(240 frames) OM | 439 614 | 11 20 214 1586 28 22 | 51.3 88.7 0.89
(<42 targets) noOM | 44.1 65.8 9 22 89 1604 38 22 | 480 946 0.37
(44 GT tracks) KSP | 288 61.8 5 31 45 2269 7 12 | 304 957 0.19
BPF 31.5 65.8 4 27 71 2110 51 72 | 35.2 Q4.2 0.30
EKF 20.4 63.3 1 35 13 2543 8 33 | 21.1 981 0.05
PETS-S1L1-2 FULL 57.9 59.7 | 19 11 148 918 21 13 | 64.5 91.8 0.61
(241 frames) OM | 578 619 | 18 8 188 875 27 20 | 66.2 9o.1 0.78
(2o targets) noOM | 59.0 592 | 16 4 118 921 22 16 | 644 93.4 0.49
(36 GT tracks) KSP | 515 648 | 16 14 98 1151 4 8 | 555 93.6 o041
BPF 37.6 66.7 | 10 14 185 1407 21 32 | 455 864 o0.77
EKF 34.6 63.2 3 17 10 1664 6 18 | 352 98.9 0.04
PETS-S1L2-1 FULL 30.8 49.0 7 20 227 2308 61 35 | 385 86.4 1.13
(201 frames) OM | 314 532 7 19 | 177 2347 51 45 | 37.4 88.8 0.88
(<42 targets) no OM 26.3 53.5 7 23 171 2530 64 36 | 326 87.7 0.85
(43 GT tracks) KSP | 19.5 60.6 4 29 64 20950 7 11 | 21.4 92.6 0.32
BPF 18.4 58.6 3 28 115 2888 59 77 | 230 882 0.58
EKF 9.5 53.1 o0 34 38 3326 28 46 | 11.3 91.8 0.19

Table 5.7: Quantitative results on all datasets. The number of frames, the
crowd density (maximal number of simultaneous targets) and the
number of ground truth trajectories are stated for each sequence.
The first three sequences show moderately crowded scenes, while
the last four are more challenging, showing up to 42 targets simul-
taneously. See Section 5.5.6 for a detailed discussion.



Part III

TRACKING IN
DISCRETE-CONTINUOUS SPACE

Parametric trajectory models are fitted to the observations
in continuous space, while data association is approached
as a multi-labeling problem that is solved via discrete op-
timization.
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When you combine ignorance and leverage, you

get some pretty interesting results.

WARREN BUFFETT
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HE two previous chapters approached the multi-target tracking
task from two orthogonal directions. The main idea described

in Chapter 4 was to reduce the state space to a countable finite set.
To this end, the tracking area is subdivided into an array of identical
disjunctive cells and all feasible paths are formed by edges between
spatially neighboring cells in adjacent frames. Tracking is then for-
mulated as an integer linear program (ILP), where binary variables in-
dicate targets’ motion between grid cells. Even though the relaxation
of the resulting ILP as defined in Eq. (4.3-4.7) forms a convex objective
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function that can efficiently be solved to (near) global optimality, the
objective itself remains a rather crude approximation. For instance,
collision between targets can only be modeled as a binary decision
and the dynamics term only incorporates a few discrete values that
depend on the chosen neighborhood.

The continuous optimization approach presented in Chapter 5 fol-
lows a rather opposite strategy. Here, no constraints are imposed
on the state space and all trajectories are represented entirely in con-
tinuous space. The plausibility of a certain solution is modeled by
several terms that are combined to form a high-dimensional, highly
non-convex energy function (Eq. (5.1)). To still enable the optimiza-
tion to find good optima of the energy, the classical conjugate gradi-
ent descent is augmented with heuristic discontinuous jumps that are
executed in a greedy manner.

In this chapter we again address the multi-target tracking task by
minimizing a global energy. However, it is conceptually different
from the two aforementioned formulations. The state now contains
both discrete and continuous variables. The discrete part of the energy
is designed as a graphical model and handles the data association,
while the continuous part assesses the goodness of the actual trajec-
tories without constraining them to a finite set of locations. The joint
estimation of all variables is formulated as the minimization of a consis-
tent discrete-continuous energy, which treats each aspect in its natural
domain. Moreover, we conduct a statistical analysis of ground-truth
data to develop a better intuition of the underlying distributions. The
results of this analysis then serve as basis for the choice of individual
components of the energy.

Two alternatives of the discrete-continuous formulation are pre-
sented in this chapter. The first one places emphasis on maintain-
ing a well-behaved optimization problem, where the discrete part of
the energy remains submodular and the (simplified) continuous part
is a smooth convex function. Therefore, the latter can be optimized
globally in closed form while the multi-labeling solution provides
theoretical optimality bounds. Parts of this work have appeared in
(Andriyenko et al., 2012). The second variant describes a more ac-
curate model that aims to correctly handle target exclusion in both
the discrete domain at the level of data association and in the con-
tinuous domain at the level of trajectories. To that end, we develop
a pairwise label cost that penalizes co-existence of mutually exclud-
ing targets. The proposed formulation is generic and can be applied
to other multi-labeling problems beyond multi-target tracking. Fur-
thermore, we propose an iterative optimization scheme based on ex-
pansion moves and message passing to locally minimize the resulting
energy. Despite the fact that the optimization becomes more complex,
experiments on challenging sequences confirm the benefits of this for-
mulation. This approach has been accepted for publication and will



6.1 INTRODUCTION

/X /X /X
. L ® - 9 ° °
.0 o — / o e '0/0)"
° ° ® o o
P 0‘ ‘\\ P
o e /(% o e
° °
°®
oS \
) 4

Figure 6.1: Given a number of unlabeled object detections and a number
of possible trajectory hypotheses, the method presented in this
chapter labels all detections and re-estimates the trajectories us-
ing an alternating discrete-continuous optimization scheme.

appear in the Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2013 (Milan et al., 2013b).

6.1 INTRODUCTION

The task of tracking multiple targets is comprised of two separate, but
closely linked challenges. Intuitively speaking, one has to establish
a unique identity for each target, and then simultaneously estimate
the motion patterns of all targets and the assignment of detections
to the targets. In realistic conditions, both tasks are complicated by
an unknown number of targets, missing or spurious detections due
to occlusion or clutter, as well as physical phenomena that impose
complex constraints between different variables (targets). Address-
ing these challenges requires coping with two distinct, but tightly
coupled modeling issues. The task of data association, i.e. labeling
each detection as either belonging to a certain target or being a false
alarm, is intrinsically a discrete problem with unordered labels. How-
ever, trajectory estimation, i.e. reconstructing the target locations over
time, is a problem that is naturally described in a continuous state
space.

Existing techniques strike the balance between the two tasks in dif-
ferent ways. An extensive body of recent work focuses on data as-
sociation and uses powerful discrete optimization algorithms to ap-
proach this NP-hard problem. However, the continuous aspect of
trajectory estimation suffers, either because trajectories have to be pre-
computed in absence of any data association (Zhang et al., 2008; Wu
etal., 2011), or the trajectories are spatially discretized (see Chapter 4).
Other techniques focus on trajectory estimation in a continuous state
space, but limit the data association to a choice from a pre-computed
set of potential labelings (Leibe et al., 2007). The energy minimization
approach discussed in Chapter 5 also deals with continuous trajectory
estimation, but sidesteps the classical data association problem.

In this chapter we aim to unify data association and trajectory es-
timation in a single model that formulates each aspect in its natural
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domain through the minimization of a consistent discrete-continuous en-
ergy. To that end we build on recent advances in multi-model fitting
introduced by Delong et al. (2012). We show how to formulate multi-
target tracking in that framework and extend the inference algorithm
accordingly. Even though two different versions of this formulation
will be introduced, the underlying methodology remains unchanged:
Trajectories are modeled by piecewise polynomials, which are fitted
to a set of target hypotheses. Given these trajectories, the data asso-
ciation is updated by solving a multi-labeling problem, taking into
account global trajectory properties such as the dynamics and persis-
tence of moving objects, as well as mutual exclusion between trajec-
tories through individual, respectively pairwise label costs. The two
steps are alternated to minimize a single discrete-continuous objec-
tive, such that trajectory estimation can take advantage of data asso-
ciation and vice versa. The principle of the algorithm is illustrated in
Figure 6.1.
This chapter makes the following contributions:

* We formulate a unified discrete-continuous energy for multi-
target tracking;

¢ we demonstrate the applicability of the label-cost framework to
the tracking problem;

* we introduce a pairwise label cost to handle mutual dependen-
cies in the model selection;

¢ we introduce an energy minimization algorithm for pairwise
label costs; and

* we provide a systematic analysis of ground-truth data to extract
the underlying statistics of multi-target tracking.

6.2 DISCRETE-CONTINUOUS MULTI-OBJECT TRACKING

To formally describe our method, we rely on the notation introduced
in Section 3.1, and already employed in Chapter 5. However, the fol-
lowing formulation requires a larger set of symbols since it deals with
two types of functions. We therefore need to extend the notation, re-
spectively undertake some minor modifications. In particular, to eas-
ily distinguish between discrete and continuous variables, a sans-serif
font (a, b, A, B,...) is used to accentuate the discrete ones. Bold letters
(A, B,...) denote discrete sets, while calligraphic letters (A, B, ...) rep-
resent continuous sets. With these modifications, N and F correspond
to the number of all trajectory hypotheses and the length of the se-
quence (in frames), respectively. Trajectories, which are represented
by splines (see below), are denoted with 7 and their temporal limits
are s and e. As before, D! is the location of one particular detection
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Symbol | Description
T | set of all N models (trajectory hypotheses)
T* C T | set of all active trajectories
J; | trajectory i
Ti(t) =Xt | (X, Y)-position of trajectory i in frame t
D | set of all detections
di | detection g in frame t
D; | position of detection g in frame t
L | set of all possible labels (trajectory hypotheses)
fq: | label of detection g in frame t
f | labeling of all detections
@ | outlier label
E | set of all edges of the CRF
Es | temporal smoothness edges
Ey | detection-level exclusion edges
I'(-,-) | distance function (data term)
¢, | unary and pairwise potentials of the CRF
h¢(7T;) | label cost for trajectory i
h}((‘J}, TJj) | pairwise label cost for trajectories i and j

Table 6.1: Additional notation used in this chapter.

response. To refer to the random variable of that detection, we use
the lowercase df. Each random variable d is assigned a label f4 € L
from the label set L ={1,...,N, @} of all trajectory hypotheses, where
@ denotes an outlier label, or equivalently a false alarm. The notation

is once again listed in Table 6.1.

6.2.1  Continuous trajectory model

In contrast to the purely discrete ap-
proach to multi-target tracking that was
discussed in Chapter 4, individual tra-
jectories are represented in continuous
space. However, unlike the explicit
sequence of per-frame coordinates as
in Chapter 5, we choose a parametric
model, in particular we use cubic B-
splines for that purpose. This turns out
to be a suitable representation for tar-
get motion in real-world scenarios, as
it avoids discretization artifacts and of-

Fig. 6.2: Trajectories are repre-
sented by 2D cubic B-
splines.

111



112

DISCRETE-CONTINUOUS OPTIMIZATION FOR MULTI-TARGET TRACKING

0o o % e S0 o g O oo o

I
e % o0 : o Oy

Figure 6.3: A safety margin is added to each side of the trajectory (right)
to avoid extreme values of the spline immediately beyond its
support (left).

fers a good trade-off between model flexibility and intrinsic motion
smoothness. More specifically, the spline for each trajectory

Ti:teRy — (X, V)T € R? (6.1)

describes the target location (X, Y)T for each point in time t, as illus-
trated in Figure 6.2. We assume that the spline has a varying num-
ber ¢; of control points and is parametrized by a coefficient matrix
Ci € R?%*4. The number of control points depends on the length of
each trajectory and is set to max(4, |F(i)/2.5]), where | -] is the round-
ing operator. We found that it is advantageous to explicitly model
the temporal starting points s; and end points e; of each trajectory
(t € [si— A, e+ Al), because the splines tend to take on extreme val-
ues outside their support otherwise, which results in highly unlikely
motion patterns. To ensure that the spline does not take on extreme
values immediately outside of [s, e], which would prevent other de-
tections in adjacent frames from being assigned to the trajectory later,
we add a safety margin of A on either side (cf. Figure 6.3).

If we for now suppose that we are already given a data association f,
we can formulate the trajectory estimation problem as minimization
of the energy

N
ER(T) =) (ER(T)+ER(T)), (6.2)
i=1

where E*(T;) models how well trajectory T; fits to the hypotheses as-
signed by f and E!*(7;) models the smoothness of T; on the safety
margin. For each trajectory we aim to minimize the weighted dis-
tance to each assigned target hypothesis — which is computed by the
distance function I' — in all valid frames:

e D(t)
EF(T) =) ) o8fi—fg wf-I'(D}X), (6.3)
t=s; j=1
where D(t) is the number of detections in frame t and wJF is the confi-
dence value of the j detection response. The Kronecker delta

1, ifa—
sa—b = Fa=b (6.4)

0, otherwise,
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ensures that only target hypotheses d} are counted that are assigned
to trajectory i. On the safety margin the spline is fit to virtual locations
Vi obtained by linear extrapolation (dotted lines in Figure 6.3):

Ee(m) = > THLX). 6.5)
si—ALt<s;
e <t<e;+A
In all our experiments we use A = 2 frames. The difficulty of minimiz-
ing Eq. (6.2) depends on the exact definition of the distance function
I". We will see in Section 6.3 that it can be solved in closed form if the
squared Euclidean distance is used for that purpose.

