11 research outputs found

    Microcontroller Based Wireless Controlled Pick Place Robot

    Full text link
    This thesis focuses on implementation and control of a pick place robot using radio frequency transmitter and reciever system. The control of this robot is achieved by PIC16f877A microcontroller. The main duty of microcontroller is to generate pulse which are applied to the DC motors for completing the desired task. In this study three DC motors are used in which two are utilized to control the movement of robot and one is used to control the gripper. The operation of designed pick place robot has been experimentally verified. Simulation and experimental results are presented and discussed

    双腕アヌムロボットによる垃被芆䜜業に関する研究

    Get PDF
    本研究の目的は物䜓を垃で包む䜜業被芆䜜業をモデル化しロボットによる被芆䜜業を実珟させるこずである本論文では「目暙線」の抂念に基づいお物䜓を垃で包む䜜業被芆䜜業をモデル化するこずを提案したこれによりたず人間が倧たかな包み方を教瀺し次に垃ず物䜓の圢状から被芆䜜業を蚈画し最終的にロボットの動䜜を生成しロボットによる被芆䜜業を実珟した近幎工堎のロボット化が行われおいるがロボット化できない䜜業はただただ存圚しおいるそれらは人間にしか行えないような巧みで耇雑な䜜業あるいはロボットより人間の方が効率的にできおしたうような䜜業であるそのような䜜業の぀ずしお垃を扱う䜜業が挙げられる垃を扱う䜜業の䞭には垃単䜓だけでなく物䜓も䞀緒に取り扱っおいく被芆䜜業が倚く存圚しおいるしかしこの被芆䜜業をロボットに指瀺するための有効な䜜業モデルは確立されおいない先行研究ではロボットによる垃操䜜の蚘述方法ずしお点折り線や手先経路が甚いられおいるたたコンピュヌタグラフィクス分野では目暙線ずいう蚘述方法がありこれは被芆を衚珟するために甚いられおいる被芆䜜業をロボット化する䞊ではたず実䞖界のロボットのために汎甚的な被芆モデルずしお必芁ずなる物䜓ず垃の関係や䜜業手順をどのように蚘述すればいいのかずいう問題に盎面するこのような点を考慮し被芆䜜業に適した蚘述モデルを導入しなければならない次にそのような被芆のための䜜業蚘述を実際のロボットにどのように入力すればいいのかずいう問題がある煩雑な指瀺方法ではなく実空間䞊で人間が考えおいる被芆䜜業を盎感的にロボットに指瀺できるのが望たしい最埌にその䜜業蚘述から実際のロボットの動きをどのように生成すればよいのかずいう問題が珟れおくるロボットが被芆䜜業を達成するためには実際の手先軌道や干枉を回避するための動䜜を状況に合わせお生成しなければならない以䞊を螏たえお本研究ではロボットによる被芆䜜業の課題に取り組んだ具䜓的には以䞋の課題に぀いお取り組んだ・垃ず物䜓の関係を適切に衚す蚘述方法・盎感的な被芆手順の指瀺方法・ロボットの動䜜軌道の生成方法たず垃ず物䜓の関係を適切に衚す蚘述方法に぀いお怜蚎した本研究ではコンピュヌタグラフィクス分野で甚いられた目暙線ずいう蚘述方法を実空間のロボットに導入するこずを提案したこの目暙線は平面だけでなく曲面圢状ぞの指瀺が行いやすいそしお物䜓のどこを垃で包んでいくかずいう被芆の本質的な情報を自然に衚せる利点を持぀その䞭では凹凞が存圚するような物䜓に察しおも被芆を行う堎合がありその凹凞を適切に凊理しお䜜業を蚘述する必芁があるそこで物䜓の埋めるべき凹郚ず埋めるべきでない凹郚分を考慮し凹凞ぞ適切な目暙線指瀺を行うための局所凞ずいう抂念及び局所凞生成方法を提案した次に盎感的な被芆手順の指瀺方法に぀いお怜蚎した本研究では人間の倧たかな包む指瀺ず被芆の関係を考え物䜓ず垃のどこを重ね合わせるかずいう人間の被芆の意図を目暙線ずしお入力する方法を提案した本研究は䜜業指瀺を行う手の正確な次元的な軌跡ではなく手の軌跡ずその軌跡が通過しおいく物䜓衚面の関係に泚目したそしおデプスセンサずモヌションキャプチャセンサを組合せた教瀺デバむスを甚いお人間の被芆の意図を抜出したその䞭では指瀺䞭の手振れの圱響を小さくするための目暙線逆走防止凊理手法ずスムヌゞングず間匕き凊理を合わせた補正凊理手法を提案した最埌にロボットの動䜜軌道の生成方法に぀いお怜蚎した本研究では目暙線ず把持点から垃の動きを衚す手先経路を生成する方法ずその手先経路を実行するためのロボット動䜜の生成方法を提案した実際のロボットを動かすためには目暙線だけでなく手先経路や動䜜指什が必芁であり可動域や物䜓ずの干枉を考慮し右手ず巊手を甚いた垃の持ち替えや持ち盎しを行わなければならないこれらの情報を生成する䞊で目暙線が被芆の本質的な情報を保持しおいるそのため手先経路・動䜜指什は自動的に生成可胜である動䜜生成手法の䞭では各操䜜の垃ぞの重力の圱響動䜜ステップ数やロボットず垃の䜍眮関係を考慮した確実性を求めそれを基に生成された動䜜遷移グラフを甚いお最適な持ち替えや持ち盎し操䜜の組み合わせを蚈画する方法を提案した以䞊本研究では物䜓を垃で包むずいう被芆䜜業に぀いおロボット化のための枠組みを提案したさらに各課題に察する提案方法を統合し䞀連の被芆䜜業システムずしお実装したこれにより実際に人間の倧たかな指瀺から目暙線を甚いお垃ず物䜓の関係を蚘述しそこから垃の動きを衚す手先経路状況に合わせた最適なロボット動䜜を生成できるようになりロボットによる被芆䜜業が実珟した電気通信倧孊201

