8 research outputs found

    Cellular neural networks for motion estimation and obstacle detection

    Get PDF
    Obstacle detection is an important part of Video Processing because it is indispensable for a collision prevention of autonomously navigating moving objects. For example, vehicles driving without human guidance need a robust prediction of potential obstacles, like other vehicles or pedestrians. Most of the common approaches of obstacle detection so far use analytical and statistical methods like motion estimation or generation of maps. In the first part of this contribution a statistical algorithm for obstacle detection in monocular video sequences is presented. The proposed procedure is based on a motion estimation and a planar world model which is appropriate to traffic scenes. The different processing steps of the statistical procedure are a feature extraction, a subsequent displacement vector estimation and a robust estimation of the motion parameters. Since the proposed procedure is composed of several processing steps, the error propagation of the successive steps often leads to inaccurate results. In the second part of this contribution it is demonstrated, that the above mentioned problems can be efficiently overcome by using Cellular Neural Networks (CNN). It will be shown, that a direct obstacle detection algorithm can be easily performed, based only on CNN processing of the input images. Beside the enormous computing power of programmable CNN based devices, the proposed method is also very robust in comparison to the statistical method, because is shows much less sensibility to noisy inputs. Using the proposed approach of obstacle detection in planar worlds, a real time processing of large input images has been made possible

    Obstacle detection using projective invariant and vanishing lines

    Full text link

    Motion analysis of Omni-Directional video streams for a mobile sentry

    Full text link

    GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection

    Full text link

    Visually guided obstacle detection and avoidance for legged robot.

    Get PDF
    Chow Ying-ho.Thesis (M.Phil.)--Chinese University of Hong Kong, 2000.Includes bibliographical references (leaves 78-83).Abstracts in English and Chinese.Chapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Objectives - Visual Navigation for Legged Robots --- p.1Chapter 1.2 --- Summary of Results --- p.3Chapter 1.3 --- Hardware Issues --- p.4Chapter 1.4 --- Contributions --- p.4Chapter 1.5 --- Organization of the Thesis --- p.4Chapter Chapter 2 --- Previous Work --- p.6Chapter 2.1 --- Vision Based Navigation --- p.6Chapter 2.1.1 --- Homography --- p.7Chapter 2.1.2 --- Ground Plane Obstacle Detection --- p.9Chapter 2.1.3 --- Regression --- p.12Chapter 2.2 --- Control Strategy --- p.13Chapter Chapter 3 --- System Overview --- p.16Chapter Chapter 4 --- Obstacle Detection by Fast Homography Estimation --- p.20Chapter 4.1 --- Ground Feature Extraction --- p.21Chapter 4.2 --- Ground Feature Correspondence --- p.21Chapter 4.3 --- Ground Homography Estimation --- p.24Chapter 4.3.1 --- Input point transformation --- p.24Chapter 4.3.2 --- Initial estimation --- p.26Chapter 4.3.3 --- Robust estimation --- p.27Chapter 4.4 --- Obstacle Detection --- p.29Chapter 4.5 --- Local Obstacle Map (LOM) on Ground --- p.33Chapter 4.5.1 --- Extraction from accumulative evidence --- p.34Chapter 4.5.2 --- Time-delay compensation --- p.34Chapter Chapter 5 --- Obstacle Avoidance by a Fuzzy Controller --- p.36Chapter 5.1 --- Gait Pattern --- p.38Chapter 5.2 --- Fuzzy Logic Controller --- p.42Chapter 5.2.1 --- Controller Inputs --- p.42Chapter 5.2.2 --- Controller Outputs --- p.43Chapter 5.2.3 --- Inference mechanism --- p.46Chapter Chapter 6 --- Implementation --- p.49Chapter 6.1 --- Hardware components --- p.49Chapter 6.1.1 --- VisionBug --- p.49Chapter 6.1.2 --- RF transmitter / receiver modules: --- p.52Chapter 6.2 --- Perception --- p.55Chapter 6.3 --- Image Calibration --- p.56Chapter 6.4 --- Motion Calibration: --- p.58Chapter 6.5 --- Software Programs --- p.66Chapter 6.5.1 --- Computational complexity --- p.68Chapter Chapter 7 --- Experimental Results --- p.69Chapter 7.1 --- Real Navigation Experiments --- p.70Chapter 7.2 --- Error Analysis of LOM --- p.73Chapter Chapter 8 --- Conclusion and future work --- p.7

