138 research outputs found

    Effective EEG analysis for advanced AI-driven motor imagery BCI systems

    Get PDF
    Developing effective signal processing for brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) involves factoring in three aspects of functionality: classification performance, execution time, and the number of data channels used. The contributions in this thesis are centered on these three issues. Contributions are focused on the classification of motor imagery (MI) data, which is generated during imagined movements. Typically, EEG time-series data is segmented for data augmentation or to mimic buffering that happens in an online BCI. A multi-segment decision fusion approach is presented, which takes consecutive temporal segments of EEG data, and uses decision fusion to boost classification performance. It was computationally lightweight and improved the performance of four conventional classifiers. Also, an analysis of the contributions of electrodes from different scalp regions is presented, and a subset of channels is recommended. Sparse learning (SL) classifiers have exhibited strong classification performance in the literature. However, they are computationally expensive. To reduce the test-set execution times, a novel EEG classification pipeline consisting of a genetic-algorithm (GA) for channel selection and a dictionary-based SL module for classification, called GABSLEEG, is presented. Subject-specific channel selection was carried out, in which the channels are selected based on training data from the subject. Using the GA-recommended subset of EEG channels reduced the execution time by 60% whilst preserving classification performance. Although subject-specific channel selection is widely used in the literature, effective subject-independent channel selection, in which channels are detected using data from other subjects, is an ideal aim because it leads to lower training latency and reduces the number of electrodes needed. A novel convolutional neural network (CNN)-based subject-independent channels selection method is presented, called the integrated channel selection (ICS) layer. It performed on-a-par with or better than subject-specific channel selection. It was computationally efficient, operating 12-17 times faster than the GA channel selection module. The ICS layer method was versatile, performing well with two different CNN architectures and datasets.Developing effective signal processing for brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) involves factoring in three aspects of functionality: classification performance, execution time, and the number of data channels used. The contributions in this thesis are centered on these three issues. Contributions are focused on the classification of motor imagery (MI) data, which is generated during imagined movements. Typically, EEG time-series data is segmented for data augmentation or to mimic buffering that happens in an online BCI. A multi-segment decision fusion approach is presented, which takes consecutive temporal segments of EEG data, and uses decision fusion to boost classification performance. It was computationally lightweight and improved the performance of four conventional classifiers. Also, an analysis of the contributions of electrodes from different scalp regions is presented, and a subset of channels is recommended. Sparse learning (SL) classifiers have exhibited strong classification performance in the literature. However, they are computationally expensive. To reduce the test-set execution times, a novel EEG classification pipeline consisting of a genetic-algorithm (GA) for channel selection and a dictionary-based SL module for classification, called GABSLEEG, is presented. Subject-specific channel selection was carried out, in which the channels are selected based on training data from the subject. Using the GA-recommended subset of EEG channels reduced the execution time by 60% whilst preserving classification performance. Although subject-specific channel selection is widely used in the literature, effective subject-independent channel selection, in which channels are detected using data from other subjects, is an ideal aim because it leads to lower training latency and reduces the number of electrodes needed. A novel convolutional neural network (CNN)-based subject-independent channels selection method is presented, called the integrated channel selection (ICS) layer. It performed on-a-par with or better than subject-specific channel selection. It was computationally efficient, operating 12-17 times faster than the GA channel selection module. The ICS layer method was versatile, performing well with two different CNN architectures and datasets

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Toward sparse and geometry adapted video approximations

    Get PDF
    Video signals are sequences of natural images, where images are often modeled as piecewise-smooth signals. Hence, video can be seen as a 3D piecewise-smooth signal made of piecewise-smooth regions that move through time. Based on the piecewise-smooth model and on related theoretical work on rate-distortion performance of wavelet and oracle based coding schemes, one can better analyze the appropriate coding strategies that adaptive video codecs need to implement in order to be efficient. Efficient video representations for coding purposes require the use of adaptive signal decompositions able to capture appropriately the structure and redundancy appearing in video signals. Adaptivity needs to be such that it allows for proper modeling of signals in order to represent these with the lowest possible coding cost. Video is a very structured signal with high geometric content. This includes temporal geometry (normally represented by motion information) as well as spatial geometry. Clearly, most of past and present strategies used to represent video signals do not exploit properly its spatial geometry. Similarly to the case of images, a very interesting approach seems to be the decomposition of video using large over-complete libraries of basis functions able to represent salient geometric features of the signal. In the framework of video, these features should model 2D geometric video components as well as their temporal evolution, forming spatio-temporal 3D geometric primitives. Through this PhD dissertation, different aspects on the use of adaptivity in video representation are studied looking toward exploiting both aspects of video: its piecewise nature and the geometry. The first part of this work studies the use of localized temporal adaptivity in subband video coding. This is done considering two transformation schemes used for video coding: 3D wavelet representations and motion compensated temporal filtering. A theoretical R-D analysis as well as empirical results demonstrate how temporal adaptivity improves coding performance of moving edges in 3D transform (without motion compensation) based video coding. Adaptivity allows, at the same time, to equally exploit redundancy in non-moving video areas. The analogy between motion compensated video and 1D piecewise-smooth signals is studied as well. This motivates the introduction of local length adaptivity within frame-adaptive motion compensated lifted wavelet decompositions. This allows an optimal rate-distortion performance when video motion trajectories are shorter than the transformation "Group Of Pictures", or when efficient motion compensation can not be ensured. After studying temporal adaptivity, the second part of this thesis is dedicated to understand the fundamentals of how can temporal and spatial geometry be jointly exploited. This work builds on some previous results that considered the representation of spatial geometry in video (but not temporal, i.e, without motion). In order to obtain flexible and efficient (sparse) signal representations, using redundant dictionaries, the use of highly non-linear decomposition algorithms, like Matching Pursuit, is required. General signal representation using these techniques is still quite unexplored. For this reason, previous to the study of video representation, some aspects of non-linear decomposition algorithms and the efficient decomposition of images using Matching Pursuits and a geometric dictionary are investigated. A part of this investigation concerns the study on the influence of using a priori models within approximation non-linear algorithms. Dictionaries with a high internal coherence have some problems to obtain optimally sparse signal representations when used with Matching Pursuits. It is proved, theoretically and empirically, that inserting in this algorithm a priori models allows to improve the capacity to obtain sparse signal approximations, mainly when coherent dictionaries are used. Another point discussed in this preliminary study, on the use of Matching Pursuits, concerns the approach used in this work for the decompositions of video frames and images. The technique proposed in this thesis improves a previous work, where authors had to recur to sub-optimal Matching Pursuit strategies (using Genetic Algorithms), given the size of the functions library. In this work the use of full search strategies is made possible, at the same time that approximation efficiency is significantly improved and computational complexity is reduced. Finally, a priori based Matching Pursuit geometric decompositions are investigated for geometric video representations. Regularity constraints are taken into account to recover the temporal evolution of spatial geometric signal components. The results obtained for coding and multi-modal (audio-visual) signal analysis, clarify many unknowns and show to be promising, encouraging to prosecute research on the subject