6.2.2 Discrete data association

Data association is often the most challenging aspect of tracking mul-
tiple targets. We formulate it explicitly as a multi-labeling prob-
lem, which has the advantage that powerful discrete optimization
approaches can be leveraged. Recalling the notation from above, our
goal is to estimate a labeling f that uniquely assigns each detection
d € D to one of the N trajectory hypotheses T = {75, ..., Ty}, or iden-
tifies it as a false alarm using the outlier label @.

A large class of labeling problems in computer vision are formu-
lated in terms of the minimization of an energy of a discrete, pairwise
conditional random field (CRF). This also serves as the starting point
here. To that end, we identify each individual detection d € D with a
vertex of the graph G = {D, E}. The energy is then decomposed into
unary and pairwise potentials:

ERME) =D dalfa, T+ D Waarlfa far). (6.6)

deD (d,d’)€E

As usual, the data term is responsible for keeping the solution close
to the observed data. To stay consistent with Eq. (6.3), we use the
same general formulation of the distance function I' between the de-
tection location D} and its associated trajectory Tj, weighted by the

detection confidence w}:

a1, T) = wj - T (D, Xi) . 6.7)

If the detection is labeled as an outlier, it is penalized with a constant
outlier cost 'y, again modulated by wJF:

b4 (2, T) = wj - Ty (6.8)

A low confidence score of the object detector usually means one of
two things: either the output is a false alarm, or the bounding box
is not properly aligned with the object. The data term incorporates
this by penalizing a larger distance to a weak detection less than to
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a confident one (Eq. (6.7)). The weight of the outliers is similarly
reduced (Eq. (6.8)), so as to promote false detections being labeled as
outliers.

While the exact form of ¢ is less important for optimization, the
pairwise connections 1 often lead to complex combinatorial problems
that are hard to optimize in general. A notable exception are energies
that belong to a certain class of functions, for which polynomial-time
inference algorithms exist. In particular, if the label space is binary
and 1 is a metric, then the global minimum of Eq. (6.6) can be found
efficiently (Kolmogorov and Zabih, 2004). Especially the first one is
a rather strong restriction that, unfortunately, cannot be met by the
proposed multi-target tracking formulation. Nonetheless, efficient
approximate algorithms exist to handle the multi-label case that we
describe here (Boykov et al., 2001). Moreover, such expansion-based
optimization provides optimality bounds on the obtained solution. In
particular, for a fixed set of trajectories T, any local minimum f of the
energy from Eq. (6.11) is guaranteed to be within a factor of 2 from
the globally optimal solution f*:

E(T,f) <2-E(T,f). (6.9)

As for the definition of 1, we will discuss two alternatives — one with
only submodular terms in Section 6.3 and one with arbitrary pairwise
connections in Section 6.5.

6.2.3 Discrete-continuous tracking with label costs

Due to the choice of formulations for both trajectory estimation and
data association, it is now possible to unify them in a single, consis-
tent energy function:

E(T6) =) ¢alfa T+ Y baelfa fa)
deD (d,d")EE
(6.10)

N
+ > BR(T) + A, - (7).
i=1

To understand this formulation, it is instructive to first consider the
case when the last term is not active (i.e. A, = 0). In this case we can
make the following observations:

* minimizing Eq. (6.10) w.r.t. the trajectories T given a fixed la-
beling f is equivalent to trajectory estimation, i.e. minimizing
Eq. (6.2), and

* minimizing it w.r.t. the labeling f given fixed trajectories 7T is
equivalent to data association, i.e. minimizing Eq. (6.6).

However, alternating minimization of such an objective will not lead
to the desired result. The most obvious problem (but not the only
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one) is that neither of the two parts includes a model selection term
to regularize the number of trajectories. Given the variable number
of targets, the alternation would thus overfit by instantiating more
trajectories to reduce the fitting error.

To overcome the problem we follow the recent work of Delong et al.
(2012) and rely on a so-called label cost term h¢(7), which specifies
a cost that is applied to each label and takes effect as long as the
labeling f contains this label at least once. More specifically, our label
cost term h¢(7)

* integrates a dynamic model that includes both linear and angu-
lar velocities and keeps trajectories within physical limits,

* encourages long, persistent trajectories, by penalizing long sec-
tions of missing evidence, as well as tracks that start or end far
from the image border, and finally

* penalizes the total number of current targets.

Although the label cost h¢(T) induces high-order cliques, it can be
decomposed into pairwise potentials that are submodular to enable
minimization by move-making algorithms (Boykov et al., 2001; De-
long et al., 2012). Thus, a strong local optimum of the energy in
Eq. (6.10) with respect to f can still be found efficiently as long as
the pairwise potentials 1 also remain submodular. However, as we
will see in Section 6.5, a more complex label cost that does not meet
the requirements for efficient inference is needed to deal with more
challenging sequences.

6.3 SUBMODULAR-CONVEX ENERGY

We will now describe the first variant of our discrete-continuous en-
ergy

E(£T) =) balfa, D)+ D Wslfa,far) +he(T), (6.11)

deD (d,d)’'€Es

where the discrete part is submodular and the (simplified) continuous
part is globally optimizable in closed form. To that end, we need to
define both types of potentials, the underlying graph structure and
the label cost.

UNARY TERMS. Recalling Equations (6.3), (6.5) and (6.7), the data
term measures the distance between the models (in our case trajecto-
ries) and the observed data (detections) and is computed by the dis-
tance function I'. This is true for both the discrete and the continuous
component of the energy. To enable efficient continuous optimization
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Figure 6.4: Neighborhood structure of the underlying pairwise conditional
random field (CRF). Detections in adjacent frames are connected
if their distance is below a certain threshold.

space

that computes the global minimum of T given f in closed form, we
employ the squared Euclidean distance:
2

I (D}, Xt) =Ag - || DF—XI| (6.12)

such that the cost for a detection djt to belong to trajectory i becomes
. 2
bt (i, T) = Ag - wj - || DF = XG|7 (6.13)

Optimizing the continuous part of E(f, T) without the label cost then
corresponds to solving a system of linear equations in a least squares
sense.

PAIRWISE TERMS. To construct pairwise cliques, all pairs of detec-
tions in adjacent frames whose distance is below a threshold T are
connected by an edge (cf. Figure 6.4):

Es = {(df,df")| D} D | <mt=1,... F=1}  (614)

The motivation for this is that nearby detections in adjacent frames
should be encouraged to have the same trajectory label. We refrain
from longer-range temporal connections, as a large threshold T would
be needed to allow for sufficient target dynamics, coming at the cost
of a dense graph and potentially inappropriate label smoothing.

The pairwise terms connect spatio-temporal neighbors and favor
consistent labelings between them based on a simple generalized
Potts potential:

Il)s(fdjt,fdﬁﬂ) = }\ll’s -0 |:'Fdjt — 'Fdﬁ+1i| . (615)

LABEL COST. The main purpose of the label cost is to include a par-
simony prior to keep the number of selected trajectories low. Here,
we exploit its ability to also assess the goodness of each individual tra-
jectory. To that end, the cost of trajectory i being part of the solution
is defined as

he(Ti) = hang(‘yi) + Riin (Ti) + hoee (Ti) + hper(‘Ti)r (6.16)
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which is a combination of terms assessing the angular and linear ve-
locities hang and hy;,, a high-order data fidelity hoe to handle occlu-
sion gaps and weed out false positives, as well as a persistence term
hper to avoid interrupted trajectories. The individual components are
derived from a statistical analysis of annotated data and will be de-
fined later in Section 6.4.

The full label cost is computed as the sum over all individual label
costs of active labels:

N

Re(T) = ) (Areg +he(Ti)), (6.17)

i=1
3d:fy=i
where Aeg is a constant penalty term that is added uniformly to all
active trajectories and acts as a regularizer.

6.3.1  Optimization

While optimization with label costs is challenging due to the fact that
they are global terms, it can be approached using the integrated en-
ergy minimization framework of Isack and Boykov (2012); Delong
et al. (2012). To that end, we alternate between minimizing Eq. (6.11)
wrt. f and 7. Data association, i.e. minimization w.r.t. f, thereby
benefits from a seamless integration of the label costs into the well
studied a-expansion framework with graph cuts, because the energy
function remains submodular. This not only leads to strong local op-
tima in practice, but also guarantees a bounded optimality gap (see
Delong et al. (2012) and Section 6.2.2 for details regarding the the-
oretical properties). Trajectory estimation, i.e. minimization w.r.t. 7,
is somewhat more challenging because the label cost is difficult to
optimize w.r.t. the trajectories T;. To cope with this, we temporarily
disregard the label cost, perform least squares minimization of the
remaining terms for each individual T; and verify that this actually
reduces the overall energy, including the label cost. If the overall en-
ergy with label cost is not reduced, the previous trajectory is retained.
The energy from Eq. (6.11) can thus only decrease or stay the same in
every iteration.

The motivation is the following: on one hand, the simplified min-
imization is convex and can be carried out efficiently in closed form,
yet is guaranteed to never increase the energy. On the other hand,
the simplification should have only a small effect in the context of the
complete optimization scheme: near good minima of the energy the
gradient of h¢(7) will be small, because the solution already obeys
the physical constraints of Sec. 6.2.3; far from the minima, a large
2h¢(T) would mean that a different path of the trajectories would
be physically a lot more plausible while still staying close to the ev-
idence, in which case it is likely to be picked up by the hypothesis
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expansion (see below). We thus prefer to defer the difficult aspects of
the energy to subsequent iterations of the discrete optimization.

GENERATING INITIAL TRAJECTORY HYPOTHESES. The optimiza-
tion is bootstrapped with an initial set of trajectory hypotheses ob-
tained in two ways:

1. We use a variant of RANSAC to fit trajectories to small randomly
chosen subsets of detections (two in our case). To maximize
the number of useful trajectory hypotheses, the random sam-
pler prefers detections that are close in space and time. More
specifically, two randomly chosen candidate detections df and
d are discarded if a linear interpolation between them would
result in a target velocity greater than s = 35cm per frame. Oth-
erwise, the acceptance probability is exp (—max(0, |s — t| —4)).
In other words, if the temporal gap between the two candidate
detections is four frames or less, and if the linear interpolation
results in physically plausible velocity, a new trajectory hypoth-
esis is generated through linear interpolation. If the temporal
gap is larger, the acceptance probability is decreased.

2. Additionally, we generate candidate trajectories using two fur-
ther tracking methods. We employ an extended Kalman fil-
ter (EKF) initialized at all detections and using a variety of pa-
rameters. This set of initial hypotheses corresponds to the one
we used as starting values for the continuous optimization in
Chapter 5 (cf. Section 5.3.2). Moreover, we use the output of a
different multi-object tracker based on dynamic programming
(Pirsiavash et al., 2011).

Although different sets of initial trajectory hypotheses may in gen-
eral lead to slightly different results, we found that the variations of
the final solution are marginal.

EXPANDING THE HYPOTHESIS SPACE. Depending on the initial
number of trajectories, a hypothesis space with a fixed number of
candidates may be too restrictive to obtain a strong minimum of the
energy. To give the optimization more flexibility, we therefore expand
the search space after each iteration, based on the current solution.
Note that additional hypotheses do not change the nature of the en-
ergy; solutions in the expanded space can only have equal or lower
energy.
New hypotheses are generated in a variety of ways:

* new trajectories are randomly fitted to all detections, as well as
specifically to those labeled as outliers using the same strategy
as above;

* existing trajectories are expanded in time or split in regions with
no detections;
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* pairs of existing trajectories are merged into new ones as long
as their combination results in a physically plausible motion;

¢ splines with a higher number of control points are added on
top of currently active ones.

Note that in all cases existing trajectories are retained to ensure that
the energy does not increase. To nonetheless keep the number of
possible trajectories from growing arbitrarily, all hypotheses that re-
mained disabled during the past few iterations or those that have a
higher label cost than the current value of the energy are removed
from the hypothesis space, which guarantees that active hypotheses
are never removed.

IMPLEMENTATION DETAILS. The model parameters are found by
an iterative random search. Starting from a set p of default parameter
values (see Table 6.3 (basic)), several optimization runs are performed.
For each trial, a new set p is generated by sampling either uniformly
from [o, p] or according to a normal distribution Ny, /10. The pa-
rameter vector that yields the best solution (measured by MOTA) is
then taken as the new mean and the procedure is iterated until con-
vergence. This strategy is advantageous in practice because it sam-
ples the parameter space more efficiently than grid search, but is still
largely unsupervised unlike manual search. The interested reader is
referred to (Bergstra and Bengio, 2012) for a thorough discussion.