    Detection of Obstacles in Monocular Image Sequences

    Get PDF
    The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image

    Automatische Hinderniserkennung im fahrenden Kraftfahrzeug

    Get PDF
    Im Rahmen dieser Arbeit wurde untersucht, inwieweit eine Bewegungsschärzung aus monokularen Bildsequenzen von Straßenverkehrsszenen und eine darauf aufbauende Hinderniserkennung mit Hilfe von statistischen oder neuronalen Methoden realisiert werden kann. Bei dem zugrunde liegenden mathematischen Modell wird angenommen, daß die Umgebung, in der sich ein Fahrzeug bewegt, im wesentlichen eben ist, was für Verkehrsequenzen in guter Näherung erfüllt ist. Im ersten Teil dieser Arbeit wurde ein statistisches Verfahren zur Bewegungsschätzung vorgestellt und diskutiert. Der erste Schritt dieses Verfahrens stellt die Generierung eines sogenannten Markantheitsbildes dar, in welchem Objektkanten und Objektecken visuell hervorgehoben werden. Für die daraus resultierende Liste von markanten Bildbereichen werden anschließend unter Verwendung einer sogenannten Verschiebungsvektorschätzung, Korrespondenzen im zeitlich folgenden Bild ermittelt. Ausgehend von dem resultierenden Verschiebungsvektorfeld, werden in dem nächsten Schritt des Verfahrens die Bewegungsgrößen ermittelt, also die Rotationsmatrix und der Translationsvektor des Fahrzeugs, beziehungsweise der Kamera. Um abschließend eine Hinderniserkennung realisieren zu können, erfolgt unter Verwendung der Bewegungsgrößen eine Bewegungskompensation der Bilddaten. Bei einer solchen Bewegungskompensation wird unter Verwendung der ermittelten Bewegungsgrößen und dem Modell der bewegten Ebene eine Rücktransformation jedes Bildpixels durchgeführt, so daß bei der Bildung eines Differenzbildes zwischen dem bewegungskompensierten Bild und dem tatsächlich aufgenommenen Bild, dreidimensionale Strukturen, die ja das Ebenenmodell verletzen, deutlich hervortreten und somit auf potentielle Hindernisse hinweisen. Es hat sich gezeigt, daß Fehlmessungen in den Verschiebungsvektoren, welche beispielsweise durch periodische Strukturen auf der Ebene auftreten können, die Bewegungsschätzung und die Hinderniserkennung empfindlich stören. Diese statistischen Ausreißer bewirken, daß trotz der Verwendung von robusten Schätzmethoden, eine stabile Hinderniserkennung nur durch die Einbeziehung von Vorwissen über die Art der Bewegung des Fahrzeugs realisiert werden kann. Weiterhin führen die Komplexität des Verfahrens und die damit verbundenen hohen Anforderungen an die Rechenleistung der eingesetzten Hardware dazu, daß die für die praktische Anwendbarkeit so wichtige Echtzeitfähigkeit des Verfahrens bisher nur für Eingangsbilder mit geringer Auflösung ermöglicht werden konnte. Speziell für die Bildverarbeitung hat sich das neue Paradigma der Zellularen Neuronalen Netzwerke als außerordentlich