161,768 research outputs found

    Rancang Bangun Media Pembelajaran bagi Murid Sekolah Menengah Pertama Luar Biasa (SMPLB) 1 Palangka Raya

    Get PDF
    Science and technology are growing very rapidly, one of them in the field of web applications that is growing rapidly because of internet technology. Web-based applications can be used as learning media. Learning media as a tool to improve the quality of education is very important in the learning process. In this research, Sekolah Luar Biasa Negeri 1 Palangka Raya, especially at the level of the Junior High School (SMPLB) was used as a reference in making learning media. Students at SMPLB are students with special needs. This learning media application is intended for students who deficient in the sense of hearing and speaking. This website-based learning media application was developed using the waterfall method with the stages of system analysis, such as the acquisition of data requirements, technology used in business processes and activity plans. Data Flow Diagrams (DFD) and Entity Relationship Diagrams (ERD) are also used in this application. Table design is used in this application, while navigation design uses a sitemap. Interface design and implementation are done with the PHP programming language. In the testing phase using black-box testing. This learning media is an additional teaching material where the visual side of the students can be used to directly see the learning object

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    Video Conferencing Tool

    Get PDF
    Video Conferencing Tool (VCT) is a web-based video chat application that allows users anywhere in the world to join real-time streaming video chat rooms. This product is similar to social networking sites that allow web-based video conferencing. The main advantage of VCT compared to existing tools is that it is easy to use and does not require users to download and set up additional hardware. Since this product is a browser-based solution, it allows users from multiple platforms like Windows, Linux, or Mac to join a chat room. My VCT allows users to create new public or private chat rooms or enter into existing chat rooms with the click of a button. VCT allows users to share their live audio and video to all users in the chat room. It also allows users to see the list of attendees in the chat room. VCT users can invite their friends to join video chat rooms by sending a link to their email. Friends can click the link and directly enter chat room without creating an account in VCT. The users also have the option of sending video messages to other users. Adobe Flash Media Server is used as the back end for developing this web site

    AndroShield:automated Android applications vulnerability detection, a hybrid static and dynamic analysis approach

    Get PDF
    The security of mobile applications has become a major research field which is associated with a lot of challenges. The high rate of developing mobile applications has resulted in less secure applications. This is due to what is called the “rush to release” as defined by Ponemon Institute. Security testing—which is considered one of the main phases of the development life cycle—is either not performed or given minimal time; hence, there is a need for security testing automation. One of the techniques used is Automated Vulnerability Detection. Vulnerability detection is one of the security tests that aims at pinpointing potential security leaks. Fixing those leaks results in protecting smart-phones and tablet mobile device users against attacks. This paper focuses on building a hybrid approach of static and dynamic analysis for detecting the vulnerabilities of Android applications. This approach is capsuled in a usable platform (web application) to make it easy to use for both public users and professional developers. Static analysis, on one hand, performs code analysis. It does not require running the application to detect vulnerabilities. Dynamic analysis, on the other hand, detects the vulnerabilities that are dependent on the run-time behaviour of the application and cannot be detected using static analysis. The model is evaluated against different applications with different security vulnerabilities. Compared with other detection platforms, our model detects information leaks as well as insecure network requests alongside other commonly detected flaws that harm users’ privacy. The code is available through a GitHub repository for public contribution

    Statically Checking Web API Requests in JavaScript

    Full text link
    Many JavaScript applications perform HTTP requests to web APIs, relying on the request URL, HTTP method, and request data to be constructed correctly by string operations. Traditional compile-time error checking, such as calling a non-existent method in Java, are not available for checking whether such requests comply with the requirements of a web API. In this paper, we propose an approach to statically check web API requests in JavaScript. Our approach first extracts a request's URL string, HTTP method, and the corresponding request data using an inter-procedural string analysis, and then checks whether the request conforms to given web API specifications. We evaluated our approach by checking whether web API requests in JavaScript files mined from GitHub are consistent or inconsistent with publicly available API specifications. From the 6575 requests in scope, our approach determined whether the request's URL and HTTP method was consistent or inconsistent with web API specifications with a precision of 96.0%. Our approach also correctly determined whether extracted request data was consistent or inconsistent with the data requirements with a precision of 87.9% for payload data and 99.9% for query data. In a systematic analysis of the inconsistent cases, we found that many of them were due to errors in the client code. The here proposed checker can be integrated with code editors or with continuous integration tools to warn programmers about code containing potentially erroneous requests.Comment: International Conference on Software Engineering, 201
    • 

    corecore