
Utilizing Output in Web Application
Server-Side Testing

Nadia Alshahwan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

September 20, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/16232111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I, Nadia Alshahwan confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the thesis.

Some of the work presented in this thesis has been previously published in the

following papers 1:

• Nadia Alshahwan and Mark Harman. Automated web application testing using

search based software engineering. In Proceedings of the 26th IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE ’11), pages 3–12,

2011.

• Nadia Alshahwan and Mark Harman. Augmenting test suites effectiveness by in-

creasing output diversity (NIER track). In Proceedings of the 34rd International

Conference on Software Engineering (ICSE ’12), pages 1345–1348, 2012.

• Nadia Alshahwan and Mark Harman. State aware test case regeneration for

improving web application test suite coverage and fault detection. In the 21st

International Symposium on Software Testing and Analysis (ISSTA ’12), Pages

45–55, 2012.

The following papers, that are relevant to web application testing, have also been

published during the program of study but do not appear in this thesis:

• Nadia Alshahwan, Mark Harman, Alessandro Marchetto, and Paolo Tonella. Im-

proving web application testing using testability measures. In Proceedings of

11th IEEE International Symposium on Web Systems Evolution (WSE ’09), pages

49–58, 2009.
1Permission to reproduce these papers here has been granted by IEEE and ACM.

3

• Alessandro Marchetto, Roberto Tiella, Paolo Tonella, Nadia Alshahwan, and

Mark Harman. Crawlability metrics for automated web testing. International

Journal on Software Tools for Technology Transfer (STTT), 13:131–149, April

2011.

• Nadia Alshahwan, Mark Harman, Alessandro Marchetto, Roberto Tiella, and

Paolo Tonella. Crawlability metrics for web applications. In Proceedings of the

5th International Conference on Software Testing, Verification, and Validation

(ICST ’12), 151–160, 2012.

4

To my Mother, Hussah Alodan, whose sacrifices, love and never ending support I

could never repay.

Abstract

This thesis investigates the utilization of web application output in enhancing auto-

mated server-side code testing. The server-side code is the main driving force of a

web application generating client-side code, maintaining the state and communicat-

ing with back-end resources. The output observed in those elements provides a valu-

able resource that can potentially enhance the efficiency and effectiveness of automated

testing. The thesis aims to explore the use of this output in test data generation, test

sequence regeneration, augmentation and test case selection.

This thesis also addresses the web-specific challenges faced when applying search

based test data generation algorithms to web applications and dataflow analysis of state

variables to test sequence regeneration.

The thesis presents three tools and four empirical studies to implement and eval-

uate the proposed approaches: SWAT (Search based Web Application Tester) is a first

application of search based test data generation algorithms for web applications. It uses

values dynamically mined from the intermediate and the client-side output to enhance

the search based algorithm. SART (State Aware Regeneration Tool) uses dataflow anal-

ysis of state variables, session state and database tables, and their values to regenerate

new sequences from existing sequences. SWAT-U (SWAT-Uniqueness) augments test

suites with test cases that produce outputs not observed in the original test suite’s out-

put. Finally, the thesis presents an empirical study of the correlation between new

output based test selection criteria and fault detection and structural coverage.

The results confirm that using the output does indeed enhance the effectiveness

and efficiency of search based test data generation and enhances test suites’ effective-

ness for test sequence regeneration and augmentation. The results also report that out-

put uniqueness criteria are strongly correlated with both fault detection and structural

coverage and are complementary to structural coverage.

Acknowledgements

First, I would like to thank My supervisor Professor Mark Harman who encouraged

me to undertake this PhD and taught me a great deal about research and academia. I

also want to thank him for his continuing advice, support and patience throughout my

PhD, and for the countless opportunities he offered me over the years. I would also like

to thank my sponsors, the ministry of higher education in Saudi Arabia, for making

this PhD possible. I would also like to thank my co-authors, and in particular Profes-

sor Paolo Tonella, for their hard work. I want to thank my wonderful colleagues at

the CREST centre, especially Kelly Androutsopoulos and Bill Langdon, for the count-

less interesting discussions and advice on writing up this thesis. I want to thank Eric

Bouwers, from Delft University of Technology, for making the static analysis library

PHP-Front, which is used throughout this thesis, available and never failing to respond

to my emails. Last but not least, I would like to thank my parents, my best friend, Puris

Fazie, and the rest of my family for their continuing love, understanding and support.

Contents

1 Introduction 16

1.1 Problem Statement . 18

1.2 Objectives . 20

1.3 Contributions . 21

1.4 The Structure of the Thesis . 22

1.5 Applications Studied and Oracle . 23

1.5.1 Applications Studied . 23

1.5.2 Fault Oracle . 24

2 Literature Review 26

2.1 Web Application Architecture . 26

2.2 Web Testing Challenges . 27

2.3 Web Application Testing . 29

2.3.1 Available Tools and Techniques 31

2.3.2 Testing Approaches . 33

2.4 Search Based Software Engineering 52

2.4.1 Search Based Test Data Generation 53

2.4.2 Search Based Techniques in Web Applications 61

2.5 Test Adequacy Criteria . 63

2.5.1 Control Flow Based Testing Criteria 63

2.5.2 Dataflow Testing Criteria . 64

2.5.3 Web Specific Testing Criteria 65

2.6 Utilizing Output in Testing . 67

2.6.1 Utilizing Output in Web Testing 68

Contents 8

3 Search Based Test Data Generation 70

3.1 Introduction . 70

3.2 Approach . 71

3.2.1 Issues and Solutions in Web Application Testing 72

3.2.2 Fitness Function . 74

3.2.3 Test Data Generation Algorithms 74

3.2.4 Dynamically Mined Value Seeding 78

3.3 The SWAT Tool . 80

3.4 Evaluation . 82

3.4.1 Experimental Set-up . 83

3.4.2 Branch Coverage . 83

3.4.3 Efficiency . 86

3.4.4 Fault Finding Ability . 87

3.4.5 Answers to Research Questions 88

3.4.6 Threats to Validity and Limitations 89

3.5 Related Work . 90

3.6 Conclusion . 92

4 State Aware Test Case Regeneration 93

4.1 Introduction . 93

4.2 Web Application State . 96

4.2.1 Server Session Variables . 96

4.2.2 Database State . 97

4.3 Approach . 97

4.3.1 State-based DU . 98

4.3.2 Value-Aware DU . 102

4.4 The SART Implementation . 105

4.5 Evaluation . 107

4.5.1 Experimental Set-up . 108

4.5.2 Results . 109

4.5.3 Answers to Research Questions 115

4.5.4 Threats to Validity and Limitations 116

Contents 9

4.6 Related Work . 117

4.7 Conclusion . 118

5 Output Uniqueness Criteria 120

5.1 Introduction . 120

5.2 Output Uniqueness Criteria . 122

5.3 Augmenting Test Suites Effectiveness by Increasing Output Diversity . 130

5.3.1 Approach . 130

5.3.2 Evaluation . 131

5.4 Empirical Study: Output Uniqueness as a Test Adequacy Criteria 135

5.4.1 Research Questions . 135

5.4.2 Experimental Design . 136

5.4.3 Experiments and Discussion 139

5.4.4 Answers to Research Questions 151

5.4.5 Threats to Validity . 153

5.5 Related Work . 154

5.6 Conclusion . 155

6 Conclusion and Future Work 157

6.1 Conclusion . 157

6.2 Future Work . 159

A Effect of Set Size on Correlations 163

Bibliography 163

List of Figures

2.1 Typical web application architecture 27

2.2 Major milestones in web application testing research 30

2.3 Meta-model of the UML models generated by ReWeb Taken from

Ricca and Tonella’s paper[RT01a] . 35

2.4 Simple server-side script to demonstrate modelling static and dynamic

aspects of web applications in Wu and Offutt’s [WO02] approach. . . . 36

2.5 Architecture of the Dynamic Symbolic Execution tool Apollo repro-

duced from the work of Artzi et al. [AKD+10] 49

3.1 Form taken from PHPSysInfo . 80

3.2 SWAT tool architecture . 81

3.3 Coverage results over 30 runs of each of the three algorithms on each

of the six web applications. 85

3.4 Fault results over 30 runs of each of the three algorithms on each of the

six web applications. 86

4.1 DU Sequence construction technique: The sequence that contains the

definition HTTP request is truncated after the request and combined

with the use HTTP request to form the new sequence. 100

4.2 VADU Sequence construction technique: The sequence that contains

the definition HTTP request is truncated after the request and combined

with all use HTTP request to form the new sequence. 105

4.3 SART architecture . 106

List of Figures 11

4.4 Variations in coverage and fault detection improvement results over 30

test suites for VADU and Random on each of the four web applications.

The top row illustrates branch coverage improvements while the bottom

row shows fault detection. The y-axis is the improvement(%) in branch

coverage (or faults found) compared to the coverage (or faults found)

for the original test suites. 114

5.1 Simplified example HTML taken from Schoolmate to demonstrate

which part of the output is used for each output uniqueness definition. . 124

5.2 The part of the output considered for OU-Struct: The text in the output

page is removed and only the HTML structure is used to decide if the

output is new. 125

5.3 The part of the output considered for OU-Seq when deciding if an ob-

served output is new. All text is removed from the output page as well

as all attributes in HTML tags. 126

5.4 The part of the output considered for OU-Text when deciding if an

observed output is new. Only the text in the output page is retained for

comparison. 127

5.5 The part of the output considered for OU-Hidden when deciding if an

observed output is new. All text and attributes are removed except for

attributes that describe a tag’s name or a hidden value. 128

5.6 The part of the output considered for OU-Subtypes when deciding if an

observed output is new. All text and attributes are removed except for

attributes that describe a tag’s name or a hidden value. The values of

hidden values are replaced by predefined subtypes. 129

5.7 Variations in Spearman’s rank correlation coefficient for test suites sets

of size 500 over 30 different experiments for the six applications. . . . 140

5.8 Variations in Spearman’s rank correlation coefficient between struc-

tural coverage and output uniqueness for test suites sets of size 500

over 30 different experiments for FaqForge, Schoolmate and Webchess. 143

List of Figures 12

5.9 Variations in Spearman’s rank correlation coefficient between struc-

tural coverage and output uniqueness for test suites sets of size 500 over

30 different experiments for PHPSysInfo, Timeclock and PHPBB2. . . 144

5.10 Variation in frequency of observing each distinct output for each output

uniqueness definition for all six applications studied. 150

A.1 Variations in Spearman’s rank correlation coefficient between fault

finding and test suite size, structural coverage and output uniqueness

for test suites sets of sizes 20, 100 and 500 over 30 different experi-

ments for FaqForge, Schoolmate and Webchess. 164

A.2 Variations in Spearman’s rank correlation coefficient between fault

finding and test suite size, structural coverage and output uniqueness

for test suites sets of sizes 20, 100 and 500 over 30 different experi-

ments for PHPSysInfo, Timeclock and PHPBB2. 165

A.3 Variations in Spearman’s rank correlation coefficient between path cov-

erage and output uniqueness for test suites sets of sizes 20, 100 and 500

over 30 different experiments for FaqForge, Schoolmate and Webchess. 166

A.4 Variations in Spearman’s rank correlation coefficient between path cov-

erage and output uniqueness for test suites sets of sizes 20, 100 and

500 over 30 different experiments for PHPSysInfo, Timeclock and PH-

PBB2. 167

A.5 Variations in Spearman’s rank correlation coefficient between branch

coverage and output uniqueness for test suites sets of sizes 20, 100

and 500 over 30 different experiments for FaqForge, Schoolmate and

Webchess. 168

A.6 Variations in Spearman’s rank correlation coefficient between branch

coverage and output uniqueness for test suites sets of sizes 20, 100

and 500 over 30 different experiments for PHPSysInfo, Timeclock and

PHPBB2. 169

A.7 Variations in Spearman’s rank correlation coefficient between state-

ment and output uniqueness for test suites sets of sizes 20, 100 and 500

over 30 different experiments for FaqForge, Schoolmate and Webchess. 170

List of Figures 13

A.8 Variations in Spearman’s rank correlation coefficient between state-

ment coverage and output uniqueness for test suites sets of sizes 20,

100 and 500 over 30 different experiments for PHPSysInfo, Timeclock

and PHPBB2. 171

List of Tables

1.1 Subject web applications . 24

2.1 Atomic sections of the code in Figure 2.4. Each set of print statements

that are printed together forms an atomic section. 36

2.2 Korel’s transformations of branch predicates to calculate fitness 54

2.3 Tracy et al. [TCMM98] Fitness Function for local distance. 56

3.1 Fitness calculations for Numeric and String variable types based on

Tracy et al. [TCMM98] fitness function discussed in the literature re-

view (Section 2.4.1). Levenshtein distance is the minimum number of

insert, delete and substitute operations needed to convert one string to

another string. Strings are converted to the numeric representation of

their ASCII Code for relational operators. A constant 1 is added to

the fitness for operators > and < to avoid assigning 0 fitness when the

compared operands are equal. 75

3.2 Average coverage and execution time results obtained by running each

algorithm 30 times for each application with the same budget of evalu-

ations per branch for each version. Effort is the number of evaluations

per branch covered. Results in bold are statistically significantly better

than the results above them using the Wilcoxon’s test (95% confidence

level). 84

4.1 Static analysis results: numbers of session variables, functions, tables

and Def-Use locations. 110

4.2 Average numbers of generated test sequences (seqs) and requests for

VADU for both session variables and database tables for 30 test suites

for each of the four applications. 110

List of Tables 15

4.3 Test case generation results: Improvements in coverage and faults

found are calculated in relation to the original test suite. For improve-

ments, values in bold are statistically significantly better than values

above them using Wilcoxon paired one-sided signed rank test at the

95% confidence level. 112

5.1 Results of average faults found and test suite size obtained from run-

ning the approach and random 30 times for each application. The (%)

column in New Faults is calculated in relation to original faults found.

Faults/Test results in bold perform statistically significantly better than

random. 133

5.2 Test data information: Number of test cases, faults found and total

paths, branches and statements covered by the subject test data for each

of the six web applications. 137

5.3 Output analysis information: the number of distinct outputs for each of

the output uniqueness definitions. 137

5.4 Consistent fault finding ability for each output uniqueness criteria and

homogeneity analysis compared to statement coverage consistently

found faults. 146

5.5 Consistent fault finding ability for each output uniqueness criteria and

homogeneity analysis compared to branch coverage consistently found

faults. 147

5.6 Consistent fault finding ability for each output uniqueness criteria and

homogeneity analysis compared to path coverage consistently found

faults. 148

5.7 Output sensitivity to changes in input values. 152

Chapter 1

Introduction

A web application is a special client-server software system that is available through

the internet and executes within a web browser. The server-side code implements the

business logic of the application while the client-side code provides the interface to the

user. The client-side and server-side communicate using a transfer protocol, typically

HTTP (Hypertext Transfer Protocol). The client-side page can be static or dynamically

generated by the server-side code based on user choices.

The importance of automated web application testing derives from the increasing

reliance on these systems for business, social, organizational and governmental func-

tions. Over the past ten years, internet user numbers grew by approximately 528%

[Sta11]. In 2009, online retail sales grew by 11% compared to 2.5% for all retail sales

[Tec10]. Amazon, the leading online retailer, increased its sales by 29.5% [Ret09].

One of the advantages of web applications is their continual availability. The ser-

vice provided by a web application is not limited by location or time, since geograph-

ically separated users may have concurrent access. However, these advantages impose

a demand for high availability.

Web time is considered to be 5 to 7 times faster than normal time [Ger00]: Web

technologies change more frequently and their adopters seek early acquisition of market

share. This pressure on development time squeezes the testing phase, especially when

it is unautomated, labour intensive and, therefore, slow.

However, inadequate testing poses significant risks: Studies showed that trust

and convenience are major factors affecting customer loyalty using web applications

[AS03]. Both recent and historical studies have shown that online shoppers exhibit

impulsive purchasing habits [BKMD09, DA99], indicating that downtime can prove

17

costly. For example, downtime was estimated to cost Amazon $25k per minute even as

early as 2001 [PN05].

The critical need for high availability and the short development lifecycle of web

applications necessitate the development of sophisticated automated testing techniques.

On the other hand, the unique nature of web applications could be exploited to enhance

the testing process.

The output of the server-side code of a web application is rich and complex com-

pared to traditional applications: The client-side page is structured and full of useful

information in forms and embedded links. A web form in the client page can con-

tain values in drop-down menus, lists and default values of fields. In addition to the

client-side page, the output can also be observed in changes in the application’s state,

such as the database or the server session state. Although parts of the output have been

utilized successfully in other domains, such as Graphical User Interface (GUI) testing

[YM10, YM07], little work [ECIR06, JHHF08, SBV+08] attempts to take advantage

of the output of web applications to enhance testing of web applications.

In this thesis, the term output is used to describe any values that are calculated

and produced by the system under test whether these values can be observed at an

intermediate point or at the end of the program execution. That is, in addition to the

client-side page produced by a web application’s server-side code, changes to state

variables, SQL commands produced by the program and sent to the SQL server as well

as values of variables at an intermediate point in the program are considered output.

The thesis investigates the way in which different parts of the output can be used

to enhance testing of the server-side code of web applications: The values in an output

client-side page can be mined and seeded into a test data generation process. Changes

in the server-side state, when executing a test case, can be tracked to provide insight

into the application’s behaviour. This insight can then be exploited in constructing in-

teresting test sequences that are more effective in finding faults and exploring new parts

of the application. Moreover, because the client page is rich and structured, changes in

that page in response to different input values could indicate interesting executions of

the application and could, therefore, act as test adequacy/selection criteria.

The next section provides further details about the problems addressed in this the-

sis and the techniques proposed to solve them.

1.1. Problem Statement 18

1.1 Problem Statement
To test the server-side code of a web application, two layers of testing have to be con-

sidered [TR04a]: Code level structural testing and higher level navigational testing.

Code level testing is similar to traditional application testing and requires the genera-

tion of test data that aim to maximize structural coverage. Navigational level testing

requires the construction of sequences of requests that exercise the application’s be-

haviour. These two types of testing are not independent because generating test se-

quences requires the individual requests in each sequence to have effective test inputs.

On the other hand, sequences of requests might be needed to cover a branch that re-

quires the application to be in a specific state.

The thesis makes use of search based approaches in test data generation. Search

based approaches formulate software engineering problems into optimization prob-

lems. For test data generation, a random test case or test cases are first generated and

executed. During execution, a fitness function is used to measure how close each test

case came to covering the target branch. This fitness function provides guidance to the

search algorithm in adjusting the values of inputs until the target branch is covered. Test

data generation remains one of the dominating applications of search based techniques

in software engineering. Surprisingly, search based approaches have not been applied

yet to web application test data generation. Web applications’ reliance on strings and

the flexible and dynamic nature of their implementation languages pose new challenges

to search based techniques.

Previous work on search based test data generation seeded values from various

sources into the search space to replace the randomly generated initial test case(s)

thereby enhancing effectiveness, by achieving higher coverage, and efficiency, by cov-

ering branches faster. These seeding sources included constants collected from the

source code [AB06], test inputs that were collected while attempting to cover other

branches [MMS01] or test cases from previous releases or manual testing [YH10]. The

results of the evaluation of these approaches suggest that seeding can potentially en-

hance the performance of search based approaches. The output of a web application

can be a new source of input values that can be used for seeding.

The approach presented in this thesis for test data generation and implemented in

the tool SWAT (Search based Web Application Tester), applies search based algorithms

1.1. Problem Statement 19

to test data generation by dealing with challenges that are specific to web applications.

The approach also investigates using the client-side and intermediate output of a web

application as a source of seeding and its effect on the performance of the approach.

When testing a web application on the higher navigational level, previous work

has focused on generating a model of the application that is then used to generate test

sequences that cover the model satisfying some tester chosen criteria [RT01a, KT01,

QMZ07, RT02]. Using this approach to generate test sequences raises three key issues:

1. The test inputs attached to each request are left to be inserted manually by the

tester.

2. The number of test sequences that are needed to cover even a simple model can

be large especially with the presence of cycles.

3. The generated models only represent the developer’s intended use of the appli-

cation since they are typically constructed by analyzing links and form submis-

sions between pages. In practice, the user can follow any path through the ap-

plication since web browsers provide users with the ability to access any desired

page directly (through the address bar or bookmarks) and to alter an execution

path by using the Back and Forward buttons.

Client-side pages impose restrictions on how the web application is used: valida-

tions on fields in web forms implemented using client-side scripts (e.g., JavaScript)

prevent invalid input values from being passed to the server. Navigational menus and

links impose restrictions on the execution flow of the application. However, in practice

the user can bypass these restrictions intentionally or unintentionally by, for example,

disabling client-side scripting languages or altering the intended execution flow by us-

ing a browser’s navigation buttons (e.g., Back, Forward) or address bar. This ability

to bypass client-side restrictions emphasizes the importance of testing the server-side

code comprehensively without limiting the testing process to scenarios that are defined

by the client-side code.

The approach proposed in this thesis for generating sequences attempts to address

these issues: It generates sequences that are not restricted by the application’s model

and presents an algorithm that generates limited test sequences that are more likely

to cause the application to explore new behaviour. This new algorithm uses dataflow

analysis of the web application’s server-side state variables to generate test sequences

1.2. Objectives 20

that cover Def-Use pairs of those variables. The main argument behind this approach is

that HTTP is stateless; therefore the state (represented in session variables and database

tables) is the only element that propagates over a sequence of requests. The approach

also reuses the test data generated by SWAT to eliminate the manual effort needed from

the tester while using potentially effective test data that maximizes coverage.

Many studies have investigated the effect of maximizing structural coverage on

test suites’ effectiveness in fault detection [ABLN06, HFGO94, FW93, NA09]. The

results of those studies showed that, although higher structural coverage is correlated

with a test suite’s effectiveness, it is not the only contributing factor. For example,

Hutchins et al. [HFGO94] reported that achieving 100% structural coverage of a system

under test does not guarantee finding all faults.

This thesis proposes that the diversity of the output observed by executing a test

suite can be an indication of a test suite’s effectiveness in detecting faults. Therefore,

the effectiveness of using output as a test adequacy/selection criterion is investigated

as a potential complementary criterion to structural coverage. The correlation between

output diversity and structural coverage is also investigated to explore the possibility of

using output as a stand-alone criterion when structural coverage cannot be used. For

example, when all or part of the code is unavailable for instrumentation.

1.2 Objectives
The objectives of this thesis are the following:

1. Applying search based test data generation algorithms to web applications while

extending them to handle web-specific challenges and to utilize output in the

search process. Search based techniques have been shown to be complementary

to Dynamic Symbolic Execution approaches [LMH10] which have been previ-

ously applied to web applications [AKD+08, AKD+10]. Constant seeding ap-

proaches for string predicates have been shown to enhance search based tech-

niques’ effectiveness and efficiency [AB06]. Since web applications are string

based, it is expected that constant seeding will have the same beneficial effect

when applied to web applications. However, utilizing the output by dynamically

extracting values and seeding them into the search space might result in a greater

improvement on the test data generation process.

1.3. Contributions 21

2. Investigating the use of dataflow analysis of the application’s server-side state in

test suite regeneration. Since HTTP requests are stateless, the server-side state

maintained in session variables and database tables is mainly what propagates

over a sequence of requests to the web application server. Therefore, to generate

sequences that are effective in increasing coverage and finding faults without

exhaustively trying every possible sequence, which might be infeasible even for

small applications in the presence of cycles, analyzing the state could prove to be

effective in generating those sequences.

3. Investigating the effectiveness of using output uniqueness as a test selection cri-

terion for test suite augmentation. In applications with rich outputs, such as web

applications, the possibility of faults propagating to the output could be high. The

uniqueness of an output might indicate an interesting test case that could reveal

faults even when traditional structural coverage criteria have not been improved

by the test case.

4. Empirically investigating the correlation between output uniqueness and test

suite effectiveness as well as output uniqueness and structural coverage. The

goal of the empirical study is to explore the effect of the output on fault finding

ability and compare it to structural coverage criteria. Moreover, a strong corre-

lation between output uniqueness and structural coverage can lead to a test data

generation approach that is based on output uniqueness when structural coverage

cannot be obtained.

1.3 Contributions
The contributions of this thesis are:

1. An automated tool SWAT (Search based Web Application Tester) for PHP web

applications test data generation.

2. The introduction of a dynamic seeding approach that uses the application’s output

to enhance search based test data generation.

3. An empirical evaluation of the output utilization enhancement to search based

test data generation techniques that are introduced in SWAT. The evaluation con-

1.4. The Structure of the Thesis 22

firms that the enhancement improves both effectiveness and efficiency of the gen-

eration process.

4. An automated approach for test suite regeneration that generates test sequences

from an existing test suite based on dataflow analysis of the web application state

variables and their values and a tool SART (State Aware Regeneration Tool) that

implements the approach.

5. An empirical evaluation of the dataflow based test regeneration approach that

confirms that both coverage and fault finding ability can be enhanced using this

approach.

6. The introduction and evaluation of novel test adequacy criteria based on output

uniqueness together with seven definitions of output uniqueness.

7. A case study and empirical study that verify the usefulness of the new output

uniqueness criteria in test data selection and augmentation.

1.4 The Structure of the Thesis
Chapter 2 provides a review of the literature that is most relevant to this thesis. The

chapter describes web applications’ architecture and discusses testing challenges that

are specific or more prominent in web applications. It reviews previous research rele-

vant to the main themes of this thesis: web application testing, search based test data

generation, test adequacy criteria and the use of output to enhance testing.

Chapter 3 introduces three related seeding algorithms and a tool, SWAT, for automated

web application testing using Search Based Software Testing (SBST). The algorithms

significantly enhance the efficiency and effectiveness of traditional search based tech-

niques exploiting both static and dynamic analysis. The combined approach yields a

54% increase in branch coverage and a 30% reduction in test effort. Each improvement

is separately evaluated in an empirical study on six real world web applications. The

work presented in this chapter is based on a paper published by the author of this thesis

in ASE in 2011 [AH11].

Chapter 4 introduces a test case regeneration approach for web applications that uses

a novel value-aware dataflow analysis approach. The overall approach is to combine

1.5. Applications Studied and Oracle 23

requests from a test suite to form request sequences, based on dataflow analysis of

server-side session variables and database tables. The chapter also introduces a tool

SART (State Aware Regeneration Tool) that implements the approach and an evaluation

of the effectiveness of the approach in enhancing branch coverage and fault detection.

The work presented in this chapter is based on a paper published by the author of this

thesis in ISSTA 2012 [AH12b].

Chapter 5 introduces novel test adequacy criteria that are based on the HTML output

of web applications. Seven definitions of output uniqueness are proposed that have

varying degrees of strictness. The chapter presents a case study that investigates the

effectiveness of using the new criteria in test suite augmentation. The study has been

previously published by the author of this thesis in ICSE New Ideas and Emerging

Results (NIER) track [AH12a]. The chapter also presents an empirical study that in-

vestigates the relationship between the new output based criteria, existing structural

criteria and fault detection ability of test suites.

Chapter 6 summarizes the conclusions derived from the work presented in this thesis

and describes plans for future work.

1.5 Applications Studied and Oracle

This Section describes the web applications and fault detection oracle that are used

in experiments throughout this thesis. These web applications were chosen as eval-

uation subjects because they are used by real users, represent different domains

and were used in previous studies by other authors for web application testing

[AKD+08, AKD+10, Min05]. The fault detection oracle is one that is fully automated

thereby eliminating experimenter subjectivity when deciding what is counted as a fault

to evaluate an approach’s fault detection capability.

1.5.1 Applications Studied

The web applications that are chosen as test subjects are all implemented in PHP. PHP

is one of the top rated open-source server-side scripting languages [TIO12]. PHP was

chosen because it has many features that pose interesting challenges when implement-

ing automated testing approaches, such as dynamic typing and dynamic file inclusions.

1.5. Applications Studied and Oracle 24

All applications are open-source and available to download on the SourceForge1

web page. The applications are used by real users as indicated by the number of down-

loads reported by SourceForge which range from 13k to 774k downloads. For example,

PHPBB2 has many versions and supporting files and themes that are available through

SourceForge but also has a supporting community and independent web page.2

Table 1.1 provides details about the applications selected. For each application,

the version that was used together with information about the size of the application

and a brief description are provided. The applications range in size from 800 to 22k

executable PHP Lines of code and consist of between 19 and 78 PHP files. Other file

types, such as static HTML and JavaScript files were not counted as the approaches

presented in this thesis are related to server-side PHP code. All applications except

PHPSysInfo use a database and require user authentication to access all or part of their

functionalities.

Table 1.1: Subject web applications

PHP PHP

App Name Version Files ELoC Description

FAQForge 1.3.2 19 834 FAQ management tool

Schoolmate 1.5.4 63 3,072 School administration system

Webchess 0.9.0 24 2,701 Online chess game

PHPSysInfo 2.5.3 73 9,533 System monitoring tool

Timeclock 1.0.3 62 14,980 Employee time tracking application

PHPBB2 2.0.21 78 22,280 Customisable web forum

1.5.2 Fault Oracle

Determining the fault finding ability of approaches is necessary in comparing their

effectiveness. However, the determination of whether or not an approach has found a

fault needs to be free from experimenter bias and subjectivity. Therefore, an automated

oracle is used throughout this thesis when evaluating the fault finding ability of each

proposed approach.

1http://sourceforge.net/
2http://www.phpbb.com/

1.5. Applications Studied and Oracle 25

The automated oracle parses PHP error log files and the output HTML page of

each test case for faults. Only faults that are caused by a unique code location and have

a distinct type are counted (to avoid double counting of faults). If two distinct faults

appear in the same statement but have the same type, only one fault is counted. This

method of distinguishing unique faults is used to keep the oracle completely automated:

Deciding whether two faults of the same type that appear in the same statement but have

different error messages denote distinct faults requires manual intervention.

The errors reported in the PHP error log files are of four types: errors, warnings,

notices and strict warnings. Faults indicated by the log file to be of type ‘error’ are

faults that cause the execution of scripts to abort. This can happen, for example, when

non-existent files are included or functions are called that are not found. Therefore,

these fault types can be classified as crashes.

Faults reported as PHP ‘warnings’ are defined in the PHP manual as non-fatal

errors.3 An example is the execution of an SQL statement that is invalid. Although

these faults do not cause the application to crash (due to the fault-tolerant nature of

PHP), they could indicate vulnerabilities and bugs in the code that need to be addressed.

These fault types together with those parsed from the output HTML are classified as

errors. The faults parsed from the output HTML are SQL faults that cause the execution

of the PHP script to terminate while printing an error message to the user.

PHP notices and strict warnings are usually regarded as less serious and, therefore,

are classified as warnings. An example of this fault type is using a variable or index

that has not been defined.

3http://www.php.net/manual/

Chapter 2

Literature Review

This chapter reviews the literature that is relevant to this thesis. First, a description of

web applications and a discussion of web testing challenges that are identified in the

literature are presented. Then, the main approaches proposed by research on web appli-

cation testing are reviewed. A background on Search Based Software Engineering and

the approaches and concepts that are currently used in search based test date generation

are provided. This chapter also reviews test adequacy criteria used in both traditional

systems and web applications. Finally, previous work that utilizes output in enhancing

the testing process is reviewed.

2.1 Web Application Architecture
The architecture of a typical dynamic web application (Figure 2.1) consists of three

tiers: the presentation tier, the application tier and the data tier.

The presentation tier is the client-side pages that the user sees when accessing the

application using a browser. These can be static HTML pages or dynamic pages gener-

ated by the server. In addition to the content and HTML code, these client-side pages

can include scripts, such as JavaScript or VBScript, plug-ins, such as Flash and Java

applets, and Cascading Style Sheets (CSS) that format the output. Client-side scripts

perform actions on the client-side, such as input validations, without communicating

with the server.

The application tier contains the server-side code and is invoked by the presen-

tation tier through HTTP requests, such as form submissions or direct links. The

server-side code processes user requests and generates new client-side pages based on

user choices.

2.2. Web Testing Challenges 27

Figure 2.1: Typical web application architecture

The data tier could be a file system or, more typically, a database that is accessed

by the server-side code when needed. The database holds information previously saved

by the user on previous requests (e.g., user profile in a social network) and/or data

uploaded by the web application’s administrator (e.g., product information in an e-

business application).

2.2 Web Testing Challenges
The testing of web applications shares many challenges with testing of traditional

applications but also poses some challenges that are unique to web applications

[BFG02, WO02].

Web applications differ from traditional applications in that they are globally avail-

able to any person (or script) that uses the internet. The number of users accessing the

application is unlimited and could change unexpectedly. A significant increase in the

number of users could affect the performance of the application. No assumptions about

the experience levels of users can be made, resulting in unexpected usage patterns that

might cause invalid application behaviour.

2.2. Web Testing Challenges 28

The development lifecycle of web applications is much faster than traditional ap-

plications [Ger00]. The pressure caused by those frequent changes leaves limited time

for testing and verification of the application. This highlights the need for automated

testing tools and approaches.

As web applications typically communicate with many different components, such

as the database, file system, CGI scripts and external web services, these communica-

tions affect the testing process and need to be addressed.

The APIs of web applications are not explicitly defined, making automated gener-

ation of test data more challenging. The client and server interact using global arrays

(e.g., $ POST, $ GET) that are set on the client-side and accessed by the server-side at

any point in the program. This also causes web applications to be vulnerable to misuse

and attacks, since the design of these global arrays imposes no restrictions on the num-

ber, names and types of input values. Even when client-side scripts are used to validate

the values provided by the user, the ability to bypass the interface (for example, by

disabling JavaScript) leaves the application vulnerable to attacks.

As discussed in the previous section, web applications are typically composed of

server-side and client-side code. Client-side pages can be static but are more typi-

cally generated dynamically by server-side code based on user choices. These dynamic

pages can contain client-side scripts that manipulate the interface or perform input val-

idations as well as links and forms that interact with the server-side code. Because

this dynamic content affects how the application behaves, understanding a web appli-

cation’s behaviour and the connections between its components might only be possible

at run-time. Moreover, the interactions of server-side and client-side code need to be

tested as well as testing server-side and client-side code separately.

Web applications are typically rendered in a browser. Using browser functions, the

user has extended control over the execution of the application. This makes it possible

to enter the application at any point since the user can type a specific URL directly into

the address box of the browser or click a previously saved bookmark. The execution

flow can also be altered by the user by clicking the Back, Forward or Refresh

buttons on the browser. These browser functions provide the user with the ability to

alter the execution paths intended by the application’s developer causing unexpected

behaviour that might cause the application to fail [DLDP03]. Empirical investigation of

2.3. Web Application Testing 29

user action logs (session logs) revealed that these altered execution paths are common

[TR04b].

The nature of HTTP requests is stateless; the server processes each request in

isolation without any knowledge about previous requests from the same user. Other

methods, such as sessions and cookies are used to propagate state; this makes the be-

haviour of the application dependent on factors, such as sessions timing-out or cookies

being enabled.

The environment in which web applications run is neither well-defined nor static.

Developers have no control over the type and version of browser used, the configura-

tions of the user machine, browser or the connection type. The content of the web ap-

plication could be rendered differently in different browsers [MP11, RCVO10, EM07].

Browser configurations also affect the application behaviour by, for example, disabling

cookies or JavaScript.

2.3 Web Application Testing
Early research on web application testing identified the differences and similarities be-

tween web and traditional software testing. The testing processes that are defined for

traditional software were amended to be applied to web application testing. Yang et

al. [YHWC99, YHW+02] proposed a web testing architecture that is modelled on

traditional testing architectures but adapted for the unique characteristics of web appli-

cations. For example, a new process was added to the traditional architecture to address

the mixed programming nature of web applications; the same page can contain several

programming languages (e.g., HTML, JavaScript, VBScript). Moreover, all other test-

ing processes’ internal specifications were adapted to the web. When analyzing failure,

for example, Yang et al. suggested that the output URL, form fields and graphical

output need to be checked.