To reduce the effect of random sampling, we run the optimization
with two different random seeds and pick the result with the lowest
energy. Our current MATLAB code takes ~ 0.5s per frame to converge
(excluding the object detector). With an optimized implementation
real-time performance is within reach.

6.3.2 Experiments

We show the applicability of the discrete-continuous energy from
Eq. (6.11) to multi-target tracking on three video clips: Sz2L1 and
S3MF1 from PETS as well as the TUD-Stadtmitte sequence. In Table 6.2,
we compare the performance to our purely continuous energy from
Chapter 5, Eq. (5.1). In both cases, the parameters were determined
by a random search (see above). Although the accuracy (MOTA) is
slightly better in the discrete-continuous case, the precision (MOTP)
decreases a little, probably because the splines are less flexible in rep-
resenting the exact trajectory shape as opposed to the non-parametric
trajectories in Chapter 5.

The comparison at this point serves mainly to demonstrate that the
discrete-continuous formulation works reasonably well and in fact
outperforms the purely continuous approach with greedy jumps on
the chosen dataset in terms of accuracy. However, the model pre-
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Method MOTA MOTP MT ML FM ID Rcl  Pren

Cont. easy 78.4% 76.1% 10 0 3 2 84.6% 93.1%
DCO easy 80.9% 74.1% 10 0 3 8 873% 93.6%

Table 6.2: Average quantitative results of the continuous optimization (Cont.)
and the discrete-continuous energy formulation (DCO) on three
simple sequences.

sented in this section is not powerful enough to deal with more chal-
lenging situations where targets move in close proximity over longer
time spans. To remedy this shortcoming we present a more sophis-
ticated solution in Section 6.5. But first, let us first turn to a slightly
different issue. In the following section we will present a method
for choosing a suitable representation for ¢ and h¢(7T) based on real-
world data statistics.

6.4 STATISTICAL DATA ANALYSIS

Energy minimization offers a flexible framework for modeling in vi-
sion, and CRF energies additionally give insight into the dependency
structure. But aside from the structure, the potentials also need to
be specified appropriately. In many cases the potentials (or energy
components) are handcrafted, guided by intuition or mathematical
convenience. Arguably, it is beneficial to instead derive their func-
tional form from the statistics of the modeled quantities.

Here, we systematically analyze the distribution of various tra-
jectory properties based on eight video sequences (PETS (Ferryman
and Shahrokni, 2009) and TUD-Stadtmitte (Andriluka et al., 2010))
with ground truth annotations. It is clear that this comparably small
amount of data does not cover all possible tracking scenarios. Rather
the goal here is to allow adapting the tracker to a specific application
scenario at hand. With the proposed methodology, other researchers
or practitioners can easily adjust the approach to their specific appli-
cation case.

To construct more realistic energies we analyze the empirical fre-
quencies of the trajectory properties that we model in our CRF. Note
that due to the limited amount of available ground truth data for
multi-target tracking, full CRF learning is not the goal here. Instead
we derive a suitable functional form of the potentials. To that end
we study the negative logarithm of the empirical histograms of each
property, following the definition of the Boltzmann distribution. Our
analysis is carried out for the following properties:

LOCALIZATION ACCURACY OF THE DETECTOR. While it is safe
to assume that an object detector will not always localize objects per-
fectly, the question remains what pattern the deviations follow. Fig-
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Figure 6.5: Empirical analysis of various trajectory properties in multiple
people tracking, using ground truth data. Thick gray curves de-
note our suggested models, motivated by their empirical distri-
butions (negative log-frequency shown).

ure 6.5(a) shows the (negative logarithm of the) empirical distribution
of distances between the detector output and the closest ground truth
object on the ground plane. To robustify the estimate, only nearest
neighbors within Tm are considered. We observe that the energy
grows linearly with the distance, suggesting a linear penalty for the
data term (respectively an exponential distribution on the distance)

A(D},XE) = Ag - ||DE— XY (6.18)

ANGULAR DYNAMICS. Real objects can only move within physical
limits. Here we examine the angular velocity of people from their
trajectory. Let x = x(t) and y = y(t) be the coordinates of a para-
metric planar curve and %,y and %,{ its first and second temporal
derivatives, respectively. The angular velocity at time t is then given
as

s XD —y(Ox(1)
=Tz

(6.19)

Note that the definition only applies to regular curves, i.e. for

X(t)2+y(t)? £0 V.
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(@) (b)

Figure 6.6: The high-order data fidelity hoc. addresses the problem of long
time spans during which a trajectory has no nearby detections
(a). The blue trajectory in (b) has a much lower label cost.

This is not a major limitation, since a realistic trajectory will usually
have a positive velocity. The distribution of 0 in Figure 6.5(b) suggests
representing the penalty with a Cauchy-Lorentz distribution:

Nang (Ti) = Aang »_ log (1+0(1)?) (6.20)

LINEAR DYNAMICS. In addition to the angular velocity we also
examine the linear velocity. Figure 6.5(c) shows that people mostly
move at a speed of about one meter per second. Deviations from that
speed are rare such that a quadratic penalty is appropriate:

2
Riin(T) = Ain D_ < X(t)2 +y(t)2 — 1000) : (6.21)

t

OCCLUSION LENGTH. Inmany applications, e.g. robotics and some
surveillance scenarios, targets are observed from a relatively low cam-
era viewpoint. Hence they are periodically occluded, causing the de-
tector (or any other observation model) to fail temporarily. A tracker
should nevertheless be able to bridge such short occlusion gaps with-
out spawning false new trajectories. To determine the expected length
of such occlusions, we analyze the frequencies of different durations
of occlusion (in frames) as shown in Figure 6.5(d). Although most
occlusions last less than 20 frames, longer ones do occur. We there-
fore model the penalty for trajectories that are not supported by de-
tections through multiple consecutive frames as a Cauchy-Lorentz
distribution:

hocc({-Ti) = Aoce Z log (] + |G|Jz) ’ (6-22)
j€gaps(T;)

Here, |G|; is the number of frames in which trajectory i has no detec-
tions close by (cf. Figure 6.6).

PERSISTENCE AND LENGTH. Assuming that the scene does not
contain doors or other openings where objects might disappear, a
trajectory will always start and terminate close to the border of the



65 MODELING MUTUAL EXCLUSION

4 ,
Track Length
=3
ey
(0]
>
o
Lo
(]
=
kS
L1
8
- [no. of frames]
% 100 200 300

Figure 6.7: Trajectory length does not resemble any particular distribution.

image (or the tracking area). An extensive data analysis of this prop-
erty is thus not necessary. To prevent fragmented trajectories and
allow a buffer entry zone T we impose a soft threshold

hper(Ti) = Aper - min <T, dist(i]'it*,border)), (6.23)

where t* € {s;, ¢;} stands for birth or death time of a trajectory.

The temporal length of trajectories varies significantly across se-
quences and does not exhibit a consistent behavior as can be seen in
Figure 6.7. We therefore do not make any assumptions about it.

65 MODELING MUTUAL EXCLUSION

When tracking multiple targets in crowded scenarios, modeling mu-
tual exclusion between distinct targets becomes important at two lev-
els:

1. in data association, each target observation should support at
most one trajectory and each trajectory should be assigned at
most one observation per frame;

2. in trajectory estimation, two trajectories should remain spatially
separated at all times to avoid collisions.

Yet, the formulation in Section 6.3 sidesteps these important con-
straints to enable efficient optimization.

In this section, we address them using a similar mixed discrete-
continuous conditional random field (CRF) as before, but explicitly
model both types of constraints: Exclusion between conflicting obser-
vations with supermodular pairwise terms, and exclusion between
trajectories by generalizing global label costs to suppress the co-occur-
rence of incompatible labels (trajectories). Mutual exclusion is thus
addressed both at the data-association and at the trajectory level. Typ-
ical failure cases of the energy in Eq. (6.11) and the solution proposed
in the following sections are illustrated in Figure 6.8.

123



124

DISCRETE-CONTINUOUS OPTIMIZATION FOR MULTI-TARGET TRACKING

Figure 6.8: Typical failure cases (top) are addressed with the proposed
discrete-continuous CRF (bottom): Detections are forced to take
on different labels (a) and physically overlapping trajectories are
suppressed even if they do not share detections (b).

6.5.1 Detection-level exclusion

We first describe how we integrate mutual exclusion at the detection
level. Assuming a target size s, it is impossible that two detections
originating from the same frame and being at least the distance s/2
apart are caused by the same object. Therefore, following the same
notation as before, we introduce an exclusion term

$ ’ fq =far
Wx(fg fa) = 7% 4 (6.24)
0, otherwise

to all edges between simultaneous detector responses

(d,d") € By = { (d,d) | 2],

D} —Di| > 3 }. (6.25)

The penalty Py is thus incurred if two distant detections are assigned
the same trajectory label. For detections that are very close to one
another, on the other hand, it is reasonable to accept multiple assign-
ments, since state-of-the-art object detectors sometimes erroneously
produce multiple outputs from the same object. This can occur even
after non-maxima suppression. The exclusion factors are illustrated
in Figure 6.9(b).

Note that only considering exclusion at the detection level is not
enough in order to prevent collisions between targets. In fact the
optimization may otherwise be forced to pick two almost identical
trajectories in order to satisfy these inter-object constraints. It is thus
crucial not to disregard the path of the actual trajectories.
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Figure 6.9: Factor graph of the underlying CRF with black circular nodes rep-
resenting the random variables (trajectory hypothesis for each
detection) and square nodes representing the pairwise potentials.
For clarity, all unary and high-order potentials are omitted. In
addition to simple temporal smoothing factors (shown in red on
the left-hand side), we model pairwise exclusion between detec-
tions within the same time step (blue, subset shown) to prevent
implausible data association (right).

~

6.5.2 Trajectory-level exclusion

Let us now turn to the more challenging task of enforcing exclusion
at the level of continuous trajectories. It is obvious that multi-target
tracking should take care to prevent situations where two or more
targets occupy the same physical space at the same time. Unfortu-
nately, such constraints lead to hard optimization problems. We will
describe our algorithm later in Section 6.5.4. Let us first define the
pairwise label cost and its application to multi-target tracking.

During the discrete optimization step (see Eq. (6.6)) the trajectories
remain fixed. To avoid collisions it is therefore necessary to select only
those targets (or labels) with no significant spatio-temporal overlap.
To that end, we introduce a pairwise label cost. Its general purpose is
to impose a penalty on the energy if there exist two labels that are
unlikely to appear simultaneously. In the present case of multi-target
tracking such unlikely events occur when two trajectories come too
close to each other, causing physically implausible situations. It is
therefore reasonable to apply a suitable penalty ¢ if and only if two
mutually exclusive trajectories are active:

AT, T5), A d fg=iNfy =]

h{ (T3, T5) = (6.26)

0, otherwise.

In our case, the co-occurrence penalty is proportional to the spatio-
temporal overlap between two trajectories:

teO(T;,7;)

which is computed by summing the mutual overlap over all frames
during the common lifespan O of the trajectories. The overlap is
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¢(r.7,)

Figure 6.10: The distance between two targets is modeled by an isotropic
sigmoid (left), while the spatio-temporal overlap between two
trajectories is computed by accumulating the overlap at each
time step.

approximated with an isotropic sigmoidal function around the center
of the target (cf. Figure 6.10 (left)):

]
t — . _
i (1 exp(—oa\\X?—XM+ob)>' (628)

The two parameters o, and oy, control the size and the falloff of the
sigmoid and are directly related to the application-specific shape of
the targets. For our experiments we set o, = 0.05 and o, = s-0,/2,
where s is the target size as in Chapter 5 (Eq. (5.6)). The spatio-
temporal overlap is illustrated in Figure 6.10.

It is important to note that this formulation of a co-occurrence la-
bel cost is general and not restricted to multi-target tracking. It can
trivially be transferred to other applications that involve multi-model
fitting, such as semantic segmentation or motion estimation. Note
that Ladicky et al. (2010), for example, use a co-occurrence cost to
prevent unlikely labeling configurations in the context of semantic
segmentation. There, however, the cost is overestimated to keep infer-
ence tractable. We prefer to model the cost exactly, but can no longer
guarantee global optimality of each expansion step.
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6.5.3 Advanced discrete-continuous energy

It remains to define the complete CRF energy with mutual target ex-
clusion:

E(f,T) = Z (fg, T)+ (unaries)
d
Z Pg(fy, fg )+ (temporal smoothness)
(d,d’)€Eg

Z Px(fy,fqr) + (detection-level exclusion)

(d,d’)€Ex
D he(Ti)+ (single label cost)
i
Z h?(‘J'i,Tj), (pairwise label cost) (6.29)
i,j#i

with the following components:

UNARY TERMS. The unaries ¢ measure how well the trajectories
follow the detector evidence. Here, we use the distribution derived
from the statistical analysis suggesting a linear penalty term (see also
Eq. (6.18)):

bgr (1, T) = w}-Ag - |DE =X (6.30)

PAIRWISE TERMS. The first pairwise term g is the same as be-
fore (cf. Eq. (6.15)) and encourages temporally smooth data associa-
tion with a standard generalized Potts model (see Figure 6.9(a)). The
second pairwise term px models the detection-level exclusion con-
straints from Eq. (6.24).