leistungsfähig erwiesen. Neben der extrem hohen Verarbeitungsgeschwindigkeit von CNN-basierten schaltungstechnischen Realisierungen zeichnen sie sich durch eine hohe Robustheit bei vertauschten oder fehlerhaften Eingangsdaten aus. Für nahezu jedes aktuelle Problem der Bildverarbeitung wurde bisher ein geeignetes CNN bestimmt. Auch für komplexe Aufgabenstellungen aus der Bildverarbeitung, wie beispielsweise die Texturklassifikation, die Spurverfolgung oder die Gewinnung von Tiefeninformation konnten bereits CNN-Programme implementiert und schaltungstechnisch verwirklicht werden. So konnte auch im zweiten Teil dieser Arbeit gezeigt werden, daß die einzelnen Schritte der Hinderniserkennung aus monokularen Bildsequenzen ebenfalls unter Verwendung eines CNN realisierbar sind. Es wurde demonstriert, daß für die Generierung eines Markantheitsbildes bereits ein Standard-CNN mit linearer Kopplungsfunktion und der Nachbarschaft r=1 verwendet werden kann. Das rechenaufwändige statistische Verfahren der Markantheitsbildberechnung kann somit durch einen einzigen CNN-Verarbeitungsschritt durchgeführt werden. Weiterhin wurde im Rahmen dieser Arbeit gezeigt, daß auch der folgende, rechenintensive Schritt des statistischen Verfahrens der Hinderniserkennung, nämlich die Verschiebungsvektorschätzung, mittels CNN verwirklicht werden kann. Hierzu sind CNN mit polynomialen Kopplungsfunktionen und der Nachbarschaft r=1 notwendig. Bei den durchgeführten Untersuchungen hat sich herausgestellt, daß die CNN-basierten Verarbeitungsschritte den statistischen Methoden in den Punkten Robustheit und Verarbeitungsgeschwindigkeit deutlich überlegen sind. Abschließend wurde in dieser Arbeit gezeigt, daß mit Hilfe von CNN sogar eine direkte Hinderniserkennung aus monokularen Bildsequenzen - ohne den Umweg über die Bestimmung der Verschiebungsvektoren und der Bewegungsgrößen - realisiert werden kann. In dem vorgestellten Verfahren wird nach zwei Vorverarbeitungsschritten, die Hinderniserkennung in einem einzigen Schritt unter Verwendung eines CNN mit polynomialen Zellkopplungsgewichten vom Grade D=3 und der Nachbarschaft r=2 durchgeführt. Das vorgeschlagene Verfahren führt zu einer wesentlichen Vereinfachung der Hinderniserkennung in monokularen Bildsequenzen, da die Bewegegungsschätzung aus dem statistischen Verfahren nicht länger notwendig ist. Die Umgehung der expliziten Bewegungsschätzung hat weiterhin den Vorteil, daß der Rechenaufwand stark reduziert wurde und durch den Wegfall der Verschiebungsvektorschätzung und dem damit verketteten Problem der Ausreißer, ist das vorgestellte CNN-basierte Verfahren außerdem sehr robust. Die ersten Resultate, die unter Verwendung von synthetischen und natürlichen Bildsequenzen erhalten wurden, sind überaus vielversprechend und zeigen, daß CNN ausgezeichnet zur Verarbeitung von Videosequenzen geeignet sind