Research on web application testing in the early 2000s focused on applying model-

based testing techniques to web applications. This was caused by the introduction

of dynamic web applications in the late 90s and the seminal work on model-based

testing of web applications by Ricca and Tonella [RT00, RT01a, RT02]. In many

of those approaches, a model of the application is constructed and then used to gen-

erate test sequences that exercise the model and achieve a tester specified coverage

2.3. Web Application Testing 30

criteria. Research also focused on advancing the state-of-the-art of web crawlers

[BFG02, RGM01]. In 2003, Elbaum et al. [EKR03] proposed using session data

saved in the web server’s logs to generate test suites that are more realistic and re-

flect actual user behaviour. This approach was subsequently developed by other re-

searchers [SMSP04, AH08, SGSP05b, LPC09]. At the same time, research devel-

oped that focused on certain characteristics that are specific to web applications, such

as browser interactions [DLDP03, LK04] or the user’s ability to bypass the interface

[OWDH04a, OWDH04b]. Minamide [Min05] presented a method for fault detection

in PHP applications by statically approximating the output. In 2006 attention fo-

cused on identifying the interfaces (the actual input fields and their expected values

or ranges) that a web application uses [ECIR06, HO07]. This led to subsequent work

that focused on generating test data that satisfied some white box test adequacy criteria

[AKD+08, WYC+08]. Figure 2.2 depicts a timeline of developments in web testing

research.1

2000 2002 2004 2006 2008 2010 2012

W
eb

Test
ing

Arch
ite

ctu
re

M
od

el-
ba

sed
Test

ing
, T

on
ell

a et
al.

Adv
an

ce
d Craw

ler
s

Sess
ion

Base
d Test

ing

Byp
ass

Test
ing

M
ina

mide
Stat

ic
App

rox
im

ati
on

Int
erf

ac
e Ide

nti
fica

tio
n

DSE
for

W
eb

Sea
rch

Base
d for

W
eb

Figure 2.2: Major milestones in web application testing research

Di Lucca and Fasolino [DLF06] examined and summarized the state-of-the-art

in web application testing and suggested future trends. They concluded that to apply

traditional testing techniques to web applications, considerable effort in adapting these

techniques to web applications is needed when the testing process is dependent on

implementation. This is due to the specific characteristics and dynamic nature of web

applications.

The remainder of this section briefly examines available testing tools that are cur-

rently used in practice and reviews the main web testing approaches.

1Search based for web is the work of the author of this thesis [AH11]

2.3. Web Application Testing 31

2.3.1 Available Tools and Techniques

Due to the importance of high availability, scalability and security for web applications,

the focus on non-functional testing practices is extremely high. Tools that perform

load and security testing are used regularly to ensure that a web application meets

these requirements. For functional testing, available tools range from HTML validators

and link checkers to capture/replay tools and testing frameworks that aid the tester in

writing testing scripts to perform unit testing. A considerable amount of manual effort

is still required in using these tools.

Crawlers

Web crawlers can be viewed as testing tools as they traverse a web application reporting

failures and broken links. Many open-source and commercial crawlers exist with vary-

ing degrees of functionalities. WebSPHINX [MB98] is a customizable site-specific spi-

der with a GUI interface. It also provides a class library that can be used to implement

customized spiders in Java. Mercator [HN99] has similar features to WebSPHINX

but is designed to deal with scalability issues. JSpider [Jav03] is another open-source

crawler that has the advantage of recording a web application’s structure to a database.

However, all three crawlers do not provide support for automated form filling and sub-

mission. Teleport Pro2 is a commercial crawler that provides a few additional features:

The crawler gives the user the ability to provide authentication information to access

password protected parts of the application. It also parses JavaScript to extract links.

Girardi et al. [GRT06] conducted a comparison of these and other crawlers based on

completeness, robustness, features offered and download limiting options. The study

concluded that the considered crawlers have different strengths and weaknesses but in-

dicated that some commercial crawlers offer more completeness. Although crawlers

have the advantage of being fully automated, their ability to cover an application is

closely related to their capabilities.

HTML Validators and Link Checkers

Link checkers3 and HTML validators are a class of automated tools that are similar

to crawlers. Link checkers go through all links in a web site or a page to check for

2http://www.tenmax.com/
3http://validator.w3.org/checklink

2.3. Web Application Testing 32

any broken links. They operate in a way somewhat similar to a search engine. Some

of these tools have the additional capability of checking images and links contained

in JavaScript. HTML validators check the HTML code of a page or web site for mis-

matched tags and other violations of HTML standards. Many browsers are able to

display the page correctly even when HTML standards are not met. However, that is

not always the case and it is better practice to ensure that HTML is formed correctly.

One limitation of HTML validators is that they are only able to check static HTML

pages. Several tools are available to check links or validate HTML both on–line and as

downloadable executables. The World Wide Web Consortium (W3C) offers both types

of tools on their web page.4

Capture/Replay Tools

Automated functional testing of web applications is mainly based on capture/replay

tools. Existing capture/reply tools, such as LogiTest [Too01] and Maxq [OP09] pro-

vide the tester with a browser–like interface. The tester then navigates through the

web application recording various testing scenarios which are then repeated during re-

gression testing. However, the quality of the produced test suite relays on the tester’s

thoroughness and skill and requires significant manual effort. Also, changes in the

structure of the web application could make the recorded test suite fail to run. This

makes it necessary to re-record all or part of the tests. Selenium is a popular open-

source capture/reply tool that also provides the ability to modify test scripts. Meszaros

[Mes03] discussed the advantages of using capture/replay tools compared to crawlers

and presented a simple implementation that incorporates capture/replay in an existing

system.

Testing Frameworks

A number of testing frameworks are available to create unit tests for web applications.

HttpUnit [Gol08] is a Java API that provides the building blocks required to emulate

the browser’s behaviour. When combined with a framework, such as JUnit,5 HttpUnit

allows testers to create test cases to verify web Application behaviour [HM02]. Sim-

pleTest [Sim12] is a similar framework for PHP that additionally provides the ability

4http://www.w3.org/
5http://www.junit.org/

2.3. Web Application Testing 33

to create mock objects that simulate time-consuming operations, such as database con-

nections. PHPUnit6 is part of the xUnit family of testing frameworks. It provides com-

prehensive functionalities to create and run unit tests by utilizing tools, such as JMock7

to create mock objects and Xdebug [Ret12] to analyse coverage. Testing frameworks

provide an aid to the tester to create unit tests; however the design and creation of tests

is manual and requires time and resources that might not be available or cost effective.

2.3.2 Testing Approaches

This section reviews the main web testing approaches proposed in the literature. It also

reviews analysis approaches that can aid the test generation process, such as interface

identification.

Model Based Testing

A web application consists of a collection of static or dynamic pages that are connected

by links or form submissions. These pages are usually well connected to facilitate

navigation and make the application more user friendly. The user of the application can

follow different paths through the application, some of which might be unexpected,

which makes it necessary to test web applications on a higher navigational level as

well as the traditional code level [TR04a]. Model based testing of web applications

addresses this navigational type of testing.

Modelling web applications and using the model to generate test sequences was

initially proposed by Ricca and Tonella [RT01a]. Two tools were developed to support

the approach: ReWeb and TestWeb.

ReWeb was initially introduced in 2000 [RT00] and was only able to analyse static

applications. The tool constructed a model of the application for the purpose of aiding

maintenance. ReWeb downloads a web application through crawling and constructs a

model where nodes are pages and edges are links. The tool was used to download an

application at different points in its lifetime and analyse the changes. The results are

also presented graphically and include additional analysis information, such as shortest

path to a page or connectivity of pages. ReWeb was later used to help in restructuring

web applications [RT01c] to enhance reachability of pages or merge redundant menus.

6http://www.phpunit.de/
7http://www.jmock.org/

2.3. Web Application Testing 34

When applied to testing [RT01a, RT02], ReWeb was enhanced to handle forms

thereby providing support for dynamic applications. ReWeb was enhanced to represent

conditional links which are caused by a form submission that can lead to different

pages depending on the user input. This enhanced ReWeb analyses a web applica-

tion semi-automatically and produces a UML (Unified Modeling Language) model that

represents the application. Figure 2.3 8 demonstrates the meta-model of the generated

UML model. A concrete UML model represents a web application using a combination

of the elements in the meta-model. However, manual effort is required by the tester to

provide input values for forms and define the required conditions on edges together

with values that satisfy them. The model is then used by TestWeb to generate test suites

that cover the model. The resulting test suite consists of HTTP request sequences with

the input values left empty to be entered later by the tester. The completeness of the

model is not guaranteed since it depends on the values provided by the user for con-

ditional branches which can reduce the effectiveness of the generated test suite. For

large applications, the conditions that could affect the resulting output page can be very

complex and hard for the tester to specify manually. In essence, these conditions cor-

respond to the complexity of the server-code and the number of branching statements

it contains. More details about ReWeb and TestWeb and challenges in building these

tools together with the used solutions are described in detail in the literature [RT01b].

However, even for a complete model that represents the application accurately, the

possible sequences of requests that adequately cover the model can be very large in

a more mature and complex application. Time and resources dedicated to testing are

often limited. To overcome this problem Kallepalli and Tian [KT01] proposed mod-

elling the usage patterns of a web application to help in performing statistical testing.

The approach aims to identify the most frequently used sections of a web application

by examining traces so that testers can distribute testing effort in a more effective way.

Statistical testing prioritizes parts of the application that are more frequently used by

the application’s users. However, this does not eliminate the need to test other parts of

the application: Web applications are available globally to users with different back-

grounds and experience levels therefore usage can change unexpectedly at any time.

Qian et al. [QMZ07] proposed generating a simplified tree from the application’s

8 c© 2001 IEEE. Reprinted, with permission, from [RT01a]

2.3. Web Application Testing 35

Figure 2.3: Meta-model of the UML models generated by ReWeb Taken from Ricca

and Tonella’s paper[RT01a]

graph to limit the number of sequences that need to be generated to cover the model.

This approach provides an algorithm to generate a tree that covers all pages and all links

in the application’s model. The generated test sequences therefore would not satisfy

more demanding criteria for covering the model, such as all paths. Their approach still

requires manual intervention for entering values for user inputs and no evaluation was

provided to analyse the impact of the simplification algorithm on effectiveness.

In model based testing approaches of web application, the models are gener-

ated dynamically by crawling the application. Therefore, for dynamic applications

the model might not be complete since the possible different pages depend on the in-

puts that were used during the analysis. Wu and Offutt [WO02] introduced a novel

approach that models static and dynamic aspects in web applications. For every file in

the application, atomic sections are identified. An atomic section is a static HTML file

or a part of the server-side code that prints HTML as a block. For example, statements

printing HTML inside the true branch of an if statement are considered an atomic

section since if the true branch is executed the whole section will be part of the gen-

erated client-side page. Figure 2.4 and Table 2.1 demonstrate the approach by showing

a server-side script together with its atomic sections. Possible combinations of these

2.3. Web Application Testing 36

atomic sections are modelled using sequence, selection, and aggregation. Transitions

between server and client-side components are also modelled. Test suites are then de-

rived from the resulting model. The approach has not been automated and the models

are still preliminary and for a large application could be very complicated limiting the

scalability of the approach.

<?
Print "<html>";
Print "<body>";
$num = $_POST[’num’];

if ($num/2 ==0)
Print "$num is even!";

else
Print "$num is odd!!";

Print "</body>";
Print "</html>";
?>

Figure 2.4: Simple server-side script to demonstrate modelling static and dynamic as-

pects of web applications in Wu and Offutt’s [WO02] approach.

Table 2.1: Atomic sections of the code in Figure 2.4. Each set of print statements that

are printed together forms an atomic section.

1 Print ”<html>”;

Print ”<body>”;

$num = $ POST[’num’];

2 if ($num/2 ==0)

Print ”$num is even!”;

else

3 Print ”$num is odd!!”;

4 Print ”</body>”;

Print ”</html>”;

2.3. Web Application Testing 37

Di Lucca et al. [DLFF02] developed a testing strategy for unit and integration

functional testing of web applications. The paper proposes an object-oriented model of

the web application as a testing model and uses a tool WAT (Web Application Testing)

to support the approach. Single web pages (either client or server) are considered as

units when performing unit testing. Stubs for all other components and a driver to ex-

ecute the tests are generated to support the testing process. For integration testing, all

pages related to a single use-case are tested together. The grouping of objects is done

dynamically and incrementally until all related pages are included. The approach and

tool aim to automate part of the testing process and aid the tester in making decisions.

However, considerable manual effort is still needed, such as providing values for test

inputs and creating the stubs. Although the results of a case study indicate that the

approach could be effective, the evaluation is preliminary and only includes one appli-

cation in ASP. The WAT tool uses the static analysis results of the tool WARE (Web

Application Reverse Engineering) [DLDB06, DLFT04, DLFP+02]. WARE is a static

multi-language code parser that performs lexical and syntactical analysis to extract in-

formation about the application. The goal of the tool is to build conceptual models and

use-case diagrams of the application.

With the dynamically generated pages of a web application, the dynamic mod-

elling approaches proposed so far could result in very huge models with nodes that are

slightly different but represent the same conceptual page. Andrews et al. [AOA05] par-

titioned the application pages into clusters to identify those pages that are conceptually

the same but differ slightly in content. Each cluster is then modelled into Finite State

Machines (FSMs) and an application FSM is built for the full system which is then

used to generate test suites. The approach is not fully automated, but provides an editor

that helps the tester in the process of generating tests.

One of the issues in web application testing is the effect of the database state on

the test generation process and results. To eliminate the database effect the state can be

initialized before every test case is executed. However, coverage could depend directly

or indirectly on values retrieved from the database. This suggests that it could be ben-

eficial to include the database in the test generation process. This issue is not specific

to web applications since traditional applications can also use a database. However, the

use of a database is widely spread in modern web applications.

2.3. Web Application Testing 38

Deng and Wang [DFW04] apply the AGENDA tool [CDF+04] to web applications

developed in Java Servlets. Their approach uses static analysis to build a model of

the application where nodes are URLs and edges are links. The approach classifies

URLs into static and dynamic URLs based on database access. The model and the

AGENDA tool are then used to generate test cases and inputs for interesting paths in

the application. The static nature of the analysis limits the accuracy and completeness

of the model: Web applications are hugely dynamic; URLs and input names can be

constructed dynamically which static analysis is unable to detect. The AGENDA tool

also requires considerable manual intervention from the tester in providing ‘sample

value files’ that are used to populate the database.

Recently, model based techniques have been applied to AJAX web applications.

AJAX (Asynchronous JavaScript And XML) is a new technology that allows imple-

mentation of rich and dynamic web interfaces by using asynchronous communication

between the client and server. Marchetto et al. [MTR08] proposed an approach to

test these applications by abstracting the Document Object Model (DOM) into a state

model. The state model is constructed using static and dynamic analysis. A manual

check is necessary to validate the results of the dynamic analysis. The approach ab-

stracts states from execution traces. Only transitions that affect the DOM state are

considered. To identify those transitions the code of the application is statically ana-

lyzed. The FSM is then used to extract test cases of semantically interacting events

that could reveal faults related to the asynchronous nature of AJAX applications. This

approach has been compared to existing white-box and black-box techniques [MRT08]

and proved to be complementary to these techniques revealing faults that cannot be

revealed by other techniques.

An open question for model based approaches is how to cover a model in a feasible

way without loss of effectiveness in fault detection. Even for small applications the

model can be complex making the construction of test sequences that sufficiently cover

it costly or even infeasible when cycles exist in the model.

By definition these models also only represent the application as was intended by

the developer of the application: Connections between nodes are derived from links and

forms that are identified in the application’s code. However, because the user of a web

application has extended control over the application supported by browser functions,

2.3. Web Application Testing 39

such as Back and Refresh as well as the address bar and bookmarks, in theory any

two actions can be performed in sequence even if their connection is not represented

in the model. Therefore, restricting test sequences to those that can be found in such

models would not account for all possible sequences that can occur in practice.

Session Data Based Testing

The sequence of actions that the user performs from entering until leaving a specific

web site is known as a user session. Many web applications are configured to log

user sessions to help customize the content or analyse usage patterns to enhance the

application’s design. These sessions capture real user behaviour and usage of the ap-

plication making them potentially valuable in testing. Using these sessions to generate

test suites also addresses the problem of automated test data generation, which in model

based testing required manual input from the tester.

Elbaum et al. [EKR03] were the first to propose a web testing approach that uses

data captured in user sessions to create test cases automatically. The web server’s

session logs were analysed and partitioned into single user sessions using IP addresses

of requests and session identifiers. The application can then be tested by replaying

individual sessions or by mixing part of different sessions. Elbaum et al. evaluated

this session based approach by comparing it to existing model based techniques. The

evaluation compared session based approaches to two implementations of Ricca and

Tonella’s model based approach [RT01a]; a simple implementation that uses only one

value per field and an implementation that employs input ranges to populate fields

in a test case. They also evaluated a hybrid approach that assigns values collected

from session data to input fields in the model based test sequences. The evaluation

revealed that Ricca and Tonella’s approach with input ranges performs the best in terms

of coverage and fault detection. However, the session data based technique’s results

were competitive and complementary to the model based approaches but at a lower

cost and effort since the session based approach is fully automated. The evaluation also

revealed that mixing different parts of sessions and the hybrid approach did not provide

any additional benefit.

A later study [ERKI05] defined new strategies for session based approaches and

hybrid approaches. The new session based approach replays sessions but mutates input

values automatically by randomly deleting characters from their values. This approach

2.3. Web Application Testing 40

proved to be the most effective in detecting faults outperforming the model based ap-

proach. However, the evaluation was performed on one application and the sessions

were collected for the experiment rather than real sessions and were relatively small in

numbers.

When an application is configured to record session data, the amount of recorded

sessions can grow large very quick. Rerunning all recorded sessions can be inefficient

because a lot of redundancy in requests can be expected. For example, a large percent-

age of users are expected to login to a web application or perform a search. Sampath

et al. [SMSP04] designed a testing framework that is based on user session data and

attempts to address the problem of test suite size. To automate the test data generation

process, the framework updates a test suite with test data generated from user session

data throughout the application’s lifetime. To maintain the size of the test suite, the

framework continuously reduces the test suite using concept analysis. To perform con-

cept analysis, the sessions were considered objects and URLs were treated as properties

[SSP04]. Input values and sequence order of the URLs were ignored to simplify the

analysis. Common subsequences of URL were subsequently examined to help under-

stand web application behaviour and use-cases.

To evaluate the clustering approach, a later study by the same authors [SSG+05a]

examined the relationship between cluster size and overlap in coverage and fault detec-

tion within the same cluster as well as between different clusters. The results show that

clusters with smaller attribute sets display smaller overlaps in coverage and fault detec-

tion within the same cluster. However, the overlap between different clusters is much

smaller supporting the hypotheses that each cluster represents a different use-case of

the application.

This concept analysis based reduction technique was empirically evaluated

[SSG+05b] and compared to random and requirements based reduction techniques.

The results show that the concept analysis based technique requires less time, space

and effort, since it is fully automated, while still providing high coverage and fault

detection capabilities. Further work [SGSP05b] defined a framework for session based

testing that uses the clustering method and addresses other challenges in this type of

testing. Ignoring application state when replaying sessions [EKR03, ERKI05] resulted

in new cases that might have revealed new faults. However, it is desirable to account

2.3. Web Application Testing 41

for state in session based testing to reflect the original user behaviour and also to guar-

antee consistent behaviour when the test suites are executed repeatedly. Sprenkle et al.

[SGSP05b] addressed this issue by initializing the state then replaying the sessions by

the order of their first access of the application. The evaluation compares statement

coverage of the original sessions and the reduced test suite both with and without state

maintenance. The results show that the reduction in coverage is relatively small for the

reduced test suite (1.1%) and even smaller when state is ignored (0.1%).

Finally, Sampath et al. [SBV+08] evaluated and compared different prioritization

techniques on test cases derived from session data. The techniques used were based on

ordering test cases based on test length, sequence frequency, distinct parameter, distinct

parameter pairs, number of parameters and random. The results show that none of

the prioritization techniques performs better for all considered applications. However,

ordering based on the number of parameters and distinct parameter pairs detects all

faults for two of the three applications studied faster than any other technique.

Luo et al. [LPC09] also used clustering to reduce a session-based test suite. Their

approach uses a service profile derived either from the system’s specifications or by

reverse engineering the application to assign sessions to clusters. The assignment is

based on the number of common requests and input fields between a session and a

service profile. A tool WebMTA generates the application’s dependence graph. The

sessions with a higher count of dependence relationships in each cluster are included

in the reduced test suite until all dependence relationships are represented. Any de-

pendence relationship that is not represented in sessions is added by inserting missing

requests or missing input fields into sessions.

The approach was compared to several other reduction techniques including the

concept analysis technique proposed by Sampath et al. [SSG+05b] on both a case

study application as well as a real system with real faults. The results show that the test

suite size was mostly smaller for Luo et al.’s approach and the fault detection ability

was clearly higher for both applications than any other technique. However, this is

only clearly observable for the approach when the session data is augmented to cover

dependence relationships.

These results confirm the initial findings by Elbaum et al. [EKR03, ERKI05]

that session based approaches are complementary to white-box approaches. While the

2.3. Web Application Testing 42

approach is promising, it requires more effort than Sampath et al.’s approach since

system specifications and the system dependence graph need to be present.

In session based testing, logs are converted into test cases by partitioning the log

into independent single user sessions. This approach does not capture the real applica-

tion behaviour because in reality requests from different users are intermingled. If the

application contains multi-user state dependencies, such as a database, separating ses-

sions would result in different application behaviour to the original behaviour observed

when the logs were collected. This could mean additional coverage of code not cov-

ered by the original user sessions but could also mean a loss of coverage achieved by

the original requests. Sprenkle et al. [SGSP05b] discussed these issues in more detail

and proposed new strategies for partitioning the logs into test cases where one session

could contain requests from multiple users. The suggested strategies aim to address the

issues related to multi-user state dependencies while still having manageable test case

and test suite sizes to simplify debugging of faults and maintenance of the test suite.

Web applications change more rapidly than traditional applications. When the

structure of the application changes, some of the test cases produced from session data

collected before the change might fail. Alshahwan and Harman [AH08]9 proposed a

session data repair approach to be used in regression testing. The approach analyses the

structure of the modified application and then traverses the repository of session data to

identify invalid sessions. The invalid sessions will then be repaired by adding or delet-

ing requests or input parameters using the analysis data of the modified application.

The strength of session based approaches lies in their portrayal of real behaviour of

users of the application and their cost effectiveness because no manual effort is needed.

However, several drawbacks limit their use in testing web applications: If the applica-

tion (or part of it) is new or not previously configured to record sessions this approach

cannot be used. There is also no guarantee that these test cases provide completeness or

high coverage because some parts of the application and use scenarios could possibly

never have been encountered by users of the application. As with statistical testing,

usage of the application can change unexpectedly and new parts of the application, not

tested using these approaches, can suddenly dominate usage patterns.

9This paper was based on the author’s MSc work which won the best MSc project 2005 prize, King’s

College London. No part of this MSc work is included in this thesis.

2.3. Web Application Testing 43

Interface Identification

In web applications, the expected input fields and their types are not explicitly de-

fined. The client and server communicate through global arrays (e.g., $ GET, $ POST)

where the index is the input name and the array element is the value. The values these

arrays accept both as indexes and array elements are not restricted to a predefined set.

Therefore, identifying input fields and types (i.e. the interface) can be useful in pro-

viding guidance to test data generation techniques. Halfond and Orso [HO07] used

static analysis to identify interfaces of Java web applications. For each function call

that accesses the HTTP request’s global arrays to retrieve an input field, the operations

performed on the input fields are analysed to get domain information. Operations, such

as type casts determine the field’s type while comparisons to constants determine the

field’s possible values. The input parameters that are used along the same path are

grouped into interfaces. The discovered interfaces were then evaluated by measuring

their effectiveness in generating test cases that achieved higher coverage in comparison

to a state-of-the-art spider.

In subsequent work [HO08], the approach was applied to finding parameter mis-

matches in Java web applications and a tool called Web Application Interface Veri-

fication Engine (WAIVE) was developed to implement the approach. In addition to

identifying the interface, the tool identifies locations where these interfaces are used

then analyses the results to find mismatches. The tool was evaluated on four Java web

applications and reported 151 mismatches with only 19 false positives. However, in

strongly typed languages, such as Java, the result can be complete while for dynami-

cally typed languages, such as PHP the types of some variables might not be identified

using this approach.

The tool was enhanced to use symbolic execution to identify interfaces instead of

static analysis. The approach is divided into three steps: symbolic transformation, gen-

erating path constraints by executing the application symbolically and finally identify-

ing accepted interfaces. The enhanced tool was used for test data generation [HAO09]

by first identifying the interfaces and then using simple test generation techniques to

generate test cases. For each input, three types of values were generated: normal, empty

and erroneous (e.g., string when integer is expected). The interface discovery results

and coverage results where compared to a crawler that uses the same input generation

2.3. Web Application Testing 44

strategy. The evaluation showed that the new approach discovers more interfaces and

achieves higher coverage than the crawler.

Elbaum et al. [ECIR06] also investigated web interfaces. However, their approach

was a black-box technique that submits requests to the web server, analyzes the output

and infers characteristics about the interface. For a chosen form, the approach starts

by analyzing the HTML form definition to identify input fields and collect possible

values (e.g., from drop-down menus, radio buttons). The tester is prompted for values

for fields of unbounded type, such as text fields. A set of requests with all possible com-

binations of input values is generated and a request selector executes a subset of those

requests. The output is checked to determine whether it is valid or invalid. An inference

engine analyses the result to infer properties of input fields and relationships. The infer-

ence engine uses different algorithms to determine whether a variable is mandatory or

optional and also which variables need/cannot be present together. It also infers proper-

ties about accepted values and ranges. However, the results could be biased since some

of the values are provided by the tester. Some aspects of the approach are manual: pro-

viding values for text fields and defining what constitutes a valid response. A prototype

tool WebAppSleuth was developed to implement the approach. Another limitation of

the approach is that it assumes the processed forms to be deterministic and stateless.

Since many web forms are stateful, the current implementation of the approach does

not cater for them.

Later the tool was enhanced [IER07] to automatically identify valid and invalid

responses: A valid response contains data and an invalid response is empty or contains

an error message. The tool was also enhanced to infer a new property: the hierarchal

relationship between values where the result for one value should be a subset of the

results for another value if all other fields are kept constant. For example, in a product

search, the records returned for a minimum price value of 10 should be a subset of

the records returned for a lower minimum price value of 5. The evaluation was also

extended to include forms from six applications including forms selected from well-

known commercial applications, such as Travelocity and Expedia.

Identifying and understanding the interface of a web application can be very useful

in performing many tasks including test data generation. However, to be used in testing,

interface identification needs to be used in conjunction with test generation methods.

2.3. Web Application Testing 45

Bypass Testing

In web applications, input validations can be performed either on the client-side or

server-side or both. Client-side validations are triggered by user actions, such as filling

an input field or submitting a form. Since these validations are performed without

interacting with the server, network traffic is reduced and notifications of errors are

produced faster to the user. However, the nature of web applications makes it easily

possible for users to bypass these validations by submitting requests directly to the

server. This can be done, for example, by typing the query string directly into the

address bar of the browser or by writing a small program that uses one of the libraries

that perform such operations.

Bypassing the interface can be attempted by hackers to exploit vulnerabilities but

can also be done by normal users either intentionally or by accident. This can occur,

for example, when JavaScript is disabled or when a form submission result page is

bookmarked and later visited thereby submitting the saved values without executing

the client-side validation script. In all these cases, the application could behave un-

expectedly exposing sensitive data to the user. Performing input validations on the

server-side resolves these issues. Access to the database and application state is only

available on the server-side and more powerful languages can be used to implement

validations. However, sending requests back and forth to perform input validations

increases the pressure on the server and affects performance.

Offutt et al. [OWDH04a, OWDH04b] introduced the idea of bypass testing. The

concept of bypass testing is to submit requests directly to the server that violate input

validations. The approach analyses input validations in HTML forms and JavaScript

on the client-side and builds a set of constraints for each input. Input values are then

produced that violate these constraints. This type of testing requires no knowledge of

the server-side code and preliminary results [OWDH04b] showed that it exposes faults

that cannot be discovered without bypassing the interface.

The approach was later applied to CyberChair [OWDH04a], a real application

used in many conferences to manage paper submission, detecting a number of inter-

esting faults and vulnerabilities. One of the more interesting vulnerabilities discovered

was the ability to submit a paper without successfully logging in to the application.

This vulnerability was exposed by making a few modifications to the submission form

2.3. Web Application Testing 46

which can be replicated by any user since the form is on the client-side. This experi-

ment showed that the application does not ensure that a user is logged in before accept-

ing a submission. The approach was also enhanced to perform three types of bypass

testing: In addition to the previous ‘Value Level’ bypass testing, parameter and control

level bypass testing were performed. Parameter level bypass testing attempts to violate

defined relationships between fields while control level bypass testing tries to violate

the defined sequence of requests the application accepts.

Bypass testing was applied to an industry case where its effectiveness was con-

firmed by revealing 63 unique failures in the studied application [OWO08].

Bypass testing raises an important issue in web applications which is the extended

control that the user has over the application. Due to the nature of web applications,

the user could, as previously mentioned, use the application in a way that was not in-

tended by the application’s developer. Faults resulting from this unexpected use should

not be dismissed as false positives because they can be replicated by the user through

the application’s interface. However, the approach can be more effective in revealing

faults and vulnerabilities if used in conjunction with more powerful test data generation

approaches. Generating test data that violate client-side constraints in bypass testing

revealed faults not found by other approaches but combing this process with test cases

that achieve higher coverage, can reveal harder to find vulnerabilities in parts of the

code that are harder to reach.

Browser Interactions

As previously mentioned, one of the challenges in web testing is that the user has ex-

tended control over program execution. In addition to clicking links and submitting

forms, the user has the ability to use browser functions, such as Back or Forward

to alter the intended execution path. This can result in inconsistencies and unexpected

behaviour. Di Lucca and Di Penta [DLDP03] proposed a testing approach that ad-

dresses this problem. The approach is proposed to be integrated with any existing

testing method. After a testing method is selected and the test suite is built, this ap-

proach generates a state chart that takes into account possible browser interactions and

generates a new test suite that satisfies a chosen testing criterion. The output is then

compared to the output of the original test suite to discover inconsistencies and failures.

This approach addresses part of the problem, however it is limited to inserting one in-

2.3. Web Application Testing 47

stance of Back or Forward between two requests in the original test sequences. In

practice, any number of those actions can occur. Moreover, alterations to the execu-

tion path caused by, for example, typing a URL into the address bar of the browser or

visiting a bookmark are not modelled.

Licata and Krishnamurthi [LK04] also addressed this issue by using model check-

ing. The model checker describes the application’s behaviour as well as possible user

alteration of flow. The approach addresses the case where a user clones a page (i.e.

opens a link in a new window), returns to the original flow of the program but then

submits the cloned page. The motivation of the approach is an error found in Orb-

itz where when the previous scenario was executed, the item (in this case flight) that

was submitted (reserved) was the last item viewed by the user rather than the item on

the page where the submission button was clicked. The approach was designed for

programs written in PLT scheme that use the send/suspend primitive, which does not

apply to more widely used web applications written in PHP or Java. The send/suspend

programming procedure assumes that only one possible continuation point can be re-

sumed.

Those two approaches attempt to partially model user’s possible changes to the

intended execution flow of the application. In practice, those changes are unlimited

because in principle any two requests can be executed in sequence. Because of security

issues that present a threat in web applications, all execution paths need to be tested.

However, that is often infeasible making it necessary to find approaches that prioritize

execution sequences that are more likely to expose faults without restricting the method

used to build those sequences.

Dynamic Symbolic Execution

Dynamic Symbolic Execution is a combination of concrete and symbolic executions of

the application under test. The approach is based on executing the application symboli-

cally with an initial set of inputs (typically an empty set) and building a path constraint.

New path constraints are then generated by using subsets of the previous constraint

with the negation of one conjunct. A constraint solver is then used to produce new

inputs that satisfy these constraints if possible. This approach has been used in web

applications to produce test data to cover server-side code or uncover vulnerabilities

that could lead to security threats.

2.3. Web Application Testing 48

Wassermann et al. [WYC+08] used Dynamic Symbolic Execution to generate test

data for PHP web applications. The test data was generated to check for possible SQL

injection attacks. For scalability, only constraints related to the parts of the program that

call database queries were examined. The technique was able to find vulnerabilities that

may lead to SQL injections that were not found by static techniques.

Artzi et al. [AKD+08] used a similar approach to generate test data and find bugs

in PHP applications. A tool called Apollo was developed to implement the approach

and generate inputs. To perform symbolic execution, the code was transformed to

simulate user actions, such as button pressing. The transformation is done manually

which limits the automation of the approach. This manual effort was eliminated in later

work [AKD+10] by adding a state manager and analyzing the output HTML for new

user actions. However, using this approach that relies on the output HTML to discover

user actions dynamically might miss parts of the application. It also limits sequences of

requests to those defined by the developer of the application while in web applications,

as discussed previously, the user has extended control over the application.

Figure 2.5 depicts the architecture of the tool. A modified version of the PHP

interpreter (Shadow Interpreter) is used to perform the test generation process. the

‘shadow’ interpreter performs both concrete and symbolic executions simultaneously.

The tool also monitors the output for PHP errors and malformed HTML and collects

the test cases that caused them. To localize faults, a post-processing step is performed

to minimizes the conditions on inputs that cause failures. The tool was evaluated on six

PHP applications and compared to random test data generation. The faults found by

Apollo included malformed SQL errors that are a result of concatenating input fields

into SQL statements without validation leaving the application vulnerable to SQL in-

jection attacks.

Emmi et al. [EMS07] proposed a Dynamic Symbolic Execution approach that, in

addition to constructing constraints on inputs, tracks the database state and its con-

straints. A symbolic map is maintained for the database and the database state is

changed for each execution based on the suggestions of the symbolic execution. In

addition to the database’s effect on coverage, the database query statements could con-

tain conditions that can be considered branches. Since SQL is usually embedded in a

host language, such as Java or PHP that implements the application, coverage criteria

2.3. Web Application Testing 49

Figure 2.5: Architecture of the Dynamic Symbolic Execution tool Apollo reproduced

from the work of Artzi et al. [AKD+10]

of the host language often overlooks these branches. The main limitation of the ap-

proach is scalability but also changing the database is done artificially (not through the

applications interface) which might introduce false positives.

Web Crawlers

One of the first attempts to analyze and fill forms automatically was proposed by

Doorenbos et al. [DEW97] for a shopping agent that helps the user locate the best

deals for products on the web. Although the scope was limited to searching for specific

products provided by the user, the approach used to identify fields and analyse the out-

put has been employed by later studies for the purpose of testing. For instance, for the

shopping agent to learn what an error page looks like (e.g., ‘product not found’ page), a

number of form submissions are tried first with random strings and the output is anal-

ysed. To identify form fields that are relevant to the product the agent is investigating,

field names and adjacent labels are matched to the product information provided by the

user of the agent.

Raghavan and Garcia-Molina [RGM01] developed a crawler called the Hidden

Web Exposer (HiWE). The crawler was not specifically developed for testing but for

2.3. Web Application Testing 50

extracting data hidden behind forms. When the crawler encounters a form, it first

analyses the form definition to extract fields, labels and values. The labels are used to

obtain more information about the fields in order to generate meaningful values. When

filling form fields that are unbounded (e.g., text boxes), HiWE uses a table populated

with values from a combination of user provided values, built-in categories, such as

time and date, crawler experience and data extracted from well-defined web directo-

ries, such as Yahoo. The labels of fields in a form are matched, using approximate

string matching, to the labels in the table. This approach makes values reusable in sim-

ilar fields with slightly different names. To identify error pages, the crawler analyses

the HTML structure of a response page to find the most significant part of that page.

The hash values of that significant part are then stored for each form on multiple sub-

missions. When a hash value for a particular form appears frequently, the response

page is considered to be an error.

Assigning a value to a form field could be a trivial task in case of fields with

a limited number of possible values, such as checkboxes or radio buttons. However,

the task becomes more complicated when the crawler is faced with a field with infinite

possible values, such as a text box. Some fields are unbounded but optional or only

needed for extra information, such as a description field or a name field. Any value

provided for such a field would result in a successful submission of the form. However,

some fields are mandatory and require specific values: validations are performed on

these fields and the value provided has to be valid for the submission to succeed. An

example of such fields is a user name field or post code.

Liddle et al. [LESY03, LYE02, LYE03] describe a domain independent crawling

mechanism that, similar to HiWE, is focused on data retrieval. For a specific form, the

aim is to attempt to retrieve all data that lie behind that form. The strategy followed is

to first submit the form using default values found in the form definition. A number

of subsequent submissions are made and the result compared to the initial submission.

If no new data was found, the initial default submission is assumed to have returned all

data. Otherwise, other combinations are tried until a user defined stopping criterion is

satisfied.