LABEL cOsT. The first higher-order term (label cost) h¢(T) was
defined in Eq. (6.17) and models the plausibility of each trajectory
in terms of its dynamics, data fidelity and persistence. The second
higher-order term h%((‘.Ti, TJj) is the pairwise co-occurrence label cost
from Eq. (6.26) for trajectory-level exclusion.

6.5.4 Optimization

Like in Section 6.3 we again perform MAP estimation by alternatingly
minimizing the energy of the discrete and the continuous variables.
The minimization scheme is summarized in Algorithm 2. Let us now
discuss each step in more detail.
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Figure 6.11: Factor graph encoding of the unary and pairwise label cost be-
fore expanding on «. Random variables and their current la-
bels are represented by solid circles, while auxiliary variables
are outlined with dashed circles. Solid squares represent unary
(black) and pairwise (colored) terms, respectively. The corre-
sponding potentials are depicted on the right with L° and L®
being the respective label cost for a single label and a pair of
labels. Note that all factors that are unrelated to the label cost
are omitted for clarity.

DISCRETE ENERGY MINIMIZATION. As before, we follow an ex-
pansion move-based strategy to minimize the discrete part of the
energy (6.29). However, the current situation is more difficult be-
cause the proposed pairwise label cost introduces non-submodular
components. Here, we develop a way to seamlessly integrate this co-
occurrence potential between two labels into the CRF. To simplify the
treatment, we will describe the potential in the context of our expan-
sion move-based MAP estimation approach. In particular, we describe
the corresponding factor graph for a single x-expansion step, where
0 corresponds to no label change and 1 means a variable is switched
to label «. An illustration of the factor graph (without unary and
pairwise terms) is depicted in Figure 6.11.

Let us first look at the standard per-label cost h¢ that we used in
Section 6.3. Similar to Delong et al. (2012), one auxiliary node for each
existing label is added (dotted circle) and connected to each variable

Algorithmus 2 : Discrete-continuous energy minimization

input :Initial trajectory hypotheses, detections D
output :Labeling f for D, final trajectories T*
while — converged do
Obtain labeling f by minimizing Eq. (6.6)
Refit trajectories T by minimizing Eq. (6.2)
Modity hypothesis set
end
return f, T*
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that carries the corresponding label. However, here we use a different
encoding for the auxiliary variables, which act as indicator switches
for each label: The auxiliary variable contributes the cost L° of having
a certain label only once if it is switched on, otherwise its associated
cost is 0 (black factors). An infinite pairwise cost prevents the indi-
cator from being off when there is at least one node with the corre-
sponding label (blue and green factors). While this encoding yields
supermodular costs (the overall cost is already non-submodular due
to Eq. (6.24)), its purpose will become apparent shortly.

We now turn to the pairwise label cost. Having the same graph
structure as above, it is possible to insert a connecting factor between
each pair of auxiliary variables (red and magenta). To increase the
energy value in case when both labels exist simultaneously, a penalty
L* is applied if and only if both corresponding auxiliary variables
are switched on.

Since the energy is non-submodular, we use sequential tree-reweighted

message passing (TRW-S) (Kolmogorov, 2006) for each binary expan-
sion step. As it is not guaranteed that each expansion step finds a
global minimum of the binary sub-problem, we found it beneficial
to add a greedy search step in each expansion move: for each la-
bel in turn we check whether the energy can be decreased further
by entirely removing that label from the current solution (i.e. replac-
ing the trajectory by the outlier model). The discrete optimization
is implemented using OpenGM" (Andres et al., 2012). We have also
experimented with other inference methods such as iterated condi-
tional modes (ICM) or quadratic pseudo-boolean optimization (QPBO),
however in our experience, TRW-S showed superior performance both
in terms of computational time as well as the obtained solution.

It may seem unnatural to use message passing within x-expansion
instead of an st-cut, since message passing algorithms are generally
capable of performing inference in multi-label problems. The mo-
tivation is that directly running message passing on the multi-label
problem is prohibitively slow even for very small graphs due to the
global factor in the energy. The factor graph for each expansion move
on the other hand is much smaller.

Note that during inference both higher-order terms are transformed
in each x-expansion step to pairwise ones using auxiliary variables,
as outlined in Figure 6.11. Also note that the energy can only be
minimized approximately: finding a global optimum of an energy of
the general form from Eq. (6.29) in polynomial time is only possible
for binary energies with |L| < 2, and only if the discrete part of the
energy is submodular and the continuous part is convex.

CONTINUOUS ENERGY MINIMIZATION. The continuous part of
the energy function (6.29) is not convex and cannot be minimized in

1 http://hci.iwr.uni-heidelberg.de/opengm?2
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closed form. We therefore perform a simplex-based search (Nelder
and Mead, 1965) over the continuous parameters of all active trajecto-
ries T*, starting from a least squares approximation of the objective to
find a better minimum. In practice, we employ MATLAB’s implemen-
tation fminsearch of the Nelder-Mead simplex algorithm (Lagarias
et al., 1998).

We minimize a simplified energy including only the unary terms ¢
and the continuous label costs hang and hy;,. The solution of this sim-
plified energy minimization step is discarded if it does not decrease
the full CRF energy from Eq. (6.29). Since each iteration the hypothe-
sis space T is updated, the optimization is nevertheless able to escape
poor local minima.

PRUNING. To speed up inference, we prune the graph in two dif-
ferent ways. We reduce the connectivity by disregarding neighbors
from Ex that lie too far apart. In our experiments, we prune all edges
between detections that are more than 2 meters away from each other.
This does not change the CRF energy in the relevant portion of the
solution space (i.e. near a sensible minimum), because the data term
already ensures that such detections will never be assigned the same
label. Moreover, the label space of each random variable is reduced
to only those (few) trajectory hypotheses that lie within reasonable
reach of a detection (in our case 1 meter). Again, this will not change
the energy of any remotely plausible solution, for the same reason as
above.

PARAMETERS. Our advanced model has ten parameters that can
be tuned individually, eight for the basic energy and two to control
the weight of detection- and trajectory-level exclusion, respectively.
To find a good set we follow the same random search strategy as
discussed in Section 6.3.1. A set of values for each variant that was
used throughout the experiments in the following section is listed in
Table 6.3. The values have been rounded for better readability.

It is worth pointing out that the weight Ay,;, governing the spatio-
temporal smoothness between detections in adjacent frames, is set
rather low in the case of the full model. This is not surprising be-
cause situations with overlapping trajectories, such as in the example
illustrated in Figure 6.8 (top right), are resolved by explicitly handling
exclusion at the level of trajectories. Note that tracking is performed
in world coordinates with millimeters as units of length. Therefore,
the values for Ay, controlling the weight for linear velocity are natu-
rally rather small.

SLIDING WINDOW. Even though the presented method can be ap-
plied to entire sequences, we found it beneficial, both in terms of
speed and in terms of accuracy, to perform the optimization on smaller
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Parameter Description basic =~ FULL
A unary weight ¢ 201.24 125.96
Ay smoothness weight s 1.89 0.08
Iy outlier cost 334.90 111.63
AMlin weight hy;, 5.9e-05 1.7€-05
Aang weight hang 0.07 1.11
Aoce weight hocc 0.74 0.38
Aper weight hper 0.13 0.14
Areg weight hyeg 0.48 1.11
Py det. exclusion penalty  0.00 27.02
Ax traj. exclusion penalty  0.00 19.62
- entry buffer / 20 [em]
threshold for Eg
s target’s size 35 [cm]

Table 6.3: Typical parameter settings for running the discrete-continuous
energy-based multi-target tracking. The table shows parameters
for both the basic submodular energy (Section 6.3, Eq. (6.11)) and
the advanced energy with exclusion modeling (Section 6.5, Eq.

(6.29)).

temporal windows. The length of each window is set to 50 frames
and successive windows overlap by 15 frames. To ensure seamless
correspondence between adjacent windows, all trajectories with a sig-
nificant spatio-temporal overlap within the overlapping time interval
are merged.

6.6 EXPERIMENTS

We evaluate our tracker on eight video sequences. Besides the widely
used PETS S2.L1 sequence, we also include four more challenging sce-
narios from the PETS dataset as well as the TUD-Stadtmitte sequence.
Finally, we also test our method on the sequences Bahnhof and Sunny
Day from the ETH Mobile Scene (ETHMS) dataset. Note that we do
not use the available camera calibration and depth maps for these se-
quences, but rather track the pedestrians in image space. For further
details on the chosen datasets please refer to Section 3.3.

As usual, we report the widely accepted CLEAR MOT metrics eval-
uated in 3D with a 1m hit/miss threshold. To better assess the qual-
ity we additionally report the numbers of mostly tracked (MT) and
mostly lost (ML) trajectories, along with the numbers of track frag-
mentations (FM) and identity switches (ID). The exact definitions of
these metrics are thoroughly discussed in Section 3.4. Table 6.7 also
shows the false alarm rate per frame (FAF). All figures in this table
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Method MOTA MOTP MT ML FM ID Rcll Prcn

Cont. 54.9%  66.7% 13 14 22 29 59.1% 95.5%
DCO (no exc.) 53.6% 63.8% 13 11 33 43 61.3% 90.9%
DCO (FULL) 572%  651% 14 13 24 30 633% 92.9%

Table 6.4: Average quantitative results on six datasets of the continuous en-
ergy (Cont.) and of our discrete-continuous optimization without
(no exc.) and with proper exclusion modeling (FULL).

are produced with a 2D evaluation protocol using a publicly available
implementation®. The evaluation is furthermore based on the detec-
tor output and the ground truth of Yang and Nevatia (2012a). As we
will see in Section 7.1 this is essential for a fair comparison.

6.6.1  Comparison to the continuous energy

Before discussing the contributions regarding the discrete-continuous
formulation, let us first compare its performance with respect to the
continuous energy from Chapter 5. To enable a fair comparison, we
restrict the state space to the same tracking area as was used in the
previous chapter by discarding all detections that lie outside that area.
The parameters of both methods were determined in a similar man-
ner by performing a random search. Since our discrete-continuous
approach does not model appearance nor explicitly handles occlu-
sions, we compare it to the basic continuous formulation (no OM).

Quantitative results, averaged over six sequences are presented in
Table 6.4. We can see that without taking mutual target exclusion
into account (no exc.), the discrete-continuous optimization cannot
quite reach the performance of the continuous energy minimization.
Low precision as well as the high number of identity switches are
the result of overlapping and poorly localized trajectories (cf. Fig-
ure 6.8 (top)). However, the advanced discrete-continuous optimiza-
tion (FULL) with explicit exclusion modeling is able to outperform
the continuous formulation on average in terms of accuracy (MOTA).
Although the spline models in the discrete-continuous case are able
to achieve higher recall by bridging longer occlusions, they also pro-
duce more spurious trajectories leading to a lower precision value,
as we will discuss in Section 6.6.5. Multiple Object Tracking Preci-
sion (MOTP) decreases by almost 2 percentage points, perhaps because
the splines with only few control points are less flexible than a per-
frame representation. A lower MOTP score may also be caused by the
higher number false positive trajectories when they drift away from
the target leading to a larger misalignment error.

2 http://iris.usc.edu/people/yangbo
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PETS S2L2 Bahnhof Sunny day

Figure 6.12: Exemplar frames of multi-target tracking by discrete-continu-
ous energy minimization.

6.6.2 Qualitative results

Example frames from three sequences overlaid with the output of
our discrete-continuous multi-target tracker are shown in Figure 6.12.
Most targets are successfully recovered, even in such crowded scenar-
ios. However, false positives, such as the yellow box on the sign in
the top row (middle), remain a frequent source of errors. Interestingly,
the proposed approach also recovers true targets that are counted as
false positives. In particular, the two bottom frames of the Sunny day
sequence contain a mannequin in the shop window on the right (no.
32) and a man inside a phone booth on the left (no. 30) that are both
missing in the ground truth. Identity switches and target losses can-
not be completely avoided either. Note how track number 5 in the
right column switches from one target to the one right beside it and
later disappears entirely due to missing detections.
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Method MOTA MOTP MT ML FM ID Rcll Pren
basic 41.6% 61.1% 12 10 53 82 627 742

det. exclusion 46.7% 63.0% 11 12 38 48 584 865
traj. exclusion 46.6% 62.7% 10 12 49 69 57.8 86.3

FULL 51.5% 64.4% 11 13 43 54 57.0 093.7

Table 6.5: Cross-validation results on six sequences.

Sequence MOTA MOTP MT ML FEM ID

S2.L1 90.5% 76.3% 17 0 32 43
S2.L2 463 % 603% 10 15 114 132
S2.1L3 373 % 656% 9 23 18 22

S1.Li-2 57.1% 66.4% 17 13 19 21
S1.L2-1 262% 581% 7 25 18 20
Stadtmitte 55.4% 64.2% 4 0 2 2

Table 6.6: Results of our full method on each test sequence.

