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Abstract. Obstacle detection is an important part\dfleo  tion in planar worlds using monocular image sequences will
Processindecause it is indispensable for a collision preven- be given, whose performance will later be compared to the
tion of autonomously navigating moving objects. For exam-proposed CNN method. This summary will also demonstrate
ple, vehicles driving without human guidance need a robusthe complexity of a statistical obstacle detection approach.
prediction of potential obstacles, like other vehicles or pedes-
trians. Most of the common approaches of obstacle detection.1 Problem
so far use analytical and statistical methods like motion esti-
mation or generation of maps. Our studies concentrate on the usenwdnocular image se-

In the first part of this contribution statistical algorithm  quenceswhich means that only a single camera is used for
for obstacle detectioin monocular video sequences is pre- the recording of the video sequences.
sented. The proposed procedure is based on a motion estima- Furthermore we are mainly interested in traffic scenes,
tion and a planar world model which is appropriate to traffic where the condition that most world points are located on a
scenes. The different processing steps of the statistical proplane is fulfilled. This concept is referred toglanar world
cedure are a feature extraction, a subsequent displacemepiodel Some images of such a traffic sequence are shown in
vector estimation and a robust estimation of the motion pa+ig. 1, which form the raw data. Starting from these images,
rameters. Since the proposed procedure is composed of sethe goal of the statistical method (Feiden et al., 1999) is to es-
eral processing steps, the error propagation of the successitgblish a reliable motion estimation. Based on such a motion
steps often leads to inaccurate results. estimation, an obstacle detection can be realized afterwards

In the second part of this contribution it is demonstrated, (Carlsson and Eklundh, 1990).
that the above mentioned problems can be efficiently over-
come by usingCellular Neural NetworkgCNN). It will be 1.2 The statistical procedure
shown, that alirect obstacle detection algorithoan be eas-

ily performed, based only on CNN processing of the in- |n Fig. 2 the framework of the statistical obstacle recognition

put images. Beside the enormous computing power of profrom monocular image sequences is illustrated in Feiden et
grammable CNN based devices, the proposed method is als@l. (1999).

very robustin comparison to the statistical method, because The first step of the procedure is to searchgaminent

is shows much less sensibility to noisy inputs. Using the pro-jjmage areasThen the displacement of these areas in the sub-

posed approach of obstacle detection in planar worldsala  sequent image is calculated using the so calisglacement

time processin@f large input images has been made possi-yector estimationAfter that, the determined list of displace-

ble. ment vectors can be used to calculate the three dimensional

motion parameters and the normal vector of the plarfe-

nally, the calculated parameters are used to carry onba

1 Obstacle detection using statistical methods tion compensatigrso that the result forms an image in which
only three dimensional structures are visible and the texture

In this first section a brief description of the problem and a Of the plane representing the street has been removed. In the

statistical procedure (Feiden et al., 1999) of obstacle detecfollowing the different steps of this procedure will be dis-
cussed in detail.

Correspondence tdD. Feiden
(Feiden@iap.uni-frankfurt.de) 1See “planar world model” in Sect. 1.1
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1.5 Motion estimation and obstacle detection

The relation (Tekalp, 1995) between any corresponding
pointsu andv of two successive images, with the compo-
nents of the undisturbed displacement vectay, @ndvz,),

@) () © :gebreotatlon matribR = {r;;} and the focal lengtlf, is known

Fig. 1. Some pictures of a monocular image sequence.

u1(ri1 + t1b1) + ua(ri2 + t1b2) + f(r1z+ 11b3)
i . . u1(r31+ 13b1)/f + u2(raz2 + t3b2) /f + (raz + 13b3)
1.3 Determination of prominent images — Ut(ro1+ 12b1) + ua(raz + 12b2) + f(ras+ t2b3)