VeriWeb [BFG02] is a tool that combines the benefits of crawlers and capture/reply

tools. The tool has the ability to discover and fill forms automatically using user-

2.3. Web Application Testing 51

defined profiles. VeriWeb executes within a browser environment, similar to cap-

ture/reply tools, making it able to execute client-side scripts. The tool explores a web

application from an initial state to a given depth recording a trace of actions taken that

can be later repeated interactively by the tester. An error reporting mechanism is also

provided that, together with the recording capability, is useful for debugging. The tester

can specify profiles of input data that should be used as a set (e.g., username and pass-

word). The profiles are specified on the application level and not on a form-by-form

basis to be more flexible and limit the manual effort required by the tester. For each

field, a value or a regular expression is provided. Aliases for the same field can be

specified since a slightly different name might be used in different forms. Policies can

also be specified to limit the number of possible completions of a certain form. For

example, a policy to use only one profile per execution path can be defined. Unlike the

previously discussed crawlers, VeriWeb is specifically developed for testing. VeriWeb

requires considerable manual intervention from the user in defining input profiles (i.e.

the input values). As with all crawlers, the test cases generated are large, depending on

crawling time, which makes it hard for the tester to check the output and debug errors.

Static Analysis

Minamide [Min05] implemented a string analyzer that approximates the string output

of a PHP program. A PHP program together with input specifications are passed to

the string analyser. The input specifications provided by the user describe input types

and names as well as return values of functions. The analyser first translates the pro-

gram into a functional intermediate language equivalent to the static single assignment

form. The tool extracts a context free grammar from this and uses it to approximate

the program’s output. The approximated output can then be used to validate HTML

or check for cross-site scripting vulnerabilities. The approach was tested on six PHP

applications and was able to detect both HTML faults and cross-site scripting vulner-

abilities. Web applications are dynamic and PHP specifically has many mechanisms

that can construct code dynamically. Therefore, static analysis fails to provide a com-

plete analysis of code and later work that relies on dynamic methods by Artzi et al.

[AKD+08, AKD+10] has been shown to outperform Minamide’s results.

2.4. Search Based Software Engineering 52

Formal Methods

Jia and Liu [JL02] apply formal specifications to web applications. They define a spec-

ification language that caters for special characteristics of web applications. They de-

veloped a tool WebTest that accepts formal specifications of the test suite as well as

the expected response of an application as input, executes the tests and outputs a test

report. Security and performance testing test suites can also be described by the formal

specifications and tested using WebTest. This approach is useful when such specifica-

tions are already present; otherwise the benefit of the approach is limited to automating

test execution.

Testing Cookies

Web applications use cookies as one of the ways to overcome the stateless nature of

HTTP requests. Cookies are small files that reside on the client’s file system and store

information that the server can use to identify the client. For example, if the client

uses a feature to be kept logged-in to an application on subsequent visits from the

same machine, the server could store a cookie that makes it possible to identify this

user’s choice in the future. Tappenden and Miller [TM08] defined a strategy for testing

cookies and their effect on the application’s behaviour. A grammar for cookies was

defined and several testing strategies were explored that are specific to the nature of

cookies. Their approach is independent of structural testing of the application and no

evaluation of the proposed approach was presented.

2.4 Search Based Software Engineering
Search based software engineering is an approach that formulates software engineer-

ing problems into optimization problems [HJ01]. The approach uses metaheuristic

search algorithms to find near optimum solutions for problems where no optimal so-

lution can be found. The approach has been applied to many areas of software engi-

neering throughout the development lifecycle including cost estimation, requirements

engineering, test data generation and test data optimization [Har07].

To apply search based techniques to a problem a number of decisions need to be

made. First, the possible solutions need to be ordered in a way that makes similar

solutions adjacent. For example, if the solutions are integer numbers, the neighbours

of the number 3 are 2 and 4. This ordering process is not trivial for more complex

2.4. Search Based Software Engineering 53

data types, such as records or strings. Second, an objective function or fitness func-

tion needs to be defined and used to compare solutions. Finally, operators to alter

unsuccessful solutions need to be selected in a way that directs the search to a ‘better’

solution. For integers, for example, such operators could be addition and subtraction.

Once the problem is formulated in this way, a search based technique can be applied to

solve the problem. Many techniques are currently used and many new techniques are

emerging. Hill Climbing [Kor90], genetic algorithms [MMS01], evolutionary strate-

gies [AC06, AC08], tabu search [Glo90] and simulated annealing [TCMM98, TCM98]

are examples of such algorithms.

The remainder of this section reviews existing concepts used in search based test

data generation. These concepts are employed and enhanced in part of this thesis in the

application of search based test data generation to web applications in Chapter 3.

2.4.1 Search Based Test Data Generation

Miller and Spooner [MS76] were the first to suggest a dynamic test data generation

approach that uses search in 1976. The paper suggests an approach for generating

floating point test data while fixing integer parameters. A path is picked for generating

test data and all constraints that satisfy that path are used to compute the fitness of the

input data. Constraints are computed by transforming them in a form that would result

in a positive value if the constraint is satisfied. For example, a constraint that takes the

true branch of the test if (X 6= Y) has a constraint c > 0 where c = abs(X−Y) or

c = (X − Y)2. The fitness is only positive if all constraints are positive (i.e. satisfied).

The approach begins with a random set of inputs and the values are then adjusted until

the fitness is positive and thereby the inputs that satisfy the chosen path are found.

In 1990 Korel [Kor90] developed Miller and Spooner’s approach to simplify and

enhance the search process. Predicates of the form X op Y where X and Y are ex-

pressions and op is a relational operator are transformed to F rel 0 where F and rel

are described in Table 2.2. A path is then selected for which the approach wants to

generate test data to cover. An initial random input vector is generated and executed

on the program under test. If this input vector causes the target path to be covered,

the input vector is recorded. If the path was not covered, search based techniques are

used to try to cover the branch that caused the execution to divert from the target path.

2.4. Search Based Software Engineering 54

Branch Predicate Branch Function F rel

X > Y Y −X <

X ≥ Y Y −X ≤

X < Y X − Y <

X ≤ Y X − Y ≤

X = Y abs(X − Y) =

X 6= Y abs(X − Y) ≤

Table 2.2: Korel’s transformations of branch predicates to calculate fitness

Once a solution has been found, the process is repeated for each divergence point until

the target branch is covered or the approach fails to produce a solution. This differs

from Miller and Spooner’s approach in that fitness is calculated for branches rather

than all constraints in the path. Korel also introduced the Alternating Variable Method

(AVM), which is a variation of Hill Climbing into the search process. This method

makes changes to one input variable while fixing all other variables. Branch distance is

used to measure how close an input comes to covering the traversal of a desired branch.

If the changes to a variable affect branch distance, AVM applies a larger change in the

same direction at the next iteration. This ‘acceleration’ could cause the approach to

‘over shoot’ the nearest local optimum. In this case, AVM restarts its search at the pre-

vious best solution so far. The approach will then cycle through variables, repeating the

same process, until the branch is covered or no further improvement is possible. Dy-

namic dataflow analysis was also used to determine the order in which input variables

are picked for the Alternating Variable Method. Variables are assigned weights based

on their influence on the target branch to improve the performance of the approach.

Ferguson and Korel [FK96] developed Korel’s work by introducing the chaining

approach. In some cases reaching the target node is dependent on the execution of a

node that defines the value of a variable used in the target node. This dependency is

not captured by the control flow graph and therefore using the control flow graph is not

sufficient to guide the search. The chaining approach analyses data dependencies and

uses this analysis to generate inputs that execute the affecting definition statement and

thereby improve the chances of covering the target node.

2.4. Search Based Software Engineering 55

Gallagher and Narasimhan [GN97] used search based techniques to generate test

data for Ada83 programs. The approach takes into account AND, OR, NOT and XOR

operators while previous work assumes predicates are free from these operators. The

fitness function value for a predicate containing an AND operator is the sum of fitness

values of its two operands while for the OR operator the fitness is the minimum. The

work also supports exceptions and procedures which Ferguson and Korel’s work does

not support.

Tracey et al. [TCMM98, TCM98] used simulated annealing global optimization to

test functional and non-functional properties of Ada programs. The fitness function was

changed to evaluate to zero when a correct solution is found so the aim was to minimize

the fitness function. Table 2.3 describes how fitness is calculated. A value K is added

when a condition evaluates to false to avoid the need to have different relation operators

for different predicate types. When generating test data to cover a certain branch, the

fitness is calculated globally by evaluating how close the executed path was to the path

that leads to the target branch. This work also incorporates boundary value testing into

the testing process by assigning optimum fitness to values that satisfy the predicate

of the target branch but are on the boundaries of the range of optimal solutions and

slightly penalizing all other correct solutions. Assertion and exception testing is also

performed by transforming assertions and exceptions to branch predicates that can be

covered using the same search based structural testing techniques. An application of

the approach to non-functional testing was also suggested where the same algorithm

was used but the fitness function was the execution time of a given test case.

Alba and Chicano [AC06, AC08] used Evolutionary Strategies (ES) to generate

test data. Evolutionary Strategies simulate evolution in nature to generate test data. An

initial population of test cases is created randomly or by a seeding algorithm and then

executed and evaluated on the system under test. In the next iteration, the result of the

evaluation is used to evolve the population generating a new population, or offspring,

from the fittest parents. The input vector is represented as real and integer numbers

together with additional self adaptive variables that are used in mutation. The approach

aims to maximize condition-decision coverage; for every condition in the program,

test data is generated for the condition to evaluate to both true and false. While

targeting a condition, fitness of other conditions is monitored to capture test cases that

2.4. Search Based Software Engineering 56

Element Value

Boolean if TRUE then 0 else k

a = b if abs(a− b) = 0 then 0

else abs(a− b) + k

a 6= b if abs(a− b) 6= 0 then 0

else k

a < b if a− b < 0 then 0

else (a− b) + k

a ≤ b if a− b ≤ 0 then 0

else (a− b) + k

a > b if b− a < 0 then 0

else (b− a) + k

a ≥ b if b− a < 0 then 0

else (b− a) + k

a ∨ b min(cost(a), cost(b))

a ∧ b cost(a)+ cost(b)

¬a Negation is moved inwards and propagated over a

Table 2.3: Tracy et al. [TCMM98] Fitness Function for local distance.

2.4. Search Based Software Engineering 57

satisfy other conditions by accident and thereby increase the efficiency of the approach.

Alba and Chicano compared evolutionary strategies to Genetic Algorithms and found

that ES perform better for some of the programs studied. As well as normal branch

coverage, ‘Correct Coverage’ was introduced which excludes infeasible branches from

the normal branch coverage measures.

Michael et al. [MMS01] used a minimizing fitness function similar to the one

used by Tracey et al. but generated test data for C and C++ programs using Genetic

Algorithms (GA). A new approach was proposed for selecting the next branch the GA

targets; branches are only targeted if they have already been reached. The next branch is

selected from nodes where either the true or false branch has already been covered

and the GA will attempt to cover the other branch. The test inputs that cause a branch

to be reached are used as a starting point when that branch is targeted later rather

than using random test inputs. Like Alba and Chicano, test cases that accidentally

cover branches, other than the target branch, are captured. An interesting observation

from the evaluation is that accidental coverage of test criteria was more common than

deliberate coverage.

Michael et al. also compare different search based algorithms including GA to a

random test data generation approach on both simple programs and real world more

complex programs. The results of this comparison indicated that the difference in per-

formance between random and GA becomes more pronounced when programs have

higher complexity.

In many cases, when trying to cover a target branch, several paths in the program

could lead to the target branch but some of those paths might make covering the target

branch infeasible. In a standard search based approach this might lead to failing to cover

the branch since the search process was not designed to handle those cases. McMinn

et al. [MHBT06] proposed a program transformation that factors all paths that lead to

branches giving the search process more guidance in finding the correct path that leads

to covering a branch. They applied this approach to evolutionary testing maintaining a

separate population per path. The evaluation showed that this approach is effective for

branches that have this property.

Lakhotia et al. [LHM07] suggested that, in practice, a test data generation process

might seek to satisfy multiple objectives simultaneously. Therefore, a multi-objective

2.4. Search Based Software Engineering 58

test data generation technique is more realistic. The proposed test data generation pro-

cess tries to satisfy a secondary objective as well as maximizing structural coverage. In

a case study presented in the paper to demonstrate the approach, the sub-objective was

selected to be maximizing allocated memory.

Generating test data to cover string predicates requires the definition of custom fit-

ness functions and mutation operators. Alshraideh and Bottaci [AB06] were the first to

propose a method for search based test data generation for string predicates. Three fit-

ness functions were compared: Hamming distance, character distance and ordinal edit

distance (Levenshtein distance). In the evaluation, the Levenshtein distance performed

better than the other two fitness functions. The paper also proposes the use of constants

gathered from the source code to initialize and mutate string inputs. This proposed

constant seeding approach considerably improved performance (up to 5 times). The

approach was evaluated on a number of small JScript functions (maximum LOC 62).

The improved performance gained by seeding constants collected from the source code

indicates a potential source of enhancement of search based algorithms by considering

other seeding sources.

Yoo and Harman [YH10] proposed a new source of seeding in regenerating test

data from existing test data using search based techniques. The approach suggests that

when test cases already exist, either from manual testing or previous releases, test data

generation tools perform better by using this previous test data as a starting point instead

of randomly generated test data. The evaluation confirmed that using this approach,

search based generation tools achieve competitive coverage and mutation scores com-

pared to standard approaches that start from randomly generated test data while being

up to two orders of magnitude more efficient.

Zhao et al. [ZLM10] generated string test data for domain testing. Domain testing

is aimed at finding input values that are near the boundaries of the domain since these

are expected to reveal faults. For example, to generate inputs for domain testing for

a program that contains a condition of type if (x ≤ 5) (where x is an integer) two

values need to be generated: one value on the border (5) and one value just outside the

border (6). The fitness function used was the string ordinal distance where strings are

mapped to a non-negative number using weighed summation of the string characters

ASCII code.

2.4. Search Based Software Engineering 59

McMinn [McM04] surveyed some of the search based techniques used in test data

generation for structural, grey-box and non-functional testing. The survey focuses on

genetic algorithms, Hill Climbing and simulated annealing and also discusses future

direction for work in this area. Ali et al. [ABHPW10] recently published a systematic

review of the methods used to empirically evaluate test data generation using search

based techniques.

Concolic testing or Dynamic Symbolic Execution is one of the main test data

generation techniques together with search based techniques. In concolic testing, the

program under test is executed with some random or empty values and the constraint

for the path that was executed is built. The approach tries to then cover more paths

by negating the last conjunct of the path constraint. The process continues until no

more paths can be covered. Lakhotia et al. [LMH09, LMH10] performed an empirical

study that compares the performance of concolic testing and search based test data

generation. The results of the study showed that the two approaches are complementary

and each covers a subset of distinct branches. The study also showed that using these

two techniques out of the box for large real world systems achieves moderate branch

coverage (< 50%).

Hill Climbing

Hill Climbing is a local search algorithm often used in SBSE and found to be effec-

tive for testing [HM07]. A random solution is first chosen from the search space and

evaluated. The neighbouring solutions of that random solution are then evaluated to

find a better solution. If a better solution exists, that solution is selected to replace the

previous solution. The process is repeated until a solution is found for which no further

improvements can be made.

The approach has the advantage of being simple and fast. However, the approach’s

success depends on the randomly chosen starting solution as some initial values can

cause the search to be trapped in a local optimum. An improvement on this approach

to overcome this problem is to introduce ‘restarts’ where when a solution cannot be

found the process restarts with a new random solution. The previously discussed Alter-

nating Variable Method proposed by Korel [Kor90] is a variation of the Hill Climbing

algorithm.

2.4. Search Based Software Engineering 60

Hill Climbing is not as popular as Evolutionary Algorithms in search based test

data generation [ABHPW10]. However, Harman and McMinn [HM07, HM10] inves-

tigated situations where the use of Evolutionary Algorithms is beneficial compared to

Hill Climbing. The results showed that in many cases the sophisticated, but often more

expensive, EA algorithms are not required and a simple algorithm, such as Hill Climb-

ing can be just as effective (and in some cases more effective). The predicates that

benefit from using EA need to exhibit certain properties. When these properties are

absent, Hill Climbing can outperform EA.

Fitness Function

The fitness function is the primary elements in a search based algorithm as it provides

a way of evaluating solutions and thereby guiding the search. Two types of fitness

functions have been used in the literature for test data generation that aims to maximize

structural coverage. The first type is coverage oriented while the second type is control

oriented. In coverage based fitness [Rop97, Wat95], the fitness of a test case is evaluated

based on how much coverage it achieved. The problem with this approach is that it

provides little guidance to the search algorithm to cover new branches. The design of

the fitness function will also often drive the generation process to test cases that have

longer execution paths that are easier to find [McM04]. Control based fitness functions

can be either based on branch distance [Kor90, JSE96] or control flow oriented [PHP99]

or a combination of both [WBP02].

Branch distance based fitness functions [Kor90, JSE96] calculate the distance of

the branch that diverted execution from a path to the target branch. This approach

divides the coverage of a target branch to several sub targets: These sub targets are the

branching points along the execution path that leads to the target branch. This approach

forces the search process down a specific execution path and therefore might cause it

to be trapped in a local optimum.

Pargas et al. [PHP99] used a control flow oriented fitness function when using ge-

netic algorithms to generate test data. The control flow based fitness function calculates

fitness by comparing the predicates in common between what a test case covers and the

predicates in the path that leads to covering the target branch. The higher the number

of common predicates the higher the fitness. However, this fitness function fails to cap-

ture another difference that affects fitness. Two test cases that cover the same number

2.4. Search Based Software Engineering 61

of common predicates will have the same fitness even if one is closer to covering an

additional predicate.

A fitness function that combines both control flow and branch distance based fit-

ness can overcome the issues related to using each type of fitness individually. Tracy

[Tra00] introduced such a combined fitness function. The fitness for a certain test

case is calculated as [McM04]: Executed/Dependent × Branch distance Where

Dependent is the number of branches that need to be covered to reach the target

branch and Executed is the number of those branches that were covered by the test

case. Branch distance is the local distance of the branch that caused the execution to

divert from the path that leads to the target branch. Although this fitness function avoids

the issues faced in previous fitness functions, it might favour test cases that executed

longer paths.

Wegener et al. [WBP02] propose a similar fitness function that overcomes this

problem by introducing the approximation or approach level. The approximation level

counts the number of branches that need to be covered between the branch that caused

the execution to divert and the target branch. This is added to a normalized local branch

distance of the branch that diverted execution from the path leading to the target branch.

In the approach proposed by Michael et al. [MMS01], the processing of a target is

delayed until test generation for other targets had caused the target to be reached. This

approach is not useful when the goal of the test generation process is to cover a few

specific targets. However, when the goal of the test generation process is to maximize

coverage of the system under test, this approach eliminates the overhead of analyzing

the control flow of the program to calculate the approach level.

2.4.2 Search Based Techniques in Web Applications

The majority of web related search based research targeted web services which are

different in their structure and testing challenges [BHH12] to web applications.

Tsai et al. [TZPC05] used search based algorithms to cluster the output of web

services that perform the same function to aid in a voting mechanism that decided which

web services return a faulty output. Simulated annealing was used to automatically

group the output from different web service into clusters to identify which services are

valid. This approach can be useful when a web service used by the application becomes

2.4. Search Based Software Engineering 62

unavailable and an alternative service needs to be found. The approach suggests that

if the majority of similar web services return a certain output, it is more likely that

the output is correct. Clustering is used because the output of web services may be

slightly different but still valid but also because using clustering makes the approach

application specific.

Blanco et al. [BGFT09] used a scatter search algorithm to generate test sequences

to cover transitions in the state machine of a BPEL business process. A BPEL business

process is a business process that uses BPEL specifications to describe the possible

combinations of web services that can be called to carry out its functionality.

Gu and Ge [GG09] used genetic algorithms for performance testing of web ser-

vices. They generated test cases that produce the best and worst execution times of a

composition of web services.

Although published work on search based algorithms is dominated by testing,

the application to web application testing is very limited and test data generation has

not been applied yet to web applications. Marchetto and Tonella [MT09] used search

based techniques to test AJAX applications. AJAX (Asynchronous JavaScript And

XML) is a technology that allows the client and server to communicate asynchronously

and dynamically manipulate the DOM (Document Object Model). The DOM is the

collection of objects that are presented to the user, such as tables, forms and buttons.

This asynchronous communication and manipulation of the DOM introduces new types

of faults not found in traditional web applications. For example, a wrong assumption

about the DOM by the application can lead to faults.

The approach first uses execution traces to build a finite state machine of the ap-

plication and identify semantically interacting events. Two events are semantically in-

teracting if swapping their execution order produces a different state. A Hill Climbing

search based algorithm is then used to generate test sequences that maximize diversity

of the test suite. Several fitness functions that measure diversity were used: frequency

of event calls, frequency of pairs of events and coverage of the FSM. The approach

produces test suites that are smaller than exhaustive testing with a small degradation

in fault finding ability. This work was later extended [MT11] by using simulated an-

nealing to avoid Hill Climbing’s tendency to be trapped in a local optimum. A new

diversity fitness function based on sequence length was also introduced.

2.5. Test Adequacy Criteria 63

Türpe [Tür11] proposed a road-map for security testing of web applications using

search based techniques. They suggest that search based techniques can be used to find

diverse but interesting starting test cases for web application security testing. New test

cases can then be generated that are similar to the starting test cases that exposed a

security vulnerability but are better at exposing those vulnerabilities.

2.5 Test Adequacy Criteria
Test adequacy criteria are used to decide when a system under test has been sufficiently

tested. Test selection criteria are used to select a subset of test cases that are expected

to be more effective in revealing faults. A test adequacy/selection criterion can be

specification based: Test cases are generated to cover all specifications of the system.

However, specifications might not always be available or complete. Therefore, program

based adequacy/selection criteria have been proposed to guide automated test data gen-

eration. The main two categories of program based criteria are control flow based and

dataflow based criteria. For graphical user interface (GUI) testing, special criteria that

are based on events and event interactions were developed [MSP01] to cater for the

special nature of GUI systems.

There has been much previous work [ABLN06, HFGO94, FW93, NA09] that in-

vestigated the effectiveness of those program based criteria in finding faults. Specifi-

cally, whether those criteria independently influence a test suite’s effectiveness in find-

ing faults or if the increased effectiveness is just a side effect of larger test suite sizes

that are required to satisfy those criteria. Results confirmed that a test suite’s cover-

age level of program based criteria influences effectiveness. However, results showed

that those criteria are not the only factor that affects fault detection. This suggests that

new criteria should be introduced and evaluated that complement program based cri-

teria. Andrews et al. [ABLN06] also reported that cost-effectiveness for the different

program based criteria is the same. That is, while more demanding criteria are more

effective in finding faults, satisfying them often requires larger test suites.

2.5.1 Control Flow Based Testing Criteria

Statement coverage is the simplest and least demanding control flow based test ade-

quacy/selection criterion. A test suite satisfies statement coverage when every state-

2.5. Test Adequacy Criteria 64

ment in the code is covered by at least one test case in the suite. To satisfy branch

coverage, every branch in the system under test has to be covered. Path coverage is the

strongest and most demanding criterion and requires that every path in the program is

covered. The number of paths in a program can be very large and in some cases infinite

in case the program contains loops. Therefore, less demanding variations of this crite-

rion have been proposed. For example, the tester can attempt to cover all independent

paths or all simple paths. Zhu [Zhu95] provides a formal definition and assessment of

these control flow based test adequacy criteria.

When using test adequacy criteria, the test suite is required to have at least one test

case that covers each element described in the criterion. For example, for statement

coverage every statement in the system under test should be covered by at least one

test case in the test suite. However, it has been suggested in the literature that different

faults have different levels of probability of propagating to the output and causing a

failure. Therefore, effectiveness of test suites can be improved by estimating how likely

a fault in a program entity (a statement for example) would propagate to the output.

This estimation can be used to compute a recommended number of times an entity

should be executed by different test cases before gaining confidence that it has been

tested adequately. Chen et al. [CUR+02] empirically investigated the benefits of this

method and concluded that although overall effectiveness of test suites was statistically

significantly improved, the observed improvement was limited. However, in critical

systems, the approach might still be cost-effective since higher confidence in the quality

of the SUT is crucial.

2.5.2 Dataflow Testing Criteria

The use of dataflow analysis in test case selection was first proposed by Rapps and

Weyuker [RW82, RW85] in 1982. These dataflow based criteria examine definitions

and uses of variables when generating test cases. The authors provided a formal defini-

tion of dataflow testing by defining the dataflow graph and proposing several dataflow

testing criteria. The coverage criteria introduced for the dataflow graph range from

‘weaker’ criterion (All-nodes) that would require the smallest test suite to be satisfied

to the ‘strongest’ criterion (All-paths) that would require larger test suite to be satisfied

but can be infeasible in the presence of loops.

2.5. Test Adequacy Criteria 65

Laski and Korel [LK83] also examined dataflow testing and suggested two testing

strategies: The first strategy is to generate test cases to cover all definition-use (DU)

pairs for each variable individually, while the second strategy applies the same principle

for vectors of variables.

Harrold and Rothermel [HR94] adapted dataflow testing techniques to classes of

Object Oriented systems. Three levels of DU testing are proposed: for a single method,

for a method and all methods it calls and finally for possible interactions of public

methods within a class. Since these interactions are infinite, only a subset of those

method sequence calls is considered. Martena et al. [MOP02] extended Harrold and

Rothermel’s approach by also considering DU pairs of objects. Symbolic execution

was used to identify pre and post conditions for paths on method calls.

Hutchins et al. [HFGO94] compared control flow and dataflow based criteria in

their effectiveness in fault detection. Two forms of coverage criteria where considered:

all-DU and branch coverage. The results showed that achieving 100% coverage for ei-

ther criterion does not guarantee finding all faults in the SUT. The study also concluded

that the two coverage measures are complementary in their fault detection effective-

ness. Although the results are interesting, the empirical design contained many sources

of possible bias. For example, the faults considered were seeded manually. To con-

struct the test suites used in the study, the mechanism is engineered rather than random

introducing bias into the process.

Frankl and Weiss [FW93] compared All-uses and branch coverage (All-edges)

and found that for five out of nine subjects considered in the study, All-uses was sig-

nificantly more effective than All-edges. Since satisfying All-uses requires more test

cases than All-edges, effectiveness was compared for suites with similar sizes to elimi-

nate the effect of size. The results showed that in four out of the nine subjects, All-uses

still performed significantly better than All-edges.

2.5.3 Web Specific Testing Criteria

Test adequacy criteria for web applications initially focused on coverage of a model

of the application constructed by crawling the application. In Yang et al.’s [YHWC99,

YHW+02] proposed web testing architecture the definition of traditional structural test

adequacy criteria was adapted to the web application’s model. For example, statement

2.5. Test Adequacy Criteria 66

or branch coverage were used but the definition of a branch or a statement was modified:

Web pages are considered nodes or (statements) and links between pages are considered

branches.

These new criteria were adopted by subsequent research, such as Ricca and

Tonella’s model based approach [RT01a]. Ricca and Tonella’s also extended these cri-

teria to redefine dataflow criteria for the web application’s model. For example, all-uses

criterion is defined as covering every navigation path in the model from every definition

of a variable to every use of that variable.

Although testing different paths of the navigational model of the application is im-

portant, the use of traditional coverage criteria of the applications code is still needed

especially with the rapidly increasing complexity of web application code. Tonella and

Ricca [TR04a] proposed a 2-layer testing approach where code level coverage criteria

are combined with the high level model coverage criteria. Instrumenting the server-side

code to measure coverage is a straight-forward process that resembles coverage instru-

mentation in traditional applications. However, for HTML and JavaScript the task is

more challenging since the code executes on the client-side and therefore coverage

statistics cannot be easily conveyed to the server. Therefore, Ricca and Tonella sug-

gested methods to overcome this issue: To determine coverage of stand-alone HTML,

a special input field is populated with the HTML file name and passed to the server

with each request. For JavaScript, the task is even more challenging since no request

is submitted and no inputs can be set. The proposed solution is to record coverage data

in cookies and then check these cookies on the server-side to update coverage informa-

tion. Traditional structural coverage criteria of server-side code have been subsequently

used to measure and compare different testing approaches [HO07, AKD+10, EKR03].

Dynamic Coverage criteria based on the way requests are formed was proposed

by Sampath et al. [SGSP05a]. The criteria are used for test suite reduction and defined

in terms of coverage of distinct URLs, URLs and input names, URLs and input-value

pairs and also sequences of two or more of each. For example, for the URL and input

names criterion, the original test suite is analysed to extract all requests with distinct

URLs that use a distinct set of inputs. A reduced test suite can then be generated that

contains one request that matches each identified URL/input set ignoring input values.

These criteria can be effective for test suite reduction especially when the test suite

2.6. Utilizing Output in Testing 67

that requires reduction is generated from session data (which is the approach used by

the authors of this reduction technique). That is, when significant redundancy in input

values is expected, however in a structural based generation techniques the test suite is

not expected to contain a high volume of such redundancy.

Bellettini et al. [BMT05] used coverage metrics to decide when to terminate a test-

ing session based on user defined thresholds. A tool called TestUML was created that

combines a number of techniques to semi-automatically test a Web application. The

techniques TestUML uses include model based testing and session analysis to automat-

ically generate user inputs. The tester is required to review and amend input values

as well as define the oracle. The tool then executed the test cases on the application

until the stopping criteria are met. The stopping criteria are a mix of metrics, such as

number of pages, classes or paths covered, that are calculated while executing the tests

and used to stop the testing process when the tester specified threshold is met.

Liu et al. [LKHH00a, LKHH00b] extended dataflow testing to web applications.

In addition to traditional dataflow modelling of the server code, variables embedded in

HTML and XML and transmitted between pages are taken into account. Input variables

in HTML are considered as global variables. The control flow graphs and proposed

testing levels are amended to take into account indirect data transmission calls between

different client-side and server-side objects in the application. Overall, the proposed

approach is a straight-forward application of traditional dataflow testing to web appli-

cations. The only difference is the analysis of variables embedded in HTML and XML.

This seems to be done to include input variables in the dataflow analysis as those inputs

are defined in the HTML code and not the server-side code. However, their approach

does not include in the analysis the state of the application, represented by session vari-

ables and the database. These state variables are the only part of the application that

propagates over several requests since HTTP requests are otherwise stateless.

2.6 Utilizing Output in Testing
Dynamic test data generation techniques, such as search based techniques, use feedback

from the execution of test cases to guide the generation process. An intermediate out-

put, which is the fitness of a branch, is used to guide the generation of subsequent test

cases. The same applies to Dynamic Symbolic Execution [SMA05, GKS05, AKD+08],

2.6. Utilizing Output in Testing 68

where the constraints collected from the execution path are used to generate the next in-

puts. In these approaches, part of the output is used to guide the test generation process

rather than directly used to generate test cases.

In feedback directed random testing [PLEB07, PLB08] the feedback from exe-

cuting test sequences, such as exceptions and violations is used to exclude sequences

that cause such errors from the generation process. This improves the random gen-

eration process in focusing on sequences that are more likely to produce new system

behaviour. However, the use of output is limited to excluding failing test sequences

from being used in generating new sequences. The approach was implemented for Java

Object-Oriented applications in a tool RANDOOP [PE07].

In Graphical User Interface (GUI) testing, Yuan and Memon [YM10, YM07] in-

troduced an approach that uses feedback about the state obtained from executing an

initial set of test cases to generate new test sequences that are effective in finding new

faults. The feedback on how the initial test cases affected the state of elements in the

GUI is used to identify interactions between events. These interactions are used to gen-

erate new paths (test sequences) that explore different possible interactions. Two events

are considered to be interacting events when their execution as a sequence alters their

behaviour.

2.6.1 Utilizing Output in Web Testing

In web applications, the output has been used to understand the application’s inter-

face, automate the oracle and help crawlers in automatically filling forms. Elbaum

et al. [ECIR06] in their interface identification approach examined the output to infer

properties about the inputs of the application.

A web application’s output can contain elements that are non-deterministic, such

as time-sensitive data that pose a challenge when automating the oracle for regression

testing. Sampath et al. [SBV+08] proposed an approach to overcome this problem.

The original test suite is executed on a working version of the application. The output

is saved and used to automatically identify failures in subsequent runs. As well as an

oracle that flags any difference in output as a fault, other comparison algorithms are

used that compare only HTML tag difference, text difference without HTML tags and

filenames of the output. A manual inspection of the reported errors showed that the

2.6. Utilizing Output in Testing 69

oracles that only check HTML tags and filenames reported no false positives but the

filename algorithm only captured a small percentage of errors.

Jiang et al. [JHHF08] proposed an approach that automatically identifies problems

in a web stress testing environment. To accomplish this, the approach studies the se-

quences of events in the application’s log to discover the dominant behaviour and flag

anomalies. When a sequence of events diverts from the norm, the sequence is flagged

for further examination. The approach uncovered new errors and reduced the effort

needed to examine error logs by flagging only a small percentage of the log. The ap-

proach does not generate test data but examines log files for unusual behaviour to flag.

Some of the cases that were flagged, when examined manually, were discovered to be

faults in the application’s code. This indicates that this approach could be potentially

useful in automatically identifying faults.

Chapter 3

Search Based Test Data Generation

3.1 Introduction

This chapter uses the client-side output and intermediate output of a web application

to enhance search based test data generation. The client-side output of a web appli-

cation contains many sources of input values that have not previously been utilized in

a sophisticated test generation technique. The intermediate outputs used to enhance

test generation in this chapter are collected dynamically during execution from run-

time values of operands in predicates. Both values mined from the client-side output

and values collected dynamically at run-time are used for seeding in the search based

algorithm presented in this chapter.

Search based testing has been used widely as a way to automate test data genera-

tion for traditional, stand-alone applications, thereby making testing less reliant on slow

laborious processes. Search based test data generation has also proved to be effective

and complementary to other techniques [LMH09, McM04]. However, of 399 research

papers on SBST,1 only one [MT09] mentions web application testing issues and none

applies search based test data generation to automate web application testing.

Popular web development languages, such as PHP and Python have characteristics

that pose a challenge when applying search based techniques, such as dynamic typing

and identifying the input vector. Moreover, the unique and rich nature of a web applica-

tion’s output can be exploited to aid the test generation process and potentially improve

effectiveness and efficiency. This was the motivation for this chapter: To seek to de-

1Source: SBSE Repository at

http://crestweb.cs.ucl.ac.uk/resources/sbse repository/

3.2. Approach 71

velop a search based approach to automated web application testing that overcomes

challenges and takes advantage of opportunities that web applications offer.

This chapter introduces an automated search based algorithm and applies it to

six web applications. It also introduces enhancements that seed the search process with

constants collected statically and values collected dynamically and mined from the web

pages produced by the application.

The primary contributions of this chapter are as follows:

1. The introduction of the first automated search based approach to web application

testing, and a tool SWAT (Search based Web Application Tester) that implements

the approach.

2. The introduction of the use of Dynamically Mined Value (DMV) seeding into

the search process. The empirical study presented in Section 3.4 shows that this

approach statistically significantly increases coverage in all applications studied

and also significantly reduces effort in all but one. These findings may prove

useful for other SBST paradigms.

3. The results of an empirical study of effectiveness and efficiency of the proposed

algorithms in terms of branch coverage of server-side code, fitness evaluations,

execution times and fault finding ability.

The rest of this chapter is organized as follows: Section 3.2 introduces the pro-

posed approach, whilst Section 3.3 describes the implementation of the approach. Sec-

tion 3.4 presents the evaluation together with a discussion of the results. Section 3.5

presents related work and Section 3.6 concludes.

3.2 Approach
A variety of scripting languages can be used to implement web applications including

PHP, Perl, Java, ASP and JSP. This thesis focuses on PHP, one of the most popular

web scripting languages in current use [TIO12]. This chapter focuses on PHP in order

to provide a concrete web application testing tool to implement and evaluate the pro-

posed approach. However, many aspects of this approach may also apply to other web

application languages.

3.2. Approach 72

The approach aims to produce a test suite that maximizes branch coverage of the

application under test. The approach starts with a static analysis phase that collects

static information to aid the subsequent search based phase. The search based phase

uses an algorithm that is derived from Korel’s Alternating Variable Method (AVM)

but which additionally incorporates constant seeding and Dynamically Mined Values

(DMV) seeding from the execution and web pages constructed by the application as it

executes.

The rest of this section describes the proposed approach in more detail. Section

3.2.1 discusses issues in applying search based techniques to web applications and the

solutions that this chapter adopts. Section 3.2.2 describes the fitness functions used,

while Section 3.2.3 introduces the proposed test data generation algorithms.