6.6.3 Comparison to the basic energy

We systematically compare the individual contributions presented in
this section against the basic discrete-continuous energy from Sec-
tion 6.3. To make this comparison as fair as possible we use the same
ground truth data and detector evidence throughout our experimen-
tation. Moreover, we determine all required parameters by a random
search over the parameter space via leave-one-out cross validation (cf.
Section 6.5.4 for a discussion on random search).

Table 6.5 shows the cross-validation results averaged over all test
sequences. The top row (basic) is our proposed discrete-continuous
method without proper inter-object exclusion modeling, i.e. both Py
and Ax are set to 0. The next two lines present two intermediate re-
sults: only adding the detection-level exclusion factors, i.e. Ax = 0
(det. exclusion), and only adding the co-occurrence label cost, i.e. Ex =
0 (traj. exclusion). Finally, the last row shows the average cross-validation
results of our full model (FULL) from Eq. (6.29).

We observe that modeling exclusion on either level boosts the tracker
performance, but it is crucial to handle mutual exclusion on the de-
tection and trajectory level simultaneously to achieve best possible
results. MOTA rises by ten percentage points while the number of
identity switches is almost halved. To ease comparison with other ap-
proaches, we also give per-sequence results (Table 6.6) using a single
set of parameters.
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Method Rcl  Pren GT MT PT ML Frag ID
Our method 77.3% 87.2% 124 66.4% 254% 82% 69 57
DP 67.4% 91.4% 124 502% 39.9% 9.9% 143 4
PIRMPT 76.8% 86.6% 125 58.4% 33.6% 8.0% 23 11

Online CRF  79.0% 90.4% 125 68.0% 24.8% 7.2% 19 11

Table 6.7: Quantitative comparison to three state-of-the-art methods on the
ETHMS dataset: The dynamic programming (DP) approach of
Pirsiavash et al. (2011), Person Identity Recognition based Multi-
Person Tracking (PIRMPT) of (Kuo and Nevatia, 2011) and a
tracklet-based CRF tracker (Yang and Nevatia, 2012a).

6.6.4 Further quantitative results

We also evaluate our method on video sequences Bahnhof and Sunny
day from the ETHMS dataset (Ess et al., 2008). Both sequences are
filmed from a moving platform in a busy urban environment. Note
that the dataset was captured by a stereo camera and provides an
image pair for each frame. However, we do not rely on additional
depth information and thus only use the left images throughout the
experiments. Also note that we perform tracking directly in image
space since the available camera calibration is rather unreliable for
this dataset.

We use the detector output from Kuo and Nevatia (2011); Yang and
Nevatia (2012a) and run their publicly available evaluation script to
produce the results summarized in Table 6.7. State-of-the-art meth-
ods for these sequences heavily rely on tracklet linking through sig-
nificant periods of occlusion, based on appearance, scale and other
cues. Although it is conceivable to include occlusion reasoning and
an appearance model in our CRF formulation, such steps lie beyond
the scope of this dissertation and are left for future work. We there-
fore postprocess our tracker output with a simple extrapolation-based
track linking scheme to explore the capabilities of our method when
combined with such track linking. More precisely, we compute a sim-
ilarity matrix combining spatio-temporal distance, scale and appear-
ance to compute a score for each pair of tracks. All trajectory pairs
with a similarity score above a certain threshold are then merged in a
greedy fashion. Both the threshold and the weighting parameters for
the individual cues are determined via cross-validation.

While our simplistic linking scheme leads to comparatively many
ID switches, the high recall and precision numbers indicate that our
discrete-continuous CRF yields a competitive basis for appearance-
based occlusion handling.
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Figure 6.13: Limitations of the current approach. Occlusion causes a trajec-
tory to switch from one target another in both cases. The frame
number for each image is shown in the upper right corner.

6.6.5 Limitations

Although the proposed method shows encouraging results, an aver-
age accuracy of about 50% (cf. Table 6.5) is an indicator that there
is still room for improvement. We would like to point out two ex-
amples for typical failure cases, which are illustrated in Figure 6.13.
The top row shows three images being 10 frames apart, where the
person in light blue hides behind a scene occluder (the lamp post in
the foreground), while a different person is simultaneously revealed
in the same region. The tracker confuses the two as being the same
person and reconstructs one single trajectory (blue) causing two track
fragmentations and two identity switches. Note that, despite hav-
ing distinct colors, a naive frame-wise appearance comparison would
probably not suffice to resolve this situation due to occlusion. A long-
range connection that spans over frames 140 and 160 may provide a
more discriminative cue to prevent such failures.

A second example in the bottom row shows a somewhat related is-
sue. Again, a target is occluded (by the person with the black bound-
ing box), while another one reappears after occlusion (the couple on
the right). However, in this case, a time span of about 20 frames
lies between the two events. During that time, trajectory number 71
is able to ‘survive’ although no detections are present to support it.
This situation is particularly challenging for any appearance model.
First, both targets wear similar clothes, making it hard to distinguish
one from the other. Second, targets appear rather small on the im-
age. Due to low video resolution, these pedestrians are only about
50 pixels high, which complicates extracting enough valuable color
or texture information. Finally, there is a large variation in lighting
causing drastic changes in the targets” appearance. One possible way
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to nevertheless prevent such tracking failures is to evaluate the detec-
tor score in all frames along the trajectory hypothesis to determine its
data fidelity more accurately. This may help weeding out more false
positive trajectories thereby improving the overall performance.

6.7 DISCUSSION

In this chapter we presented a global multi-target tracking approach
that unifies data association and trajectory estimation in a consis-
tent discrete-continuous energy. This formulation simultaneously ad-
dresses several drawbacks of previous methods. In contrast to the
continuous energy approach from Chapter 5, the discrete problem
of data association is handled explicitly within a graphical model
framework, which enables leveraging powerful discrete optimization
techniques. Moreover, as opposed to greedy local jump moves, the
multi-labeling problem is able to make larger steps in search for a low-
energy configuration. At the same time, the actual target trajectories
are defined in their natural, continuous domain. This allows one to
avoid discretization artifacts that arise when tracking is performed
on a discrete grid as in Chapter 4. Moreover, trajectories directly ap-
proximate the true target motion such that smoothing in a separate
post-processing step is not necessary (Zhang et al., 2008; Yan et al.,
2012).

We presented two variants of the discrete-continuous energy. The
first one includes a smoothness prior and employs a quadratic dis-
tance term such that both parts of the energy are easily optimizable.
The complete energy is minimized iteratively by solving data associ-
ation to (near) global optimality by x-expansion with label costs, and
analytically fitting continuous trajectories to the assigned detections.
The second variant handles inter-object exclusions on two levels:

e at the data association level with non-submodular constraints,
such that each detection may only explain one target and vice
versa;

e at the trajectory level, where a novel co-occurrence label cost
penalizes solutions with overlapping or colliding trajectories.
Note that the proposed pairwise label cost formulation is generic
and therefore also applicable to other problems that involve
model-fitting.

We suggested an expansion move-based optimization scheme to han-
dle the non-submodular energy with global co-occurrence label costs.
Our experiments show state-of-the-art results on public benchmarks,
with clear improvements from the simultaneous exclusion constraints.
In both cases, a statistical data analysis was used to derive appropri-
ate CRF potentials for the label cost. Future work may consider incor-
porating appearance cues into the CRF to better disambiguate targets
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after long-term occlusions. A further consideration may be to intro-
duce long-range connections to the factor graph to explicitly handle
temporally distant detections. Another promising avenue to follow
would be to refine the continuous optimization step to include more

aspects of the complete energy.
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E HAVE now seen three different energy-based approaches to
multiple target tracking. All three present technical contribu-
tions to this field of research, which is supported by state-of-the-art
results. Nonetheless, some of the more practical issues have so far
been left untouched. In this chapter we will discuss several impor-
tant facets of this work. The first one is pragmatic and deals with
the problem of objectively evaluating and comparing different multi-
target tracking methods. We will point out some of the ambiguities in
evaluation protocols and also discuss some of the problems related to
obtaining, or even defining ground truth. The second part discusses
some pitfalls that arise with iterative optimization methods, such as
the ones presented in this dissertation. Finally, the third part of this
chapter addresses the ethical aspect of multi-target tracking. We will
turn to the issue of privacy when tracking people and briefly discuss
the benefits, but also the potential dangers that a fully developed
technology may carry.

7.1 ON EVALUATION AND GROUND TRUTH

Quantitatively evaluating computer vision algorithms is not a straight
forward task. The reasons for that are varied. On one hand it is not al-
ways obvious what the ‘correct” solution should look like. Arguably,
for some application this question is easier to answer than for oth-
ers. In low-level tasks such as image restoration or deblurring, the
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ultimate goal is usually to precisely reconstruct the original, unmodi-
fied image. Even in this seemingly clear case the ground truth might
be either unavailable or contain some level of noise itself (Zoran and
Weiss, 2009). For a more high-level problem like image classification
it should be easy to answer the question of whether a certain object
is present in the image or not. However, the answer becomes am-
biguous if the object is only partially visible, either due to occlusion
or due to cropping. Looking at tasks like segmentation, the situation
becomes even worse. When five people are asked to draw the out-
line of the same object in the same image, one will probably get five
different contours.

Let us look at multi-target tracking. Here, the ground truth is not
always well-defined either. Although most human annotators would
agree on the presence or absence of a person in a certain image region,
pinpointing the precise location poses a more difficult task. As a
matter of fact, we will see in the following section how large the
spatial displacement between independent annotations can be.

The second challenge of evaluation is measuring the similarity be-
tween the obtained solution and the ground truth. To this end, several
protocols and metrics that we discussed earlier in Section 3.4 have
been proposed and have in fact become widely accepted. Nonethe-
less, their definition remains somewhat ambiguous and involves meta-
parameters, such as the overlap threshold.

Another important issue specifically concerns tracking-by-detection
methods. These methods heavily rely on the output of an object detec-
tor. As a consequence, a better detector will most likely yield better
tracking results. Therefore it is essential that the same input, i.e. the
same set of detections, is used if one is interested in only comparing
the merits of different tracking algorithms themselves.

In summary, all the aspects mentioned above contribute to the chal-
lenge of obtaining an objective performance evaluation of a particular
tracking method. We will now discuss these issues in more detail.

7.1.1  Obtaining ground truth

Annotating images is a tedious task. The most naive way, which
was frequently followed in the past, is to draw rectangles around
the objects of interest to define their bounding boxes frame by frame.
There are, however, several software packages that assist the user in
one way or another to facilitate the annotation process.

ANNOTATION TOOLS. The annotations for the TUD-Stadtmitte and
all the PETS sequences that were used throughout this work were cre-
ated using the AnnoTool by Oliver Schwahn. It allows one to linearly
interpolate the location and the size of the bounding box between
key frames, which leads to a significant speed up. The tracks were
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AnnoTool MultiView

Annotate every object, even stationary and obstructed objects, for the entire video @ Instructions

o Oraw a box around one of
) " these objects:
\ o Car
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D0 not annotate the same
object twice.
~cart
) Outside of view frame
-/ Occluded or obstructed

VATIC

Figure 7.1: User interfaces of three different annotation tools (see text for
details).

smoothed afterwards to reflect natural people motion. While key-
frame interpolation facilitates the annotation process, one must bear
in mind that it also leads to an approximation since the ‘true’ tar-
get motion hardly ever precisely follows a linear (or a higher order
polynomial) pattern.

The Video Annotation Tool from Irvine, California (VATIC)® is a
more recent annotation tool presented by Vondrick et al. (2013). It
offers an integrated interface to Amazon’s Mechanical Turk such that
one can leverage the power of crowdsourcing for the annotation task.

Finally, Utasi and Benedek (2012) provide an annotation software
specifically designed for a multi-camera setup®. Interestingly, they
define a target by its actual height in world units and the rectangular
area that it occupies on the ground plane instead of the usual bound-
ing box representation. Screenshots of all three annotation tools are
shown in Figure 7.1.

ANNOTATION QUALITY. As we already briefly discussed above,
different annotations of the same video sequence may vary quite
severely, both in terms of quality and in terms of the actual infor-
mation that is provided (see Figure 7.2). Many of the widely used
tracking datasets including the ETHMS and the TUD sequences were

1 http://mit.edu/vondrick/vatic
2 http://web.eee.sztaki.hu/~ucu/mvatool
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(a) (b) (©

Figure 7.2: Different level-of-detail. Next to unordered bounding boxes (a),
annotations for multi-target tracking should also provide the cor-
responding ID of each box (b). In some cases even a pixel-level
segmentation mask is available (c).

originally annotated for the purpose of evaluating person detection.
The annotations that were originally provided by the authors of these
datasets only included bounding boxes of people without their cor-
responding IDs. Moreover, partially occluded pedestrians (approxi-
mately 50% and more) are ignored by the annotators since they are
not expected to be found by the detector. An important ability of a
multi-target tracker, however, is to keep track of individuals over time,
even through complete occlusions. Therefore, performance results
reported on these sequences either ignored the number of identity
switches (Choi and Savarese, 2010) or resorted to manual counting
(Mitzel et al., 2010), which is both tiresome and inaccurate.