    Arquitectura para el agarre de objetos en Moveit!

    Get PDF
    Hoy en día, las investigaciones en el ámbito de la robótica están en auge, ya que se pretende aumentar la calidad de vida del ser humano. Una de las aplicaciones que cobra importancia en ese aspecto es el brazo robótico, cuya finalidad es manipular los objetos que lo rodean. Manfred es un robot manipulador móvil, desarrollado por el departamento de Ingeniería de Sistemas y Automática de la Universidad Carlos III de Madrid. Consta de un brazo robótico situado sobre una base móvil, diseñado para agarrar objetos y poder moverse por ambientes interiores. Este proyecto se basa en la necesidad de mejorar esa interacción entre Manfred y sus alrededores, por lo que se requiere mejorar su capacidad de percibir el entorno. Además, para ser capaz de manipular los elementos de su alrededor, se necesita estudiar la arquitectura para el agarre de los mismos. Por tanto, este proyecto está orientado a desarrollar un software que permita al robot ver y entender el entorno, así como planificar el movimiento del brazo de Manfred para que se aproxime al objeto que se quiere agarrar.Nowadays, research in robotics is booming, because the objective of that is to increase the quality of human life. The robotic arm is one application that becomes important in this way, since it allows to manipulate the objects around it. Manfred is a mobile manipulator robot developed by the Systems Engineering and Automation department of the Carlos III University of Madrid. It consists of a robotic arm located on a mobile base, and it is designed to grip objects and to move around indoors. This project is based on the need to improve the interaction between Manfred and its surroundings, which requires improving its ability to perceive the environment. In addition, it is necessary to study the architecture for gripping to be able to manipulate the elements around. Therefore, this project is oriented to develop a software that allows the robot to see and understand the environment and plan the approaching movement of Manfred arm to grab an object.Ingeniería en Tecnologías Industriale