3.2.1 Issues and Solutions in Web Application Testing

Static and dynamic analysis phases are used to address the issues raised by web appli-

cation testing and which are either absent or less pernicious in the traditional Search

Based Software Testing paradigm.

Issue: Interface Determination

Description: In various web scripting languages, such as PHP, ASP and JSP, the inter-

face is not explicitly specified. There is no ‘program header’ that specifies how many

inputs a program expects nor what their types are. A number of global arrays (e.g.,

GET, POST, REQUEST) are usually set on the client-side before a request is submitted.

These global arrays use the input name as an array index and the input’s value as the

corresponding array element. These arrays can be accessed by the server-side code at

any point in the program.

Solution: In order to determine the ‘input interface’ automatically, static analysis is

performed on the source code to determine the required inputs. It collects each call

to the global arrays (e.g., GET, POST, REQUEST) and then extracts the names of the

inputs and the associated submit method. The static analysis also notes the location

where these inputs are accessed. For every branch that the approach seeks to cover,

all input variables that are accessed before that branch are selected to form the input

interface. To determine input types, static analysis is performed that determines the type

of inputs based on the type of constants to which they are compared or from which they

3.2. Approach 73

are assigned. This approach is similar to that of Halfond et al. [HAO09]. However, for

PHP applications the analysis does not, as yet, infer types for all inputs and needs to be

augmented manually.

Issue: Dynamic Typing

Description: Web development languages, such as PHP, Python and Ruby are dynam-

ically typed. All variables are initially treated as strings. If used in an arithmetic ex-

pression, they are treated as numeric at that operation. However, the same input can be

treated as numeric in one expression and as a string in a different expression within the

same script. This makes it hard to decide the type of variables involved in a predicate,

posing a problem when deciding which fitness function to use.

Solution: To solve this problem, types of variables are checked dynamically at run-

time using built-in PHP functions and then directed to the appropriate fitness function.

Issue: User Simulation

Description: In dynamic web applications, the user’s interactions with the applica-

tion’s dynamic content need to be simulated to test the application as a whole. Web ap-

plications usually have a top level entry page that the user accesses first. User choices

on the entry page are passed to the server-side code for processing. A client-side page is

then generated and displayed to the user. Some applications have other top level pages

that can be accessed only through these client-side pages. Identifying these top level

pages raises issues when trying to generate test data automatically for an application as

a whole.

Solution: The approach’s static analysis identifies top level pages that expose new parts

of the application accessible only through client pages during the static analysis phase.

A file that is not included by any other file is treated as a top level file. The test data

generation process is performed for each top level file.

Issue: Dynamic Includes

Description: PHP supports dynamic includes, where the name of the included file is

computed at run-time. An example of this is when the user’s choice determines the

natural language to be used in the text of the application.

Solution: To deal with dynamic file includes, an approach similar to the one proposed

by Wassermann and Su [WS07] is used; for include statements that contain variables

3.2. Approach 74

as part of the included filename, the approach uses a safe approximation that includes

any file available to the application that matches the include expression.

3.2.2 Fitness Function

The fitness function used by the approach is similar to that used by Tracy et al.

[TCMM98]. That is, for a predicate a op b where op is a relational operator, fitness

is zero when the condition is true and |a − b| when the condition is false. A fitness of

zero denotes the situation where the test vector assessed by the fitness function covers

the desired branch. That is, the algorithm seeks to minimize fitness values throughout

the search process.

Like Tracey et al., a value k (in this case 1) is added to penalize incorrect test

data but the fitness function proposed here adds that value only in case of <, > and 6=.

The value 1 is added in the case of <, > and 6= to avoid an incorrect fitness of 0 to be

assigned when the two operands are equal. For example, in a condition if (a ≥ b),

where both a and b are equal to 5, the value of |a−b| is 0 which is the correct fitness for

this branch. However, in the case of a condition if (a > b) where a and b are also equal

to 5, the value of |a− b| is 0 which incorrectly indicates that the branch is covered. By

adding 1, the fitness reflects the fact that the branch was not covered but is very close

to being covered.

For strings, the fitness function uses Levenshtein distance [Nav01], following Al-

shraideh and Bottaci [AB06]. The Levenshtein distance is the minimum number of

insert, delete and substitute operations needed to convert one string to another string.

The Levenshtein distance is suitable for = and 6= operators. For other operators, the

fitness function converts the ASCII code of a string to a decimal representation and

uses the same fitness used for normal numeric types following Zhao et al. [ZLM10].

Table 3.1 summarizes the fitness function calculations used in the algorithm pro-

posed in this chapter. As a pre-processing step, compound predicates involving logical

operators are expanded, using a pre-transformation, to simple relational predicates.

3.2.3 Test Data Generation Algorithms

The proposed algorithms for test data generation are all based on Hill Climbing

using Korel’s AVM [Kor90]. When a target branch is selected, AVM is used to mutate

each input in turn while all other inputs remain fixed. When the selected mutation is

3.2. Approach 75

Expression Numeric String

a = b |a− b| levenshtein(a,b)

a 6= b if |a− b| = 0 then 1 if levenshtein(a,b) = 0 then 1

else 0 else 0

a > b if a > b then 0 if Numeric(a) > Numeric(b) then 0

else |a− b|+ 1 else |Numeric(a)−Numeric(b)|+1

a ≥ b if a ≥ b then 0 if Numeric(a) > Numeric(b) then 0

else |a− b| else |Numeric(a)−Numeric(b)|

a < b if a < b then 0 if Numeric(a) < Numeric(b) then 0

else |a− b|+ 1 else |Numeric(a)−Numeric(b)|+1

a ≤ b if a ≤ b then 0 if Numeric(a) < Numeric(b) then 0

else |a− b| else |Numeric(a)−Numeric(b)|

Table 3.1: Fitness calculations for Numeric and String variable types based on Tracy

et al. [TCMM98] fitness function discussed in the literature review (Section 2.4.1).

Levenshtein distance is the minimum number of insert, delete and substitute operations

needed to convert one string to another string. Strings are converted to the numeric

representation of their ASCII Code for relational operators. A constant 1 is added

to the fitness for operators > and < to avoid assigning 0 fitness when the compared

operands are equal.

3.2. Approach 76

Algorithm 1 NMS: Overall Test Data Generation Algorithm: Top level units are ex-
tracted from the File Tree Analyser results. Each unit is called with no parameters to
get an initial ‘work list’ of reached branches. For each work list branch, the input vector
is mutated iteratively until the branch is covered or the stopping criterion is satisfied.
Near misses and collateral coverage are recorded for later use.
Require: Application Name AppName
Require: Static Analysis results AnalysisDB
U : queue of top level file units to be processed. Retrieved from the File Tree Analyser

results.
B : queue of branches reached but not covered.
C : Coverage table of all branches with the best achieved distance.
T : Test cases that achieved best distance for each reached or covered branch.
F : set of branch and fitness values achieved for the executed test case.
Input : setOf(inputname, value)
IV: Input Vector consisting of setOf(Input)
Distance: holds fitness value for a certain branch.

1: U := getTestUnits(AppName, AnalysisDB)
2: T := ∅
3: for all U in U do
4: IV:= ∅
5: F :=executeTestcase(U, IV)
6: T :=updateTestdata(T ,U ,IV,F)
7: C :=updateCoveragedata(C, F)
8: while first run or coverage improved do
9: B := getReachedBranches(C)

10: for all B in B do
11: initState()
12: IV := setInputVector(B, AnalysisDB,T)
13: Input := NULL
14: CurrentDistance := getBranchDist(B, C)
15: while CurrentDistance > 0 and not no improvements for 200 tries do
16: initilaizeDB()
17: Input:= mutateInputs(IV,Input,CurrentDistance, PreviousDistance)
18: IV:= replaceInputValue(IV,Input)
19: F :=executeTestcase(U , IV)
20: T :=updateTestdata(T ,IV,F)
21: C :=updateCoveragedata(C, F)
22: PreviousDistance = CurrentDistance
23: CurrentDistance = getBranchDist(B, C)
24: end while
25: end for
26: end while
27: end for
28: return T

3.2. Approach 77

found to improve fitness, the change in the same direction is accelerated. To avoid ‘over

shoot’, when fitness is close to zero the approach decelerates.

The approach notes branches that it reached but failed to cover and targets them

on subsequent iterations. That is, a branch is reached if its immediately controlling

predicate is executed, while a branch is covered if the branch itself is traversed. This

‘exploration’ approach eliminates the need for calculating the so-called approach level

[McM04]. This is because the approach attempts to cover a branch only when it is

reached, i.e., all transitively controlling predicates on some path have been satisfied.

The approach is called an ‘exploration’ approach because the technique maintains a

‘current frontier’ of reached but as yet uncovered branches, seeking to push back this

‘frontier’ at each top level iteration. A similar approach was used by Michael et al.

[MMS01] for evolutionary testing.

At each iteration, the approach also keeps track of input values that cause any ‘near

misses’. A near miss is an input vector that causes fitness improvement for a branch

other than the targeted branch. Near misses are used in place of random values when

initializing a search to cover that branch. This approach will be referred to as ‘Near

Miss Seeding’ (NMS).

More formally, Algorithm 1 describes the top level algorithm, which starts by call-

ing the application with empty inputs for every top level file (Line 5). Every execution

of a test case returns a list (F) of all branches in that execution together with the dis-

tance achieved for them. This list is used to update a coverage table (C) and the test

suite (T) for every branch that recorded an improvement in distance. A ‘work list’ of

reached branches is extracted from the coverage table.

Every branch in the work list is then processed in an attempt to cover it. First,

the state and database are initialized and the user (in this case the test tool SWAT) is

logged into the application (Line 11). The input vector is then constructed using the

analysis data. Values are initialized using the input values that caused the branch to be

reached and random values for any additional inputs (Line 12). One input is mutated at

a time and the new test case executed until the branch is covered or no improvements

are possible.

Algorithm 2 describes the mutation process. If no input was selected for mutation

or the last mutation did not affect distance, a new input is selected. If the last mutation

3.2. Approach 78

caused distance to increase, a new operator is selected. If the last mutation caused

distance to decrease, the operation is accelerated. Finally, the selected input is mutated

(Line 12). Algorithms 1 and 2 describe the unaugmented search based approach.

A few modifications are made to use constants collected from the source code of

the application in the search process. Constants are used to initialize inputs in Line 12 of

Algorithm 1 instead of random values and assigned to the input in Line 12 of Algorithm

2 when the input type is string. This approach was first proposed by Alshraideh and

Bottaci [AB06] in the context of testing traditional applications. This process will be

referred to as ‘Static Constant Seeding’ (SCS) thereafter.

A further modification of the algorithm is made to seed values dynamically mined

during execution into the search space in a similar way to static constants. This process

can be called ‘Dynamically Mined Value’ (DMV) seeding. More details about DMV

are given in the next section.

3.2.4 Dynamically Mined Value Seeding

Constants collected statically are specific to the application and therefore can aid in

covering branches that depend on these constants. In a similar way, collecting val-

ues dynamically from predicates can also prove beneficial. These collected values are

not only specific to the application but also specific to the predicates from which they

Algorithm 2 Mutation Algorithm (mutateInputs): The algorithm determines the next
input to which the search moves, based on distance achieved by the last mutation. It
also decides when to change the mutation operator and when to accelerate the selected
operation
Require: IV, Input, CurrentDistance, PreviousDistance, AnalysisDB

1: if Input is NULL or CurrentDistance = PreviousDistance then
2: Input := selectNewInput(Input,IV)
3: else
4: if CurrentDistance > PreviousDistance then
5: changeMutationOperator()
6: else
7: if CurrentDistance < PreviousDistance then
8: accelerateOperation()
9: end if

10: end if
11: end if
12: Input:= mutate(Input,AnalysisDB)
13: return Input

3.2. Approach 79

were collected. The proposed algorithm seeds these values into the search space when

targeting their associated branches.

This approach can help the algorithm in covering branches faster especially when

the branch predicate is directly dependent on an input. For example, the following

branch is taken from an application used in the study (Schoolmate):

if ($_POST[’page2’]==1337) {

..}

When a standard search algorithm attempts to cover this branch, a random value

for page2 is chosen. The algorithm would then increase or decrease the random value

to arrive to a value of page2 that would cause the branch to be covered (in this case

1337). Using the value collected from this predicate, the algorithm would directly use

the value 1337 thereby covering the branch faster. The value in $ POST[’page2’]

would not be used because the approach keeps track of previously used values for each

branch to avoid reusing them. In this case, the value was a constant and can be collected

using static analysis. However, in other cases the two operands can be both variables

making it useful to collect values at run-time.

Web applications offer a wealth of valid input values in their dynamically gener-

ated HTML. The output HTML is returned to the user (in this case the tool SWAT) in a

structured form that makes it possible to extract these values and to associate them with

their respective input fields. The source of these values is form data and embedded

URLs. Form definitions can contain valid values in drop-down menus, check boxes,

radio buttons and hidden values. Embedded URLs can also contain valid values in

their query strings. These fields are populated from different sources that can include

databases, configuration files and/or external data sources. The input fields associated

with these values can affect coverage indirectly or through hard to cover branches. An

example that illustrates the potential of DMV is the following predicate taken from one

of the applications (PHPSysInfo) used in the empirical study:

if (file_exists($lng.’.php’)) {

..}

Generating a value for input $lng that would cover the true branch of the control

statement might be hard since the condition is a flag condition that would not provide

3.3. The SWAT Tool 80

much guidance to the search process. However, a form in the dynamically generated

HTML (Figure 3.1) has a drop-down menu that contains a list of language options

available for the application (i.e. the language file exists in the application’s file sys-

tem). Using one of the values in the drop down menu for this input field would cover

the branch.

The approach mines the HTML returned when executing test cases (Line 19 of

Algorithm 1) to collect such values and subsequently seed them into the search when

mutating the inputs associated with them.

Figure 3.1: Form taken from PHPSysInfo

3.3 The SWAT Tool
A tool called the ‘Search based Web Application Tester’ (SWAT) was developed to im-

plement the approach and embed it within an end-to-end testing infrastructure. SWAT’s

architecture is illustrated in Figure 3.2. The tool is composed of a pre-processing com-

ponent, the Search Based Tester and the Test Harness.

The original source code is passed through the Predicate Expander and Instru-

menter. This produces a transformed version of the code where predicates with logical

operators are expanded and control statements are instrumented to calculate fitness in

addition to the predicates’ original behaviour. The code is also instrumented to collect

run-time values to be used in subsequent Dynamically Mined Value seeding.

The Static Analyser performs the analysis needed to resolve the issues mentioned

in Section 3.2.1. The results are stored in the Analysis Data repository and used later

by the Search Based Tester (SBT). The Constant Extractor mines the code for con-

stants to be used in subsequent Static Constant Seeding. The Input Format Extractor

analyses the code to extract the input vector. The File Tree Analyser generates a tree

in which nodes denote files and edges denote include relationships. This information is

used to determine the top level test units to be processed.

The Input Type and Login Discoverer component performs a simple combina-

tion of static and dynamic analysis to infer input types and to identify the login process.

3.3. The SWAT Tool 81

Figure 3.2: SWAT tool architecture

This is the only component for which results need to be augmented manually; this is

because the technique for type inference is unable to infer types for all inputs. The Lo-

gin Discoverer is used to dynamically extract the variables used to store the username,

password, login URL and any other inputs that need to be set for login. This is achieved

by performing a quick crawl of the application to locate the login form. A login form

is identified by the presence of one field of type ‘password’. A login form is expected

to have one password field while a form to create an account is expected to have two

password fields to reconfirm the selected password. The concrete values for username

and password are provided to the tool.

Stratego/xt [BKVV08] and PHP-Front [BB10] were used to develop the Predi-

cate Expander, the Instrumenter, the Static Analyser and the static analysis part

of the Input Type and Login Discoverer. Stratego/xt is a program transformation

language and PHP-Front provides libraries for Stratego/xt supporting PHP. The Input

Format Extractor was taken from the PHP-Front project with minor alterations. All

other static analysis and transformation tools have been developed from scratch. The

dynamic part of the Input Type and Login Discoverer was developed using Perl and

Java. The data produced from the Static Analyser are uploaded to a MySQL database

using a tool developed in Java.

3.4. Evaluation 82

The Search Based Tester (SBT) uses the transformed source code and the anal-

ysis data and implements the input generation technique described by Algorithms 1 and

2 and the augmentations needed for SCS and DMV. When a test case is executed, the

instrumented application writes fitness information and values collected dynamically

for seeding to a file that is later accessed by the SBT. An earlier version of the tool

used a database table to communicate these values to the SBT. However, the overhead

of database transactions caused significant degradation in the tool’s performance. The

current version writes information to a file while maintaining a list of best recorded

fitness for each branch on that specific execution. If a new fitness does not improve on

the best recorded fitness so far, the file writing operation can be avoided.

The Test Harness uses the generated test data to run the tests on the original

source code and to produce coverage and bug data. When a test case is executed,

the generated HTML together with the web Server’s error logs are parsed for PHP

execution errors. The Search Based Tester and Test Harness are implemented in

Perl and use the HTTP, HTML and LWP (Library for WWW in Perl) libraries.

3.4 Evaluation
For the evaluation, three versions of the tool SWAT were implemented. Each version

adds one of the enhancements described in Section 3.2.3 in the following way:

• NMS implements the Near Miss Seeding unaugmented approach described in

Algorithm 1 in Section 3.2.3.

• SCS is NMS with Static Constant Seeding.

• DMV is SCS with Dynamically Mined Value seeding.

Each branch was allocated the same budget of fitness evaluations for each ver-

sion of the tool. In this way the effects of each of the proposed enhancements on the

unaugmented traditional search based approach can be evaluated.

The experiment was designed to answer the following research questions:

RQ1: How does each of the proposed enhancements affect branch coverage?

To answer this question, the evaluation compares branch coverage for each of the al-

gorithms. Coverage was measured on the original untransformed application. The

3.4. Evaluation 83

original application was instrumented to record coverage without the transformations

to expand predicates and calculate fitness.

RQ2: How does each of the proposed enhancements affect efficiency of the ap-

proach?

To answer this question, the number of fitness evaluations needed per application and

per branch were calculated. The evaluation also reports the elapsed time and CPU time

used in testing per application and per branch.

RQ3: How does each of the proposed enhancements affect fault finding ability?

To answer this question, the automated oracle described in Section 1.5.2 was used to

compare the fault finding ability of the test suites produced by each enhancement.

Wilcoxon unpaired one-sided signed rank test at the 95% confidence level was per-

formed to determine the statistical significance of the observed results.

3.4.1 Experimental Set-up

The evaluation ran each of the three versions of the tool 30 times on each of the six

PHP applications and collected coverage data. Data for repeated runs is provided in

order to cater for the stochastic nature of the search based optimization that lies at

the heart of the presented approach. Multiple runs are samples from the space of all

possible runs. With 30 runs of each algorithm, a sufficient sample size for statistical

significance testing is provided. The tool was executed on an Intel Core 2 Duo CPU,

running at 2 GHz with 2 GB RAM.

The applications studied (described in Section 1.5.1) were installed and set-up

locally on the same machine used to generate inputs. The database for each of these

applications was set up following an identical systematic strategy as follows: All tables

are populated in a minimal manner, but such that each table contains at least one record

and a record is created for each possible value of a column of an enumerated type. All

applications except one (PHPSysInfo) use a database. For configurable applications,

all features were enabled where the application permitted it. Where login is required to

use the web application, a valid username and password pair was supplied to the tool.

3.4.2 Branch Coverage

Table 3.2 summarizes the results obtained by the experiment. Coverage results are

reported together with the number of test cases generated to achieve this coverage.

3.4. Evaluation 84

Ta
bl

e
3.

2:
A

ve
ra

ge
co

ve
ra

ge
an

d
ex

ec
ut

io
n

tim
e

re
su

lts
ob

ta
in

ed
by

ru
nn

in
g

ea
ch

al
go

ri
th

m
30

tim
es

fo
r

ea
ch

ap
pl

ic
at

io
n

w
ith

th
e

sa
m

e
bu

dg
et

of
ev

al
ua

tio
ns

pe
r

br
an

ch
fo

r
ea

ch
ve

rs
io

n.
E

ff
or

ti
s

th
e

nu
m

be
r

of
ev

al
ua

tio
ns

pe
r

br
an

ch
co

ve
re

d.
R

es
ul

ts
in

bo
ld

ar
e

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
ly

be
tte

rt
ha

n
th

e
re

su
lts

ab
ov

e
th

em
us

in
g

th
e

W
ilc

ox
on

’s
te

st
(9

5%
co

nfi
de

nc
e

le
ve

l)
.

To
ta

l
Te

st
Fi

tn
es

s
C

ov
er

ed
B

ra
nc

he
s

E
la

ps
ed

Ti
m

e
C

PU
Ti

m
e

A
ve

ra
ge

Fa
ul

ts
Fo

un
d

A
pp

N
am

e
A

lg
#b

ra
nc

he
s

ca
se

s
E

va
ls

N
um

%
E

ff
or

t
Ti

m
e

pe
rB

r
Ti

m
e

pe
rB

r
C

ra
sh

E
rr

or
W

ar
ni

ng

FA
Q

Fo
rg

e

N
M

S

14
2

25
48

09
38

.0
26

.7
12

6.
7

10
4

2.
75

28
0.

73
4

0
0

20
.0

SC
S

22
14

53
60

.2
42

.4
24

.1
40

0.
66

16
0.

26
6

0
1.

0
25

.0
D

M
V

34
21

77
94

.4
66

.5
23

.1
64

0.
69

23
0.

24
9

0
5.

9
46

.1

Sc
ho

ol
m

at
e

N
M

S

82
8

16
4

21
84

0
42

8.
9

51
.8

50
.9

94
9

2.
21

22
8

0.
53

1
2.

1
13

.5
75

.5
SC

S
16

7
19

03
7

43
5.

5
52

.6
43

.7
71

2
1.

63
22

9
0.

52
5

2.
6

15
.7

75
.5

D
M

V
17

2
12

64
1

54
2.

3
65

.5
23

.3
54

9
1.

01
21

1
0.

38
8

3.
6

21
.5

87
.4

W
eb

ch
es

s

N
M

S

10
51

21
95

42
19

5.
0

18
.6

48
.9

70
5

3.
62

41
0.

20
9

0
6.

1
9.

0
SC

S
43

10
65

0
36

0.
9

34
.3

29
.5

92
2

2.
55

83
0.

23
0

0
16

.9
41

.7
D

M
V

45
89

53
38

2.
6

36
.4

23
.4

87
9

2.
30

82
0.

21
5

0
20

.0
55

.3

PH
PS

ys
In

fo

N
M

S

14
51

8
15

29
30

0.
0

20
.7

5.
1

58
91

19
.6

4
13

0.
04

3
0

0
3.

0
SC

S
11

13
98

31
5.

4
21

.7
4.

4
53

02
16

.8
1

12
0.

03
9

0
2.

9
3.

9
D

M
V

20
13

37
33

3.
4

23
.0

4.
1

44
59

16
.3

7
53

0.
16

0
0

3.
2

4.
0

Ti
m

ec
lo

ck

N
M

S

35
67

11
6

72
12

54
3.

6
15

.2
13

.3
10

83
1.

99
56

0.
10

3
0

0
15

5.
0

SC
S

24
8

84
45

54
8.

5
15

.4
15

.4
11

35
2.

07
58

0.
10

6
0

0
15

5.
9

D
M

V
24

4
12

23
9

65
5.

3
18

.4
19

.4
75

4
1.

15
77

0.
11

7
0

1.
6

17
3.

2

PH
PB

B
2

N
M

S

56
80

11
6

24
69

0
81

6.
6

14
.4

30
.2

59
56

7.
29

25
9

0.
31

7
0

3.
0

41
.1

SC
S

24
8

22
98

1
82

1.
6

14
.5

28
.0

55
33

6.
73

25
1

0.
30

6
0

3.
0

41
.8

D
M

V
24

4
24

08
0

10
07

.3
17

.7
23

.9
58

21
5.

78
25

2
0.

24
8

0
4.

6
58

.4

3.4. Evaluation 85

The number of covered branches increases with SCS for all applications. We-

bchess displays the highest improvement with an 85% increase in coverage. Overall,

SCS recorded an average increase in coverage of 25.1% compared to NMS.

Covered branches also increase with DMV for all applications studied. An average

improvement of 22.3% was observed in branch coverage over all applications with

FaqForge showing the highest improvement.

Figure 3.3 shows the variation in branch coverage achieved over 30 runs of each

approach. We notice that DMV’s lowest coverage is higher than the highest cover-

age of other approaches for five of the six applications. For three of the applications

NMS shows little or no variation over 30 runs. For all applications studied a statisti-

cally significant increase in branch coverage at the 95% confidence level for DMV was

observed compared to SCS and NMS.

(a) FAQForge (b) Schoolmate (c) Webchess

(d) PHPSysInfo (e) Timeclock (f) PHPBB2

Figure 3.3: Coverage results over 30 runs of each of the three algorithms on each of the

six web applications.

In three applications, running the same test suite twice can produce different

branch coverage levels on each occasion. Eliminating this non-determinism is not

3.4. Evaluation 86

(a) FAQForge (b) Schoolmate (c) Webchess

(d) PHPSysInfo (e) Timeclock (f) PHPBB2

Figure 3.4: Fault results over 30 runs of each of the three algorithms on each of the six

web applications.

desirable because it manifests important aspects of the application. Investigating the

branches covered revealed the following observations: When a new game is initiated

in Webchess, the user can either choose his/her preferred colour or choose random.

A similar issue is found in PHPSysInfo where the user can select the template of the

output or select random. Timeclock has a weather display feature that, when enabled,

fetches the current weather information from the internet and displays it. The current

weather information affects coverage of the branches that control the format in which

this weather information is displayed.

3.4.3 Efficiency

To measure efficiency, average execution times were recorded and effort measured for

each approach over 30 runs. The reported CPU time does not include time spent calling

and processing the PHP Application (which the reported elapsed time does). Effort is

the ratio between total number of fitness evaluations and branches covered. Effort can

be considered to be the more reliable empirical assessment of the search algorithm

3.4. Evaluation 87

time complexity since it is unconfounded with difficulties of measuring time in a multi

process environment. However, figures for elapsed time are more useful as a rough

guide to likely overall test data generation time performance for each application, which

is affected by the system under test as well as the performance of the algorithms.

Effort and time results are reported in Table 3.2. Effort decreases with each of the

two algorithmic enhancements for all applications except Timeclock, for which effort

increases. Overall six applications studied, SCS decreased effort per covered branch

by an average of 11.2% while DMV decreased effort by a further 30.17%.

FAQForge is processed the fastest (1 min) while PHPBB2 is the slowest with an

average of approximately 97 minutes per run for DMV. Of course, SWAT is only a re-

search prototype. However, even this worst case execution time can be accommodated

within a daily build cycle, with overnight automated test data generation.

3.4.4 Fault Finding Ability

Table 3.2 reports the average numbers of faults found for each algorithm and each ap-

plication over 30 runs. Overall, each enhancement increases the number of faults found

for each of the fault categories. DMV performs best in fault finding for all six appli-

cations. In almost all cases, with the exception of faults of type error for PHPSysInfo,

the improvement is statistically significant. Schoolmate is the only application where

crashes were found.

Figure 3.4 shows the variation in total faults found for each application over 30

runs. Some of the faults found indicate a lack of adequate validation of inputs before

use in critical operations, such as database queries. Inputs are concatenated directly

to SQL statements which could cause a security threat. In some cases, where faults

were parsed from the generated HTML, the SQL statement that caused the error was

displayed to the user, giving hackers the opportunity to analyse the statements and form

an SQL injection attack. PHPBB2 uses an input field to redirect requests to other parts

of the site (e.g., after login). This input field is displayed to the user (in the query string)

and can be modified to potentially gain access to server files. Other faults found include

inclusion of non-existent files and wrong use of functions.

3.4. Evaluation 88

3.4.5 Answers to Research Questions

This section answers the research questions posed at the start of this section, based on

the empirical evidence from the experiments on the six web applications.

RQ1: How does each of the proposed enhancements affect branch cov-

erage?

The results of the evaluation provide evidence to support the claim that each enhance-

ment improved branch coverage for all of the six applications under test. In particular,

it can be noted that DMV statistically significantly outperforms NMS and SCS for all

six applications studied.

SCS also, in turn, achieved higher coverage than NMS for all six applications.

Wilcoxon’s test indicated these results to be statistically significant for four of the six

applications. A closer look at the type of branches that were additionally covered by

SCS reveals that they are predominantly string predicates that involve constants. In

Schoolmate and PHPBB2, the improvement in branch coverage was not statistically

significant. This can be attributed to the fact that those two applications have relatively

fewer constant-using string predicates. The average percentage of predicates that in-

volve a string constant overall applications is 27% while for Schoolmate, for example,

the average is only 15%.

Branch coverage results for DMV compared to SCS statistically significantly in-

crease for all six applications. By analysing additionally covered branches, it is ob-

served that DMV performs better than SCS at covering constant-using string predi-

cates. It also covers string predicates that are variable-using rather than constant-using.

As might be expected, both algorithms appear to achieve higher coverage when

the application contains key string predicates that uncover unexplored parts of the ap-

plication under test. The empirical results suggest that this situation may be sufficiently

common for seeding to be very effective.

RQ2: How does each of the proposed enhancements affect efficiency of

the approach?

Effort decreases statistically significantly by using SCS rather than NMS for all ap-

plications except one. Timeclock is the only application were effort increased instead

3.4. Evaluation 89

of decreasing. This may be caused by the nature of constants mined from Timeclock:

Float constants mined from Timeclock had a precision as high as 16 decimal places

while the highest for all other applications was three decimal places. Assigning these

constants to input variables when initializing the input vector may have, in some cases,

not assisted and possibly even impeded the search process for Timeclock.

Using DMV caused effort to decrease for all applications except one. Wilcoxon’s

test indicated that this reduction was statistically significant in the five cases where

the reduction was observed. Like SCS, effort for Timeclock increased with DMV.

This could be caused by the fact that the applications were transformed before running

the tool to decompose ‘And’ and ‘Or’ statements. However, coverage is measured

on the untransformed version. The transformation is merely an enabling testability

transformation [HHH+04] and it would be unreasonable to attach any importance to

coverage of an internal representation. However, this does account for the increase in

effort for Timeclock: While for the untransformed version of Timeclock the effort for

NMS is 13.3 increasing to 19.4 for DMV, for the transformed version of Timeclock

this effort reduces from 13.0 for NMS to 12.4 for DMV.

RQ3: How does each of the proposed enhancements affect fault finding

ability?

The number of errors and crashes statistically significantly increased by using SCS

for all applications where errors and crashes were found. The same is observed for

warnings for all applications except Schoolmate. This may be tied to the fact that

coverage for Schoolmate using SCS does not increase statistically significantly.

All error types record an increase in numbers when using DMV for all applica-

tions where faults are found. Wilcoxon’s test indicates that this increase is statistically

significant for five out of six applications.

3.4.6 Threats to Validity and Limitations

Internal threats: The internal threats that could affect the validity of results depend

on the set-up of the applications. Results could be affected by database state and the

application’s configurations. To minimize bias, a systematic procedure was defined for

populating the database and configuring the application. This procedure ensures that

3.5. Related Work 90

no prior knowledge about the applications under test can be exploited and is performed

in the same manner for all applications.

External threats: External threats are related to the choice of applications and the

degree to which one can generalize from the results obtained from those chosen for the

study. The applications were selected to provide compatibility with previous research

on testing web applications. However, they are real applications used by real users as

the high number of downloads from SourceForge indicates.

Steps were taken to ensure that reported results would be reproducible. The state

of the application was initialized before each test case is called. The applications used

are open-source and thus publicly available. Bug reports are available online.2

Limitations: The overall aim is to produce a fully automated testing approach that

generates tests, runs them and reports faults found entirely automatically. However,

there are some aspects of the overall approach that are not, as yet, fully automated. De-

ciding input types is partially manual. Username and password information also needs

to be provided by the user. Some data types used in predicates are not yet supported by

the Instrumenter. Enhancing the tool to handle all data types and defining better fitness

functions for arrays and objects may further improve coverage.

3.5 Related Work
This chapter applied search based testing to web applications and introduced using

Dynamically Mined Value to the search process. The work presented in this chapter

was also imbued with ideas collected and adopted from several previous approaches

in the SBST literature that were previously discussed in Section 2.4 of the literature

review. SWAT retains the Alternating Variable Method (AVM) introduced by Korel

[Kor90] in adopted form. SWAT’s approach to search exploration adopts a similar

systematic technique for branch order to that used by Michael et al. [MMS01] for C

programs using evolutionary algorithms. Michael et al. also keep track of inputs that

caused the branch to be reached to use as seeds. However, the overall algorithm and

application domain, being stand-alone C applications, was very different to the one

presented here. Seeding constants gathered from the source code to the search space

and using the Levenshtein distance to measure fitness for strings was first proposed by

2http://www.cs.ucl.ac.uk/staff/nalshahw/swat

3.5. Related Work 91

Alshraideh and Bottaci [AB06]. SWAT used the same idea but applied it to larger scale

web applications implemented in PHP.

Halfond et al. [HAO09, HO08] introduced an algorithm that uses symbolic exe-

cution of the source code to group inputs into interfaces. The approach was applied

to Java applications, while the approach presented in this chapter is applied to PHP

applications. Wassermann et al. [WS07, WYC+08] also used symbolic execution to

generate test data for web applications. However, their work focused on SQL injec-

tion attacks and examined only functions that call database queries. More details about

these two approaches were provided in the literature review in Chapter 2 on pages 43

and 47.

Artzi et al. [AKD+10] automatically generated test cases for dynamic web appli-

cations using Dynamic Symbolic Execution by developing the tool Apollo. The details

of the approach were discussed on page 48 of the literature review. Their approach also

targeted PHP applications. However, the two approaches differ in the test adequacy

criteria (statement coverage vs. branch coverage). Their approach also produces a dif-

ferent number of test cases since all test cases generated during the run of the tool are

collected. Their algorithm minimizes the test suite in regards of faults found using an

automated oracle (similar to the one used in the evaluation and described in Section

1.5.2) for fault localization.

To perform a fair comparison of SWAT and Apollo, both tools have to be executed

in the same environment and with the same initial state. More importantly, both tools

need to have the same goal, for example maximizing branch coverage. A comparison of

the current implementation of the tools would always result in test suites for Apollo that

are several orders of magnitude larger than those obtained for SWAT. That is, Apollo

is designed to capture all test cases that reveal an automated fault while SWAT only

retains test cases that contribute to branch coverage. The automated oracle is used in

SWAT to evaluate and compare algorithms however the aim is to produce a test suite

that maximizes branch coverage.

Section 2.3.2 reviewed bypass testing of web applications. In the work presented

in this chapter, test cases generated by SWAT also ‘bypass’ the interface to submit data

to the server-side code directly. The test data, although not specifically generated for

bypass testing, could be used for that purpose.

3.6. Conclusion 92

3.6 Conclusion
This chapter introduced a set of related search based testing algorithms, adapted for web

application testing and augmented with static and dynamic seeding. It also introduced

a tool, SWAT, that implements the proposed automated test data generation approach

for PHP web applications. SWAT draws on more than ten years of results reported

for search based testing, as applied to conventional stand–alone applications, seeking

to exploit and build upon best practice and proven results where possible. However,

as the chapter shows, there are many issues raised by web application testing, such

as dynamic type binding and user interface inference that create novel challenges for

search based testing that have not previously been addressed. The chapter also shows

how a novel Dynamically Mined Value seeding approach can significantly reduce effort

and increase effectiveness for web application testing.

The chapter reports on an empirical study that evaluates the approach on six PHP

web applications ranging in size up to 20k LoC, presenting results concerning coverage,

various measures of test effort and also an analysis of fault detection ability. SWAT

detected an average of 60 faults and 424 warnings over all six applications studied.

Chapter 4

State Aware Test Case Regeneration

4.1 Introduction

The previous chapter used the client-side output to enhance the generation of test data

for structural coverage of the server-side web application code. This chapter uses the

server-side output to enhance the generation of test sequences to test a web applica-

tion on the navigational level. Specifically, the Def-Use pairs of session variables and

database tables and values maintained in them are used to generate test sequences that

are more likely to exercise new parts of the application. The test suites generated by

SWAT in Chapter 3 are used as an input to the approach proposed in this chapter. The

work in this chapter is concerned with generating effective sequences of requests. For

sequences to be effective, the input values used in each individual request need to exer-

cise different application behaviour. Therefore, SWAT test cases, which are generated

to maximize branch coverage, could be a potentially good candidate for this purpose.