Annotation data can also be provided on different levels-of-detail,
both spatially and in terms of temporal resolution. For example, Hor-
bert et al. (2011) provide pixel-level segmentation masks for each per-
son in the TUD-Crossing sequence. But due to the time required to
obtain such detailed information it is only available every 10t frame.
The authors of the ParkingLot sequence (Shu et al.,, 2012) annotate
every 3™ frame but the quality is rather poor. As illustrated in Fig-
ure 7.3, some trajectories are interrupted (e.g. the yellow one) and
even slightly occluded people are not marked. This can in fact lead
to a good detector or tracker that is able to find and identify all per-
sons including the ones that are only partially visible to be penalized.
Berclaz et al. (2006); Fleuret et al. (2008) discretize their ground truth
both spatially and temporally. Their annotations include the cell oc-
cupancy of a ground plane grid only every 25 frame, i.e. once every
second.

To analyze how much different annotations affect the measured
performance we conduct two experiments on the TUD-Stadtmitte se-
quence:

1. We evaluate the identical tracker output (obtained with our
continuous tracker from Chapter 5) on three different sets of
ground truth data.
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Figure 7.3: A sample frame from the PNNL ParkingLot sequence showing
some deficits in the provided annotation. Besides non-smooth
trajectories, several people are not marked in this ground truth.

Figure 7.4: Three different publicly available annotations on the TUD-
Stadtmitte sequence. The original annotations provided by the
authors of the dataset (Andriluka et al., 2010) (plotted in white)
do not contain any occluded pedestrians. Our annotations
are shown in green and Yang’s annotations (Yang and Nevatia,
2012a) in blue. Note the large difference in the size of the bound-
ing boxes.

2. We evaluate the accuracy of one ground truth annotation with
respect to the other ones for all three combinations.

The TUD-Stadtmitte sequence (Andriluka et al., 2010) has become
quite popular and is frequently used for evaluating detection as well
as tracking quality. Somewhat surprisingly, several ‘ground truths’
are publicly available for this short sequence, which differ signifi-
cantly from one another. The reasons for this may be that the original
annotations do not contain target IDs and that occluded pedestrians
are not annotated. For the following experiment we obtained the IDs
by greedy nearest neighbor linking but did not connect trajectories
across occlusion gaps. The other two sets were annotated indepen-
dently by two different groups. One is our own annotation and the
other one is available for download on Bo Yang’s website3 .  Bound-
ing boxes from all three ground truth sets are overlaid and shown in

3 http://iris.usc.edu/people/yangbo/downloads.html
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Gr. truth Rcll Pren GT MT ML ID FM MOTA MOTP

white 9o.1 971 18 11 4 3 3 87.1 83.3
green 69.3 99.5 10 4 0 7 6 68.3 76.6
blue 72.1  99.1 10 4 0 7 6 70.8 71.9

Table 7.1: Evaluating the same tracking result with respect to different
ground truth annotations.

“Sol.” Gr.tr. | Rl  Pren GT MT ML ID FM MOTA MOTP

white green | 751 1000 100 6 o 8 288 744 81.1
blue 772 985 10 6 0 10 252 752 68.9
green white | 1000 751 18 18 o0 o0 o 66.8 81.1
blue 8.1 815 10 9 1 o0 165 658 66.7
blue white | 985 772 18 18 o 2 13 692 68.9
green | 815 851 10 8 1 0 214 672 66.7

Table 7.2: A quantitative comparison of various ground truth annotations
with respect to one another.

Figure 7.4. A coarse qualitative assessment reveals that the boxes in
the latter dataset (blue) are much larger than those in the other two.

A quantitative performance of the same result but with respect to
the three different ground truths is listed in Table 7.1. The numbers
are computed in 2D with an overlap threshold of 0.5. As expected, the
recall is much higher on a ground truth with fewer annotated bound-
ing boxes (white). But there is still a noticeable gap in tracking accu-
racy MOTA and an even larger one in tracking precision MOTP between
the two other annotation sets that were created specifically for multi-
target tracking evaluation. This observation clearly demonstrates that
the computed figures may vary greatly depending on what ground
truth annotation is used.

In our second experiment we use one of the three sets of anno-
tations as the “solution” and evaluate it with respect to the other
two. Obviously, one cannot expect that the bounding boxes are al-
ways perfectly aligned to each other across various sets. However,
it is reasonable to assume that at least different annotations would
agree on the presence or absence of targets in the image. The figures
shown in Table 7.2 are quite disillusioning. For instance, the top two
rows show how the white ground truth scores when evaluated on the
the green and on the blue one. Obviously, the recall stays low since
occluded people are not present in this annotation. But even when
comparing the more complete annotations to each other (rows 4 and
6), the overall accuracy (MOTA) remains below 70%. The reason here
is that the difference in bounding box sizes leads to an overlap that
is less than 50% in many cases, hence the annotations are counted
as false positives. Note that the output of the tracker in Table 7.1
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Eval. Rl Pren FP EN MT ML ID FM MOTA MOTP
ours 69.3  99.5 4 355 4 0 7 6 68.3 76.6
Yang 67.6 98.0 16 373 2 1 2 3 (66.0) -
Masi& |65 997 4 355 - - 16 - 676 77.0
Lisanti

ours 59.4 853 118 469 2 o 9 9 48.4 59.8
CLEAR | (59-4) (85.3) 118 469 - - 10 - 48.4 (59-8)

Table 7.3: Evaluating the same result with respect to the same ground truth
but with different evaluation scripts. The first part states evalua-
tion in 2D while the bottom one is computed on the ground plane.

actually produces better quantitative results than a different ground
truth. This once again shows that bounding box annotations are in
fact quite ambiguous.

To conclude, both the quality and the level-of-detail can vary sig-
nificantly across annotations, even for the same video sequence. A
misalignment of bounding boxes in different annotation sets may not
only lead to a lower tracking precision, but can severely impair the
overall performance due to wrongly counted errors. It is therefore
always important to state which ground truth data was used for mea-
suring performance of a certain output.

7.1.2  Evaluation software

In the previous section we analyzed the quality of ground truth anno-
tations and their impact on the reported numbers. We will now inves-
tigate whether a particular implementation of the evaluation protocol
has an impact on the computed measures. To that end we evaluate
the same tracking result as above on our own ground truth, but with
different evaluation scripts. All tested scripts provide the raw number
of false alarms and missed targets, such that precision and recall can
easily be computed. Bo Yang’s software, which operates on bound-
ing boxes in 2D, additionally computes the number of mostly tracked
and mostly lost trajectories, but unfortunately does not provide the
average overlap. A second evaluation script, written by Iacopo Masi
and Giuseppe Lisanti,* computes the CLEAR MOT metrics but not the
trajectory-based ones (Bagdanov et al.,, 2012). Finally, we also com-
pare our own implementation to the one provided for the original
CLEAR challenge, written by Keni Bernardin (Bernardin and Stiefelha-
gen, 2008). All available numbers are listed in Table 7.3. The values in
parentheses are computed based on the provided number of false pos-
itives, false negatives and identity switches. Note the extremely high
number of detected mismatches in Masi & Lisanti’s implementation.

4 http://www.micc.unifi.it/masi/code/clear-mot
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This number is probably not very reliable because the authors state
that “ID switches should be carefully counted by visual inspection” in their
documentation. Other than that, the figures in Tables 7.1 and 7.2 do
not deviate substantially. Nonetheless, for a meaningful comparison
it is crucial to use exactly the same evaluation software.

7.1.3  Metrics ambiguity

Having analyzed the impact of different ground truth annotations as
well as various implementations of the same evaluation protocol on
the resulting performance, we now take a closer look at the used pro-
tocols themselves. In Section 3.4, we formally defined several meth-
ods for measuring the performance of a tracking system, where some
of the problems related to the quantitative evaluation were already
mentioned. Here, we will follow up on this issue and point out con-
crete deficits of the existing definitions.

Throughout this dissertation, we employed two sets of evaluations
metrics, CLEAR MOT and the trajectory-based measures of Li et al.
(2009). As we can see in Table 7.3, computing the same error measure
is not clearly defined since various evaluation scripts do not produce
identical numbers. Besides possible implementation discrepancies,
the metrics” definitions themselves carry ambiguities.

DISTANCE. To establish correspondences between the true objects
and the produced results, a distance measure is required to assess
how similar or how close the hypothesis is to the ground truth object.
One possible choice is the PASCAL VOC criterion, which measures the
overlap between two bounding boxes (¢f. Eq. (3.1)). When tracking
is performed directly in the world coordinate system, the standard
Euclidean distance between the objects” centers can be employed. In
both cases, a threshold is required that determines whether a target-
hypothesis pair constitutes a potential match or not. In other words,
the evaluation procedure itself is dependent on at least one parameter
that should always be stated. For the overlap criterion, a threshold
of 0.5 has been widely accepted. For measuring distances in world
coordinates, Stiefelhagen et al. (2006) propose 500mm. However, the
main application there is to track multiple people in meetings in a
rather small area. We found that such a threshold is too conserva-
tive for outdoor scenes for two reasons: First, in surveillance settings
cameras are usually far away from the scene showing a much larger
area of interest, such that targets only occupy a small image region.
Second, the camera calibration may be unreliable, e.g. due to a low
view point. In both cases targets that are only slightly misplaced on
the image induce a large 3D error. Consequently, a threshold that is
too small will lead to an undesirable behavior when correct results
are counted as false alarms, while the true target remains untracked.
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We therefore use a T meter hit/miss threshold throughout all experi-
ments.

ASSIGNMENT. One further ambiguity of tracking metrics lies in
the exact procedure how the output hypotheses are assigned to the
ground truth objects, which is not specified explicitly. A greedy as-
signment strategy is arguably the simplest choice, albeit not the one
that leads to the best matching. A typical case of non-optimal assign-
ment is illustrated in Figure 3.7 (right). One way to avoid such cases
is to perform a two-pass matching with the Hungarian algorithm, as
is done, e.g., by Yang and Nevatia (2012a).

ERROR WEIGHTING. Recalling the definition of MOTA from Eq. (3.2),
all three types of errors (FP, FN and ID) are weighted equally as sug-
gested by Stiefelhagen et al. (2006); Bernardin and Stiefelhagen (2008).
Naturally, each error type can be weighted individually according to
its importance for the respective application. For offline motion anal-
ysis it may be important to reconstruct correct, identity preserving
trajectories, while finding absolutely all present targets is less crucial.
A higher weight for identity switches may therefore be more desir-
able. On the contrary, a driver assistance system should detect every
single pedestrian and at the same time maintain a low number of false
positives to avoid unnecessary warnings. On the other hand it is less
relevant to keep the identity of each person over time. In such case,
the aim is to achieve the highest possible precision and recall while
less attention is paid to the number of ID switches. This may also be
the motivation of Ellis and Ferryman (2010), who impose a logarith-
mic weight on the number of mismatch errors when computing the
MOTA score.

7.1.4 Benchmarking multi-target tracking

Many tasks in computer vision are approached by designing models
that need to be trained or tuned, i.e. fitted to the annotated training
data, to make predictions about unseen data. To enable a fair com-
parison between various methods, some areas offer well-established
benchmarks with pre-defined training and test sets. To name a few,
there is the PASCAL challenge for object detection or segmentation
(Everingham et al., 2012), the Middlebury benchmark for multi-view
stereo (Seitz et al., 2006), or KITTI for stereo or optical flow (Geiger
et al.,, 2012). Although several multi-target tracking datasets are fre-
quently used in the literature (see Section 3.3), there is no estab-
lished consensus of how to separate the data into training and testing
sets. The common strategy to present the performance of a tracking
method is to tune the parameters to a fixed set of sequences, thereby
treating them as training and test data at the same time. Obviously,
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this is not ideal since the model is overfitted to the chosen data and
will usually perform considerably worse on unseen data. To nonethe-
less reduce the effect of overfitting, it is considered good practice to
choose several datasets that exhibit strong variations in person count,
view point and resolution. In our experiments in Chapter 6 we fur-
ther address this issue by performing leave-one-out cross validation
on all six sequences to show the robustness of our method.

There is another issue that complicates elementary comparison.
Most current multi-target trackers perform tracking-by-detection, i.e.
the actual input data are not the raw images but a set of indepen-
dently precomputed detections. Clearly, the performance of both the
data association and the reconstruction of trajectories will greatly de-
pend on the quality of the detector. One way to evaluate various
trackers independently might be to provide a standard detection set
for each method. However, this is not straightforward to implement
in practice, since different methods require different types of input.
Some rely on plain bounding boxes (Pirsiavash et al., 2011), others
also consider the confidence value of each detection (cf. Chapters 5
and 6) — which is non-trivial to calibrate in general — while other
approaches work on contours of pedestrians (Henriques et al., 2011).

