7 research outputs found

    Object Localization, Segmentation, and Classification in 3D Images

    Full text link
    We address the problem of identifying objects of interest in 3D images as a set of related tasks involving localization of objects within a scene, segmentation of observed object instances from other scene elements, classifying detected objects into semantic categories, and estimating the 3D pose of detected objects within the scene. The increasing availability of 3D sensors motivates us to leverage large amounts of 3D data to train machine learning models to address these tasks in 3D images. Leveraging recent advances in deep learning has allowed us to develop models capable of addressing these tasks and optimizing these tasks jointly to reduce potential errors propagated when solving these tasks independently

    Registration and Recognition in 3D

    Get PDF
    The simplest Computer Vision algorithm can tell you what color it sees when you point it at an object, but asking that computer what it is looking at is a much harder problem. Camera and LiDAR (Light Detection And Ranging) sensors generally provide streams pixel of values and sophisticated algorithms must be engineered to recognize objects or the environment. There has been significant effort expended by the computer vision community on recognizing objects in color images; however, LiDAR sensors, which sense depth values for pixels instead of color, have been studied less. Recently we have seen a renewed interest in depth data with the democratization provided by consumer depth cameras. Detecting objects in depth data is more challenging in some ways because of the lack of texture and increased complexity of processing unordered point sets. We present three systems that contribute to solving the object recognition problem from the LiDAR perspective. They are: calibration, registration, and object recognition systems. We propose a novel calibration system that works with both line and raster based LiDAR sensors, and calibrates them with respect to image cameras. Our system can be extended to calibrate LiDAR sensors that do not give intensity information. We demonstrate a novel system that produces registrations between different LiDAR scans by transforming the input point cloud into a Constellation Extended Gaussian Image (CEGI) and then uses this CEGI to estimate the rotational alignment of the scans independently. Finally we present a method for object recognition which uses local (Spin Images) and global (CEGI) information to recognize cars in a large urban dataset. We present real world results from these three systems. Compelling experiments show that object recognition systems can gain much information using only 3D geometry. There are many object recognition and navigation algorithms that work on images; the work we propose in this thesis is more complimentary to those image based methods than competitive. This is an important step along the way to more intelligent robots

    Three-dimensional Laser-based Classification in Outdoor Environments

    Get PDF
    Robotics research strives for deploying autonomous systems in populated environments, such as inner city traffic. Autonomous cars need a reliable collision avoidance, but also an object recognition to distinguish different classes of traffic participants. For both tasks, fast three-dimensional laser range sensors generating multiple accurate laser range scans per second, each consisting of a vast number of laser points, are often employed. In this thesis, we investigate and develop classification algorithms that allow us to automatically assign semantic labels to laser scans. We mainly face two challenges: (1) we have to ensure consistent and correct classification results and (2) we must efficiently process a vast number of laser points per scan. In consideration of these challenges, we cover both stages of classification -- the feature extraction from laser range scans and the classification model that maps from the features to semantic labels. As for the feature extraction, we contribute by thoroughly evaluating important state-of-the-art histogram descriptors. We investigate critical parameters of the descriptors and experimentally show for the first time that the classification performance can be significantly improved using a large support radius and a global reference frame. As for learning the classification model, we contribute with new algorithms that improve the classification efficiency and accuracy. Our first approach aims at deriving a consistent point-wise interpretation of the whole laser range scan. By combining efficient similarity-preserving hashing and multiple linear classifiers, we considerably improve the consistency of label assignments, requiring only minimal computational overhead compared to a single linear classifier. In the last part of the thesis, we aim at classifying objects represented by segments. We propose a novel hierarchical segmentation approach comprising multiple stages and a novel mixture classification model of multiple bag-of-words vocabularies. We demonstrate superior performance of both approaches compared to their single component counterparts using challenging real world datasets.Ziel des Forschungsbereichs Robotik ist der Einsatz autonomer Systeme in natürlichen Umgebungen, wie zum Beispiel innerstädtischem Verkehr. Autonome Fahrzeuge benötigen einerseits eine zuverlässige Kollisionsvermeidung und andererseits auch eine Objekterkennung zur Unterscheidung verschiedener Klassen von Verkehrsteilnehmern. Verwendung finden vorallem drei-dimensionale Laserentfernungssensoren, die mehrere präzise Laserentfernungsscans pro Sekunde erzeugen und jeder Scan besteht hierbei aus einer hohen Anzahl an Laserpunkten. In dieser Dissertation widmen wir uns der Untersuchung und Entwicklung neuartiger Klassifikationsverfahren zur automatischen Zuweisung von semantischen Objektklassen zu Laserpunkten. Hierbei begegnen wir hauptsächlich zwei Herausforderungen: (1) wir möchten konsistente und korrekte Klassifikationsergebnisse erreichen und (2) die immense Menge an Laserdaten effizient verarbeiten. Unter Berücksichtigung dieser Herausforderungen untersuchen wir beide Verarbeitungsschritte eines Klassifikationsverfahrens -- die Merkmalsextraktion unter Nutzung von Laserdaten und das eigentliche Klassifikationsmodell, welches die Merkmale auf semantische Objektklassen abbildet. Bezüglich der Merkmalsextraktion leisten wir ein Beitrag durch eine ausführliche Evaluation wichtiger Histogrammdeskriptoren. Wir untersuchen kritische Deskriptorparameter und zeigen zum ersten Mal, dass die Klassifikationsgüte unter Nutzung von großen Merkmalsradien und eines globalen Referenzrahmens signifikant gesteigert wird. Bezüglich des Lernens des Klassifikationsmodells, leisten wir Beiträge durch neue Algorithmen, welche die Effizienz und Genauigkeit der Klassifikation verbessern. In unserem ersten Ansatz möchten wir eine konsistente punktweise Interpretation des gesamten Laserscans erreichen. Zu diesem Zweck kombinieren wir eine ähnlichkeitserhaltende Hashfunktion und mehrere lineare Klassifikatoren und erreichen hierdurch eine erhebliche Verbesserung der Konsistenz der Klassenzuweisung bei minimalen zusätzlichen Aufwand im Vergleich zu einem einzelnen linearen Klassifikator. Im letzten Teil der Dissertation möchten wir Objekte, die als Segmente repräsentiert sind, klassifizieren. Wir stellen eine neuartiges hierarchisches Segmentierungsverfahren und ein neuartiges Klassifikationsmodell auf Basis einer Mixtur mehrerer bag-of-words Vokabulare vor. Wir demonstrieren unter Nutzung von praxisrelevanten Datensätzen, dass beide Ansätze im Vergleich zu ihren Entsprechungen aus einer einzelnen Komponente zu erheblichen Verbesserungen führen