Web application developers have little control over how their applications are used

due to browser functions, such as Back and Refresh. This can lead to unexpected

execution paths that may cause unanticipated behaviour. An analysis by Ricca and

Tonella [TR04b] found that more than 40% of user sessions contained paths that are

considered ‘infeasible’ by the application model, but which are, nevertheless, achiev-

able in practice, using browser functions.

The order in which requests are supplied to the server affects the behaviour of

the application. This order can also have a crucial influence on the degree of coverage

and faults detected during testing. When Sprenkle et al. [SGSP05b] replayed test

4.1. Introduction 94

requests multiple times in random orders without resetting the application state between

requests, they observed increased server-side coverage and elevated fault detection.

These findings suggest that additional testing value can be added to a test suite, by

execution of multiple reordered request sequences. However, exhaustive exploration of

all possible such reorderings will be prohibitively expensive, even for small test suites.

Therefore, to get additional value from request orderings an intelligent algorithm needs

to be developed for recombination of requests. The sequences generated must be likely

to achieve increased coverage and fault detection without encountering an exponential

explosion in the number of sequences to be executed.

To achieve this, this chapter seeks to use server-side dataflow analysis of the server

state to guide the choice of request orderings that increase effectiveness. Of course, the

Hypertext Transfer Protocol (HTTP) itself is stateless; the server processes each request

independently without requiring any knowledge of previous requests from the user. The

overall state of the web application is thus maintained between multiple HTTP requests

using other techniques, such as session variables, cookies, hidden variables and the

database.

Cookies and hidden variables are stored on the client-side, making it possible for

the tester to force either of these two state carriers to contain arbitrary values of choice.

Faults exposed by setting either a cookie or a hidden variable to some chosen value are,

by definition ‘real’ faults, because there is nothing to prevent the user of the application

from setting either in just this manner. However, on the server side, things are different:

The only way that the user can set a session variable or a database table to a particular

value, is through the execution of client-side requests that cause the server to execute

some part of its code that affects these two forms of state carrier.

The tester could artificially insert values into database tables or into session vari-

ables, but there would then be no guarantee that any faults detected by such artificial

value insertion would be true positives; perhaps there is no client-side request sequence

that can create such values. Therefore, the approach proposed in this chapter seeks re-

quest sequences that cause the server to exercise the server-side web application state.

A new technique is introduced for generating new sequences of HTTP requests

from an existing test suite of requests. The technique is inspired by dataflow testing,

specifically seeking to execute a definition of a state variable (a session variable or

4.1. Introduction 95

database table) and to ensure that this value flows unchanged to a corresponding use.

Though dataflow testing is well understood in conventional applications, there has been

no previous work on state-based dataflow testing of web applications.

This chapter introduces a Def-Use (DU) approach that seeks to ensure that each

definition flows to each use. It also introduces a novel form of dataflow testing, value-

aware dataflow testing, which seeks to ensure that each possible different value ob-

tained at a session variable flows into each use and that each different dynamically gen-

erated database invocation reaches a corresponding use. A tool, SART (State Aware

Regeneration Tool), is introduced that implements this technique and is used to experi-

ment with the approach.

This chapter also reports the results of an empirical study on four real world web

applications for the proposed state-based value-aware dataflow technique and also, as a

baseline comparator, for random recombination. All experiments start with high quality

test suites drawn from those whose cases alone, when executed individually, already

achieve good coverage and fault detection. High quality suites are chosen in order to

test the ability of the recombination to add value; clearly if the starting suites were low-

coverage request sets, then any recombination can be excepted to produce additional

coverage and may thereby be sufficiently fortunate to reveal additional faults. However,

the evaluation shows that the proposed approach can statistically significantly improve

coverage and fault detection for relatively high quality test suites.

The primary contributions of this chapter are as follows:

1. The first application of server-side state-based dataflow testing techniques to web

applications for test sequence regeneration.

2. The introduction of a novel value-aware DU approach that is sensitive to the

specific state instance: session variable values and database SQL statements and

a tool that implements it.

3. An empirical evaluation of the approach on four real-world web applications

that confirms the effectiveness and efficiency of this approach. The evaluation

shows that an average improvement of up to 25.31% can be obtained for branch

coverage and 14.31% for fault detection.

4.2. Web Application State 96

The rest of this chapter is organized as follows: Section 4.2 provides a background

concerning web application state. Section 4.3 introduces the proposed approach, whilst

Section 4.4 introduces a tool called SART that implements the approach. Section 4.5

presents the evaluation together with a discussion of the results. Section 4.6 presents

related work and Section 4.7 concludes.

4.2 Web Application State
In web applications, several techniques that propagate the state to subsequent requests

are used to overcome the stateless nature of HTTP requests. These techniques include

the use of session variables, client-side cookies and hidden form variables. In appli-

cations that use a database, the database state can also affect request behaviour.

This chapter focuses on PHP server-side code for concreteness, but the techniques

introduced can be applied to other server-side languages.

4.2.1 Server Session Variables

In PHP, session variables are created by the server for a single user session and main-

tained until the session is terminated. Session variables are saved in a global array

($ SESSION) which can be accessed and modified by the server-side code:

$_SESSION[’Var’] = value;

The index of the array is the variable name while the array element holds the value.

The variables in the session hold their values for the duration of the session: when a

variable is set, it can be accessed in any HTTP request that is submitted by the same

user until the session is terminated and the session array is destroyed. A common use-

case example is a session variable flag that determines the state ‘logged in’. Such a

flag is used to record whether a user has logged in to prevent execution of any requests

prohibited to non-logged-in users.

In addition to the global array $ SESSION, built-in functions are used to mod-

ify and/or use the global session array as a whole. For example, the functions

start session() and destroy session() create and destroy a session (and

its associated session array) respectively. A complete list of session functions can be

found on the PHP language website.1

1http://php.net/manual/en/ref.session.php

4.3. Approach 97

4.2.2 Database State

The database is an integral part of many web applications’ operation. For example,

online shopping applications use a database to keep track of their inventories, while

social networks store user profiles and interactions.

A PHP program manipulates the database state through an API; a library is pro-

vided that includes functions to connect to the database and to execute SQL statements.

For example, a simple SQL query to a MySQL database can be executed by calling:

$result = mysql_query("SELECT * FROM TABLE");

SQL statements are treated as strings in the native PHP code and can be constant or

dynamically constructed (and therefore will have values that depend upon user inputs

and conditional paths through the program). Many other web languages (and non-web

specific languages) use the same approach.

The database state could affect the way a request is processed, resulting in different

behaviour in response to the same request when executed with different database states.

An example of this is a request to create a user account. The first time the request is

executed, the application accepts the request and creates the account, but subsequent

requests will, of course, be rejected.

4.3 Approach
For this chapter’s purposes, a test suite will be considered to be a set of sequences

of HTTP requests to the server-side issued at the client-side. The proposed approach

seeks to take an existing test suite and to regenerate it. That is, to combine fragments of

the request sequences to achieve improved coverage and fault detection. The starting

test suite from which the approach regenerates can come from any existing approach

[AH11, AKD+10, HO08, RT01a, WYC+08].

Ideally, regeneration should try every possible order and combination of all re-

quests in the test suite. However, this is likely to be infeasible even with small test

suites, because the number of possible sequences grows exponentially.

In order to focus on a manageable yet valuable subset, this chapter proposes an

approach that generates test sequences by combining HTTP requests that define and

4.3. Approach 98

use the server-side state. The approach shares the same principles embodied in existing

dataflow testing approaches [LK83, RW85]. However, the Def-Use approach proposed

is defined at the page level, represented by an HTTP request, rather than the statement

or block level. A Def-Use pair (DU pair) is a sequence where one test case (or request)

defines the state and one uses the state. Statement locations are used to identify distinct

definition and use points. Dataflow testing principles are employed and augmented to

generate test sequences that are more likely to enhance the effectiveness of the original

test suites in both coverage and fault finding.

The approach is to seek HTTP request sequences that cause server-side code to

be executed to define the value of a session variable or database table. The approach

then appends to this definition sequence an extra request that causes the server-side

code to execute a corresponding use of the session variable or database table. This is a

variation of standard Def-Use (DU) testing for web application server-side state. The

main difference being the focus on session variables and database tables and the need

to execute a sequence of requests to activate server-side definitions and uses.

A value-aware enhancement to the standard DU approach, that is more fine

grained, is also introduced; it considers each different value defined and used not

merely each Def-Use pair. In a conventional application this would be simply im-

practical because there would be too many different values to consider. However, as

the empirical results (Section 4.5) shall show, for web applications this approach is not

only feasible, but it produces a significant improvement in coverage and fault detection.

In the remainder of this section the proposed state-based DU approach and the

value-aware enhancement is described in more detail.

4.3.1 State-based DU

This section describes the basic principles of the proposed State-based DU approach

while the next section describes the modifications to this approach that are needed for

the value-aware DU approach.

The approach proposed is based on a standard DU approach but adapted to web

application state. For every distinct DU pair of session variables and database tables, a

test sequence is constructed that covers each pair from the available HTTP requests in

the test suite.

4.3. Approach 99

First, the approach needs to determine locations in the code at which session vari-

ables or database tables are defined or used. For session variables, a definition is an

assignment and a use is any other reference to the variable, much as definitions and

uses are constructed in non web applications. However, unlike non-web-based systems,

a Def-Use pair can only be executed by issuing a sequence of requests from the client-

side. Session functions are classified into functions that define the state and functions

that use the state based on their descriptions. Because most session functions operate

on the session as a whole and not on specific variables, when constructing sequences to

cover DU pairs that are caused by session functions, the session array is considered to

be the session variable.

For the database, UPDATE, DELETE and INSERT statements are considered to

be definitions, while SELECT statements are considered to be uses.

The next step is to dynamically analyse the original test suite to match its test cases

to the definition and use locations that were discovered by the static analysis. Each

test case is executed on an instrumented version of the application to discover which

definition or use locations it executes.

Algorithm 3 Test sequence generation approach for State-based DU. The state identi-
fier (SI) refers to a session variable name or a table name. Test sequences are generated
for every DU pair for each session variable and database table.

Require: Test Suite TS
Require: State identifiers SI
Require: SI definition locations SIDL
Require: SI use locations SIUL

1: TS′ = ∅
2: for all si in SI do
3: for all defloc in SIDL do
4: deftest = getdeftestcase(TS,si,defloc)
5: for all useloc in SIUL do
6: usetestid = getusetestcase(TS,si,useloc)
7: if usetestid then
8: newSeq = (deftest,usetestid)
9: TS′ = TS′ ∪ newSeq

10: end if
11: end for
12: end for
13: end for
14: return TS′

4.3. Approach 100

Algorithm 3 describes how test sequences are generated. A state identifier (SI)

refers to a session variable name or database table name. The algorithm uses the anal-

ysis data to construct new test cases using the HTTP requests in the original test suite.

For every state identifier, all definition locations are retrieved from a State Identifier

Definition Locations (SIDL) set created during the static analysis phase. A test case

that covers that definition location is then retrieved (Line 4). For all use locations of

that same identifier, an HTTP request that executes that location is used, if one exists,

to construct a new test sequence (Lines 5-9). The output of the algorithm is a set of

new test sequences (TS′).

Figure 4.1: DU Sequence construction technique: The sequence that contains the def-

inition HTTP request is truncated after the request and combined with the use HTTP

request to form the new sequence.

When constructing a sequence, the algorithm first finds a test case that contains an

HTTP request that defines the state identifier. When the required test case is found, the

part of the test case leading to the definition HTTP request is extracted to form the first

part of the new sequence. This maintains all requests that are required for the definition

to be executed. The algorithm finds an HTTP request that uses the state identifier for

every use location (if at least one exists; if none exists then there is no DU pair). New

sequences are generated by applying the use HTTP request to the definition sequence.

The use test cases are chosen so that the test case traverses a definition-clear path (if

one exists). This is ensured by only selecting use requests that do not also execute

a definition of the same session variable or database table. Figure 4.1 illustrates how

sequences are generated.

4.3. Approach 101

Identifying Database Def-Use Pairs

A simple static analysis is used to identify session variables’ definitions and uses. How-

ever, identifying database tables’ definitions and uses might be more challenging. The

approach needs to identify the locations of database calls within the code as well as

the type of operation (UPDATE, DELETE, INSERT or SELECT) and the affected ta-

ble. Calls to the function mysql query in the program signify a database operation.

However, to identify if the call is a definition or use and to identify the affected table,

the SQL statements used at each call need to be collected and parsed to extract table

names and operations.

SQL statements that manipulate the database are treated as regular strings in the

PHP code. These strings can be constructed dynamically. For example, a code fragment

that implements a database call from FAQForge, one of the subject applications used in

the evaluation, is:

$q="UPDATE FaqPage SET page_num=$new_num WHERE ";

$q .="page_num=$page_num AND owner_id=$id";

$result=mysql_query($q,$dbLink);

In this example, the SQL statement $q is constructed by concatenating the con-

stant strings and the user-provided inputs and dynamically computed variables. It is

possible to approximate the SQL statement by using constant propagation and remov-

ing the dynamic parts of the statement. The approximated string might not be a valid

SQL statement, but might contain sufficient information to identify the table name and

SQL operation.

For example, for the code fragment above, the approximated string would be:

"UPDATE FaqPage SET page_num= WHERE

page_num= AND owner_id="

From this string the approach can automatically extract the operation UPDATE and

the affected table FaqPage and conclude that this is a definition of table FaqPage.

However, there are still cases where static analysis is unable to be accurate or

complete. If the table name is constructed dynamically, for example, by reading a prefix

from a database table, static analysis will not be able to identify the table’s name. In

other cases, centralized methods or functions are used to handle all database calls with

4.3. Approach 102

the query constructed and passed to the function at run-time. In such cases, the benefits

of a Def-Use analysis might be very limited since the centralized functions would result

in only a few calls to the function mysql query. For example, if one function is

defined to handle all update operations for all tables and another function is defined

to handle delete operations and so on for all other SQL statement types, the number

of Def-Use pairs for the application will be very small and affected tables cannot be

identified statically. Due to these reasons, a more dynamic approach, presented in the

next section, that examines the value of the SQL statements executed at run-time might

be more suitable for the proposed approach.

4.3.2 Value-Aware DU

A standard state-based DU approach, as described in the previous section, does not

take into account the specific values session variables hold nor the specific database

statements executed when database invocations are created dynamically.

Algorithm 4 Value-Aware DU: Test Sequence Generation Algorithm for Session Vari-
ables - a test sequence is generated for every DU pair for every distinct session variable
value.

Require: Test Suite TS
Require: Session Variables SV
Require: SV definition locations SVDL
Require: SV use locations SVUL
Require: SV distinct values Val

1: TS′ = ∅
2: for all sv in SV do
3: for all defloc in SVDL do
4: for all val in Val do
5: deftest = getdeftestcase(TS,sv,defloc,val)
6: for all useloc in SVUL do
7: if usetestid then
8: usetestid = getusetestcase(TS,sv,useloc)
9: newSeq = (deftest,usetestid)

10: TS′ = TS′ ∪ newSeq
11: end if
12: end for
13: end for
14: end for
15: end for
16: return TS′

4.3. Approach 103

Since session variables are used to hold information needed by the server to pro-

cess the user’s next request, it is expected that the value that each variable holds will

ipso facto affect how the server behaves. For example, a DU pair for a definition of a

session variable that holds the user type and a use that checks the user type to perform

the appropriate action, would behave differently depending on the value assigned to the

session variable in the definition.

Therefore, a dataflow testing approach is developed that takes into account these

different values and effectively treats each distinct value as a separate definition. This

could be feasible for web applications, even though it is not typically feasible with DU

testing of non-web-based applications. This belief is tested empirically in RQ1 of the

evaluation.

While performing the dynamic analysis of the original test suite, for each HTTP

request the approach also notes session variable values after the request is executed.

This information is used together with the static analysis results to identify definition

points based on session variable values as well as definition locations.

Algorithm 4, an extension of Algorithm 3, describes the new Value-Aware DU

(VADU) testing approach. For every session variable, the algorithm iterates through

all definition locations. For every definition location (defloc), a test case is retrieved

for every distinct value that was observed when dynamically analyzing the original test

suite (Line 5). For every use location of the same variable, an HTTP request that covers

that location is paired with the definition test case to form a new sequence (Line 9).

The output of the algorithm is a set of new test sequences (TS′).

SQL statements can be generated dynamically depending on the user input mak-

ing it possible for the same database call in the program to execute different SQL state-

ments. Just as different session variable values may have different effects, it is expected

that different string values used as SQL calls may also denote different application be-

haviours.

The approach monitors how each test case interacts with the database by collecting

every concrete SQL statement it executes. This information is used to construct the new

sequences. Using this dynamic analysis also avoids the limitations of static analyses in

the approximation of dynamic strings, since at run-time, the value of the SQL statement

string is known.

4.3. Approach 104

Algorithm 5 describes the Value-Aware DU approach for generating test sequences

for database tables. The algorithm only uses the dynamic analysis results that determine

the SQL statements executed by each HTTP request and does not use static analysis.

For every database table, all distinct SQL statements (including those generated dy-

namically) that alter the database are retrieved (Line 4). A test case that executes the

definition statement is then paired with all HTTP requests that use the same table. Be-

cause all uses are appended to the same definition, the computational effort involved

in testing multiple uses is reduced. The definition part will only need to be executed

once instead of being repeated for every use. However, the algorithm ensures that

the path from the definition to every use in the sequence is definition-clear (where no

definition-clear path exists, there is no Def-Use pair). Figure 4.2 illustrates how VADU

database table sequences are generated.

Algorithm 5 Value-Aware DU: Test Sequence Generation Algorithm for Database -
a test sequence is generated for every distinct alter SQL statement and all SQL use
statements with distinct paths.

Require: Test Suite TS
Require: Table names Tables
Require: Distinct SQL alter statements SA
Require: Distinct SQL use statements SU

1: TS′′ = ∅
2: for all tab in Tables do
3: newSeq = ∅
4: for all stmt in SA do
5: deftest = getdeftestcase(TS,stmt)
6: newSeq = (newSeq, deftest)
7: for all stmt in SU do
8: usetestids = getusetestcases(TS,stmt)
9: for all testid in usetestids do

10: newSeq = (newSeq, testid)
11: end for
12: end for
13: if newSeq 6= deftest then
14: TS′′ = TS′′ ∪ newSeq
15: end if
16: end for
17: end for
18: return TS′′

4.4. The SART Implementation 105

The output of the algorithm is a set of new test sequences (TS′′). The union of TS′

from Algorithm 4 and TS′′ from Algorithm 5 is the overall output test sequence set for

the VADU approach. This approach will be referred to as VADU in the remainder of

this chapter.

Figure 4.2: VADU Sequence construction technique: The sequence that contains the

definition HTTP request is truncated after the request and combined with all use HTTP

request to form the new sequence.

4.4 The SART Implementation

Figure 4.3 describes the architecture of the prototype tool SART (State Aware Regener-

ation Tool) with which the approaches are implemented. The main components of the

tool are the Analyser and the Sequence Generator. The Instrumenter instruments

the code to record branch coverage. The Test Harness handles the execution of test

cases including resetting the database and session state. The Fault Parser implements

the oracle described in Chapter 1.5.2.

The Analyser consists of a static and dynamic component. The output of the

Analyser is saved in the Analysis Data repository and later used by the Sequence

Generator.

The static component determines session variable Def-Use locations from the

source code. The static component is written in Stratego/xt [BKVV08] and PHP-Front

[BB10].

4.4. The SART Implementation 106

Figure 4.3: SART architecture

The dynamic component executes the test cases in the original test suite using the

Test Harness. When executing the test cases, the server logs session variable values to

the Session Vars log, executed database queries to the SQL Query log and statement

coverage and errors to the Coverage and Error logs. The Analyser parses the logs to

analyse each test case and saves the results in the Analysis Data repository.

To determine which test cases execute the statements that define or use the state,

SART uses Xdebug [Ret12] to record statement coverage in the Coverage log for each

test case and then matches the result with session definition and use locations.

To determine session variable values for each HTTP request, SART implements a

function that records the session variables’ values in the Session Vars log for subse-

quent access by the Analyser. SART uses the PHP configuration settings to prepend

the file that defines the function and registers it as an exit function that is automatically

called at the end of each request.

4.5. Evaluation 107

To analyse which test cases alter the database or use it, the SQL server is config-

ured to log every query to the SQL Query log which is then parsed by the Analyser.

The Sequence Generator implements Algorithms 4 and 5 and uses the Analysis

Data to generate new test sequences. The new sequences are then executed by the Test

Harness and coverage and fault data is measured.

The Sequence Generator and Test Harness are both implemented in Perl and

use the HTTP, HTML and LWP (Library for WWW in Perl) libraries.

4.5 Evaluation

The evaluation is designed to answer the following research questions:

RQ1: How many new sequences are generated using VADU compared to the orig-

inal test suite?

This question investigates the feasibility of the proposed VADU approach. The

number of test sequences generated for a standard State-based DU approach depends

on the number of definitions and uses present in the code. However, the Value-Aware

DU (VADU) approach defined in Section 4.3.2 generates a different sequence for each

value. Therefore, it might generate such a large number of test sequences that it be-

comes infeasible. RQ1 investigates whether this explosion in VADU test cases occurs

in practice for the four web applications studied. In answering RQ1, the results of the

static analysis are also examined and the numbers of session variables and database

calls for each application are reported.

RQ2: How much can branch coverage be improved?

This question investigates the effectiveness of VADU in terms of branch coverage.

The proposed approach generates test sequences that define and use the state in ways

not present in the original test suite. This is expected to enhance branch coverage of the

regenerated test suite compared to the original test suite from which it was constructed.

Additional branch coverage is measured and results reported for VADU.

RQ3: How much can fault finding ability be improved?

This question investigates the effectiveness of the approach; as with other testing

approaches, the real test is fault detection, not merely coverage.

4.5. Evaluation 108

For RQ2 and RQ3 the evaluation also compares VADU to random generation of

sequences, to provide a baseline for comparison. Random sequences are used as a

baseline for comparison because random construction of request sequences has previ-

ously been proposed in the literature [ERKI05, SGSP05b] and so it denotes the current

state-of-the-art for web application test suite regeneration.

4.5.1 Experimental Set-up

The evaluation is performed on four of the six applications described in Section 1.5.1.

These four applications use both a database and session variables and are therefore

good candidates for the evaluation. PHPSysInfo and PHPBB2 were excluded because

both applications do not use session variables and PHPSysInfo does not use a database.

To construct starting test suites for the evaluation, 30 test suites were sampled

from test cases generated by SWAT (Chapter 3). All the test suites are chosen to have

branch coverage within 10% of the maximum coverage that can be achieved by SWAT.

Test suites with relatively high coverage are chosen, when possible, because increas-

ing coverage for already high-coverage suites is expected to be harder than seeking to

improve low coverage suites. That is, test suites were chosen to which any increase in

coverage or fault detection would be non-trivial to obtain, in order to pose a demanding

challenge to the evaluated approaches.

The experiment applies the Value-Aware DU approach (VADU) defined in Al-

gorithms 4 and 5 and random regeneration to the sampled 30 test suites of the four

applications. The improvements in branch coverage and faults found in relation to

the original test suite are measured and compared. The computational cost that was

needed to achieve these improvements is also measured and compared for VADU and

the random regeneration approach.

Computational cost is measured as the total number of HTTP requests that needed

to be executed to achieve the final improvements in coverage and faults. The number

of requests executed can be viewed as a better measure of computational cost because

it is not affected by the specifics of machine and platform on which experiments are

performed. However, total execution time is also measured and reported in order to

provide data on realistic performance expectations. The evaluation was performed on

an Intel Core i5-2450M CPU, running at 2.50 GHz with 2 GB RAM.

4.5. Evaluation 109

For random sequence generation, an algorithm that will be simply called ‘Ran-

dom’ hereafter, the same number of test sequences reported for VADU is generated

and coverage and faults found are measured. The implementation for Random ensures

that only distinct sequences are generated. The way two HTTP requests are combined

for Random follows a similar principle to that depicted in Figure 4.1: When an HTTP

request is chosen to form the first part of the new sequence, any leading requests that

set up the state are also included.

The automated oracle described in Section 1.5.2 is used to identify faults revealed

by the generated new sequences.

A Wilcoxon paired one-sided signed rank test at the 95% confidence level is per-

formed to determine the statistical significance of the observed results. The Wilcoxon

test is used because it is non-parametric and the evaluation wishes to make assumptions

about neither the distribution of coverage values nor the faults found. The test is paired

because each of the 30 runs of each of the two algorithms starts with the same initial

test suite. The test is one-sided because it is known from the results that the median of

VADU is above that of Random.

4.5.2 Results

In this section, the results obtained from the evaluation on the four web applications for

each approach are presented.

Analysis Results and Number of Generated Sequences

Table 4.1 reports the information obtained from the static analysis of the four appli-

cations: The number of session variables and database tables together with their def-

initions and uses. We notice that for Timeclock the static analysis was not able to

extract all definitions and uses of database tables. When investigating the reason, it

was discovered that when SQL statements are formed in Timeclock, table names are

constructed dynamically by reading a prefix that has been set at installation time from

the database. Since table names are constructed dynamically, static analysis is unable

to discover their definitions and uses. This observation provides a further justification

for the advocacy of a dynamic approach when generating sequences for database tables

that is provided in VADU.

4.5. Evaluation 110

An analysis of the session variables found for each application reveals that for

three applications, a relatively low number of session variables (2-3 variables) were

discovered and these variables were used to keep track of the logged-in users. We-

bchess also has other session variables that hold information about the selected game

and preferences. The analysis also shows that session functions (discussed in Section

4.3.1) that use the state are not used frequently (only in FaqForge).

Table 4.1: Static analysis results: numbers of session variables, functions, tables and

Def-Use locations.

Sessions Database

Variables Functions Tables

App Name num Defs Uses num Defs Uses num Defs Uses

FAQForge 2 2 2 7 5 4 2 11 22

Schoolmate 3 3 6 2 2 0 15 79 215

Webchess 11 28 112 2 7 0 6 38 55

Timeclock 3 3 68 2 34 0 3 1 2

Table 4.2: Average numbers of generated test sequences (seqs) and requests for VADU

for both session variables and database tables for 30 test suites for each of the four

applications.

Original Sessions Database Total

App Name Seqs Requests Seqs Requests Seqs Requests Seqs Requests

FAQForge 34 72 7.6 15.1 9.1 145.5 16.7 160.6

Schoolmate 174 368 31.9 63.7 83.4 3,706.0 115.3 3769.7

Webchess 44 95 109.7 219.4 4.4 68.8 114.1 288.2

Timeclock 244 507 133.3 266.5 2.4 102.4 135.7 368.9

All apps 123 260 70.6 141.2 24.8 1,005.7 95.4 1146.9

Table 4.2 shows the number of sequences generated for VADU for both session

variables and database tables. Random was not included because the number of se-

quences generated for Random is the same as VADU. The table also reports the number

of test cases in the original test suite. The increase in the average number of sequences

4.5. Evaluation 111

VADU adds to the original test suite over all applications is 77.6% (95.4 sequences

added to the original 123 sequences). The increase in the average number of total re-

quests in those sequences is 4.4 times the average number of requests in the original

test suite. However, a closer look at the results reveals that the highest increase in the

number of generated requests comes from database table requests in Schoolmate. This

could be caused by the fact that Schoolmate has the highest number of database trans-

actions in the original test suites. This suggests that an imporvement to the algorithm

is needed to minimize the number of requests generated by analysing the values of

SQL statements to select a subset that is more likely to be effective when generating

sequences. However, as the analysis of computational cost reveals, this increase in test

cases is comfortably manageable with reasonable time bounds.

One interesting observation is that several test cases that execute a definition or

use point for database tables have been discarded when generating sequences. By us-

ing values not definition points, VADU can be more precise, eliminating false defi-

nition points. That is, when using VADU, SQL statements are collected and parsed

dynamically, making it possible to exclude SQL statements that are invalid (and would

be rejected by the database server). These invalid SQL statements are excluded be-

cause they would have no effect on the database and therefore are neither definitions

nor uses. These invalid SQL statements are created by dynamic generation of SQL

statements that contain user inputs. If these user inputs are not validated before being

concatenated to SQL statement fragments, the final statement may be invalid.

Coverage

Branch coverage results are reported in Table 4.3. The reported results are calculated

as the improvement in percentage over coverage of the original test suites. Each ex-

periment is repeated 30 times to allow for statistical significance testing and to cater

for variations in algorithm performance for different starting test suites. Therefore, the

mean and median coverage (and fault detection) values are reported in the table.

The results indicate that VADU performs better than Random for all four applica-

tions. This is a particularly pronounced effect for Webchess where the mean additional

improvement in coverage over Random is 16.17% (25.31% for VADU compared to

9.14% for Random). The difference in median is even higher (33.18% for VADU com-

pared to 3.21% for Random).

4.5. Evaluation 112

Ta
bl

e
4.

3:
Te

st
ca

se
ge

ne
ra

tio
n

re
su

lts
:

Im
pr

ov
em

en
ts

in
co

ve
ra

ge
an

d
fa

ul
ts

fo
un

d
ar

e
ca

lc
ul

at
ed

in
re

la
tio

n
to

th
e

or
ig

in
al

te
st

su
ite

.
Fo

r

im
pr

ov
em

en
ts

,v
al

ue
s

in
bo

ld
ar

e
st

at
is

tic
al

ly
si

gn
ifi

ca
nt

ly
be

tte
rt

ha
n

va
lu

es
ab

ov
e

th
em

us
in

g
W

ilc
ox

on
pa

ir
ed

on
e-

si
de

d
si

gn
ed

ra
nk

te
st

at
th

e

95
%

co
nfi

de
nc

e
le

ve
l.

O
ri

gi
na

l
%

Im
pr

ov
em

en
t

C
om

pu
ta

tio
na

l

C
ov

er
ag

e
Fa

ul
ts

C
ov

er
ag

e
Fa

ul
ts

C
os

t

A
pp

N
am

e
m

ea
n

m
ed

ia
n

m
ea

n
m

ed
ia

n
A

lg
or

ith
m

m
ea

n
m

ed
ia

n
m

ea
n

m
ed

ia
n

R
eq

ue
st

s
Ti

m
e

(s
ec

)

FA
Q

Fo
rg

e
67

.4
9

67
.6

1
50

.9
7

50
.0

0
R

an
do

m
2.

71
2.

13
0.

00
0.

00
22

3
34

VA
D

U
14

.1
0

14
.2

1
4.

12
4.

00
29

1
53

Sc
ho

ol
m

at
e

66
.3

2
66

.3
0

96
.3

0
95

.5
0

R
an

do
m

1.
79

1.
49

2.
85

3.
03

4,
11

5
73

1

VA
D

U
14

.4
2

14
.3

4
14

.3
1

13
.6

6
4,

54
7

78
1

W
eb

ch
es

s
38

.2
0

38
.0

6
67

.8
3

68
.0

0
R

an
do

m
9.

14
3.

21
1.

78
1.

44
36

9
15

1

VA
D

U
25

.3
1

33
.1

8
9.

30
8.

82
53

7
27

3

Ti
m

ec
lo

ck
18

.1
1

18
.1

2
17

7.
40

17
8.

00
R

an
do

m
0.

15
0.

15
0.

07
0.

00
82

3
38

1

VA
D

U
5.

11
5.

10
9.

02
8.

99
1,

36
6

61
5

A
ll

ap
ps

47
.5

3
52

.6
0

98
.1

3
74

.5
0

R
an

do
m

3.
45

1.
60

1.
18

0.
00

1,
38

3
31

7

VA
D

U
14

.7
4

13
.6

8
9.

19
8.

97
1,

68
5

43
1

4.5. Evaluation 113

An investigation of the causes of this strong performance found that in Webchess,

a session variable gameID is used to store the game selected by the player. If the

selected game is valid and active, pairing the test case that selects it with other HTTP

requests that perform different actions to cover DU paths greatly increases coverage.

These findings confirm the usefulness of the VADU approach since it is sensitive to

the values stored in session variables and would therefore ensure that all DU pairs are

exciersied for every value.

The top row of box plots of Figure 4.4 demonstrates the variations in coverage

improvement over 30 test suites for each of the four applications for each approach.

For Webchess (Figure 4.4(c)), the improvement in coverage for VADU can be as small

as 1.3% and as high as 43% (over the 30 trails). When this peculiarly high variance was

examined, it was observed that the gameID session variable also played a pivotal role

in these observations. The coverage improvement is limited in cases where the original

test suite fails to include a single test case that selects a valid and active game. This sug-

gests a relationship between the quality of the original test suite and the effectiveness

of the approach. In this case, it also suggests a potential fault because the application

allows the user to select invalid values for gameID and registers these values in the

session variable without checking the validity of the selected game.

Faults

Fault detection results for the 30 original test suites and the new test sequences gen-

erated by VADU and Random for the four applications studied are reported in Table

4.3.

The Random algorithm does not find any new faults in FaqForge and only finds

new faults for Timeclock in one of the 30 trails. The overall mean of improvements in

fault detection for Random is 1.18%. VADU finds an overall mean of 9.19% new faults

that were not discovered by the original test suite with a median of 8.97%.

Although Random improves branch coverage for FaqForge and Timeclock, the re-

sults of the evaluation show that it is not as effective at fault detection. This suggests (as

is widely believed for non-web applications also) that although coverage affects fault

finding ability, other factors also influence the effectiveness of a test suite in finding

faults.

4.5. Evaluation 114

(a) FAQForge (b) Schoolmate (c) Webchess (d) Timeclock

(e) FAQForge (f) Schoolmate (g) Webchess (h) Timeclock

Figure 4.4: Variations in coverage and fault detection improvement results over 30

test suites for VADU and Random on each of the four web applications. The top row

illustrates branch coverage improvements while the bottom row shows fault detection.

The y-axis is the improvement(%) in branch coverage (or faults found) compared to the

coverage (or faults found) for the original test suites.

The bottom row of box plots in Figure 4.4 shows the variations in the percentage

improvement in faults found for the two approaches over 30 test suites for each of the

four applications compared to the original test suites. It is interesting to observe that,

for Webchess, although there is an overlap in the performance of VADU and Random

for branch coverage, in fault finding, this overlap is much smaller. This suggests that

the way two sets of test sequences are constructed (in this case VADU and Random)

has an effect on fault detection even when coverage is comparable.

Computational Cost

In this section, the computational cost of the experiments are reported (executed re-

quests and elapsed time). However, in this evaluation all processes are fully automated

including checking the oracle and reporting fault results. Since the whole process is

automated, differences in elapsed time merely mean that a tester needs to wait a few

minutes longer for the results (VADU, the most computationally expensive algorithm,

4.5. Evaluation 115

takes an average of 13 minutes for the slowest application).

Results for the computational cost spent to achieve the reported improvements in

branch coverage and fault detection are presented in Table 4.3. Computational cost

is represented using two measures: Number of requests executed and total execution

time. The number of requests is the total number of HTTP requests that needed to be

executed to achieve the reported improvements. This includes every HTTP request that

was executed for the dynamic analysis needed for VADU as well as the execution of

the new sequences and the measurement of improvements.

Naturally, VADU requires more requests than Random since Random does not

require dynamic analysis. Execution time is measured as the total elapsed time for all

activities needed to generate and execute the new sequences. Random is faster than

VADU running , on average, in 5.28 minutes (317 seconds) over all applications with

the slowest application (Schoolmate) running, on average, in 12.18 minutes (731 sec-

onds). VADU, on average, takes 7.18 minutes (431 seconds) over all applications. The

slowest application is also Schoolmate, taking, on average, 13 minutes (781 seconds).

These results show that with the improvements in coverage and faults found (re-

ported in previous sections) the overhead in execution times is relatively small, and

certainly within acceptable bounds even on standard equipment.

4.5.3 Answers to Research Questions

In this section, the research questions posed at the beginning of the evaluation section

are answered, based on the empirical results from the evaluation.

RQ1: How many new sequences are generated using VADU compared

to the original test suite?

The empirical evaluation showed that the increase in the number of requests generated

for the combination of session variables and database tables is, on average, 4.4 times

the average number of requests in the original test suites. However, for three of the

four applications the increase was, on average, 1.2 times; this suggests that VADU is

feasible. This also suggests that further improvements that minimize the number of

sequences/requests generated is needed.

4.5. Evaluation 116

RQ2: How much can coverage be improved?

VADU improves branch coverage for all four applications studied compared to the

original test suite by a mean of 14.74% and performs better than Random for all four

applications.