Nevertheless, we believe that a standardized multiple target track-
ing benchmark consisting of a variety of diverse video sequences
is needed to facilitate comparison between state-of-the-art methods.
Similar to the examples above, it should include a clear training and
test set, a reasonably accurate ground truth and a centralized evalua-
tion tool. If possible, participants should also use the same detector
results as input for their tracker. The only currently existing method
(that we are aware of) to objectively measure the performance of a
tracking algorithm is to send the results on the S2L1 sequence (rep-
resented by bounding boxes) to the PETS organizers (Ellis and Fer-
ryman, 2010). The computed CLEAR MOT metrics, evaluated with
respect to unpublished ground truth, are then sent back to the au-
thors. Provided that current methods achieve near perfect results
on that particular sequence, it is time to move towards more chal-
lenging datasets. Clearly, such benchmarks entail the risk of shifting
the research goals from developing innovative techniques to push-
ing the numbers higher on that particular data. However, previous
benchmarks, such as Middlebury®> (Baker et al., 2011) or PASCAL (Ev-
eringham et al., 2012) for example, show that the raw ranking is not
the only criterion how a specific method is valued in the commu-
nity. In fact, despite caveats of benchmarks both projects considerably
boosted research in their respective area of computer vision.

5 http://vision.middlebury.edu
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7.2 NUMERICAL INSTABILITY

Digital computers operate on numbers of a fixed length. While this
simply means a limited available range for integers, real numbers can
be approximated only up to a certain precision. The most common
way that allows for a wide range of values is to use the floating-point
representation, where decimal numbers are stored in two blocks: a
fixed number of significant digits and an exponent. Each time a
non-integer value is computed, the CPU has to decide how to store
it in memory. This procedure may lead to undesirable effects. Even
though certain standards that clearly define a correct handling exist,
compilers do not always follow such rules in order to optimize the
code for a specific processor. Depending on the exact representation
of a real number, identical code may thus produce different results
on a different hardware. Although the deviations may at first seem
negligible, in practice the errors may accumulate over time and lead
to significantly varying outcomes.

Here, we would like to point out that our proposed algorithms are
also affected by the described issue. Most of the code for all three
tracking approaches is written in MATLAB. While this language of-
fers a wealth functionality and boosts development speed, the soft-
ware itself is not open source and the documentation only provides
a high-level description of the provided methods. It is therefore not
possible to pinpoint to the exact source of numerical inconsistencies.

In our experiments, the largest deviations across various machines
arose during the continuous optimization from Chapter 5. Figure 7.5
illustrates this behavior on the TUD-Stadtmitte sequence, where iden-
tical code with identical input data is executed on five different CPUs
and leads to significant inconsistencies in the final results. The main
reason is the iterative nature of the optimization algorithm. A slight
inaccuracy in the high-dimensional gradient will lead the continuous
minimization to a similar, albeit not identical state. This, in turn,
may have a much larger impact when a discrete jump move is made.
Depending on the exact shape of the trajectories, a different jump
will be chosen such that the optimization will take an alternative
path through the energy landscape. Note that small deviations in
the computed energy (here ~ 2%) may in fact cause rather large gaps
in performance (=~ 5 percentage points in MOTA) due to hard discrete
decisions during optimization. To enable a meaningful comparison of
different variations of the continuous method, all results in Table 5.7
were computed on machines with the same hardware architecture.

We ran into similar problems using the discrete-continuous opti-
mization (c¢f. Chapter 6). Here we found, that certain MATLAB rou-
tines, such as the backslash operator “\” for solving linear equations
or even the computations of a simple dot product, are not consistent
across various platforms. To give an intuition, the following numbers
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Continuous optimization on different CPUs
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Figure 7.5: Five runs of the same continuous optimization on five different
CPU types lead to slightly different final results.

are computed by the MATLAB built-in dot product a’b on two dif-
ferent CPUs:
95608.406663221758208237588405  (Intel i7-3930K CPU)
95608.406663221743656322360038  (Intel iz CPU Q 820).

In both cases, the input is identical and consists of a binary vector
a € {0,119 and a real vector b € R'°, respectively. Again, the
absolute difference in the order of 10~ '° may seem insignificant. In
practice, however, discrete optimization may be guided towards a dif-
ferent data association solution, which in turn may lead to a different
overall result. We found that the problem of inconsistent computa-
tions can be mitigated by replacing MATLAB routines by their coun-
terparts written in C, where all compiler optimizations can be turned
off during compilation. Of course, developing code that is closer
to machine level defeats the purpose of using a high-level program-
ming language, but at least offers a possible workaround. For our
experiments in Chapter 6 we only used identical CPUs as discussed
above. Interestingly, we did not encounter any numerical inconsisten-
cies with the ILP formulation in Chapter 4. A likely explanation is
that the main optimization is outsourced to external solvers that are
likely compiled following certain standards.
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In modern cities, it is almost impossible
to move through public space without
being filmed. Surveillance (or closed-
circuit television (CCTV)) cameras are in-
stalled in many places such as squares,
buses, train stations, banks, efc. Falling
prices of electronic equipment, corpo-
rate policies and political decisions all
have their influence on this develop- 2
ment. These cameras capture video Fig. 7.6: CCTV cameras in a
footage to prevent crimes before they metro station.
happen, or, more frequently to help the investigation afterwards
(Welsh and Farrington, 2008). Interestingly, the majority of the pop-
ulation feels more secure by the sheer presence of cameras (Phillips,
1999), although the effect on crime reduction to date remains debat-
able (Welsh and Farrington, 2008). On the other hand, many people,
primarily the younger generation, are concerned how this develop-
ment may affect the privacy of individuals (Hempel and Topfer, 2004).
In this section we will elaborate on this subject and state how multi-
target tracking relates to this issue.

First of all, it is important to emphasize that research on multiple
object tracking concentrates on reconstructing trajectories of unknown
individuals. In other words, there is no link to any personal data
of a tracked person. In the presented work, each target is assigned
a unique ID that only exists as long as the target resides inside the
field of view of the camera. Whenever a person exits the scene and
re-enters at a later point, a new ID is assigned. Even though there is
work that primarily addresses the problem of re-identifying targets
(Gheissari et al., 2006; Hirzer et al., 2012), its main purpose is to facil-
itate the ‘handover” problem across multiple cameras. In such cases,
the data is again always handled in a depersonalized way, i.e. the
identities are represented by unique numbers, unrelated to any per-
sonal data. It is true, however, that a connection to a specific person
may be made through recognition and identification, but this task lies
beyond the goal of multi-target tracking.

Nevertheless, there is a general concern that CCTV footage can be
exploited for criminal purposes. In particular, there is evidence for
deliberate spying, voyeurism and discrimination. Norris and Arm-
strong (1999) show in their study that people of certain age and race
are observed disproportionately often for ‘no obvious reason’ by the
surveillance operators. This and similar findings have spawned a
novel research branch that addresses the task of privacy preserving
surveillance.
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As a preliminary point, it is important to emphasize that personal
privacy is not well defined. Some may consider that masking their
face is enough to remain anonymous while others would feel an in-
trusion in their private life in the presence of any recording device
that can reveal their age, gender, race, etc. According to a psychologi-
cal study by Babaguchi et al. (2009), the decision about the amount of
information that a monitored person is willing to reveal strongly de-
pends on the relationship to the observer. It is therefore desirable to
automatically pre-process the captured scene and only make as much
data available as needed for a particular situation.

One of the simpler methods to hide the identity is to perform
surveillance outside the visible light spectrum. Tao et al. (2012) em-
ploy a network of passive infrared sensors — also known as motion
detectors — for activity recognition and fall detection in private or
semi-private indoor environments. However, the rich visual informa-
tion that may be crucial for investigation is not preserved in such
setting. Another way to ensure anonymity of tracked individuals is
to decompose the input stream into several components and to scram-
ble the targets such that they appear unrecognizable to the observer
(Qureshi, 2009). Various ways of disguising the targets have been
proposed. Simply obscuring the face or the entire person by blurring
or pixelation may hide the identity (Spindler et al., 2006), but at the
same time it may discard valuable information about the activity or
the facial expression. Newton et al. (2005) and Gross et al. (2009) pro-
pose face de-identification, a method that preserves much of the facial
nuances but makes faces unrecognizable by altering their general ap-
pearance. Chen et al. (2009) develop an edge-based representation
that reveals the activity while entirely hiding the identity. Another
strategy is to selectively apply the scrambling algorithms only to a
certain set of targets. To this end, Schiff et al. (2009) present Respectful
Cameras that are able to recognize specified markers (e.g. helmets or
vests of a certain color) and obscure only those identities that wear
an ‘invisible cloak’. This method may be applicable within a certain
area, such as construction site or laboratory, but is hard to put into
practice in public space.

As with many other applications, these computer vision-related
methods cannot guarantee perfect performance when deployed in
real-world scenarios. However, they at least succeed at complicating
potential abuse by unauthorized personnel. With increasing public
awareness, the pressure on authorities and manufacturers may grow
and lead to a certification and registration of surveillance technology
(Senior et al., 2005), similar to network security.

Every technology can be used with both good and harmful inten-
tions. The benefits of omnipresent video surveillance remain doubt-
ful, although most people tolerate or even welcome it. However, the
multi-target tracking models presented in this dissertation are rather
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generic and can be employed in numerous applications including
road safety, life sciences, or accident prevention in crowds (cf. Sec-
tion 1.2). Therefore, we believe that the gains outweigh potential
dangers and privacy concerns.
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NERGY minimization methods provide a suitable tool to approach
the task of multiple target tracking. The main challenge is to
design an objective function that accurately describes the problem at
hand while at the same time remains feasible to optimize in practice.
This dissertation investigated three different approaches that address
the problem from three different sides, each having its benefits and
drawbacks. Moreover, common pitfalls and challenges that arise with
quantitative evaluation of various methods were presented. In this fi-
nal chapter we will summarize and discuss both the contributions
and the limitations of this work and indicate possible future direc-
tions to further improve automated multi-target tracking.

8.1 CONTRIBUTIONS
8.1.1 Discrete tracking with a dynamic model

In Chapter 4, we formulated multi-target tracking on a discrete grid,
inspired by the work of Berclaz et al. (2009). The main motivation
behind this formulation was to reduce the (potentially infinite) solu-
tion space of all possible trajectories to a finite set of feasible paths.
Note that a significant amount of the previous work also regarded
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multi-target tracking as a discrete combinatorial problem (Morefield,
1977; Reid, 1979; Storms and Spieksma, 2000; Zhang et al., 2008), but
performed discretization at the level of detections. In contrast, grid-
based partitioning provides a more natural way of implicitly (or ex-
plicitly) handling missing image evidence.

We made several contributions to this methodology. Firstly, we
introduced a dynamic model into a integer linear program (ILP) for-
mulation by appropriately extending the underlying state space. To
encode the targets’ dynamic behavior into the binary variables, the
pairwise relations between two neighboring frames were extended to
triples in three consecutive time steps. The benefit is that this allows
encouraging smooth target motion, which can be an important cue
for reliably keeping track of multiple targets over time. Furthermore,
the lattice structure was changed from rectilinear to hexagonal. The
resulting tri-axial grid reduces the effect of aliasing and allows a more
accurate measurement of motion change without considerably enlarg-
ing the neighborhood. Additionally, we proposed an extended set of
constraints that perform non-maxima suppression (NMS) on the tra-
jectories rather than independently frame by frame. These constraints
go beyond simple collision avoidance and additionally suppress the
existence of targets in all neighboring cells, which avoids multiple in-
tertwined trajectories. Our extended formulation produces smoother
trajectories without unnatural jittering artifacts. Moreover, taking the
dynamic model into account also improves the average tracking ac-
curacy by reducing the number of track fragmentations and identity
switches.

8.1.2 Continuous energy minimization

While the ILP formulation above achieves (near) global optimality, the
trajectories are restricted to pass through a discrete set of locations,
which is a strong limitation. To remedy this shortcoming, Chapter 5
introduced a novel approach to multi-target tracking that followed a
different strategy. In contrast to a restrictive objective that can eas-
ily be optimized, we turned to the opposite side of the spectrum
and focused on a formulation with as few simplifications as possi-
ble, without aiming at achieving global optimality. In particular, we
designed a continuous energy function with the primary goal to cap-
ture the important aspects of multi-target tracking as completely as
possible. To the best of our knowledge, this had not been done before.
The energy is composed of several individual components, including
the observation term, a first-order dynamic model, physically moti-
vated exclusion and persistence constraints and a regularizer. More-
over, we developed a global occlusion formulation that seamlessly fits
into the energy minimization approach. Each term is modeled by a
differentiable function, such that standard continuous minimization
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techniques can be applied. However, the resulting high-dimensional
objective function is highly non-convex, which prohibits global opti-
mization. Nevertheless, we developed custom discrete jump moves
that provide enough flexibility to ensure that strong local minima can
be found efficiently. The continuous energy minimization for multi-
target tracking yields state-of-the-art results on particularly challeng-
ing video sequences, both visually and in terms of a quantitative eval-
uation.