. . BT Ui (ray + 13b1)/f + ua(rsz + 13b2) /f + (r3a+ 13ba)
Since the calculation of correspondences between two im-
ages is a computationally very expensive operation, it is es- These equations are valid only if the measurement does
sential to restrict the matching process only to those region#ot contain any errors. Unfortunately, the measured coordi-
where correspondences can be determined with sufficientlyates in the second image are superposed by additive errors,
high confidence and accuracy. The scheme consists of two1 = v1, + z1 andvz = vz, + z2. The error vecto is zero-
steps, a feature point extraction @ame image and a sub- mean and has a covariance mat@xthat is obtained from
sequent block matching. A large number of methods havghe measurement of the displacement vectors. Assuming
been proposed for extracting prominent image points; in Feithat the measurement errors in the vectgrsollow a two-
den et al. (1999) a slightly modified version d@fistner's and  dimensional normal distribution with mean zero and covari-
Gullch’s feature point extraction methodi{Stner and @lch,  ance matrixC;, the resulting loss functio@ (p) has the form
1987) is preferred, since this method is both theoretically(Feiden et al., 19999 (p) = YN, W7z (p) 2, whereW;
conclusive and very powerful in practice. The basic idea 0fjs the root of the inverse covariance ma@ix* of z;, so that
_thIS operator is to compute estimates (_)f gray s<_:a|e gradlentii1 = W; W7 Then the parameter vectgrcan be deter-
ina I|m|tgd image area and to determine the e|genvalues %hined by minimizing the loss functio@(p).
the covariance m‘.”‘t”x of the.cor.nputed set of gradients. The For the final obstacle detection, motion compensated dif-
trace of the covariance matrix gives a measure of the texw_r?erence images can be used. The main idea of this procedure,

content, v_vhereas the isotr_opy of the g_radient distribution is i has been developed by Carlsson and Eklundh (Carls-
characterized by the relation of the eigenvalues of the CO%on and Eklundh 1990), is to transform every pixel of the
variance matrix. The result of this operation is the so called ' ’

: : i which . actual image one time unit back, using the estimated param-
prominentness imagen which corners are more prominent g (see Fig. 3c). Then the difference image between the

than edges, which is important for the subsequent displaceg ;nsformed image and the recorded image has to be calcu-
ment vector estimation. lated (see Fig. 3d)

@

v]_p =

2

If the parameters has been estimated correctly, and the
1.4 Displacement vector estimation image content is in accordance to the planar world model,
the motion compensated difference image should appear in

A statistical displacement vector estimation is usually per-& homogeneous gray. However, real traffic sequences con-
formed using some kind dBlock Matching(Haralick and  tain also three dimensional objects, which stand out in the
Shapiro, 1992). Block Matching is essentially a sort of cor- motion compensated difference image. Finally, the obstacle
respondence ana|ysis' where the gray scale differences bdetection can be carried out on the basis of this resulting im-
tween a reference blodk and a corresponding blogk are age.

evaluated within a search area. Bladgkis shifted through
the whole search area and the sum of gray scale difference, : . .
form a two dimensional error surface V\?hic% should be zerof Direct obstacle detection using CNN

at the right displacement position. Unfortunately, the error|, iheir original paper (Chua and Yang, 1988), Chua and

usually isn’'t zero anywhere due to noise effects. One Simplefang proposed a single layeEellular Neural Network

possibility to determine the displacement vector is to take the o) with linear coupled cells. According to our investiga-
position of the error minimum. Another improved method is yjong ‘an obstacle detection in planar worlds is not feasible by

described in Mester anddter (1995), where the gray scale ,qing such a standard CNN. Therefore we focused on CNN
difference residuals are converted into a local probability dis-ith honlinear weight functions.
tribution and the expectation value and the covariance matrix

of the displacement vector are evaluated subsequently. Witl» 1 Nonlinear CNN

this method an individual measure of confidence and accu-

racy for each single correspondence or displacement vectdn dropping the demand of linear coupled cells, nonlinear

can be obtained. cell couplings can be characterized by polynomial functions.
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Fig. 2. The procedure of statistical obstacle detection in planar worlds.