Statistical testing confirms that these improvements, for VADU compared to Ran-

dom, are statistically significant for all four applications using Wilcoxon paired one-

sided signed rank test at the 95% confidence level.

RQ3: How much can fault finding ability be improved?

The empirical evaluation showed that using the automated oracle, VADU can increase

the number of faults found by a mean of 9.19%, compared to the original test suite

(over the 30 test suites evaluated for the four web applications). VADU performs better

than Random over all test suites and all four applications. The Wilcoxon paired one-

sided signed rank test at the 95% confidence level confirms that these improvements

are statistically significant.

4.5.4 Threats to Validity and Limitations

Internal threats: The internal threats that affect the validity of the results depend

on the implementation of the approaches and the set-up of the evaluation. To mini-

mize factors that affect the measurement of execution times, code was shared between

the implementations of the approaches whenever possible. The number of requests

executed is also provided as an additional measure of computational cost, this is an

algorithmic rather than implementation specific quantity.

External threats: The applications that were chosen and the starting test suites used

might affect the degree to which the results can be generalized. The applications chosen

were used by previous research on web application testing and are also used in current

practice. These applications were selected also because they use both session variables

and a database. The test suites selected can also affect results. This is why 30 different

test suites were sampled for each application that have relatively high coverage. The

source of the starting test suites (SWAT) might also affect the ability to generalize

results. Therefore, further experiments using test suites from other sources are needed

to confirm the reported results.

4.6. Related Work 117

Construct threats: Construct threats are related to the measurements used to compare

the three approaches. Branch coverage and faults found were used, two measurements

that are widely used in research to compare effectiveness.

Limitations: The current implementation of the tool is not able to handle complex

SQL statements that are, for example, nested or use joins. The tool will only be able to

recognize the first table that is used. Enhancing the tool to handle these SQL statements

types may further improve effectiveness. The implementation generates test sequences

to cover DU pairs without checking whether the original test suite already contains a

test case that covers the pair. To enhance the implementation to check the original test

suites might reduce the number of sequences produced and make the approaches still

more efficient.

4.6 Related Work
Liu et al. [LKHH00a, LKHH00b] used traditional dataflow modelling of the server

code, seeking to generate test cases for structural coverage of web application server-

side code (page 67 of the literature review). By contrast, the approach proposed in

this chapter seeks to generate test sequences that take into account client interactions

(using browser functions) and targets the server-side state (including session variables

and database tables), whereas Liu et al. concentrate on server-side source code vari-

ables (applying traditional Def-Use testing in much the way in which it was originally

designed for non web-based applications).

The argument of this chapter is that the interactions of state have a pivotal role

in affecting the application’s behaviour, and require a different approach to dataflow

testing. Simply testing server-side code for structural coverage may overlook the effect

of these interactions.

In session based testing (Section 2.3.2), several random regeneration experiments

were carried out. Sprenkle et al. [SGSP05b] investigated the effect of state on coverage

and fault finding by executing sessions in different random orders without initializing

the state. The experiment showed that different request orderings result in elevated cov-

erage and the detection of new faults. Elbaum et al. [EKR03, ERKI05] also suggested

combining parts of different sessions to produce new test suites. These previous stud-

ies indicated that recombining or reordering test cases can lead to more effective test

4.7. Conclusion 118

suites. However, the new test suites were generated purely randomly. By contrast, this

chapter proposes an approach to produce these new test suites by analyzing the effect

on the server-side state. As the evaluation results showed, this state-aware approach

significantly improves both server-side coverage and fault detection.

As discussed on page 42 of the literature review, Alshahwan and Harman [AH08]

repaired test sequences for regression testing by adding and/or removing requests from

sequences. The repairs where based on changes in how the application is connected (by

links), while this chapter considers state interactions to regenerate request sequences

that improve coverage and fault detection.

Several test data generation approaches have been proposed for web applica-

tions in the literature [AH08, AH11, AKD+08, AKD+10, HAO09, HO08, RT01a,

WYC+08]. The test suites generated by these approaches aim to maximize structural

coverage and all are thus good candidates for the production of the starting test suite

required by the proposed regeneration approach.

Regeneration and augmentation has also been applied to test suites for conven-

tional applications, [Arc10, SCA+08, YH10], but these approaches have not, hitherto,

been applied to web applications, with their separation of client-side and server-side

and their close coupling to back-end databases.

Other authors have also considered the problem of testing database applications

[CC99, CDF+04, DFW04, EMS07, HO06], though these focus on structural coverage

of database dependent branches, whereas the approach proposed in this chapter targets

database state interactions for web-based applications.

4.7 Conclusion
This chapter introduced an approach to regenerate test sequences from existing pools

of HTTP requests present in the original test suites. The approach proposed exploits

server-side state manipulation to generate new test sequences that define and use the

state in ways not present in the original test suite. This chapter introduced the Value-

Aware DU approach that is aware of the values and specific state modifying SQL state-

ments as well as traditional DU pair information.

A tool, SART (State Aware Regeneration Tool), was introduced that implements

the proposed approach for PHP applications. The results of an empirical evaluation on

4.7. Conclusion 119

four real world web applications are also reported. The evaluation reports and com-

pares branch coverage information and faults found for the approach to the random

recombination approach currently advocated in the literature. The obtained results pro-

vide evidence to support the claim that the novel value aware approach significantly

increases coverage and fault detection (at reasonable computational cost).

Chapter 5

Output Uniqueness Criteria

5.1 Introduction

In Chapters 3 and 4 the output was used to enhance the generation of test data and test

sequences. Two tools, SWAT and SART, were introduced with the aim of maximizing

branch and Def-Use coverage to produce test suites that are effective in finding faults.

The evaluations in the previous chapters indicated that coverage is not the only fac-

tor that influences fault finding. For example, although Random and VADU achieved

similar coverage levels for Webchess for some of the test suites used in the evaluation,

VADU was more effective at fault detection. This finding replicates similar findings is

previous testing research [NA09, HFGO94]. This chapter proposes using the output as

a test adequacy and selection criterion.

Structural coverage remains prevalent as the only adequacy criterion considered

in many studies of software testing. This chapter argues that we need more research on

complementary criteria and proposes one based on output uniqueness. Although higher

coverage may increase fault detection, there remains much controversy about coverage

being the only contributing factor [NA09, HFGO94]. This chapter proposes a novel

criterion that is based on the uniqueness of the program’s output to enhance traditional

coverage criteria. This approach expects that raising the diversity of the output could

lead to test suites that are more effective at exposing faults.

Faults with high severity often propagate to the observable output and affect user

perception of an application [DW10]. Therefore, a system’s output may provide a valu-

able resource for identifying unexpected behaviour that is considered more critical from

a user’s point of view. In applications with rich output structure, such as web applica-

5.1. Introduction 121

tions, output may prove to be particularly suited as a new criterion. The complexity

and richness of the output may also make it more likely for faults to propagate to the

output and for the approach to be effective. This is the proposition which this chapter

investigates.

This chapter introduces a new output uniqueness criterion and provides seven def-

initions of unique output applied to web applications. It investigates the use of those

output uniqueness definitions both as complimentary test selection criteria to struc-

tural coverage and as alternative criteria when structural coverage cannot be measured.

First, the chapter introduces an approach that applies the proposed uniqueness criteria

to augment test suites that were created using a traditional structural coverage criterion

(branch coverage) with test cases that provide unique outputs. Finally, an empirical

study is provided that investigates the correlation between test suite effectiveness in

fault detection, structural coverage and the new output uniqueness criteria.

The specific contributions of this chapter are as follows:

1. The introduction of a novel test adequacy criterion based on output uniqueness.

2. Seven definitions of output uniqueness in the context of web applications.

3. An initial evaluation on five real world web applications of four of the output

uniqueness definitions in terms of their ability to find real faults. The initial

results indicate that output uniqueness is a valuable criterion for generating test

suites that are more effective at exposing faults. Uniqueness outperforms random

augmentation by an average of 280% over all applications.

4. An empirical study for six web applications that investigates the effectiveness

of output uniqueness criteria and their correlation with both fault detection and

structural coverage.

The rest of this chapter is organized as follows: Section 5.2 discusses the out-

put of web applications and presents the new output uniqueness definitions. Section

5.3 presents the initial experiment for test suite augmentation using output uniqueness

criteria. Section 5.4 presents the empirical evaluation of output uniqueness criteria to-

gether with a discussion of the results. Section 5.5 presents related work and Section

5.6 concludes.

5.2. Output Uniqueness Criteria 122

5.2 Output Uniqueness Criteria
Checking the output of a test case is a comparatively cheap operation: It neither requires

instrumentation of the code nor the building of intermediate structures, such as control

flow graphs or dataflow models. This makes it comparatively easy to experiment with a

large number of test cases to find the ones that provide interesting or ‘unique’ outputs.

Checking the output also does not require access to the source code of the application

making it possible to generate potentially effective test data for components where the

source code is unavailable, such as third party components. This section discusses web

application client-side output and proposes seven definitions of output uniqueness to be

used in test case selection.
Web Application Output
The principal output of a web application, visible to the user, is a client-side HTML

page. The client-side page can be either static or dynamically generated. This page is

composed of the content, the HTML structure and embedded elements, such as images

or client-side scripts (e.g., JavaScript). The approach proposed in this chapter focuses

on the content and HTML structure of the client-side page:

The Content: The content (C) is the textual data that is presented to the user. The

main element in this content is usually the data that the user requested. For example in

case of a search, the content is the list of matching items. Extra helping text can also

be found throughout the output page. Examples of such text are page titles, welcome

messages and field labels.

HTML Structure: The HTML structure (H) defines how the page is presented

to the user. The content is organized in tables or frames that are constructed using

HTML code. Aesthetic elements, such as colours and fonts as well as backgrounds and

embedded pictures can also be specified using HTML code. In addition to the page’s

appearance, HTML can be used to define functional elements that enable the user to

interact with the application. HTML forms and links are primary examples of these

elements. HTML code is constructed using HTML tags (T) that define the type of the

element (e.g., table, form, input). Each tag has a number of relevant attributes (A), such

as actions for forms or values for input.

A web application’s client-side page output can be defined as a tuple O=<C,H>

where the HTML code H can be defined as a set of tags T and each tag in T consists

of a set of attributes A.

5.2. Output Uniqueness Criteria 123

Client-side Page Output Uniqueness

To use the proposed output based test selection criteria, first ‘uniqueness’ needs to be

defined. A strict definition of output uniqueness could capture all test cases that cause

a fault that propagates to the output. However, a strict definition could also lead to

an explosion in the test suite size, with many additional test cases that may yield no

additional benefit.

The aim of the proposed approach is to evaluate a number of output uniqueness

definitions to identify the most effective definition that captures interesting output dif-

ferences while maintaining a smaller test suite.

The HTML code in Figure 5.1 is taken from one of the applications studied

(Schoolmate) and simplified for readability. This code will be used to demonstrate

which parts of the output are considered for each proposed definition.

A test suite can be defined as a set of (input, output) pairs. The strictest definition

to consider is:

Definition Output o is OU-All unique with regard to a test suite T ⇐⇒ for all (i, o′)

there exists at least one observable difference between o and o′.

When a new output page is analysed, any difference in any element of the page

compared to all previously visited pages categorizes the new output page as unique. All

the HTML code in Figure 5.1 will be considered for comparison when using OU-All.

This definition could potentially lead, in some cases, to infinitely many unique

outputs that do not necessarily enhance the test suite’s effectiveness, but considerably

increase the oracle cost. For example, an application that displays the date on the output

page could result in a potentially infinite set of unique outputs. A page that displays

product information would have as many unique outputs as there are products in its

database. To overcome this problem output uniqueness can be defined, less strictly, in

terms of the HTML structure of the page ignoring the text.

Definition Output o is OU-Struct unique with regard to a test suite T ⇐⇒ for all

(i, o′) where o =<c, h> and o′ =<c′, h′> there exists at least one observable difference

between h and h′.

Figure 5.2 shows the part of the output page that will be considered for comparison

when using OU-Struct. The text in the output page is removed and only the HTML

5.2. Output Uniqueness Criteria 124

<html>
<head>
<title>SchoolMate - School Name</title>
</head>
<body>
<form action=’./index.php’ method=’post’ name=’login’>
<table width=’100%’ height=’85%’ align=’center’ >
<tr>
<td align=’right’>Username:</td>
<td><input type=text name=’username’></td>
</tr>
<tr>
<td align=’right’>Password:</td>
<td><input type=password name=’password’></td>
</tr>
<tr>
<td align=’center’>
<input type=submit value=’Login’ ></td>
</tr> </table>
<input type=’hidden’ name=’page’ value=’1’>
<input type=’hidden’ name=’login’>
</form>
Powered By -SchoolMate
</body>
</html>

Figure 5.1: Simplified example HTML taken from Schoolmate to demonstrate which

part of the output is used for each output uniqueness definition.

structure is retained and compared to previously observed output to decide if the output

is new.

This definition eliminates the ‘potentially infinite output’ issue in the text dis-

cussed for OU-All. However, the HTML structure may still yield large test suites.

Consider the product pages of items again, if the form to order an item contains a

hidden field that holds the item’s ID, there will be as many unique outputs as there are

products in the database. A new definition of output uniqueness can be proposed where

the HTML structure of a page is stripped of any text or embedded values and only the

opening and closing tags are considered. This is to eliminate any variations caused by

form options, default values or font and style settings.

5.2. Output Uniqueness Criteria 125

<html>
<head>
<title></title>
</head>
<body>
<form action=’./index.php’ method=’post’ name=’login’>
<table width=’100%’ height=’85%’ align=’center’ >
<tr>
<td align=’right’></td>
<td><input type=text name=’username’></td>
</tr>
<tr>
<td align=’right’></td>
<td><input type=password name=’password’></td>
</tr>
<tr>
<td align=’center’>
<input type=submit value=’Login’ ></td>
</tr> </table>
<input type=’hidden’ name=’page’ value=’1’>
<input type=’hidden’ name=’login’>
</form>

</body>
</html>

Figure 5.2: The part of the output considered for OU-Struct: The text in the output

page is removed and only the HTML structure is used to decide if the output is new.

Definition Output o is OU-Seq unique with regard to a test suite T ⇐⇒ for all (i, o′)

where o =<c, h> and o′ =<c′, h′> and where h and h′ contain a set of tags t and t′

and attributes a and a′ respectively and there exists at least one observable difference

between t and t′.

Figure 5.3 shows the part of the output that will be considered for OU-Seq. In

addition to removing all text, all attributes from HTML tags are removed.

The previous two definitions focused on the HTML structure of a page. However,

the text in the page can contain error messages produced by the server. Therefore,

another definition of output uniqueness is added:

5.2. Output Uniqueness Criteria 126

<html>
<head>
<title></title>
</head>
<body>
<form>
<table>
<tr>
<td></td>
<td><input></td>
</tr>
<tr>
<td></td>
<td><input></td>
</tr>
<tr>
<td>
<input></td>
</tr> </table>
<input>
<input>
</form>

</body>
</html>

Figure 5.3: The part of the output considered for OU-Seq when deciding if an observed

output is new. All text is removed from the output page as well as all attributes in

HTML tags.

Definition Output o is OU-Text unique with regard to a test suite T ⇐⇒ for all (i, o′)

where o =<c, h> and o′ =<c′, h′> there exists at least one observable difference

between c and c′.

Figure 5.4 shows the part of the output that will be considered when using OU-

Text. The HTML structure is removed, leaving only the text in the output page.

The previous four output uniqueness definitions considered the client-side page

as a whole (OU-All) and decomposed it to its HTML (OU-Struct) and text (OU-Text)

elements and also stripped the page’s HTML to its basic elements (OU-Seq). However,

the values of specific parts of both the text and HTML could indicate interesting exe-

5.2. Output Uniqueness Criteria 127

SchoolMate - School Name
Username:
Password:

Powered By -SchoolMate

Figure 5.4: The part of the output considered for OU-Text when deciding if an observed

output is new. Only the text in the output page is retained for comparison.

cutions of the application under test. The next three definitions focus on those specific

parts of the output page.

Definition Output o is OU-Hidden unique with regard to a test suite T ⇐⇒ for all

(i, o′) where o =<c, h> and o′ =<c′, h′> and h and h′ contain a set of tags t and t′ and

attributes a and a′ respectively there exists at least one observable difference between t

and t′ or between aname and a′name or ahidden and a′hidden.

The subscripts to an attribute a denote the type of attribute being considered. An

attribute aname is an attribute of type name while ahidden is an attribute that describes

the value of a hidden field.

This definition is similar to the OU-Seq definition but also takes into account hid-

den form variables and their values. Hidden form variables are control variables that

are embedded by the server-side code in forms in the output HTML to pass state over

subsequent requests. Therefore, they are expected to be significant in describing how

the application behaved on a previous request. Unexpected values held in hidden form

variables can possibly indicate a fault in a previous execution. Figure 5.5 shows the part

of the output that will be considered for OU-Hidden.

However, as discussed before, hidden form variables can lead to a uniqueness

definition identifying infinitely many unique outputs depending on the design of the

application and how hidden form fields are used within it. Therefore, it might be use-

ful to consider characteristics of hidden form variable values rather than their actual

values. A new definition is proposed that is based on the subtypes of hidden form

variable values. These considered subtypes are: positive and negative numbers, strings,

zeros, empty strings and NULL. These subtypes are chosen to be general and not ap-

plication specific for the experiments performed in this section to avoid bias and keep

5.2. Output Uniqueness Criteria 128

<html>
<head>
<title></title>
</head>
<body>
<form>
<table>
<tr>
<td></td>
<td><input name=’username’></td>
</tr>
<tr>
<td></td>
<td><input name=’password’></td>
</tr>
<tr>
<td>
<input value=’Login’></td>
</tr> </table>
<input name=’page’ value=’1’>
<input name=’login’>
</form>

</body>
</html>

Figure 5.5: The part of the output considered for OU-Hidden when deciding if an

observed output is new. All text and attributes are removed except for attributes that

describe a tag’s name or a hidden value.

the evaluation generalized. However, it might be useful in practice to define subtypes

specifically for an application (or even specific subtypes for each hidden input) based

on the tester’s domain and application knowledge.

Definition Output o is OU-Subtypes unique with regard to a test suite T ⇐⇒ for all

(i, o′) where o =<c, h> and o′ =<c′, h′> and h and h′ contain a set of tags t and t′

and attributes a and a′ respectively and there exists at least one observable difference

between t and t′ or between aname and a′name or between the subtypes of ahidden and

a′hidden.

5.2. Output Uniqueness Criteria 129

<html>
<head>
<title></title>
</head>
<body>
<form>
<table>
<tr>
<td></td>
<td><input name=’username’></td>
</tr>
<tr>
<td></td>
<td><input name=’password’></td>
</tr>
<tr>
<td>
<input value=’Login’></td>
</tr> </table>
<input name=’page’ value=num>
<input name=’login’ value=NULL>
</form>

</body>
</html>

Figure 5.6: The part of the output considered for OU-Subtypes when deciding if an

observed output is new. All text and attributes are removed except for attributes that

describe a tag’s name or a hidden value. The values of hidden values are replaced by

predefined subtypes.

Figure 5.6 shows the part of the output that will be considered for OU-Subtypes.

The value of the first hidden field page was replaced by the corresponding subtype

‘num’ and because login has no value the subtype attached to it is NULL.

Finally, a new definition is introduced for the text element of the output. If an

error occurs during execution, this might cause the execution to terminate and an error

message to be printed. This error message would be printed on the last line of the

output before termination therefore the last line of text in the output might prove to be

a useful output uniqueness criterion.

5.3. Augmenting Test Suites Effectiveness by Increasing Output Diversity 130

Definition Output o is OU-LastText unique with regard to a test suite T ⇐⇒ for all

(i, o′) where o =<c, h> and o′ =<c′, h′> there exists at least one observable difference

between the last line of c and c′.

For the HTML example in Figure 5.1, only the last line Powered By -

SchoolMate will be considered for comparison.

5.3 Augmenting Test Suites Effectiveness by Increasing

Output Diversity
This section investigates using output uniqueness in test suite augmentation by adding

test cases with unique outputs not present in the original test suite. Section 5.3.1

presents the augmentation approach whilst Section 5.3.2 evaluates the proposed ap-

proach on test suites generated by SWAT (Chapter 3) for five web applications.

5.3.1 Approach

This section proposes that output uniqueness should be used to augment a traditional

test generation adequacy criterion not replace it; output alone would not capture all

faults that can manifest themselves in an application. For example, two different er-

rors that cause a web application to return a blank page would have the same output.

However, as the evaluation in Section 5.3.2 shall show, focusing on output uniqueness

improves fault finding ability, even for relatively high coverage test suites.

This section uses output uniqueness to augment a test suite generated to satisfy a

traditional test adequacy criterion (branch coverage) and introduces an approach to use

the first four definitions presented in Section 5.2 in test suite augmentation.

Algorithm 6 describes the augmentation approach which uses output uniqueness

to generate new test cases. The algorithm takes a test suite as an input and builds new

test suites that satisfy each of the four basic output uniqueness definitions in Section

5.2. For each original test case, one input is mutated at a time to generate a new test

case. The input is mutated, with equal probability, by either assigning a random value

or a value collected dynamically from the output of the original test suite. The new

mutated test case is then executed and the output is examined to determine which output

uniqueness definition it satisfies. For each definition a test suite is maintained that

contains all mutated test cases that satisfy its definition.

5.3. Augmenting Test Suites Effectiveness by Increasing Output Diversity 131

5.3.2 Evaluation

The evaluation is designed to answer the following two research questions:

RQ1: Does using output-uniqueness augmented test suites enhance fault finding abil-

ity?

RQ2: How do the four definitions of output uniqueness affect the fault finding ability

and test effort of the generated test suite?

To answer these two questions a test suite generated using SWAT from Chapter 3 is

augmented with test cases that enhance output uniqueness for each of the four defini-

tions. The fault finding ability of the original suite is then compared to the augmented

suites and also to the original SWAT test suite augmented by the same number of addi-

tional test cases selected randomly. The number of faults per new test case of each of

the definitions compared to random is then calculated and compared. Wilcoxon paired

one-sided signed rank test at the 95% confidence level is performed to determine the

Algorithm 6 Test Data Generation Algorithm: Starting from a test suite the algorithm
generates four test suites that each satisfy one of the output uniqueness definitions
Require: Test Suite TS

1: for all T in TS do
2: output = executeTestCase(T)
3: O = O ∪ output
4: end for
5: for all T in TS do
6: while Number of tries <= 100 do
7: T ′ = mutateInput(T)
8: output = executeTestCase(T ′)
9: if OU-AllSatisfied(O,output) then

10: TS-ALL = TS-ALL ∪ T ′

11: if OU-TextSatisfied(O,output) then
12: TS-Text = TS-Text ∪ T ′

13: end if
14: if OU-StructSatisfied(O,output) then
15: TS-Struct = TS-Struct ∪ T ′

16: end if
17: if OU-SeqSatisfied(O,output) then
18: TS-Seq = TS-Seq ∪ T ′

19: end if
20: end if
21: O = O ∪ output
22: end while
23: end for
24: return TS-All, TS-Text, TS-Struct, TS-Seq

5.3. Augmenting Test Suites Effectiveness by Increasing Output Diversity 132

statistical significance of the observed results. To answer RQ2 the fault finding ability

and sizes of the new test suites for the four definitions are compared. Test suite size is

only an approximation of test effort. A larger test suite would require more time and

effort to execute and maintain and to examine the output.

Experimental Set-up

The starting test suite used in the experiment is chosen as the test suite with the highest

branch coverage from 30 test suites previously generated by SWAT as an input to a new

tool SWAT-U that implements Algorithm 6. The test suite with the highest coverage is

chosen to focus on additional fault finding ability of uniqueness, even where coverage

is relatively high. The same SWAT test suite and mutation algorithm are used for

random augmentation. Since the test data generation process is non-deterministic, the

evaluation runs SWAT-U and random augmentation 30 times for each test suite, to

support statistical significance testing. To detect faults, SWAT-U uses the automated

oracle described in Section 1.5.2.

SWAT-U uses database tables to keep track of previous output. Execution times

of SWAT-U are not reported in this experiment but the slowest run encountered was 20

minutes.

Results

Table 5.1 reports the results of running the approach 30 times on each application to-

gether with information about the original test suites. The new test cases increased

coverage by only 1% or less for all applications with no additional coverage for Faq-

Forge. The last column reports the improvement in percentage of each algorithm over

random. This is calculated based on the faults per test case.

In three of the five applications, OU-All performed better than random augmen-

tation. In Webchess no new faults were found by either the uniqueness approaches or

random augmentation. This could be because no other faults exist or due to a limitation

in the mutation algorithm. PHPSysInfo only has four user inputs which could limit the

effect of user inputs on outputs.

As expected, OU-All adds the largest number of test cases to the test suite while

OU-Seq adds the fewest. OU-Struct and OU-Text perform differently based on the ap-

plication. In both PHPSysInfo and Timeclock, the number of unique outputs based on

5.3. Augmenting Test Suites Effectiveness by Increasing Output Diversity 133

Table 5.1: Results of average faults found and test suite size obtained from running the

approach and random 30 times for each application. The (%) column in New Faults

is calculated in relation to original faults found. Faults/Test results in bold perform

statistically significantly better than random.
Original New New Faults Faults Improv.

App Name Cov Tests Faults Algorithm Tests Num % /Test on Rand

FAQForge 69% 36 50

Rand 180 3.6 7.1 0.020 -

OU-All 180 5.0 9.9 0.028 40%

OU-Text 96 1.3 2.7 0.014 -30%

OU-Struct 170 5.0 9.9 0.029 48%

OU-Seq 3 0.8 1.6 0.245 1137%

Schoolmate 70% 176 103

Rand 314 1.7 1.6 0.005 -

OU-All 314 23.7 23.0 0.076 1324%

OU-Text 120 21.4 20.8 0.178 3255%

OU-Struct 252 20.3 19.7 0.080 1415%

OU-Seq 32 9.9 9.6 0.309 5737%

Webchess 33% 49 70

Rand 299 0 0 0 -

OU-All 299 0 0 0 0%

OU-Text 54 0 0 0 0%

OU-Struct 220 0 0 0 0%

OU-Seq 2 0 0 0 0%

PHPSysInfo 22% 20 7

Rand 1138 2.1 30.0 0.002 -

OU-All 1138 2.1 30.0 0.002 0%

OU-Text 1138 2.1 30.0 0.002 0%

OU-Struct 228 1.6 22.9 0.007 289%

OU-Seq 8 1.7 24.8 0.228 12567%

Timeclock 21% 284 172

Rand 1366 2.7 1.6 0.002 -

OU-All 1366 3.7 2.2 0.003 37%

OU-Text 98 3.7 2.2 0.038 1812%

OU-Struct 1317 2.7 1.6 0.002 2%

OU-Seq 9 2.7 1.6 0.307 15408%

the strictest definition OU-All yield a comparatively large number of new test cases.

Both of these applications contain a time-dependent element in the output: PHPSys-

5.3. Augmenting Test Suites Effectiveness by Increasing Output Diversity 134

Info prints the time the system has been available while Timeclock prints weather in-

formation. This reinforces the arguments for the need for different output uniqueness

definitions.

OU-All also finds the largest number of faults with a few exceptions where another

definition finds a matching number of faults with fewer test cases. In all applications,

OU-Seq is the most efficient definition that found the largest number of faults per test

case.

Answers to Research Questions

In this section the research questions posed at the start of Section 5.3.2 are answered,

based on the empirical evidence from the experiments on the five web applications.

RQ1: Does using output-uniqueness augmented test suites enhance fault find-

ing ability?

In four of the five applications studied, at least one output uniqueness definition

performed better than random. In three applications, OU-All performed statistically

significantly better than random. The best performing uniqueness definition signifi-

cantly outperforms random augmentation in three of five applications by an overall

average of 6,970% with one application (Webchess) where improvement was not pos-

sible.

RQ2: How do the four definitions of output uniqueness affect the fault finding

ability and test effort of the generated test suite?

OU-All found the most faults overall but added the largest number of test cases.

Less strict definitions result, in most cases, in a loss of some of the faults found by OU-

All. OU-Seq performed the best in terms of faults per additional test case and shows

the most potential.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 135

5.4 Empirical Study: Output Uniqueness as a Test Ad-

equacy Criteria
The experiment in Section 5.3 provided initial confirmation that output uniqueness cri-

teria can be useful in increasing a test suite’s effectiveness at finding faults. However,

a more in-depth study is needed to investigate and understand the correlation between

test suite effectiveness and the new output uniqueness criteria. This section provides an

empirical study that analyses the correlation between various variables that affect a test

suite’s effectiveness: output uniqueness, structural coverage and size. This section also

investigates the effectiveness of output uniqueness criteria as an alternative to struc-

tural coverage criteria when the source code cannot be instrumented either because it

is unavailable or when the testing objective requires the code of the application to be

unchanged as is required in stress testing.

5.4.1 Research Questions

This second empirical study in this chapter is designed to answer the following research

questions:

RQ1: How do Output Uniqueness Criteria correlate with fault finding

ability of a test suite?

This research question investigates how the uniqueness of output (according to the

definitions proposed in Sections 5.2) correlates with the fault finding ability of test

suites. It also examines how output uniqueness criteria compare to structural coverage

criteria in terms of their comparative correlation with fault detection. To determine the

usefulness of output uniqueness criteria, a strong correlation should exist between the

number of distinct outputs in a test suite and the number of faults found by the test

suite.

RQ2: How do Output Uniqueness Criteria correlate with structural cov-

erage of a test suite?

This question investigates the correlation between output uniqueness criteria and struc-

tural coverage criteria. A strong correlation could indicate that output uniqueness cri-

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 136

teria can be used as alternative criteria when structural criteria are found to be inappli-

cable (e.g., when code is unavailable).

RQ3: How does the reliability of output uniqueness criteria compare to

structural coverage criteria?

This research question compares the consistency in finding fault for both output unique-

ness criteria and structural coverage criteria. The consistency of a criterion is denoted

by the ability of every test suite that satisfies the criteria to find the same faults. This

question also investigates whether output uniqueness criteria are complementary to

structural coverage criteria or are a possible computationally cheaper alternative.

RQ4: How sensitive is the output to changes in input based on each

output uniqueness definition?

This question investigates the sensitivity of the output to changes in the inputs for each

output uniqueness definition. This question seeks to discover which patterns in changes

in the output can provide an insight into how to integrate output uniqueness criteria in

a test data generation process.

5.4.2 Experimental Design

This section describes the subjects, measures and analysis tools used in this empirical

study.

Subjects

The web applications chosen for the empirical study are the six applications described

in Section 1.5.1. For each application, all test cases generated from SWAT from Chapter

3 are collected to form a pool of test cases that are used for sampling for the experiments

performed for this empirical study. Test cases are collected from those generated for

each of the three algorithms implemented for SWAT. Only unique test cases are chosen:

A unique test case is a test case that contains a request that has a unique URL and input-

value pairs. Every test case is a sequence of one or two requests. That is, a test case

consists of two requests when login is required for the action in the second request to

be performed.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 137

Table 5.2: Test data information: Number of test cases, faults found and total paths,

branches and statements covered by the subject test data for each of the six web appli-

cations.

Test Coverage

App Name Cases Faults Paths Branches Statements

FAQForge 7,233 67 176 96 516

Schoolmate 72,674 201 333 570 2,973

Webchess 9,377 98 209 460 2,097

PHPSysInfo 1,130 6 341 476 4,841

Timeclock 10,671 186 439 831 5,386

PHPBB2 22,379 79 2,030 1,337 7,807

Table 5.3: Output analysis information: the number of distinct outputs for each of the

output uniqueness definitions.

Total OU-

App Name Outputs All Text Struct Hidden Subtypes Seq LastText

FAQForge 14,466 1,287 1,175 1,049 896 78 55 7

Schoolmate 145,348 1,982 638 1,489 1,464 326 271 248

Webchess 18,759 1,608 408 1,556 1,316 151 38 15

PHPSysInfo 1,130 1,047 1,047 707 14 14 14 884

Timeclock 21,342 3,014 782 2,638 249 111 80 89

PHPBB2 44,758 5,617 1,602 4,138 513 92 82 27

Measures

Coverage, fault detection and output uniqueness are measured and evaluated in the ex-

periments conducted for the empirical study. For coverage: Path, branch and statement

coverage are measured. Statement coverage and branch coverage are widely used in re-

search for test data generation [SMA05, AKD+08, AKD+10, PLEB07, FK96, LMH10,

WBP02]. Path coverage is a stronger criterion that subsumes both branch and state-

ment coverage. Faults are detected and measured using the automated oracle described

in Section 1.5.2.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 138

The number of distinct outputs based on all output uniqueness definitions pre-

sented in Section 5.2 are also measured.

Table 5.2 provides information about the size of the test pool for each application,

the total number of faults that can be detected, as well as the maximum paths, branches

and statements covered by the test pool.

The pool of test data for Schoolmate is considerably larger than other applications

(72k compared to 1-20k), while PHPSysInfo has the fewest test cases (1,130). How-

ever, these pools were not artificially reduced to a ‘standard’ size to avoid introducing

bias into the experimental study.

Table 5.3 details the results of analyzing the output and measuring the numbers

of distinct outputs for each of the output uniqueness criteria definitions. The table

also shows the total number of outputs for the test pool which is equal to the number

of requests in the pool rather than the number of test cases: a single test case may

consist of multiple requests. Although all test cases in the pool are unique, the analysis

shows that, even for the strictest output uniqueness definition, only a small percentage

of outputs are distinct (ranging from 1-14%). The only exception is PHPSysInfo, for

which nearly all outputs are unique for both the OU-All and OU-Text criteria. This is

caused by the application displaying several data items that are time-sensitive on the

output page: Execution time and system up time.

The analysis also shows that web applications behave differently in the number of

distinct unique outputs for each definition and how these numbers relate. For example,

for PHPSysinfo the number of distinct outputs for the OU-All and OU-text criteria is

the same while for other applications the number of outputs for OU-Text is consider-

ably lower than OU-All. On the other hand, the number of outputs for OU-Hidden is

similar to the number for OU-Struct for FaqForge, Schoolmate and Webchess while for

PHPSysInfo and Timeclock OU-Hidden reduces the number of distinct outputs consid-

erably. These results give insight into where the variation in output lies for the different

web applications used in this study.

Analysis Tools

The web applications’ code was instrumented to record branch and path coverage. Xde-

bug was used to record statement coverage. Xdebug cannot be used for branch and path

coverage because it produces a list of filenames and line numbers that were executed

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 139

rather than a trace. The list does not reflect order or frequency of execution. A test

harness was developed to execute test cases and analyse the output. Statistical analysis

and data visualization were performed using the statistical package R.1

5.4.3 Experiments and Discussion

This section describes the experimental set up and discusses the results obtained for

each of the analyses performed to answer each of the research questions posed.

Correlation with Fault Finding Ability

To investigate the correlation between fault finding ability of a test suite and structural

coverage and output uniqueness criteria, a set of 500 test suites was randomly sampled

from the test pool for each application. The number of test cases in each test suite was

randomly selected between 10 and 500 test cases. These upper and lower limits were

selected to be an order of magnitude smaller/larger than the smallest/largest test suite in

the original test suites generated by SWAT. For each test suite, the values of all output

uniqueness criteria, structural coverage, faults found and size were recorded. Spear-

man’s rank correlation coefficient was then calculated for the set. Since the sampling

process is random, the experiment was repeated 30 times for each application.

A set size of 500 test suites was chosen after experimenting with three test suite

set sizes: 20, 100 and 500. These three test suite set sizes were examined to investigate

the effect of the number of test suites sampled on results and to gain more confidence

in the discovered correlations between fault finding ability and coverage and output

uniqueness criteria. In total 18,600 randomly selected test suites were sampled for

each application.

Spearman’s rank correlation coefficient was chosen because it is non-parametric

and since the sampling process of test suites is random, no assumptions about the dis-

tribution of faults found, coverage or output uniqueness can be made.

Figure 5.7 reports the results of the analysis for the six web applications studied.

For all applications but PHPSysInfo and all experiments, the results indicate that a

strong correlation exists between output uniqueness criteria and fault finding ability

that is comparable to the correlation between coverage and fault finding ability. The

1http://www.r-project.org/

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 140

(a) FaqForge (b) Schoolmate

(c) Webchess (d) PHPSysinfo

(e) Timeclock (f) PHPBB2

Figure 5.7: Variations in Spearman’s rank correlation coefficient for test suites sets of

size 500 over 30 different experiments for the six applications.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 141

results also indicate that OU-LastText is less well correlated with fault finding ability

than all other output and coverage criteria for all applications.