Yet, there are two drawbacks of this formulation. One is that the
proposed discrete jumps are executed in a greedy fashion. Although
the achieved local minima provide some of the best tracking results
obtained so far, we could show in Section 5.3.3 that solutions with a
lower energy yield even better performance. The second shortcoming
is that, similar to the ILP approach from Chapter 4, the data associa-
tion is bypassed since the variables of the energy only describe the
locations of the reconstructed (or potentially feasible) trajectories, but
give no information about the detector responses used, which form
the basis of the observation model.

8.1.3 Unified data association and trajectory estimation

In Chapter 6, we presented a discrete-continuous energy that com-
bines both challenges — the combinatorial problem of data associa-
tion and the continuous problem of trajectory estimation — in a single
objective function. The advantage is that probing various permuta-
tions of the data assignment can be approached by powerful discrete
optimization techniques while all trajectories are represented in their
natural continuous domain. The energy is minimized by alternating
between the discrete and the continuous part.
Two alternative strategies were developed under this framework:

* an energy function that is amenable to standard optimization
algorithms and works reasonably well on moderately crowded
scenarios, and

* a more complex energy that takes into account inter-object ex-
clusion at the level of both detections and trajectories.

For the second variant, we proposed a general formulation of a pair-
wise label cost that penalizes co-occurrence of certain labels within a
CRF framework. This approach enabled performing mutual exclusion
at the level of trajectories in discrete-continuous multi-target tracking,
achieving superior performance over the basic formulation. Moreover
we proposed an expansion move-based optimization scheme to effi-
ciently minimize the resulting non-submodular energy. This method
slightly outperforms the continuous energy formulation on average
with respect to standard metrics, while at the same time providing a
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solution to data association by labeling each detection with the corre-
sponding target ID.

Furthermore, we provided a methodology for deriving the shape
of the energy potentials from real-world data. By analyzing ground
truth statistics of numerous sequences, we inferred the functional
form for various terms, such as velocity or occlusion length, directly
from the present data instead of guessing based on intuition or by
trial and error.

8.1.4 Ewvaluation challenges

Finally, Chapter 7 addressed a number of important practical aspects
that should not be ignored in multi-target tracking research. Notably,
it was shown that evaluating multiple object tracking is far from triv-
ial. Besides ambiguous or non-standardized definitions of quality
metrics, both the quality of human-annotated ground truth and the
implementation of a specific evaluation procedure can deviate by a
large margin from one another. To quantify these statements, we car-
ried out several experiments on various ground truth annotations and
with different evaluation tools.

8.2 FUTURE PERSPECTIVES

Although much progress has been made in the last several years, the
task of robustly tracking multiple targets in video sequences is far
from solved. Each of the three proposed approaches furthered the
state of the art in its own way. To conclude, we point out the remain-
ing limitations of the presented models and discuss how they can be
improved to further advance the performance of automated tracking
systems.

8.2.1  Object detector

While it does not concern a particular tracking method, the perfor-
mance of the object detector has a substantial influence on the fi-
nal result of any tracking-by-detection approach. In our experience,
working with synthetic data (e.g. considering all manually annotated
detections) produces near perfect tracking results (> 95% MOTA) in
all cases. In fact, even naive nearest neighbor data association, which
we employed to reconstruct identity-preserving annotations (cf. Sec-
tion 7.1.1), yields acceptable performance. Tracking-by-detection will
therefore benefit from further advances in object detection, which is
largely an independent research area.
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8.2.2  Extracting more image features

One of the most promising directions towards better tracking per-
formance is to utilize additional image information. The presented
methods rely only on spatio-temporal target locations and their cor-
responding confidence values of the detector. Arguably, a video se-
quence provides more cues that can potentially help to reconstruct
individual trajectories more accurately.

APPEARANCE. One of the most obvious features that has not been
fully exploited in the proposed methods is the visual appearance of
the objects. In Chapters 4 and 5, a basic appearance model is em-
ployed to measure the evolution of a target’s color distribution in
neighboring frames. The similarity is measured by comparing the
color histograms inside the bounding boxes between adjacent frames.
One drawback is that the considered region always contains back-
ground pixels and sometimes also other objects that block the line of
sight, as illustrated in Figure 6.13. Therefore, care should be taken
to only extract the relevant portions of the image that contain the
desired target (see below). Moreover, further features like texture or
shape may be considered as well to construct a richer visual repre-
sentation for each target (Yang and Nevatia, 2012b). Furthermore,
long-range connections that go beyond consecutive frames but span-
ning several seconds may be more helpful to establish track corre-
spondences through long-term occlusions (see Section 8.2.3 below).

POSE AND ORIENTATION. One possibility to only extract the fore-
ground pixels is to estimate the pose of pedestrians (Andriluka et al.,
2010; Sun et al., 2012). This may help in two cases. On one hand,
the person inside the bounding box can be localized more precisely,
which may facilitate discarding irrelevant background information
for a more robust appearance model. On the other hand, one could
match the walking cycle of a person to enforce more robust corre-
spondence (Andriluka et al., 2008). This may, in fact, avoid identity
switches in cases when the appearance information alone is unreli-
able, as depicted on the bottom of Figure 6.13. It is important to note
that pose estimation becomes rather difficult and unreliable for ob-
jects that appear small in image space. Therefore, it can only help in
high-definition video sequences or in applications where people are
close enough to the observer.

The object’s orientation offers one further cue. Continuing the ex-
ample of people tracking, it is safe to assume that pedestrians mostly
walk facing forwards, or in rare cases backwards, but rarely side-
ways. This information is ignored by current tracking-by-detection
approaches. Both methods presented in Chapters 5 and 6 only con-
sider the distance between a detection and the reconstructed trajec-
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tory in their data term. This means that the lowest energy is achieved
when a target precisely passes through a detection, independent of
its heading direction. As a result, spurious trajectories running per-
pendicular to the actual moving direction are sometimes produced
to explain the evidence. Most frequently, such behavior is observed
during the discrete-continuous optimization. To address this issue,
one could thus either explicitly or implicitly represent the facing di-
rection of each target and enforce temporal smoothness or penalize
deviations between the observation and the current target motion. Of
course, in both cases a reliable view estimation of each detection is
essential.

TEMPORAL INFORMATION. Somewhat similar to the considera-
tions above, currently employed object detectors are based on pro-
cessing individual frames and therefore discard valuable information
about the targets” motion. Tracklet-based approaches (Huang et al.,
2008; Andriluka et al., 2008) combine close detections into short track-
lets and take those as a starting point for long-term data association.
It is conceivable to follow a similar strategy for the presented energy
minimization methods. One the one hand it can reduce the com-
putational burden by fixing the tracks in those regions where data
association is unambiguous. On the other hand, analyzing several
subsequent frames could provide further information about the tar-
get’s motion directly at the detection level. This can be achieved either
by computing low-level features like optical flow, or by applying an
image-based tracker, such as mean-shift or KLT, on the image region
inside the bounding box. The estimated motion can then provide
additional cues about the heading direction of a target and prevent
discrepancies between the estimated and the true trajectory.

8.2.3 Towards more expressive models

Most components of the presented methods are rather simple. For
example, the exclusion constraint in the case of continuous energy
minimization only models pairwise interactions between targets on a
frame-by-frame basis. Consequently, when several targets move close
to one another over a longer period, a penalty is applied at each time
step (cf. Figure 5.12 (Eexc)). Using a more sophisticated social model
(see Section 2.5.2) it is possible to adjust this penalty accordingly for
certain target groups (Qin and Shelton, 2012). Furthermore, the con-
stant velocity model only captures a first-order relationship between
successive motion vectors. Sometimes this leads to unnatural trajec-
tories that do not exhibit abrupt turns but rather wiggle from side to
side over a long time period, changing their direction several times.
This is especially visible for the spline representation from Chapter 6.
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A penalty based on the count of turns may enforce more plausible
trajectories in such situations.

Another way for making the discrete model more expressive with-
out resorting to high-order factors is to include long-term pairwise
connections. Edges that span several time steps can help to re-identify
a person after an occlusion, provided that robust dynamic and ap-
pearance models are available. While both extensions certainly seem
attractive for increasing modeling accuracy, they inevitably lead to
more complex inference. A possible solution is to keep an adaptive
graph structure and to prune away connections in unambiguous ar-
eas.

8.2.4 Parameter estimation

To avoid the effect of overfitting, a single parameter set for each
method was used for the entire dataset. Even though a pre-defined
set of parameters may show good average performance on a partic-
ular dataset, a more careful analysis of individual sequences may
significantly boost the results. Our experience showed that the found
parameter set rarely corresponded to the top result on each sequence
separately. In particular, properties like camera angle or motion,
crowd density or target size may vary substantially across different
video sequences and influence the behavior of the model. All these
aspects can, in principle, be automatically inferred from input data
and used to guide the parameter search towards a more promising
region. Moreover, it may be possible to make a more high-level de-
cision similar to Cifuentes et al. (2012), on which algorithm is best
suited for the present data.

Another way to learn parameters is to employ synthetically gen-
erated video sequences (Flagg and Rehg, 2012). This way, a large
amount of training data can be obtained at little cost. However,
synthetic training examples should be handled with care since their
appearance and also the behavioral statistics may deviate from real
video footage.

8.2.5 Joint detector-tracker optimization

Although several notable exceptions exist (Leibe et al., 2008b; Wu
et al.,, 2012; Yan et al., 2012), most tracking-by-detection approaches,
including the ones presented in this dissertation, regard detection
and tracking as two entirely separate tasks. Detections are usually
filtered with non-maxima suppression (NMS), which significantly re-
duces the computational burden, but also means that most image ev-
idence is entirely discarded. Our proposed methods, like most other
approaches, allow tracks to survive without detections for a certain
time span to bridge occlusions. However, this sometimes leads to
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trajectories that weave through empty background areas that would
be confidently classified as ‘non-target” by the detector. Therefore,
one can expect a performance improvement by combining object de-
tection and tracking within an energy minimization framework (see
also Section 6.6.5). A further approach may be to specifically use false
negatives of a tracker output to bootstrap the detector thereby closing
the gap between the two components.

As we have discussed, there are many possible ways in which the
proposed multi-target tracking approaches can be extended and im-
proved. With the current rate of development, we can expect much
progress in this area in the near future both in research and in real-
world applications.
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APPENDIX

A.1 SOLVING MIXED INTEGER LINEAR PROGRAMS

In Chapter 4 we formulated multiple target tracking as an integer
linear program (ILP) where the aim is to minimize (or equivalently
maximize) a linear objective function with linear constraints with an
additional requirement that all variables remain integers. Formally,
an ILP is an optimization problem of the form:

minc'x (A1)
X
subject to:
Ax<b (A.2)
x>0 (A.3)
xezZ" (A.4)

While linear programs can be solved to global optimality in polyno-
mial time, the integer constraints lead to much more complex prob-
lems that are NP-hard in general. In this section we will briefly out-
line the idea behind the branch-and-cut algorithm, which is essentially
a combination of branch-and-bound and the cutting planes methods and
is perhaps the most popular approach for addressing this class of
combinatorial problems.

The most common initial step for (mixed) integer linear program
MILP solvers is LP-relaxation. The general idea behind it is to sim-
ply discard the integer constraints (A.4) in order to efficiently obtain
the globally optimal solution to a simplified problem. If all variables
of the resulting solution are integers then it is also the globally opti-
mal solution to the original problem. Although for some particular
formulations this is indeed always the case (e.g., Berclaz et al., 2011),
unfortunately, this is not true in general, where the obtained solu-
tion may contain fractional components that violate the integer con-
straints. The question that then remains is how to proceed with these
fractional values.

A naive, yet effective approach is to branch out on one of the frac-
tional values. To illustrate this procedure, let us assume that we have
found a globally optimal solution x'* where x; is fractional:

a<xi<a+1, aeZ. (A.5)
By adding two linear constraints

xi <a (A.6)
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and
xi =2 a+1 (A7)

we obtain two additional problems that can be addressed by LP-
relaxation as before. By recursively applying the same procedure we
can eliminate all non-integer values to achieve the desired solution (or
to determine that no feasible solution exists). Note that it is not nec-
essary to branch further if both branches yield objective values that
are worse than the currently known best feasible solution z. Its value
serves as an upper bound on the optimal solution. Such pruning tech-
niques can significantly speed up the search of this branch-and-bound
technique.

An alternative to adding two constraints to enforce integrality of
one specific variable is to add a so-called cutting plane. Intuitively,
a cutting plane is another linear constraint that “cuts out” a large
portion of the solution space, thereby reducing the complexity, while
retaining all feasible solutions. A cutting plane can be constructed by
integral rounding, where a combination of several linear constraints
serves as a starting point and rounding is performed to maintain the
integrality properties (Chvatal, 1973; Gomory, 1963).

The popular branch-and-cut approach is a combination of the two
strategies described above. After each relaxation step, a decision is
made whether to branch out by adding inequalities, or whether to
add a cutting plane. This decision is largely influenced by heuristics
and a particular implementation. An interested reader is referred to
(Mitchell, 2002) for a comprehensive overview of various methods
and some in-depth discussions.
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