Fig. 3. Motion compensation and obstacle detection.
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Zle Bi—ja-(u; (1))¢. The parameteb denotes the polyno-
mial order, e.gD = 2 describes a quadratic coupling func-
tion. The polynomial coefficients;_; 4 and;_; 4 and the
threshold valud form the parameters, which define the be-
havior of the CNN.

2.2 The CNN-procedure for direct obstacle detection

In Fig. 4 a few images of a synthetical image sequence are
given, showing a ride over a textured plane on which three
dimensional objects are located, which has been recorded by
a moving camera. As in real traffic scenes, the motion direc-
tion and the viewing direction are identical.

The goal is to find a CNN that is capable to extract the
three dimensional objects by presenting two images of such
a sequence.

All of the image structures located on a plane should be

The dynamical behavior of a single layer, translation invari- erased by the CNN, so that only the 3D-objects remain as

ant CNN can be described by

dx;i(t) 1
=—=x0®+ ai—j(y; (1))
dt R je%i:(k) Y
+D_binjuj ) +1

JeN: (b
Wlth i=1,--~,N7

where a;_;(y;(t)) and b;_;(u;(t)) are the polynomial

potential obstacles. It seems to be likely, that such a classi-
fication can only be performed on corner pixels (object cor-
ners as well as corners of texture), because only those pixels
vary between two subsequent images. This is the reason why
the procedure illustrated in Fig. 5 has been chosen for CNN
based obstacle detection.

The first processing step is a simple edge extraction for
both of the input images, hence a standard CNN can be used
(Roska and Kk, 1999). In the following step the threshold-
ing (Roska and Kk, 1999) of the resulting images have to

feedback and feedforward functions, which are given bybe carried out. In Fig. 6 the different preprocessing steps are

aij(yj®) = Y2 i a4 (vj)? andbi_j ;1) =

shown for a single input image.
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Fig. 4. A few pictures of a synthetically generated sequence.

some images of a video sequence showing a drive down the street
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Fig. 5. The procedure of CNN based obstacle detection.
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Fig. 7. The thresholded training imagés) and(b) and the refer-
ence imagéc).

2.3 Results using synthetical image sequences

For the procedure shown in Fig. 5 a set of training patterns is
obtained, that is presented in Fig. 7.

Using these training patterns (Fig. 7a—c) we determined
a CNN which is capable to extract 3D-objects from the se-

After these processing steps, the CNN parameters for thguence. Our investigations yielded that a CNN with 5-by-5-
direct obstacle detectionan be determined using the opti- neighborhood and polynomial cell coupling of degree 3 is

mization proceduréterative AnnealindFeiden and Tetzlaff,
2001). The two thresholded images together with rife

appropriate for such a task. For the optimization the sta-
tistical procedurdterative Annealing(Feiden and Tetzlaff,

erence imageontaining only the edges of the three dimen- 2001) has been used. In Fig. 8b the CNN generated output is
sional objects will be taken as input data for such an opti-shown.

mization.

It can be observed that in the CNN output all textures on
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3 Conclusion

| D EI ny ﬂ -, In Sect. 1 we have shown that statistical methods of obsta-
II_ : 1 cle detection are of high computational complexity. Further-
{_l_l_fl ) & / more, the robustness of the whole procedure depends sen-
sitively on every individual processing step. E.g. a single

outlier in the displacement vectors can disturb the motion
estimation so strongly that the subsequent obstacle detec-

a b tion produces useless results. Furthermore we introduced
_ _ _ in Sect. 2 a new method of obstacle detection using CNN.
Fig. 8. Reference imagga) and CNN generated output imags After two noncritical standard operations — edge extraction

and thresholding — the obstacle detection can be performed
directly by the CNN. The promising first results using syn-

l—l r' thetical as well as real image sequences demonstrate the high
| I:l _Q ‘ n ‘II" = potential of CNN for the area of Computer Vision.
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