For PHPSysInfo, a correlation exists between fault finding ability and output

uniqueness. However, the correlation is not as strong as the correlation observed for

other applications. This weaker correlation can also be observed between structural

coverage criteria and fault detection. The quality of the test pool for PHPSysInfo might

have an influence on results because the number of maximum faults that can be found

by all test cases is considerably smaller than all other applications.

While all criteria are correlated with fault finding ability for FaqForge, TimeClock

and PHPBB2 in a similar manner, the correlations vary more for Schoolmate and We-

bchess. For Schoolmate, branch and statement coverage have the highest correlation

with fault detection. For Webchess, path coverage has the strongest correlation with

fault finding ability while branch and statement coverage are less correlated with fault

finding ability than most output uniqueness criteria.

The coverage criteria measured are, by definition, linearly ordered: Path coverage

subsumes branch coverage and branch coverage subsumes statement coverage [Zhu95].

For some applications in the experiments, a weaker coverage criteria has a stronger

correlation with fault finding ability than some other criterion that subsumes it. This

can be explained by the possibility that a test suite can cover more paths or branches

without finding new faults, thereby affecting the correlation of that criterion with fault

finding ability.

The results of using a test suite set size of 20 and 100 can be viewed in Figures A.1

and A.2 in Appendix A. The results show that increasing the number of test suites in a

set reduces the variation in Spearman’s rank correlation coefficient; as expected more

data give tighter bounds on observed correlations. However, the medians were simi-

lar for all three sizes and the relationships between different criteria were maintained.

Based on these results, increasing the number of test suites per set might further reduce

the variation in Spearman’s rank correlation coefficient but there is sufficient evidence

that the conclusions that can be drawn from the 500 test suite sets are likely to remain

robust.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 142

Correlation with Structural Coverage

To investigate the correlation between structural coverage criteria and output unique-

ness criteria, Spearman’s rank correlation coefficient was calculated between each of

the three structural coverage measures and the number of distinct outputs for each of

the output uniqueness definitions for each set of test suites.

Figures 5.8 and 5.9 present the results of the analysis. The box plots in each row

show the variations in Spearman’s rank correlation coefficient for the 30 sets of 500

test suites for each application. The column of first box plots shows the results for

statement coverage while the second shows branch coverage and the third shows path

coverage. The box plots for test suite set sizes of 20 and 100 are in Appendix A.

Over all applications, a strong correlation can be observed between structural cov-

erage and output uniqueness except for OU-LastText. OU-LastText has the weakest

correlation with structural coverage for all applications except for PHPSysInfo. For

PHPSysInfo, OU-LastText is strongly correlated with coverage which can be caused

by the relatively large number of distinct OU-LastText outputs observed compared to

other applications. Also, for PHPSysInfo, OU-Hidden, OU-Subtypes and OU-Seq have

the weakest correlation with structural coverage.

The results also show that output uniqueness has a stronger correlation with path

coverage than with statement and branch coverage for all applications. Statement and

branch coverage have similar correlations with output uniqueness for all applications

except PHPSysInfo where statement coverage has a stronger correlation with output

uniqueness than branch coverage.

Reliability and Complementarity To Structural Coverage

To investigate the reliability of the proposed output uniqueness criteria, the consistency

of finding faults for each distinct output (based on each output uniqueness definition)

was analysed with regards to the test pool. If all test cases that produce the same output

always find the same faults, these faults are guaranteed to be detected by any test suite

constructed from the test pool that satisfies the output uniqueness criteria. The same

analysis is also conducted for structural coverage to compare the reliability of output

uniqueness criteria to structural coverage which is considered the state-of-the-art.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 143

(a) FaqForge statement cov (b) FaqForge branch cov (c) FaqForge path cov

(d) Schoolmate statement cov (e) Schoolmate branch cov (f) Schoolmate path cov

(g) Webchess statement cov (h) Webchess branch cov (i) Webchess path cov

Figure 5.8: Variations in Spearman’s rank correlation coefficient between structural

coverage and output uniqueness for test suites sets of size 500 over 30 different experi-

ments for FaqForge, Schoolmate and Webchess.

The homogeneity of faults consistently found by output uniqueness criteria is also

compared to structural coverage criteria to investigate whether the two criteria types are

complementary. As mentioned before, statement and branch coverage are widely used

as test adequacy criteria. Path coverage was chosen for the comparison because it is the

strongest of the three structural coverage criteria (according to the test adequacy sub-

sumption relation) considered and therefore should output uniqueness criteria be found

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 144

(a) PHPSysInfo statement cov (b) PHPSysInfo branch cov (c) PHPSysInfo path cov

(d) Timeclock statement cov (e) Timeclock branch cov (f) Timeclock path cov

(g) PHPBB2 statement cov (h) PHPBB2 branch cov (i) PHPBB2 path cov

Figure 5.9: Variations in Spearman’s rank correlation coefficient between structural

coverage and output uniqueness for test suites sets of size 500 over 30 different experi-

ments for PHPSysInfo, Timeclock and PHPBB2.

to be complementary to path coverage, they can be expected to be complementary to

other structural coverage criteria not considered in this study.

Table 5.4 reports the results of the analysis for statement coverage. The number

reported for consistent statement faults (Con) denotes the number of faults that are

detected by all test cases in the test pool that cover a certain statement. That is, if a

test suite is randomly constructed from the test pool that covers all possible statements,

the faults are guaranteed to be revealed. In a similar way, consistent output uniqueness

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 145

faults are the number of faults that are detected by all test cases that produce a certain

output. That is, if a test suite is randomly constructed that produces all distinct outputs

in the pool, the faults are guaranteed to be revealed.

The results show that for all applications but PHPBB2 at least OU-All, OU-Text

and OU-Struct find more faults consistently than statement coverage. In PHPBB2, only

OU-All finds faults more consistently than statement coverage. Examining the faults

for each approach shows that output uniqueness criteria and statement coverage are

complementary as can be seen in the number of faults that are consistently found only

by statement coverage (S−O) and only by output uniqueness criteria (O−S). Similar

results can be observed for branch coverage in Table 5.5. These results suggest that

output uniqueness criteria are more reliable than both branch and statement coverage

and that the two types of criteria are complementary.

Table 5.6 shows the results of the analysis for path coverage. For all applica-

tions but Webchess and PHPSysInfo, path coverage is more consistent than all output

uniqueness criteria. However, when comparing the consistent faults for output to those

for path coverage, in four of the six applications output uniqueness is complementary

to path coverage. For Schoolmate, Webchess and PHPSysInfo, even the weakest output

uniqueness definition (OU-LastText) adds value to path coverage in fault finding.

For all applications but PHPSysInfo, a subset of faults is found consistently by

neither path coverage nor output uniqueness. This suggests that a hybrid combining

structural coverage and output uniqueness into a single criterion might be able to reveal

those faults consistently. For example, a new criterion could be defined to select test

cases that cover all paths in a test pool and for each path select one test case for each

unique output.

The faults detected consistently for output uniqueness criteria for OU-All are com-

parable to path coverage across all applications. The number of faults found consis-

tently is reduced compared to path coverage by a maximum of 14% over all applica-

tions. OU-Text also consistently finds faults across all applications for which results

are competitive with OU-All. Since output uniqueness criteria does not require the

availability of source code, this finding suggests that output uniqueness criteria can be

effective as test selection/adequacy criteria when information about structural coverage

cannot be obtained.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 146

Table 5.4: Consistent fault finding ability for each output uniqueness criteria and ho-

mogeneity analysis compared to statement coverage consistently found faults.
All Statement Output

Faults Faults (S) Faults (O) F−
App Name (F) Con Incon OU- Con Incon S ∪O S ∩O S −OO − S (S ∪O)

FAQForge 67 38 29

All 55 12 58 35 3 20 9
Text 51 16 57 32 6 19 10
Struct 55 12 58 35 3 20 9
Hidden 52 15 55 35 3 17 12
Subtypes 48 19 54 32 6 16 13
Seq 48 19 54 32 6 16 13
LastText 13 54 38 13 25 0 29

Schoolmate 201 78 123

All 162 39 168 72 6 90 33
Text 134 67 145 67 11 67 56
Struct 148 53 157 69 9 79 44
Hidden 139 62 151 66 12 73 50
Subtypes 105 96 132 51 27 54 69
Seq 84 117 122 40 38 44 79
LastText 14 187 85 7 71 7 116

Webchess 98 30 68

All 77 21 77 30 0 47 21
Text 56 42 58 28 2 28 40
Struct 71 27 77 24 6 47 21
Hidden 64 34 75 19 11 45 23
Subtypes 59 39 70 19 11 40 28
Seq 17 81 32 15 15 2 66
LastText 19 79 31 18 12 1 67

PHPSysInfo 6 4 2

All 6 0 6 4 0 2 0
Text 6 0 6 4 0 2 0
Struct 5 1 6 3 1 2 0
Hidden 3 3 4 3 1 0 2
Subtypes 3 3 4 3 1 0 2
Seq 3 3 4 3 1 0 2
LastText 2 4 6 0 4 2 0

Timeclock 186 79 107

All 139 47 147 71 8 68 39
Text 125 61 133 71 8 54 53
Struct 90 96 106 63 16 27 80
Hidden 55 131 82 52 27 3 104
Subtypes 51 135 81 49 30 2 105
Seq 50 136 81 48 31 2 105
LastText 27 159 79 27 52 0 107

PHPBB2 79 69 10

All 70 9 75 64 5 6 4
Text 55 24 75 49 20 6 4
Struct 61 18 75 55 14 6 4
Hidden 48 31 75 42 27 6 4
Subtypes 45 34 75 39 30 6 4
Seq 43 36 75 37 32 6 4
LastText 12 67 72 9 60 3 7

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 147

Table 5.5: Consistent fault finding ability for each output uniqueness criteria and ho-

mogeneity analysis compared to branch coverage consistently found faults.
All Branch Output

Faults Faults (B) Faults (O) F−
App Name (F) Con Incon OU- Con Incon B ∪OB ∩OB −OO −B (B ∪O)

FAQForge 67 37 30

All 55 12 58 34 3 21 9
Text 51 16 57 31 6 20 10
Struct 55 12 58 34 3 21 9
Hidden 52 15 55 34 3 18 12
Subtypes 48 19 54 31 6 17 13
Seq 48 19 54 31 6 17 13
LastText 13 54 37 13 24 0 30

Schoolmate 201 102 99

All 162 39 176 88 14 74 25
Text 134 67 154 82 20 52 47
Struct 148 53 168 82 20 66 33
Hidden 139 62 163 78 24 61 38
Subtypes 105 96 145 62 40 43 56
Seq 84 117 135 51 51 33 66
LastText 14 187 103 13 89 1 98

Webchess 98 44 54

All 77 21 77 44 0 33 21
Text 56 42 58 42 2 14 40
Struct 71 27 77 38 6 33 21
Hidden 64 34 75 33 11 31 23
Subtypes 59 39 70 33 11 26 28
Seq 17 81 46 15 29 2 52
LastText 19 79 45 18 26 1 53

PHPSysInfo 6 4 2

All 6 0 6 4 0 2 0
Text 6 0 6 4 0 2 0
Struct 5 1 6 3 1 2 0
Hidden 3 3 4 3 1 0 2
Subtypes 3 3 4 3 1 0 2
Seq 3 3 4 3 1 0 2
LastText 2 4 6 0 4 2 0

Timeclock 186 136 50

All 139 47 163 112 24 27 23
Text 125 61 149 112 24 13 37
Struct 90 96 163 63 73 27 23
Hidden 55 131 139 52 84 3 47
Subtypes 51 135 138 49 87 2 48
Seq 50 136 138 48 88 2 48
LastText 27 159 136 27 109 0 50

PHPBB2 79 74 9

All 70 9 74 66 4 4 5
Text 55 24 74 51 19 4 5
Struct 61 18 74 57 13 4 5
Hidden 48 31 74 44 26 4 5
Subtypes 45 34 74 41 29 4 5
Seq 43 36 74 39 31 4 5
LastText 12 67 71 11 59 1 8

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 148

Table 5.6: Consistent fault finding ability for each output uniqueness criteria and ho-

mogeneity analysis compared to path coverage consistently found faults.
All Path Output

Faults Faults (P) Faults (O) F−
App Name (F) Con Incon OU- Con Incon P ∪OP ∩OP −OO − P (P ∪O)

FAQForge 67 62 5

All 55 12 62 55 7 0 5
Text 51 16 62 51 11 0 5
Struct 55 12 62 55 7 0 5
Hidden 52 15 62 52 10 0 5
Subtypes 48 19 62 48 14 0 5
Seq 48 19 62 48 14 0 5
LastText 13 54 62 13 49 0 5

Schoolmate 201 186 15

All 162 39 192 156 30 6 9
Text 134 67 190 130 56 4 11
Struct 148 53 191 143 43 5 10
Hidden 139 62 191 134 52 5 10
Subtypes 105 96 189 102 84 3 12
Seq 84 117 187 83 103 1 14
LastText 14 187 187 13 173 1 14

Webchess 98 76 22

All 77 21 83 69 7 7 15
Text 56 42 79 53 23 3 19
Struct 71 27 82 65 11 6 16
Hidden 64 34 80 60 16 4 18
Subtypes 59 39 78 57 19 2 20
Seq 17 81 76 17 59 0 22
LastText 19 79 77 18 58 1 21

PHPSysInfo 6 4 2

All 6 0 6 4 0 2 0
Text 6 0 6 4 0 2 0
Struct 5 1 6 3 1 2 0
Hidden 3 3 4 3 1 0 2
Subtypes 3 3 4 3 1 0 2
Seq 3 3 4 3 1 0 2
LastText 2 4 6 0 4 2 0

Timeclock 186 162 24

All 139 47 166 135 27 4 20
Text 125 61 165 122 40 3 21
Struct 90 96 166 86 76 4 20
Hidden 55 131 162 55 107 0 24
Subtypes 51 135 162 51 111 0 24
Seq 50 136 162 50 112 0 24
LastText 27 159 162 27 135 0 24

PHPBB2 79 76 3

All 70 9 76 70 6 0 3
Text 55 24 76 55 21 0 3
Struct 61 18 76 61 15 0 3
Hidden 48 31 76 48 28 0 3
Subtypes 45 34 76 45 31 0 3
Seq 43 36 76 43 33 0 3
LastText 12 67 76 12 64 0 3

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 149

Output Sensitivity to Input

The pool of test data for each application was analysed to investigate patterns in the

numbers of distinct outputs observed for each output definition and the frequency for

which each distinct output appears.

Figure 5.10 shows the variation in the frequency for which each distinct output is

observed for each output uniqueness definition and each application. The results show

a similar pattern over all applications: Each distinct output is observed only a small

number of times for each application while a few outputs are observed a very high

number of times (represented by the outliers in the box plots).

Table 5.7 reports further details from the analysis: The column Distinct reports

the number of distinct outputs observed for each definition and also the percentage

of those distinct outputs in relation to the total number of outputs. The results show

that for five of the six applications, the number of distinct outputs is relatively low

compared to the total number of outputs (maximum of 14%). The percentage is lowest

for Schoolmate (1.4%) which has the largest test pool (72k). This suggests that it could

be feasible to use output uniqueness as a test adequacy criterion because the number

of unique outputs might grow manageably. However, this observation does not hold

for PHPSysInfo where almost 93% of the observed outputs are distinct for OU-All and

OU-Text. As mentioned previously, this is caused by the application printing time-

sensitive data at the bottom of the output page which can be also observed in the high

number of distinct OU-LastText.

The table also reports the number of outputs that were only observed in one test

case. For all applications and most output uniqueness definitions, a high percentage

of outputs are only observed once. This is especially noticeable for OU-All, OU-Text

and OU-Struct, but can also be observed for other output uniqueness definitions. Sur-

prisingly, even for Schoolmate where the test pool is relatively large compared to other

applications, a large percentage of distinct outputs was only observed once. These

changes in output that can only be observed once might not reflect interesting applica-

tion behaviour. For example, consider a test case that edits a record where the output

page displays the record after the changes. Any other test case that edits the same record

but with different input values will have a different output. However, the application

behaviour being tested by all such cases is essentially the same.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 150

(a) FaqForge (b) Schoolmate

(c) Webchess (d) PHPSysinfo

(e) Timeclock (f) PHPBB2

Figure 5.10: Variation in frequency of observing each distinct output for each output

uniqueness definition for all six applications studied.

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 151

These results suggest that two main patterns can be observed in the manner in

which the output is affected by changes in inputs: Some changes in inputs have no

effect on the output while other changes have a very strong effect on output. These

observations can be useful in designing a test generation method that is based on output

uniqueness. The test data generator can dynamically discover inputs that have no effect

on output or have a high effect on output and prioritize mutating inputs that do not fall

into one of those two categories. The generator might also construct an application-

specific output uniqueness definition dynamically by clustering the observed outputs.

5.4.4 Answers to Research Questions

This section presents summarized answers to the research questions based on the results

of the experiments and statistical analysis of the results.

RQ1: How do Output Uniqueness Criteria correlate with fault finding

ability of a test suite?

The results showed, with high confidence levels (p-value < 2.20e-16), that for five of

the six applications and for all output uniqueness criteria except OU-LastText, a strong

correlation exists between output uniqueness and fault finding ability using Spearman’s

rank correlation. For all six applications, this correlation is as strong as the correlation

between fault finding and structural coverage criteria.

RQ2: How do Output Uniqueness Criteria correlate with structural cov-

erage of a test suite?

For all six applications, the results showed, with high confidence levels (p-value <

2.20e-16), that a strong correlation exists between all output uniqueness criteria except

OU-LastText and structural coverage criteria. Path coverage has the strongest corre-

lation with output uniqueness criteria. These results suggest that output uniqueness

criteria can be effective as an alternative to structural coverage criteria, when they are

inapplicable.

RQ3: How does the reliability of output uniqueness criteria compare to

structural coverage criteria?

For all applications, test suites that satisfy OU-All, OU-Text and OU-Struct criteria

find more faults consistently than both statement and branch coverage. All of the out-

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 152

Table 5.7: Output sensitivity to changes in input values.
All Distinct Observed once

App Name Outputs OU- Num % Num %

FAQForge 14,466

All 1,287 8.9 942 73.2
Text 1,175 8.1 877 74.6
Struct 1,049 7.3 718 68.4
Hidden 896 6.2 626 69.9
Subtypes 78 1.0 13 16.7
Seq 55 0.4 8 14.5
LastText 7 0.1 0 0.0

Schoolmate 145,348

All 1,982 1.4 1,359 68.6
Text 638 0.4 486 76.2
Struct 1,489 1.0 899 60.4
Hidden 1,464 1.0 888 60.7
Subtypes 326 0.2 214 65.6
Seq 271 0.2 174 64.2
LastText 248 0.2 241 97.2

Webchess 18,759

All 1,608 8.6 1,226 76.2
Text 408 2.2 279 68.4
Struct 1,556 8.3 1,158 74.4
Hidden 1,316 7.0 948 72.0
Subtypes 151 0.8 58 38.4
Seq 38 0.2 5 13.2
LastText 15 0.1 2 13.3

PHPSysInfo 1,130

All 1,047 92.7 1041 99.4
Text 1,047 92.7 1041 99.4
Struct 707 62.6 582 82.3
Hidden 14 1.2 0 0
Subtypes 14 1.2 0 0
Seq 14 1.2 0 0
LastText 15 1.3 816 92.3

Timeclock 21,342

All 3,014 14.1 2,235 74.2
Text 782 3.7 420 53.7
Struct 2,638 12.4 1,963 74.4
Hidden 249 1.2 159 63.9
Subtypes 111 0.5 24 21.6
Seq 80 0.4 6 7.5
LastText 89 0.4 61 68.5

PHPBB2 44,758

All 5,617 12.6 4,626 82.4
Text 1,602 3.6 646 40.3
Struct 4,138 9.3 4,019 97.1
Hidden 513 1.2 287 55.9
Subtypes 92 0.2 30 32.6
Seq 82 0.2 25 30.5
LastText 27 0.1 19 70.4

5.4. Empirical Study: Output Uniqueness as a Test Adequacy Criteria 153

put uniqueness criteria are also found to be complementary to branch and statement

coverage.

For Webchess and PHPSysInfo, OU-All consistently finds more faults than path

coverage. For all other applications, OU-All reduces the fault detection ability by a

maximum of 14%. The number of faults found consistently by output uniqueness crite-

ria decreases as the criteria become less strict with OU-TextLast being the least effec-

tive in consistently finding faults across all applications. These results confirm that the

more strict criteria can be effective as test adequacy criteria when structural coverage

criteria cannot be measured.

For four of the six applications, the faults found consistently by output uniqueness

criteria are complementary to those found by path coverage.

RQ4: How sensitive is the output to changes in input based on each

output uniqueness definition?

The results of the analysis revealed an interesting pattern that can be observed over all

applications. Although each test case has a unique set of inputs, only a small percentage

of outputs are distinct, even for the strictest output uniqueness definition (OU-All). On

the other hand, a majority of distinct outputs can only by observed once for OU-All,

OU-Struct, OU-Text and OU-Hidden. This suggests that the output is not sensitive to

changes in some inputs, while it is highly sensitive to changes in other inputs. This

observation can be used to dynamically guide a test generation process that is based

on output uniqueness in selecting which inputs to mutate to find interesting distinct

outputs. It can be expected that inputs that lie in between those two extremes denote

interesting behaviour in the application’s execution.

5.4.5 Threats to Validity

Internal threats: Internal threats to validity are factors that affect the dependent vari-

ables and are not controlled in the experiments. The test suites generated for RQ1 and

RQ2 were all generated randomly in the same manner. The choice of test suite size

might have an effect on results. To address this, a random size between 10 and 500 was

chosen because test suites smaller than 10 might not display a diversity in coverage

and number of distinct output and 500 is larger than the largest test suite size that was

originally produced by a single run of SWAT.

5.5. Related Work 154

External threats: External threats to validity are threats that limit the ability to gener-

alize results. There are three main threats to external validity: the choice of applications

studied, the fault oracle used and the source of test cases in the test pools. The number

of applications studied is naturally limited. An empirical study of more applications

is needed before being able to generalize results. However, the selected applications

represent different domains and are used by real users. They also have diverse sizes

and architectures.

The faults measured are faults that can be detected automatically. To generalize

results to other types of faults, an investigation of how the automated faults relate to

other types of faults is needed. However, the faults reported and used in this study are,

nevertheless, real faults.

The test cases in the test pool were all generated for branch coverage using SWAT.

This can affect the results and the ability to generalize them to test cases generated

to achieve other objectives and using other tools. However, branch coverage is the

standard widely used to generate test suites. The proposed new criteria are proposed

to be used in conjunction with branch coverage or as an alternative. Also, using test

cases that were generated for branch coverage might introduce a bias related to branch

coverage.

Construct threats: Construct threats are related to the measures used in the experi-

ments and their ability to capture what they are measuring. Fault finding ability was

selected to measure the effectiveness of test suites and the different criteria because it

is the aim of any functional testing process. Path, branch and statement coverage were

selected to represent structural coverage because branch and statement coverage are

widely used in the literature [SMA05, AKD+08, AKD+10, PLEB07, FK96, LMH10,

WBP02] while path coverage is the strongest structural coverage criteria and thereby

subsumes other structural criteria.

5.5 Related Work
Raghavan and Garcia-Molina [RGM01] developed a crawler (HiWE) that uses the out-

put to enhance the crawling process. The output is analysed to identify pages that

appear frequently in response to a form submission and mark them as error pages.

The crawler’s goal is to extract data from a web application through its interface and

5.6. Conclusion 155

therefore the approach proposed is used to identify whether a request returned a new

‘record’. The approach proposed in this chapter aims to use output as a test adequacy

criterion and therefore is concerned with interesting executions of the application that

can be identified through the output rather than attempting to retrieve more records.

More details about HiWE were provided on page 49 of the literature review.

Sampath et al. [SBV+08] used HTML output to automate the oracle for regression

testing (page 68 of the literature review) while Di Lucca [DLDPF02] used it to detect

clones in static web pages. Some of the output definitions proposed in Sections 5.2 use

some concepts of categorizing HTML output and resolving issues in dynamic content

that these previous research papers used. However, those concepts are applied to test

case generation rather than oracle automation and clone detection.

Artzi et al. [ADTP10] used a path constraint similarity criterion to generate test

cases to localize faults with minimal test cases. Their approach generates additional

test cases for previously known faults for localization and debugging, while the criteria

proposed in this chapter aims to generate test cases to find new faults.

In feedback directed random testing [PLEB07, PLB08], the result of executing a

test case is observed to exclude test cases that cause violations and exceptions from

future generations. GUI feedback directed testing [YM10] also observes the effect

of a test case on the state to generate new sequences using interacting events. These

approaches, discussed in more detail in Section 2.6, use the effects on state to generate

test sequences while the output criteria proposed in this chapter are used to select test

cases that could be effective.

5.6 Conclusion
This chapter proposed a new test generation criterion based on output uniqueness. In

the preliminary evaluation, this new criterion proved to be useful in finding test cases

that can reveal new faults. A more in-depth empirical study provided evidence and sup-

port to the claim that the number of distinct outputs observed in a test suite is strongly

correlated with both fault finding ability and structural coverage. An analysis of the

reliability of the proposed output uniqueness criteria concluded that output uniqueness

criteria performs better than both statement and branch coverage and is complementary

to all structural coverage criteria including path coverage.

5.6. Conclusion 156

These results suggest that the new output uniqueness criteria can be effective as

complementary criteria to structural coverage. The results also suggest that output

uniqueness can also be used as an alternative criterion when all or part of the application

code is unavailable for instrumentation as, for example, in cases where an application

uses third party components.

The empirical study also provided insight into the effect of input changes on the

output which could guide the design of a test generation method that is based on output

uniqueness.

Chapter 6

Conclusion and Future Work

This chapter summarizes the overall conclusions of this thesis and how the work pre-

sented addressed the objectives it aimed to investigate. It also discusses how the ap-

proaches presented can be extended and enhanced in future work.

6.1 Conclusion
The aim of this thesis was to test the server-side code of a web application and to

investigate the use of output in enhancing server-side testing.

In summary, the objectives of this thesis, as stated in the introduction, are the

following:

1. Applying search based test data generation algorithms to web applications while

extending them to handle web-specific challenges and to utilize output in the

search process.

2. Investigating the use of dataflow analysis of the application server-side state in

test suite regeneration and the use of server-side output to enhance the test se-

quence generation process.

3. Investigating the effectiveness of using output uniqueness as a test selection cri-

terion for test suite augmentation.

4. Empirically investigate the correlation between output uniqueness and test suite

effectiveness and between output uniqueness and structural coverage.

The first objective was addressed in Chapter 3, which adapted and implemented

a search based algorithm for test data generation for PHP web applications in a tool

6.1. Conclusion 158

SWAT. SWAT addressed Web and PHP specific challenges, such as dynamic typing,

identifying the interface and automatically discovering top level files without relaying

only on dynamic analysis that might be incomplete. Chapter 3 also introduced a novel

algorithm that uses the output of executed test cases as well as dynamic data collected

during execution by seeding dynamically mined values from those sources into the

search space. The empirical results confirmed that using this dynamic seeding approach

(DMV) improved both effectiveness and efficiency of the generated test suites.

Chapter 4 addressed the second objective by using dataflow analysis of session

variables and database tables to generate test sequences that are effective in increas-

ing coverage and revealing new faults. The value-aware approach VADU enhances

dataflow analysis by using values, in session variables and database query strings, to

guide the generation of test sequences. Chapter 4 also introduced a tool SART that

implements the proposed approaches. The evaluation showed that this value-aware

approach is more effective in finding faults and increasing coverage than random re-

generation. The approach also overcomes the limitation of static analysis in identifying

Def-Use pairs for database tables when SQL statements are constructed dynamically.

The experiment in Section 5.3 addressed the third objective by presenting an ap-

proach that augmented test suites with test cases that produce new outputs not observed

in the output of the original test suite. A tool SWAT-U was presented that implements

the approach. The evaluation indicated that this approach produced new augmented

test suite that are more effective in finding faults.

The last objective was addressed in Section 5.4: The results of the empirical anal-

ysis showed a strong correlation between output uniqueness and fault detection as well

as between output uniqueness and structural coverage. The results also showed that

output uniqueness is complementary to structural coverage. The empirical study also

led to observation about the relationship between output and input that provide initial

guidance to the design of a test generation approach based on output uniqueness alone.

The characteristics of a web application might affect the degree to which the ap-

proaches presented in this thesis could be successful in achieving high coverage and

detecting fault. Specifically, the success of the presented approaches could depend on

the richness of the output in terms of the embedding of input values in the output page

(SWAT), the variety of values stored in session variables (SART), and the diversity of

6.2. Future Work 159

the structure of the output (Output Uniqueness). Naturally, applications whose exe-

cution behaviour does not greatly depend on input values (for example, PHPSysInfo

which only had four input parameters) might not benefit from a search based test data

generation technique, such as the one presented in Chapter 3. An application that does

not use session variables or a database will not benefit from the sequence regenera-

tion technique presented in Chapter 4. However, such applications might not benefit

from any sequence regeneration technique if no other state propagation methods are

employed in the application. A web application where the output is not composed us-

ing HTML, for example, an application whose output is graphical or presented in XML

would not be suitable for the use of the output definitions presented in Chapter 5 as a

test selection criteria.

6.2 Future Work

Although the results obtained from SWAT and Dynamically Mined Value seeding

DMV are promising, several other sources for seeding could be used. Client-side

scripts perform validations on inputs and could therefore be a great resource in identi-

fying pre-conditions on input values. In applications that use a database, some inputs

might be coupled with database columns. An analysis of those relationships and an

input specific database seeding approach could further improve effectiveness and effi-

ciency.

Deciding input types remains the only process in SWAT that is not fully automated.

The types of some inputs can be obtained by static analysis. However, the types of

the reaming inputs have to be manually assigned by the tester. The static analysis

phase could be enhanced to also analyse relationships between inputs and database

columns. Moreover, since PHP variables are dynamically typed, the same input can be

treated as an integer at one point and as a string at another, this manual effort might

be eliminated by dynamically assigning types to inputs. The current implementation

does not restrict DMV seeding of values to inputs of the same type specifically because

of this dynamic typing feature of PHP. This could be extended to deduct information

about types of inputs relevant to each target branch dynamically. However, the effects

of such approach on effectiveness and efficiency have to be investigated.

6.2. Future Work 160

SWAT introduced two types of dynamic seeding sources: Values mined from the

output page and values collected during execution from predicates. Seeding from the

output page is specific to web application or applications that have similar output char-

acteristics (e.g., systems with graphical user interfaces). However, seeding from values

collected from predicates could be applied to any type of system and might prove to

show similar enhancements on effectiveness and efficiency. This can be especially ex-

pected for applications with string predicates, as was observed with web applications.

SART was applied to test suites that were generated to maximize branch coverage

to generate sequences of requests that are more effective in detecting faults. However,

the same principles apply to test suites generated using other techniques. Test suites

generated from session data displayed increases in coverage and fault finding when

randomly reordered without resetting the state [SGSP05b]. The approaches imple-

mented in SART could be applied to session-data-based test suites to replace random

reordering.

However, since session-data-based test suites are expected to contain redundancy,

unlike test suites generated for branch coverage, the approach needs to be amended

to limit the number of additional generated test sequences. Since VADU uses values

stored in session variables and database SQL statements to generate Def-Use pairs,

redundancy in test cases can lead to a large number of new sequences. To avoid pro-

ducing a large number of Def-Use sequences for session variables and SQL statements

that might be conceptually similar, an analysis to cluster values in these state vari-

ables could be performed. For example, two SQL statements that insert two different

records will be treated as two different definition point in the current implementation.

A quick analysis of the inserted records could decide dynamically whether those two

insert statements are unlikely to add benefit and treat them as equivalent; for example

when all values in the records are the same except for the record ID.

The current implementation of the approach does not attempt to minimize the

number of new test sequences that cover all Def-Use pairs. An amendment to the

algorithm that finds sequences that cover several Def-Use pairs at the same time could

reduce the number of additional test sequences generated.

The application of dataflow analysis to database tables is not specific to web ap-

plications and can be applied to a variety of systems that use a database. Changes to

6.2. Future Work 161

the implementation of VADU are minimal since database logs, which are available on

any system that uses a database, are used to identify Def-Use points.

The combined SWAT and SART approach achieves high branch coverage for some

of the applications studied. However, an investigation of branches reached but not cov-

ered reveals that there are some issues that require customized approaches to handle

them. One such issue is the request method: In applications that use both GET and

POST submit methods, the test generation approach can be misguided in which test

inputs to mutate especially when the code that handles each submit method is intermin-

gled. This can be observed in Timeclock and PHPBB2. An approach that can detect

which submit method affects the target branch or an approach that generates test data

for each submit method separately might increase both effectiveness and efficiency.

In other cases, the approaches fail to cover branches that do not depend on the

user input. This is mainly observed in branches that depend on variables stored in

configuration files, branches that depend on the database or branches that depend on

the server’s system. To cover branches that depend on configurations, a test generation

approach can consider the variables in the configuration files as additional inputs to the

application.

Some branches depend either directly or indirectly on values in the database. For

example, in Schoolmate, when accessing the page that lists all users of the application,

an SQL query of the Users table is performed followed by a branching statement

to check if the query returned any results. If the Users table is empty, the true

branch of that branching statement would never be covered. On the other hand, if the

table contains records, the false branch would never be covered. In other cases,

the dependence is not direct as the previous example. Branches at any point of the

program can depend on values in the record(s) fetched from the database at preceding

parts of the program. If no record in the database exists that satisfies the predicates

in those branches, the branch cannot be covered. However, care has to be taken when

populating the database artificially with values that help cover those branches: It might

not be possible to populate the database with such values through the application’s

interface. Therefore, to avoid false positives, the database state should be changed

through the application’s interface.

6.2. Future Work 162

In special cases, branches depend on the system the application is installed on or

the user’s browser. For example, PHPSysInfo is an application that prints information

about the server’s system. The user choices are limited to output type (e.g., HTML or

XML) or the output language. Branching statements in the code are mainly based on

details about the system (e.g., operating system, memory usage). An effective testing

approach for such application would be to install it on different types of systems.

The most exciting and immediate future work that arises from Chapter 5 is the de-

sign and construction of a test generation algorithm for web applications that is based

on output uniqueness. The empirical study in Section 5.4 showed that a strong cor-

relation exists between output uniqueness and structural coverage. A test generation

tool that is solely based on output uniqueness has the benefit of being language inde-

pendent. If such a tool proves successful in achieving high coverage and fault finding

levels with manageable sized test suites, it can be applied to a variety of web appli-

cations developed using different technologies. Another benefit of such a tool is that

it avoids the overhead of instrumentation and calculations needed for other techniques

(fitness calculations in search based techniques or constraint solving in DSE).

The empirical study also showed that output uniqueness and structural coverage

are complementary in consistency in finding faults. An approach that combines test

generation for maximizing branch coverage, such as in SWAT, with an approach to

maximize output diversity can produce test suites that are more effective than those

generated to maximize branch coverage alone.

Appendix A

Effect of Set Size on Correlations

164

(a) FaqForge 20 suites (b) FaqForge 100 suites (c) FaqForge 500 suites

(d) Schoolmate 20 suites (e) Schoolmate 100 suites (f) Schoolmate 500 suites

(g) Webchess 20 suites (h) Webchess 100 suites (i) Webchess 500 suites

Figure A.1: Variations in Spearman’s rank correlation coefficient between fault finding

and test suite size, structural coverage and output uniqueness for test suites sets of

sizes 20, 100 and 500 over 30 different experiments for FaqForge, Schoolmate and

Webchess.

165

(a) PHPSysInfo 20 suites (b) PHPSysInfo 100 suites (c) PHPSysinfo 500 suites

(d) Timeclock 20 suites (e) Timeclock 100 suites (f) Timeclock 500 suites

(g) PHPBB2 20 suites (h) PHPBB2 100 suites (i) PHPBB2 500 suites

Figure A.2: Variations in Spearman’s rank correlation coefficient between fault finding

and test suite size, structural coverage and output uniqueness for test suites sets of

sizes 20, 100 and 500 over 30 different experiments for PHPSysInfo, Timeclock and

PHPBB2.