    Statistical part-based models for object detection in large 3D scans

    Get PDF
    3D scanning technology has matured to a point where very large scale acquisition of high resolution geometry has become feasible. However, having large quantities of 3D data poses new technical challenges. Many applications of practical use require an understanding of semantics of the acquired geometry. Consequently scene understanding plays a key role for many applications. This thesis is concerned with two core topics: 3D object detection and semantic alignment. We address the problem of efficiently detecting large quantities of objects in 3D scans according to object categories learned from sparse user annotation. Objects are modeled by a collection of smaller sub-parts and a graph structure representing part dependencies. The thesis introduces two novel approaches: A part-based chain structured Markov model and a general part-based full correlation model. Both models come with efficient detection schemes which allow for interactive run-times.Die Technologie für 3-dimensionale bildgebende Verfahren (3D Scans) ist mittlerweile an einem Punkt angelangt, an dem hochaufglöste Geometrie-Modelle für sehr große Szenen erstellbar sind. Große Mengen dreidimensionaler Daten stellen allerdings neue technische Herausforderungen. Viele Anwendungen von praktischem Nutzen erfordern ein semantisches Verständnis der akquirierten Geometrie. Dementsprechend spielt das sogenannte “Szenenverstehen” eine Schlüsselrolle bei vielen Anwendungen. Diese Dissertation beschäftigt sich mit 2 Kernthemen: 3D Objekt-Detektion und semantische (Objekt-) Anordnung. Das Problem hierbei ist, große Mengen von Objekten effizient in 3D Scans zu detektieren, wobei die Objekte aus bestimmten Objektkategorien entstammen, welche mittels gerinfügiger Annotationen durch den Benutzer gelernt werden. Dabei werden Objekte modelliert durch eine Ansammlung kleinerer Teilstücke und einer Graph-Struktur, welche die Abhängigkeiten der Einzelteile repäsentiert. Diese Arbeit stellt zwei neuartige Ansätze vor: Ein Markov-Modell, das aus einer teilebasierten Kettenstruktur besteht und einen generellen Ansatz, der auf einem Modell mit voll korrelierten Einzelteilen beruht. Zu beiden Modellen werden effiziente Detektionsschemata aufgezeigt, die interaktive Laufzeiten ermöglichen

    Optimising mobile laser scanning for underground mines

    Full text link
    Despite several technological advancements, underground mines are still largely relied on visual inspections or discretely placed direct-contact measurement sensors for routine monitoring. Such approaches are manual and often yield inconclusive, unreliable and unscalable results besides exposing mine personnel to field hazards. Mobile laser scanning (MLS) promises an automated approach that can generate comprehensive information by accurately capturing large-scale 3D data. Currently, the application of MLS has relatively remained limited in mining due to challenges in the post-registration of scans and the unavailability of suitable processing algorithms to provide a fully automated mapping solution. Additionally, constraints such as the absence of a spatial positioning network and the deficiency of distinguishable features in underground mining spaces pose challenges in mobile mapping. This thesis aims to address these challenges in mine inspections by optimising different aspects of MLS: (1) collection of large-scale registered point cloud scans of underground environments, (2) geological mapping of structural discontinuities, and (3) inspection of structural support features. Firstly, a spatial positioning network was designed using novel three-dimensional unique identifiers (3DUID) tags and a 3D registration workflow (3DReG), to accurately obtain georeferenced and coregistered point cloud scans, enabling multi-temporal mapping. Secondly, two fully automated methods were developed for mapping structural discontinuities from point cloud scans – clustering on local point descriptors (CLPD) and amplitude and phase decomposition (APD). These methods were tested on both surface and underground rock mass for discontinuity characterisation and kinematic analysis of the failure types. The developed algorithms significantly outperformed existing approaches, including the conventional method of compass and tape measurements. Finally, different machine learning approaches were used to automate the recognition of structural support features, i.e. roof bolts from point clouds, in a computationally efficient manner. Roof bolts being mapped from a scanned point cloud provided an insight into their installation pattern, which underpinned the applicability of laser scanning to inspect roof supports rapidly. Overall, the outcomes of this study lead to reduced human involvement in field assessments of underground mines using MLS, demonstrating its potential for routine multi-temporal monitoring
    corecore