    Street Surfaces and Boundaries from Depth Image Sequences Using Probabilistic Models

    Get PDF
    This thesis presents an approach for the detection and reconstruction of street surfaces and boundaries from depth image sequences. Active driver assistance systems which monitor and interpret the environment based on vehicle mounted sensors to support the driver embody a current research focus of the automotive industry. An essential task of these systems is the modeling of the vehicle's static environment. This comprises the determination of the vertical slope and curvature characteristics of the street surface as well as the robust detection of obstacles and, thus, the free drivable space (alias free-space). In this regard, obstacles of low height, e.g. curbs, are of special interest since they often embody the first geometric delimiter of the free-space. The usage of depth images acquired from stereo camera systems becomes more important in this context due to the high data rate and affordable price of the sensor. However, recent approaches for object detection are often limited to the detection of objects which are distinctive in height, such as cars and guardrails, or explicitly address the detection of particular object classes. These approaches are usually based on extremely restrictive assumptions, such as planar street surfaces, in order to deal with the high measurement noise. The main contribution of this thesis is the development, analysis and evaluation of an approach which detects the free-space in the immediate maneuvering area in front of the vehicle and explicitly models the free-space boundary by means of a spline curve. The approach considers in particular obstacles of low height (higher than 10 cm) without limitation on particular object classes. Furthermore, the approach has the ability to cope with various slope and curvature characteristics of the observed street surface and is able to reconstruct this surface by means of a flexible spline model. In order to allow for robust results despite the flexibility of the model and the high measurement noise, the approach employs probabilistic models for the preprocessing of the depth map data as well as for the detection of the drivable free-space. An elevation model is computed from the depth map considering the paths of the optical rays and the uncertainty of the depth measurements. Based on this elevation model, an iterative two step approach is performed which determines the drivable free-space by means of a Markov Random Field and estimates the spline parameters of the free-space boundary curve and the street surface. Outliers in the elevation data are explicitly modeled. The performance of the overall approach and the influence of key components are systematically evaluated within experiments on synthetic and real world test scenarios. The results demonstrate the ability of the approach to accurately model the boundary of the drivable free-space as well as the street surface even in complex scenarios with multiple obstacles or strong curvature of the street surface. The experiments further reveal the limitations of the approach, which are discussed in detail.Schätzung von Straßenoberflächen und -begrenzungen aus Sequenzen von Tiefenkarten unter Verwendung probabilistischer Modelle Diese Arbeit präsentiert ein Verfahren zur Detektion und Rekonstruktion von Straßenoberflächen und -begrenzungen auf der Basis von Tiefenkarten. Aktive Fahrerassistenzsysteme, welche mit der im Fahrzeug verbauten Sensorik die Umgebung erfassen, interpretieren und den Fahrer unterstützen, sind ein aktueller Forschungsschwerpunkt der Fahrzeugindustrie. Eine wesentliche Aufgabe dieser Systeme ist die Modellierung der statischen Fahrzeugumgebung. Dies beinhaltet die Bestimmung der vertikalen Neigungs- und Krümmungseigenschaften der Fahrbahn, sowie die robuste Detektion von Hindernissen und somit des befahrbaren Freiraumes. Hindernisse von geringer Höhe, wie z.B. Bordsteine, sind in diesem Zusammenhang von besonderem Interesse, da sie häufig die erste geometrische Begrenzung des Fahrbahnbereiches darstellen. In diesem Kontext gewinnt die Verwendung von Tiefenkarten aus Stereo-Kamera-Systemen wegen der hohen Datenrate und relativ geringen Kosten des Sensors zunehmend an Bedeutung. Aufgrund des starken Messrauschens beschränken sich herkömmliche Verfahren zur Hinderniserkennung jedoch meist auf erhabene Objekte wie Fahrzeuge oder Leitplanken, oder aber adressieren einzelne Objektklassen wie Bordsteine explizit. Dazu werden häufig extrem restriktive Annahmen verwendet wie z.B. planare Straßenoberflächen. Der Hauptbeitrag dieser Arbeit besteht in der Entwicklung, Analyse und Evaluation eines Verfahrens, welches den befahrbaren Freiraum im Nahbereich des Fahrzeugs detektiert und dessen Begrenzung mit Hilfe einer Spline-Kurve explizit modelliert. Das Verfahren berücksichtigt insbesondere Hindernisse geringer Höhe (größer als 10 cm) ohne Beschränkung auf bestimmte Objektklassen. Weiterhin ist das Verfahren in der Lage, mit verschiedenartigen Neigungs- und Krümmungseigenschaften der vor dem Fahrzeug liegenden Fahrbahnoberfläche umzugehen und diese durch Verwendung eines flexiblen Spline-Modells zu rekonstruieren. Um trotz der hohen Flexibilität des Modells und des hohen Messrauschens robuste Ergebnisse zu erzielen, verwendet das Verfahren probabilistische Modelle zur Vorverarbeitung der Eingabedaten und zur Detektion des befahrbaren Freiraumes. Aus den Tiefenkarten wird unter Berücksichtigung der Strahlengänge und Unsicherheiten der Tiefenmessungen ein Höhenmodell berechnet. In einem iterativen Zwei-Schritt-Verfahren werden anhand dieses Höhenmodells der befahrbare Freiraum mit Hilfe eines Markov-Zufallsfeldes bestimmt sowie die Parameter der begrenzenden Spline-Kurve und Straßenoberfläche geschätzt. Ausreißer in den Höhendaten werden dabei explizit modelliert. Die Leistungsfähigkeit des Gesamtverfahrens sowie der Einfluss zentraler Komponenten, wird im Rahmen von Experimenten auf synthetischen und realen Testszenen systematisch analysiert. Die Ergebnisse demonstrieren die Fähigkeit des Verfahrens, die Begrenzung des befahrbaren Freiraumes sowie die Fahrbahnoberfläche selbst in komplexen Szenarien mit multiplen Hindernissen oder starker Fahrbahnkrümmung akkurat zu modellieren. Weiterhin werden die Grenzen des Verfahrens aufgezeigt und detailliert untersucht
    corecore