166

(a) FaqForge 20 suites (b) FaqForge 100 suites (c) FaqForge 500 suites

(d) Schoolmate 20 suites (e) Schoolmate 100 suites (f) Schoolmate 500 suites

(g) Webchess 20 suites (h) Webchess 100 suites (i) Webchess 500 suites

Figure A.3: Variations in Spearman’s rank correlation coefficient between path cover-

age and output uniqueness for test suites sets of sizes 20, 100 and 500 over 30 different

experiments for FaqForge, Schoolmate and Webchess.

167

(a) PHPSysInfo 20 suites (b) PHPSysInfo 100 suites (c) PHPSysinfo 500 suites

(d) Timeclock 20 suites (e) Timeclock 100 suites (f) Timeclock 500 suites

(g) PHPBB2 20 suites (h) PHPBB2 100 suites (i) PHPBB2 500 suites

Figure A.4: Variations in Spearman’s rank correlation coefficient between path cover-

age and output uniqueness for test suites sets of sizes 20, 100 and 500 over 30 different

experiments for PHPSysInfo, Timeclock and PHPBB2.

168

(a) FaqForge 20 suites (b) FaqForge 100 suites (c) FaqForge 500 suites

(d) Schoolmate 20 suites (e) Schoolmate 100 suites (f) Schoolmate 500 suites

(g) Webchess 20 suites (h) Webchess 100 suites (i) Webchess 500 suites

Figure A.5: Variations in Spearman’s rank correlation coefficient between branch cov-

erage and output uniqueness for test suites sets of sizes 20, 100 and 500 over 30 differ-

ent experiments for FaqForge, Schoolmate and Webchess.

169

(a) PHPSysInfo 20 suites (b) PHPSysInfo 100 suites (c) PHPSysinfo 500 suites

(d) Timeclock 20 suites (e) Timeclock 100 suites (f) Timeclock 500 suites

(g) PHPBB2 20 suites (h) PHPBB2 100 suites (i) PHPBB2 500 suites

Figure A.6: Variations in Spearman’s rank correlation coefficient between branch cov-

erage and output uniqueness for test suites sets of sizes 20, 100 and 500 over 30 differ-

ent experiments for PHPSysInfo, Timeclock and PHPBB2.

170

(a) FaqForge 20 suites (b) FaqForge 100 suites (c) FaqForge 500 suites

(d) Schoolmate 20 suites (e) Schoolmate 100 suites (f) Schoolmate 500 suites

(g) Webchess 20 suites (h) Webchess 100 suites (i) Webchess 500 suites

Figure A.7: Variations in Spearman’s rank correlation coefficient between statement

and output uniqueness for test suites sets of sizes 20, 100 and 500 over 30 different

experiments for FaqForge, Schoolmate and Webchess.

171

(a) PHPSysInfo 20 suites (b) PHPSysInfo 100 suites (c) PHPSysinfo 500 suites

(d) Timeclock 20 suites (e) Timeclock 100 suites (f) Timeclock 500 suites

(g) PHPBB2 20 suites (h) PHPBB2 100 suites (i) PHPBB2 500 suites

Figure A.8: Variations in Spearman’s rank correlation coefficient between statement

coverage and output uniqueness for test suites sets of sizes 20, 100 and 500 over 30

different experiments for PHPSysInfo, Timeclock and PHPBB2.

Bibliography

[AB06] Mohammad Alshraideh and Leonardo Bottaci. Search-based software

test data generation for string data using program-specific search oper-

ators: Research articles. Software Testing, Verification and Reliability -

UKTest 2005: The Third U.K. Workshop on Software Testing Research,

16(3):175–203, September 2006.

[ABHPW10] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur

Panesar-Walawege. A systematic review of the application and empirical

investigation of search-based test case generation. IEEE Transactions on

Software Engineering (TSE), 36:742–762, November 2010.

[ABLN06] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami

Namin. Using mutation analysis for assessing and comparing testing

coverage criteria. IEEE Transactions on Software Engineering (TSE),

32(8):608–624, August 2006.

[AC06] Enrique Alba and Francisco Chicano. Software testing with evolutionary

strategies. In Proceedings of the 2nd International Workshop on Rapid

Integration of Software Engineering Techniques, volume 3943 of Lecture

Notes in Computer Science, pages 50–65. Springer Berlin / Heidelberg,

Crete, Greece, 2006.

[AC08] Enrique Alba and Francisco Chicano. Observations in using parallel

and sequential evolutionary algorithms for automatic software testing.

Computers and Operations Research, 35:3161–3183, October 2008.

[ADTP10] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test

generation for effective fault localization. In Proceedings of the 19th

Bibliography 173

International Symposium on Software Testing and Analysis (ISSTA ’10),

pages 49–60. ACM, 2010.

[AH08] Nadia Alshahwan and Mark Harman. Automated session data repair

for web application regression testing. In Proceedings of the 1st Inter-

national Conference on Software Testing, Verification, and Validation

(ICST ’08), pages 298–307. IEEE Computer Society, 2008.

[AH11] Nadia Alshahwan and Mark Harman. Automated web application test-

ing using search based software engineering. In Proceedings of the 26th

IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE ’11), pages 3–12, 2011.

[AH12a] Nadia Alshahwan and Mark Harman. Augmenting test suites effective-

ness by increasing output diversity (NIER track). In Proceedings of the

34rd International Conference on Software Engineering - New Ideas and

Emerging Results Track (ICSE NIER ’12), 2012. to appear.

[AH12b] Nadia Alshahwan and Mark Harman. State aware test case regeneration

for improving web application test suite coverage and fault detection.

In the 21st International Symposium on Software Testing and Analysis

(ISSTA ’12), 2012. to appear.

[AKD+08] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit

Paradkar, and Michael D. Ernst. Finding bugs in dynamic web applica-

tions. In Proceedings of the 17th International Symposium on Software

Testing and Analysis (ISSTA ’08), pages 261–272. ACM, 2008.

[AKD+10] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Daniel Dig, Amit

Paradkar, and Michael D. Ernst. Finding bugs in web applications us-

ing dynamic test generation and explicit-state model checking. IEEE

Transactions on Software Engineering (TSE), 36:474–494, July 2010.

[AOA05] Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexander. Testing web

applications by modeling with FSMs. Software and Systems Modeling,

4:326–345, 2005.

Bibliography 174

[Arc10] Andrea Arcuri. Longer is better: On the role of test sequence length in

software testing. In Proceedings of the 3rd International Conference on

Software Testing, Verification and Validation (ICST’10), pages 469–478.

IEEE Computer Society, 2010.

[AS03] Rolph E. Anderson and Srini S. Srinivasan. E-satisfaction and e-loyalty:

A contingency framework. Journal of Psychology and Marketing,

20(2):123–138, 2003.

[BB10] Eric Bouwers and Martin Bravenboer. PHP-front: Static analysis for

PHP. http://strategoxt.org/PHP/PhpFront, 2010.

[BFG02] Michael Benedikt, Juliana Freire, and Patrice Godefroid. Veriweb: Au-

tomatically testing dynamic web sites. In Proceedings of 11th Interna-

tional Conference on World Wide Web (WWW ’02), Honolulu, HI, USA,

2002.

[BGFT09] Raquel Blanco, José Garcı́a-Fanjul, and Javier Tuya. A first approach

to test case generation for BPEL compositions of web services using

scatter search. In Proceedings of the IEEE International Conference on

Software Testing, Verification, and Validation Workshops (ICSTW ’09),

pages 131–140. IEEE Computer Society, 2009.

[BHH12] Mustafa Bozkurt, Mark Harman, and Youssef Hassoun. Testing & ver-

ification in service-oriented architecture: A survey. Software Testing,

Verification and Reliability (STVR), 2012. to appear.

[BKMD09] Thomas G. Brashear, Vishal Kashyap, Michael D. Musante, and Naveen

Donthu. A profile of the internet shopper: Evidence from six countries.

The Journal of Marketing Theory and Practice, 17(3):267–282, 2009.

[BKVV08] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco

Visser. Stratego/XT 0.17. a language and toolset for program transfor-

mation. Science of Computer Programming, 72(1-2):52–70, June 2008.

[BMT05] Carlo Bellettini, Alessandro Marchetto, and Andrea Trentini. TestUml:

user-metrics driven web applications testing. In Proceedings of the ACM

Bibliography 175

Symposium on Applied Computing (SAC ’05), pages 1694–1698. ACM,

2005.

[CC99] Man-Yee Chan and Shing-Chi Cheung. Testing database applications

with SQL semantics. In Proceedings of the 2nd International Symposium

on Cooperative Database Systems for Advanced Applications (CODAS

’99), pages 363–374, 1999.

[CDF+04] David Chays, Yuetang Deng, Phyllis G. Frankl, Saikat Dan, Filippos I.

Vokolos, and Elaine J. Weyuker. An AGENDA for testing relational

database applications: Research articles. Software Testing, Verification

and Reliability (STVR), 14:17–44, March 2004.

[CUR+02] Wei Chen, Roland H. Untch, Gregg Rothermel, Sebastian Elbaum, and

Jeffery Von Ronne. Can fault-exposure-potential estimates improve the

fault detection abilities of test suites? Software Testing, Verification and

Reliability (STVR), 12(4):197–218, December 2002.

[DA99] Naveen Donthu and Garcia Adriana. The internet shopper. Journal of

Advertising Research, 39(3):52–58, 1999.

[DEW97] Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. A scalable

comparison-shopping agent for the world-wide web. In Proceedings of

the 1st International Conference on Autonomous Agents (AGENTS ’97),

pages 39–48. ACM, 1997.

[DFW04] Yuetang Deng, Phyllis Frankl, and Jiong Wang. Testing web database

applications. SIGSOFT Software Engineering Notes, 29:1–10, Septem-

ber 2004.

[DLDB06] Giuseppe Di Lucca, Damiano Distante, and Mario Luca Bernardi. Re-

covering conceptual models from web applications. In Proceedings of

the 24th Annual ACM International Conference on Design of Communi-

cation (SIGDOC ’06), pages 113–120. ACM, 2006.

[DLDP03] Giuseppe Di Lucca and Massimiliano Di Penta. Considering browser

interaction in web application testing. In Proceedings of the 5th IEEE

Bibliography 176

International Workshop on Web Site Evolution (WSE ’03), pages 74–81.

IEEE Computer Society, 2003.

[DLDPF02] Giuseppe Di Lucca, Massimiliano Di Penta, and Anna Rita Fasolino. An

approach to identify duplicated web pages. In Proceedings of the 26th

International Computer Software and Applications Conference on Pro-

longing Software Life: Development and Redevelopment (COMPSAC

’02), pages 481–486. IEEE Computer Society, 2002.

[DLF06] Giuseppe Di Lucca and Anna Rita Fasolino. Testing web-based applica-

tions: The state of the art and future trends. Information and Software

Technology, 48:1172–1186, December 2006.

[DLFF02] Giuseppe Di Lucca, Anna Rita Fasolino, and Francesco Faralli. Testing

web applications. In Proceedings of the 18th International Conference

on Software Maintenance (ICSM’02), pages 310–319. IEEE Computer

Society, 2002.

[DLFP+02] Giuseppe Di Lucca, Anna Rita Fasolino, F. Pace, Porfirio Tramontana,

and Ugo de Carlini. WARE: A tool for the reverse engineering of

web applications. In Proceedings of the 6th European Conference on

Software Maintenance and Reengineering (CSMR ’02), pages 241–250.

IEEE Computer Society, 2002.

[DLFT04] Giuseppe Di Lucca, Anna Rita Fasolino, and Porfirio Tramontana. Re-

verse engineering web applications: the WARE approach. Journal of

Software Maintenance and Evolution: Research and Practice, 16(1-

2):71–101, January 2004.

[DW10] Kinga Dobolyi and Westley Weimer. Modeling consumer-perceived web

application fault severities for testing. In Proceedings of the 19th In-

ternational Symposium on Software Testing and Analysis (ISSTA ’10),

pages 97–106. ACM, 2010.

[ECIR06] Sebastian Elbaum, Kalyan-Ram Chilakamarri, Marc Fisher II, and

Gregg Rothermel. Web application characterization through directed re-

Bibliography 177

quests. In Proceedings of the 4th International Workshop on Dynamic

Systems Analysis (WODA ’06), pages 49–56. ACM, 2006.

[EKR03] Sebastian Elbaum, Srikanth Karre, and Gregg Rothermel. Improv-

ing Web application testing with user session data. In Proceedings of

the 25th International Conference on Software Engineering (ICSE ’03),

pages 49–59. IEEE Computer Society, 2003.

[EM07] Cyntrica Eaton and Atif M. Memon. An empirical approach to eval-

uating web application compliance across diverse client platform con-

figurations. International Journal of Web Engineering and Technology,

3(3):227–253, January 2007.

[EMS07] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test input

generation for database applications. In Proceedings of the 16th Interna-

tional Symposium on Software Testing and Analysis (ISSTA ’07), pages

151–162. ACM, 2007.

[ERKI05] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher II.

Leveraging user-session data to support web application testing. IEEE

Transactions on Software Engineering (TSE), 31(3):187–202, March

2005.

[FK96] Roger Ferguson and Bogdan Korel. The chaining approach for software

test data generation. ACM Transactions on Software Engineering and

Methodology (TOSEM), 5(1):63–86, January 1996.

[FW93] Phyllis G Frankl and Stewart N Weiss. An experimental comparison of

the effectiveness of branch testing and data flow testing. IEEE Transac-

tions on Software Engineering, 19(8):774–787, August 1993.

[Ger00] Paul Gerrard. Risk-based e-business testing, part 1 risks and test strategy.

http://www.gerrardconsulting.com, 2000.

[GG09] Yuanyan Gu and Yujia Ge. Search-based performance testing of applica-

tions with composite services. In Proceedings of the 2009 International

Bibliography 178

Conference on Web Information Systems and Mining (WISM ’09), pages

320–324. IEEE Computer Society, 2009.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed

automated random testing. In Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI

’05), pages 213–223. ACM, 2005.

[Glo90] Fred Glover. Tabu search: A tutorial. Interfaces 20, pages 74–94, 1990.

[GN97] Matthew J. Gallagher and V. Lakshmi Narasimhan. ADTEST: A test

data generation suite for ada software systems. IEEE Transactions on

Software Engineering (TSE), 23(8):473–484, August 1997.

[Gol08] Russell Gold. HttpUnit. http://httpunit.sourceforge.net, 2008.

[GRT06] Christian Girardi, Filippo Ricca, and Paolo Tonella. Web crawlers com-

pared. International Journal of Web Information Systems, 2(2):85–94,

2006.

[HAO09] William G.J. Halfond, Saswat Anand, and Alessandro Orso. Precise in-

terface identification to improve testing and analysis of web applications.

In Proceedings of the 18th International Symposium on Software Testing

and Analysis (ISSTA ’09), pages 285–296. ACM, 2009.

[Har07] Mark Harman. The current state and future of search based software en-

gineering. In Proceedings of the 29th International Conference on Soft-

ware Engineering - Future of Software Engineering (FOSE ’07) Track,

pages 342–357. IEEE Computer Society, 2007.

[HFGO94] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Ex-

periments of the effectiveness of dataflow- and controlflow-based test

adequacy criteria. In Proceedings of the 16th International Conference

on Software Engineering (ICSE ’94), pages 191–200. IEEE Computer

Society Press, 1994.

Bibliography 179

[HHH+04] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen

Sthamer, Andre Baresel, and Marc Roper. Testability transformation.

IEEE Transactions on Software Engineering (TSE), 30:3–16, January

2004.

[HJ01] Mark Harman and Bryan F. Jones. Search-based software engineering.

Information and Software Technology, 43(14):833–839, 2001.

[HM02] Edward Hieatt and Robert Mee. Going faster: Testing the web applica-

tion. IEEE Software, 19(2):60–65, March/April 2002.

[HM07] Mark Harman and Phil McMinn. A theoretical & empirical analysis of

evolutionary testing and hill climbing for structural test data generation.

In Proceedings of the 16th International Symposium on Software Testing

and Analysis (ISSTA ’07), pages 73–83. ACM, 2007.

[HM10] Mark Harman and Phil McMinn. A theoretical and empirical study of

search-based testing: Local, global, and hybrid search. IEEE Transac-

tions on Software Engineering, 36(2):226–247, March 2010.

[HN99] Allan Heydon and Marc Najork. Mercator: A scalable, extensible web

crawler. World Wide Web Journal, 2(4):219–229, 1999.

[HO06] William G. J. Halfond and Alessandro Orso. Command-Form cov-

erage for testing database applications. In Proceedings of the 21st

IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE ’06), pages 69–80. IEEE Computer Society, 2006.

[HO07] William G. J. Halfond and Alessandro Orso. Improving test case gener-

ation for web applications using automated interface discovery. In Pro-

ceedings of the the 6th Joint Meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC-FSE ’07), pages 145–154. ACM, 2007.

[HO08] William G. J. Halfond and Alessandro Orso. Automated identification of

parameter mismatches in web applications. In Proceedings of the 16th

Bibliography 180

ACM SIGSOFT International Symposium on Foundations of Software

Engineering (SIGSOFT ’08/FSE-16), pages 181–191. ACM, 2008.

[HR94] Mary Jean Harrold and Gregg Rothermel. Performing data flow testing

on classes. SIGSOFT Software Engineering Notes, 19:154–163, Decem-

ber 1994.

[IER07] Marc Fisher II, Sebastian Elbaum, and Gregg Rothermel. Dynamic char-

acterization of web application interfaces. In Proceedings of the Funda-

mental Approaches to Software Engineering (FASE’07), pages 260–275.

Springer Berlin / Heidelberg, 2007.

[Jav03] JavaCoding. JSpider. http://j-spider.sourceforge.net, 2003.

[JHHF08] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder

Flora. Automatic identification of load testing problems. In Proceedings

of the 24th IEEE International Conference on Software Maintenance

(ICSM ’08), pages 307–316. IEEE Computer Society, 2008.

[JL02] Xiaoping Jia and Hongming Liu. Rigorous and automatic testing of web

applications. In Proceeding of the 6th IASTED International Conference

on Software Engineering and Applications (SEA 2002), pages 280–285,

2002.

[JSE96] Bryan F. Jones, Harmen Sthamer, and David E. Eyres. Automatic struc-

tural testing using genetic algorithms. Software Engineering Journal,

11:299–306, September 1996.

[Kor90] Bogdan Korel. Automated software test data generation. IEEE Transac-

tions on Software Engineering (TSE), 16(8):870–879, August 1990.

[KT01] Chaitanya Kallepalli and Jeff Tian. Measuring and modeling usage and

reliability for statistical web testing. IEEE Transactions on Software

Engineering (TSE), 27:1023–1036, November 2001.

[LESY03] Stephen W. Liddle, David W. Embley, Del T. Scott, and Sai Ho Yau. Ex-

tracting data behind web forms. Advanced Conceptual Modeling Tech-

niques, 2784:402–413, 2003.

Bibliography 181

[LHM07] Kiran Lakhotia, Mark Harman, and Phil McMinn. A multi-objective

approach to search-based test data generation. In Proceedings of the 9th

Annual Conference on Genetic and Evolutionary Computation (GECCO

’07), pages 1098–1105. ACM, 2007.

[LK83] Janusz W. Laski and Bogdan Korel. A data flow oriented program testing

strategy. IEEE Transactions on Software Engineering (TSE), 9:347–354,

May 1983.

[LK04] Daniel R. Licata and Shriram Krishnamurthi. Verifying interactive web

programs. In Proceedings of the 19th IEEE International Conference

on Automated Software Engineering (ASE ’04), pages 164–173. IEEE

Computer Society, 2004.

[LKHH00a] Chien-Hung Liu, David C. Kung, Pei Hsia, and Chih-Tung Hsu. Object-

based data flow testing of web applications. In Proceedings of the 1st

Asia-Pacific Conference on Quality Software (APAQS’00), pages 7–16.

IEEE Computer Society, 2000.

[LKHH00b] Chien-Hung Liu, David C. Kung, Pei Hsia, and Chih-Tung Hsu. Struc-

tural testing of web applications. In Proceedings of the 11th Inter-

national Symposium on Software Reliability Engineering (ISSRE ’00),

pages 84–96. IEEE Computer Society, 2000.

[LMH09] Kiran Lakhotia, Phil McMinn, and Mark Harman. Automated test data

generation for coverage: Haven’t we solved this problem yet? In

Proceedings of the 2009 Testing: Academic and Industrial Conference

- Practice and Research Techniques (TAIC-PART ’09), pages 95–104.

IEEE Computer Society, 2009.

[LMH10] Kiran Lakhotia, Phil McMinn, and Mark Harman. An empirical investi-

gation into branch coverage for C programs using CUTE and AUSTIN.

Journal of Systems and Software, 83:2379–2391, December 2010.

[LPC09] Xingmin Luo, Fan Ping, and Mei-Hwa Chen. Clustering and tailoring

user session data for testing web applications. In Proceedings of the 2nd

Bibliography 182

International Conference on Software Testing Verification and Validation

(ICST ’09), pages 336–345. IEEE Computer Society, 2009.

[LYE02] Stephen W. Liddle, Sai Ho Yau, and David W. Embley. On the automatic

extraction of data from the hidden web. In Revised Papers from the HU-

MACS, DASWIS, ECOMO, and DAMA on ER 2001 Workshops, pages

212–226. Springer-Verlag, 2002.

[LYE03] Stephen W. Liddle, Sai Ho Yau, and David W. Embley. Extracting data

behind web forms. In Advanced Conceptual Modeling Techniques, vol-

ume 2784/2003, pages 402–413. Springer Berlin / Heidelberg, October

2003.

[MB98] Robert C. Miller and Krishna Bharat. Sphinx: a framework for creat-

ing personal, site-specific web crawlers. Computer Networks and ISDN

Systems, 30(1-7):119–130, April 1998.

[McM04] Phil McMinn. Search-based software test data generation: a survey. Soft-

ware Testing, Verification and Reliability (STVR), 14(2):105–156, June

2004.

[Mes03] Gerard Meszaros. Agile regression testing using record & playback. In

Companion of the 18th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOP-

SLA ’03), pages 353–360. ACM, 2003.

[MHBT06] Phil McMinn, Mark Harman, David Binkley, and Paolo Tonella. The

species per path approach to search based test data generation. In Pro-

ceedings of the 15th International Symposium on Software Testing and

Analysis (ISSTA ’06), pages 13–24. ACM, 2006.

[Min05] Yasuhiko Minamide. Static approximation of dynamically generated

web pages. In Proceedings of the 14th International Conference on

World Wide Web (WWW ’05), pages 432–441. ACM, 2005.

Bibliography 183

[MMS01] Christoph C. Michael, Gary E. McGraw, and Michael A. Schatz. Gen-

erating software test data by evolution. IEEE Transactions on Software

Engineering (TSE), 27:1085–1110, December 2001.

[MOP02] Vincenzo Martena, Alessandro Orso, and Mauro Pezzé. Interclass test-

ing of object oriented software. In Proceedings of the 8th International

Conference on Engineering of Complex Computer Systems (ICECCS

’02), pages 135–144. IEEE Computer Society, 2002.

[MP11] Ali Mesbah and Mukul R. Prasad. Automated cross-browser compati-

bility testing. In Proceedings of the 33rd International Conference on

Software Engineering (ICSE ’11), pages 561–570. ACM, 2011.

[MRT08] Alessandro Marchetto, Filippo Ricca, and Paolo Tonella. A case study-

based comparison of web testing techniques applied to AJAX web appli-

cations. International Journal on Software Tools for Technology Transfer

(STTT), 10(6):477–492, October 2008.

[MS76] Webb Miller and David L. Spooner. Automatic generation of floating-

point test data. IEEE Transactions on Software Engineering (TSE),

2(3):223–226, May 1976.

[MSP01] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage cri-

teria for GUI testing. In Proceedings of the 8th European Software En-

gineering Conference held jointly with the 9th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering (ESEC/FSE-

9 ’01), pages 256–267. ACM, 2001.

[MT09] Alessandro Marchetto and Paolo Tonella. Search-based testing of AJAX

web applications. In Proceedings of the 1st International Symposium

on Search Based Software Engineering (SSBSE ’09), pages 3–12. IEEE

Computer Society, 2009.

[MT11] Alessandro Marchetto and Paolo Tonella. Using search-based algorithms

for AJAX event sequence generation during testing. Empirical Software

Engineering, 16:103–140, February 2011.

Bibliography 184

[MTR08] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. State-based

testing of AJAX web applications. In Proceedings of the 1st Interna-

tional Conference on Software Testing Verification and Validation (ICST

’08), pages 121–130. IEEE Computer Society, 2008.

[NA09] Akbar Siami Namin and James H. Andrews. The influence of size and

coverage on test suite effectiveness. In Proceedings of the 18th Interna-

tional Symposium on Software Testing and Analysis (ISSTA ’09), pages

57–68. ACM, 2009.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM

Computing Surveys, 33(1):31–88, March 2001.

[OP09] Oliverbock and Pixel. MaxQ. http://maxq.tigris.org, 2009.

[OWDH04a] Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Bypass testing

of web applications. In Proceedings of the International Symposium

on Software Reliability Engineering (ISSRE ’04), pages 187–197. IEEE

Computer Society, 2004.

[OWDH04b] Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Web application by-

pass testing. In Proceedings of the 28th Annual International Computer

Software and Applications Conference - Workshops and Fast Abstracts

- Volume 02 (COMPSAC ’04), pages 106–109. IEEE Computer Society,

2004.

[OWO08] Jeff Offutt, Qingxiang Wang, and Joann Ordille. An industrial case study

of bypass testing on web applications. In Proceedings of the 1st Inter-

national Conference on Software Testing, Verification, and Validation

(ICST ’08), pages 465–474. IEEE Computer Society, 2008.

[PE07] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed ran-

dom testing for java. In Companion to the 22nd ACM SIGPLAN Confer-

ence on Object-Oriented Programming Systems and Applications Com-

panion (OOPSLA ’07), pages 815–816. ACM, 2007.

Bibliography 185

[PHP99] Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. Test-data gener-

ation using genetic algorithms. Software Testing, Verification and Relia-

bility (STVR), 9(4):263–282, December 1999.

[PLB08] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. Finding errors

in .NET with feedback-directed random testing. In Proceedings of the

17th International Symposium on Software Testing and Analysis (ISSTA

’08), pages 87–96. ACM, 2008.

[PLEB07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas

Ball. Feedback-directed random test generation. In Proceedings of

the 29th International Conference on Software Engineering (ICSE ’07),

pages 75–84. IEEE Computer Society, 2007.

[PN05] Soila Pertet and Priya Narasimhan. Causes of failures in web applica-

tions. Technical report, Carnegie Mellon University, 2005.

[QMZ07] Zhongsheng Qian, Huaikou Miao, and Hongwei Zeng. A practical

web testing model for web application testing. In Proceedings of the

3rd International IEEE Conference on Signal-Image Technologies and

Internet-Based System (SITIS ’07), pages 434–441. IEEE Computer So-

ciety, 2007.

[RCVO10] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. Webdiff:

Automated identification of cross-browser issues in web applications.

In Proceedings of the 26th IEEE International Conference on Software

Maintenance (ICSM ’10), pages 1–10. IEEE Computer Society, 2010.

[Ret09] Internet Retailer. Top 500 e-retailers take a bigger bite of the pie.

http://www.internetretailer.com, June 2009.

[Ret12] Derick Rethans. Xdebug. http://xdebug.org, 2012.

[RGM01] Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden web.

In Proceedings of the 27th International Conference on Very Large Data

Bases (VLDB ’01), pages 129–138. Morgan Kaufmann Publishers Inc.,

2001.

Bibliography 186

[Rop97] Marc Roper. Computer aided software testing using genetic algorithms.

In Proceedings of the 10th International Software Quality Week, 1997.

[RT00] Filippo Ricca and Paolo Tonella. Web site analysis: Structure and evo-

lution. In Proceedings of the 16th International Conference on Software

Maintenance (ICSM ’00), pages 76–87. IEEE Computer Society, 2000.

[RT01a] Filippo Ricca and Paolo Tonella. Analysis and testing of web applica-

tions. In Proceedings of the 23rd International Conference on Software

Engineering (ICSE ’01), pages 25–34. IEEE Computer Society, 2001.

[RT01b] Filippo Ricca and Paolo Tonella. Building a tool for the analysis and test-

ing of web applications: Problems and solutions. In Proceedings of the

7th International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems (TACAS ’01), pages 373–388. Springer-

Verlag, 2001.

[RT01c] Filippo Ricca and Paolo Tonella. Understanding and restructuring web

sites with reweb. IEEE MultiMedia, 8:40–51, April 2001.

[RT02] Filippo Ricca and Paolo Tonella. Testing processes of web applications.

Annals of Software Engineering, 14:93–114, December 2002.

[RW82] Sandra Rapps and Elaine J. Weyuker. Data flow analysis techniques for

test data selection. In Proceedings of the 6th International Conference

on Software Engineering (ICSE’82), pages 272–278. IEEE Computer

Society Press, 1982.

[RW85] Sandra Rapps and Elaine J. Weyuker. Selecting software test data us-

ing data flow information. IEEE Transactions on Software Engineering

(TSE), 11:367–375, April 1985.

[SBV+08] Sreedevi Sampath, Renee C. Bryce, Gokulanand Viswanath, Vani Kandi-

malla, and A. Gunes Koru. Prioritizing user-session-based test cases for

web applications testing. In Proceedings of the 1st International Confer-

ence on Software Testing, Verification, and Validation (ICST ’08), pages

141–150. IEEE Computer Society, 2008.

Bibliography 187

[SCA+08] Raúl A. Santelices, Pavan Kumar Chittimalli, Taweesup Apiwat-

tanapong, Alessandro Orso, and Mary Jean Harrold. Test-suite augmen-

tation for evolving software. In Proceedings of the 23rd IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE’08),

pages 218–227. IEEE, 2008.

[SGSP05a] Sreedevi Sampath, Emily Gibson, Sara Sprenkle, and Lori Pollock. Cov-

erage criteria for testing web applications. Technical Report 2005-17,

University of Delaware, 2005.

[SGSP05b] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. Au-

tomated replay and failure detection for web applications. In Proceed-

ings of the 20th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE ’05), pages 253–262. ACM, 2005.

[Sim12] SimpleTest. Unit testing for PHP. http://www.simpletest.org, 2012.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit

testing engine for C. In Proceedings of the 10th European Software

Engineering Conference Held Jointly with 13th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering (ESEC/FSE-

13 ’05), pages 263–272. ACM, 2005.

[SMSP04] Sreedevi Sampath, Valentin Mihaylov, Amie Souter, and Lori Pollock.

Composing a framework to automate testing of operational web-based

software. In Proceedings of the 20th IEEE International Conference

on Software Maintenance (ICSM ’04), pages 104–113. IEEE Computer

Society, 2004.

[SSG+05a] Sreedevi Sampath, Sara Sprenkle, Emily Gibson, Lori Pollock, and

Amie Souter. Analyzing clusters of web application user sessions. In

Proceedings of the 3rd International Workshop on Dynamic Systems

Analysis (WODA ’05), pages 1–7. ACM, 2005.

[SSG+05b] Sara Sprenkle, Sreedevi Sampath, Emily Gibson, Lori Pollock, and

Amie Souter. An empirical comparison of test suite reduction techniques

Bibliography 188

for user-session-based testing of web applications. In Proceedings of the

21st IEEE International Conference on Software Maintenance (ICSM

’05), pages 587–596. IEEE Computer Society, 2005.

[SSP04] Sreedevi Sampath, Amie L. Souter, and Lori Pollock. Towards defining

and exploiting similarities in web application use cases through user ses-

sion analysis. In Proceedings of the International Workshop on Dynamic

Systems Analysis (WODA ’04), pages 17–24. IEEE, 2004.

[Sta11] Internet World Stats. World internet users and population stats.

http://www.internetworldstats.com, December 2011.

[TCM98] Nigel Tracey, John Clark, and Keith Mander. The way forward for unify-

ing dynamic test case generation: The optimisation-based approach. In

Proceedings of IFIP International Workshop on Dependable Computing

and its Applications (DCIA ’98), pages 169–180, 1998.

[TCMM98] Nigel Tracey, John Clark, Keith Mander, and John McDermid. An au-

tomated framework for structural test-data generation. In Proceedings

of the 13th IEEE International Conference on Automated Software En-

gineering (ASE ’98), pages 285–288. IEEE Computer Society, 1998.

[Tec10] TechCrunsh. Forrester forecast: Online retail sales will grow to $250

billion by 2014. http://techcrunch.com, March 2010.

[TIO12] TIOBE Software. TIOBE programming community index for april 2012.

http://www.tiobe.com/tpci.htm, April 2012.

[TM08] Andrew Tappenden and James Miller. A three-tiered testing strategy for

cookies. In Proceedings of the 1st International Conference on Software

Testing, Verification, and Validation (ICST ’08), pages 131–140. IEEE

Computer Society, 2008.

[Too01] LogiTest Web Application Testing Tools. LogiTest.

http://logitest.sourceforge.net, 2001.

Bibliography 189

[TR04a] Paolo Tonella and Filippo Ricca. A 2-layer model for the white-box test-

ing of web applications. In Proceedings of the 6th IEEE International

Workshop on Web Site Evolution (WSE ’04), pages 11–19. IEEE Com-

puter Society, 2004.

[TR04b] Paolo Tonella and Filippo Ricca. Statistical testing of web applications.

Software Maintenance and Evolution: Research and Practice, 16:103–

127, January 2004.

[Tra00] Nigel Tracey. A search-based automated test-data generation framework

for safety critical software. PhD thesis, University of York, York, UK,

2000.

[Tür11] Sven Türpe. Search-based application security testing: Towards a struc-

tured search space. In Proceedings of the IEEE 4th International Confer-

ence on Software Testing, Verification and Validation Workshops (ICSTW

’11), pages 198–201. IEEE Computer Society, 2011.

[TZPC05] Wei-Tek Tsai, Dawei Zhang, Raymond Paul, and Yinong Chen. Stochas-

tic voting algorithms for web services group testing. In Proceedings of

the 5th International Conference on Quality Software (QSIC ’05), pages

99–108. IEEE Computer Society, 2005.

[Wat95] Alison Watkins. The automatic generation of test data using genetic

algorithms. In Proceedings of the 4th International Software Quality

Week, pages 300–309, 1995.

[WBP02] Joachim Wegener, Kerstin Buhr, and Hartmut Pohlheim. Automatic

test data generation for structural testing of embedded software systems

by evolutionary testing. In Proceedings of the Genetic and Evolution-

ary Computation Conference (GECCO ’02), pages 1233–1240. Morgan

Kaufmann Publishers Inc., 2002.

[WO02] Ye Wu and Jeff Offutt. Modeling and testing web-based applications.

Technical Report ISE-TR-02-08, George Mason University, 2002.

Bibliography 190

[WS07] Gary Wassermann and Zhendong Su. Sound and precise analysis of web

applications for injection vulnerabilities. In Proceedings of the 2007

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI ’07), pages 32–41. ACM, 2007.

[WYC+08] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hi-

roshi Inamura, and Zhendong Su. Dynamic test input generation for

web applications. In Proceedings of the 17th International Symposium

on Software Testing and Analysis (ISSTA ’08), pages 249–260. ACM,

2008.

[YH10] Shin Yoo and Mark Harman. Test data regeneration: generating new test

data from existing test data. Software Testing, Verification and Reliability

(STVR), 2010. to appear.

[YHW+02] Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang, William, and C. Chu.

Constructing an object-oriented architecture for web application test-

ing. Journal of Information Science and Engineering, 18:59–84, January

2002.

[YHWC99] Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang, and William C. Chu.

An object-oriented architecture supporting web application testing. In

Proceedings of the 23rd International Computer Software and Appli-

cations Conference (COMPSAC ’99), pages 122–127. IEEE Computer

Society, 1999.

[YM07] Xun Yuan and Atif M. Memon. Using GUI run-time state as feedback to

generate test cases. In Proceedings of the 29th International Conference

on Software Engineering (ICSE ’07), pages 396–405. IEEE Computer

Society, 2007.

[YM10] Xun Yuan and Atif M. Memon. Generating event sequence-based test

cases using GUI runtime state feedback. IEEE Transactions on Software

Engineering (TSE), 36(1):81–95, January 2010.

Bibliography 191

[Zhu95] Hong Zhu. Axiomatic assessment of control flow-based software test ad-

equacy criteria. Software Engineering Journal, 10(5):194–204, Septem-

ber 1995.

[ZLM10] Ruilian Zhao, Michael R. Lyu, and Yinghua Min. Automatic string test

data generation for detecting domain errors. Software Testing, Verifica-

tion and Reliability (STVR), 20:209–236, September 2010.