    Object Placement Planner for Robotic Pick and Place Tasks

    No full text

    Manipulation Planning for Forceful Human-Robot-Collaboration

    Get PDF
    This thesis addresses the problem of manipulation planning for forceful human-robot collaboration. Particularly, the focus is on the scenario where a human applies a sequence of changing external forces through forceful operations (e.g. cutting a circular piece off a board) on an object that is grasped by a cooperative robot. We present a range of planners that 1) enable the robot to stabilize and position the object under the human applied forces by exploiting supports from both the object-robot and object-environment contacts; 2) improve task efficiency by minimizing the need of configuration and grasp changes required by the changing external forces; 3) improve human comfort during the forceful interaction by optimizing the defined comfort criteria. We first focus on the instance of using only robotic grasps, where the robot is supposed to grasp/regrasp the object multiple times to keep it stable under the changing external forces. We introduce a planner that can generate an efficient manipulation plan by intelligently deciding when the robot should change its grasp on the object as the human applies the forces, and choosing subsequent grasps such that they minimize the number of regrasps required in the long-term. The planner searches for such an efficient plan by first finding a minimal sequence of grasp configurations that are able to keep the object stable under the changing forces, and then generating connecting trajectories to switch between the planned configurations, i.e. planning regrasps. We perform the search for such a grasp (configuration) sequence by sampling stable configurations for the external forces, building an operation graph using these stable configurations and then searching the operation graph to minimize the number of regrasps. We solve the problem of bimanual regrasp planning under the assumption of no support surface, enabling the robot to regrasp an object in the air by finding intermediate configurations at which both the bimanual and unimanual grasps can hold the object stable under gravity. We present a variety of experiments to show the performance of our planner, particularly in minimizing the number of regrasps for forceful manipulation tasks and planning stable regrasps. We then explore the problem of using both the object-environment contacts and object-robot contacts, which enlarges the set of stable configurations and thus boosts the robot’s capability in stabilizing the object under external forces. We present a planner that can intelligently exploit the environment’s and robot’s stabilization capabilities within a unified planning framework to search for a minimal number of stable contact configurations. A big computational bottleneck in this planner is due to the static stability analysis of a large number of candidate configurations. We introduce a containment relation between different contact configurations, to efficiently prune the stability checking process. We present a set of real-robot and simulated experiments illustrating the effectiveness of the proposed framework. We present a detailed analysis of the proposed containment relationship, particularly in improving the planning efficiency. We present a planning algorithm to further improve the cooperative robot behaviour concerning human comfort during the forceful human-robot interaction. Particularly, we are interested in empowering the robot with the capability of grasping and positioning the object not only to ensure the object stability against the human applied forces, but also to improve human experience and comfort during the interaction. We address human comfort as the muscular activation level required to apply a desired external force, together with the human spatial perception, i.e. the so-called peripersonal-space comfort during the interaction. We propose to maximize both comfort metrics to optimize the robot and object configuration such that the human can apply a forceful operation comfortably. We present a set of human-robot drilling and cutting experiments which verify the efficiency of the proposed metrics in improving the overall comfort and HRI experience, without compromising the force stability. In addition to the above planning work, we present a conic formulation to approximate the distribution of a forceful operation in the wrench space with a polyhedral cone, which enables the planner to efficiently assess the stability of a system configuration even in the presence of force uncertainties that are inherent in the human applied forceful operations. We also develop a graphical user interface, which human users can easily use to specify various forceful tasks, i.e. sequences of forceful operations on selected objects, in an interactive manner. The user interface ties in human task specification, on-demand manipulation planning and robot-assisted fabrication together. We present a set of human-robot experiments using the interface demonstrating the feasibility of our system. In short, in this thesis we present a series of planners for object manipulation under changing external forces. We show the object contacts with the robot and the environment enable the robot to manipulate an object under external forces, while making the most of the object contacts has the potential to eliminate redundant changes during manipulation, e.g. regrasp, and thus improve task efficiency and smoothness. We also show the necessity of optimizing human comfort in planning for forceful human-robot manipulation tasks. We believe the work presented here can be a key component in a human-robot collaboration framework
    corecore