68 research outputs found

    Birth of a Learning Law

    Full text link
    Defense Advanced Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657, N00014-92-J-1309

    Synchronized Oscillations During Cooperative Feature Linking in a Cortical Model of Visual Perception

    Full text link
    A neural network model of synchronized oscillator activity in visual cortex is presented in order to account for recent neurophysiological findings that such synchronization may reflect global properties of the stimulus. In these recent experiments, it was reported that synchronization of oscillatory firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred between neurons separated by several cortical columns (several mm of cortex) when these neurons shared some receptive field preferences specific to the stimuli. These results were obtained not only for single bar stimuli but also across two disconnected, but colinear, bars moving in the same direction. Our model and computer simulations obtain these synchrony results across both single and double bar stimuli. For the double bar case, synchronous oscillations are induced in the region between the bars, but no oscillations are induced in the regions beyond the stimuli. These results were achieved with cellular units that exhibit limit cycle oscillations for a robust range of input values, but which approach an equilibrium state when undriven. Single and double bar synchronization of these oscillators was achieved by different, but formally related, models of preattentive visual boundary segmentation and attentive visual object recognition, as well as nearest-neighbor and randomly coupled models. In preattentive visual segmentation, synchronous oscillations may reflect the binding of local feature detectors into a globally coherent grouping. In object recognition, synchronous oscillations may occur during an attentive resonant state that triggers new learning. These modelling results support earlier theoretical predictions of synchronous visual cortical oscillations and demonstrate the robustness of the mechanisms capable of generating synchrony.Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (90-0083); National Aeronautics and Space Administration (NGT-50497

    Visual statistics using neural networks.

    Get PDF
    This thesis describes the application of statistical techniques to natural images as a means of gaining insight into the operation of low level vision. First, the statistical technique of principal component analysis is applied to a collection of natural images: a match with psychophysical data is found; and a solution to the dynamic range problem proposed. The problem of learning and calibrating psychological and physiological representations of space is t hen investigated. The grey level correlations in natural images are measured and their physical causes investigated. The resulting correlations are related both to psychological distortions of space and to the cortical representation of space in \T in macaque monkey. The interpretation in terms of a system calibrating itself using the correlations in the input signals is shown to produce accurate psychological and physiological predictions. Lastly the problems of creating low level models of the visual input is looked at using a framework originally proposed by Hinton and Sejnowski (1983). The way in which phase coherence of (neuronal) firing in a network can label the probability of an interpretation is demonstrated. A new search technique, inspired by the different time courses of inhibition and excitation in the cortex, is proposed for searching for the most likely visual interpretation. It is concluded that statistical techniques can provide insight into the operation of low level vision

    Attractors, memory and perception

    Get PDF
    In this Thesis, the first three introductory chapters are devoted to the review of literature on contextual perception, its neural basis and network modeling of memory. In chapter 4, the first two sections give the definition of our model; and the next two sections, 4.3 and 4.4, report the original work of mine on retrieval properties of different network structures and network dynamics underlying the response to ambiguous patterns, respectively. The reported work in chapter 5 has been done in collaboration with Prof Bharathi Jagadeesh in University of Washington, and is already published in the journal \u201dCerebral Cortex\u201d. In this collaboration, Yan Liu, from the group in Seattle, carried out the recording experiments and I did the data analysis and network simulations. Chapter 6, which represents a network model for \u201dpriming\u201d and \u201dadaptation aftereffect\u201d is done by me. The works reported in 4.3, 4.5, and the whole chapter 6 are in preparation for publication

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA

    Geometry and Topology in Memory and Navigation

    Get PDF
    Okinawa Institute of Science and Technology Graduate UniversityDoctor of PhilosophyGeometry and topology offer rich mathematical worlds and perspectives with which to study and improve our understanding of cognitive function. Here I present the following examples: (1) a functional role for inhibitory diversity in associative memories with graph- ical relationships; (2) improved memory capacity in an associative memory model with setwise connectivity, with implications for glial and dendritic function; (3) safe and effi- cient group navigation among conspecifics using purely local geometric information; and (4) enhancing geometric and topological methods to probe the relations between neural activity and behaviour. In each work, tools and insights from geometry and topology are used in essential ways to gain improved insights or performance. This thesis contributes to our knowledge of the potential computational affordances of biological mechanisms (such as inhibition and setwise connectivity), while also demonstrating new geometric and topological methods and perspectives with which to deepen our understanding of cognitive tasks and their neural representations.doctoral thesi

    Toward a further understanding of object feature binding: a cognitive neuroscience perspective.

    Get PDF
    The aim of this thesis is to lead to a further understanding of the neural mechanisms underlying object feature binding in the human brain. The focus is on information processing and integration in the visual system and visual shortterm memory. From a review of the literature it is clear that there are three major competing binding theories, however, none of these individually solves the binding problem satisfactorily. Thus the aim of this research is to conduct behavioural experimentation into object feature binding, paying particular attention to visual short-term memory. The behavioural experiment was designed and conducted using a within-subjects delayed responset ask comprising a battery of sixty-four composite objects each with three features and four dimensions in each of three conditions (spatial, temporal and spatio-temporal).Findings from the experiment,which focus on spatial and temporal aspects of object feature binding and feature proximity on binding errors, support the spatial theories on object feature binding, in addition we propose that temporal theories and convergence, through hierarchical feature analysis, are also involved. Because spatial properties have a dedicated processing neural stream, and temporal properties rely on limited capacity memory systems, memories for sequential information would likely be more difficult to accuratelyr ecall. Our study supports other studies which suggest that both spatial and temporal coherence to differing degrees,may be involved in object feature binding. Traditionally, these theories have purported to provide individual solutions, but this thesis proposes a novel unified theory of object feature binding in which hierarchical feature analysis, spatial attention and temporal synchrony each plays a role. It is further proposed that binding takes place in visual short-term memory through concerted and integrated information processing in distributed cortical areas. A cognitive model detailing this integrated proposal is given. Next, the cognitive model is used to inform the design and suggested implementation of a computational model which would be able to test the theory put forward in this thesis. In order to verify the model, future work is needed to implement the computational model.Thus it is argued that this doctoral thesis provides valuable experimental evidence concerning spatio-temporal aspects of the binding problem and as such is an additional building block in the quest for a solution to the object feature binding problem
    corecore