    Classification of Medical Data Based On Sparse Representation Using Dictionary Learning

    Get PDF
    Due to the increase in the sources of image acquisition and storage capacity, the search for relevant information in large medical image databases has become more challenging. Classification of medical data into different categories is an important task, and enables efficient cataloging and retrieval with large image collections. The medical image classification systems available today classify medical images based on modality, body part, disease or orientation. Recent work in this direction seek to use the semantics of medical data to achieve better classification. However, representation of semantics is a challenging task and sparse representation has been explored in this thesis for this task

    Sparse and low rank approximations for action recognition

    Get PDF
    Action recognition is crucial area of research in computer vision with wide range of applications in surveillance, patient-monitoring systems, video indexing, Human- Computer Interaction and many more. These applications require automated action recognition. Robust classification methods are sought-after despite influential research in this field over past decade. The data resources have grown tremendously owing to the advances in the digital revolution which cannot be compared to the meagre resources in the past. The main limitation on a system when dealing with video data is the computational burden due to large dimensions and data redundancy. Sparse and low rank approximation methods have evolved recently which aim at concise and meaningful representation of data. This thesis explores the application of sparse and low rank approximation methods in the context of video data classification with the following contributions. 1. An approach for solving the problem of action and gesture classification is proposed within the sparse representation domain, effectively dealing with large feature dimensions, 2. Low rank matrix completion approach is proposed to jointly classify more than one action 3. Deep features are proposed for robust classification of multiple actions within matrix completion framework which can handle data deficiencies. This thesis starts with the applicability of sparse representations based classifi- cation methods to the problem of action and gesture recognition. Random projection is used to reduce the dimensionality of the features. These are referred to as compressed features in this thesis. The dictionary formed with compressed features has proved to be efficient for the classification task achieving comparable results to the state of the art. Next, this thesis addresses the more promising problem of simultaneous classifi- cation of multiple actions. This is treated as matrix completion problem under transduction setting. Matrix completion methods are considered as the generic extension to the sparse representation methods from compressed sensing point of view. The features and corresponding labels of the training and test data are concatenated and placed as columns of a matrix. The unknown test labels would be the missing entries in that matrix. This is solved using rank minimization techniques based on the assumption that the underlying complete matrix would be a low rank one. This approach has achieved results better than the state of the art on datasets with varying complexities. This thesis then extends the matrix completion framework for joint classification of actions to handle the missing features besides missing test labels. In this context, deep features from a convolutional neural network are proposed. A convolutional neural network is trained on the training data and features are extracted from train and test data from the trained network. The performance of the deep features has proved to be promising when compared to the state of the art hand-crafted features

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Sub-Nyquist Wideband Spectrum Sensing and Sharing

    Get PDF
    PhDThe rising popularity of wireless services resulting in spectrum shortage has motivated dynamic spectrum sharing to facilitate e cient usage of the underutilized spectrum. Wideband spectrum sensing is a critical functionality to enable dynamic spectrum access by enhancing the opportunities of exploring spectral holes, but entails a major implemen- tation challenge in compact commodity radios that have limited energy and computation capabilities. The sampling rates speci ed by the Shannon-Nyquist theorem impose great challenges both on the acquisition hardware and the subsequent storage and digital sig- nal processors. Sub-Nyquist sampling was thus motivated to sample wideband signals at rates far lower than the Nyquist rate, while still retaining the essential information in the underlying signals. This thesis proposes several algorithms for invoking sub-Nyquist sampling in wideband spectrum sensing. Speci cally, a sub-Nyquist wideband spectrum sensing algorithm is proposed that achieves wideband sensing independent of signal sparsity without sampling at full bandwidth by using the low-speed analog-to-digital converters based on sparse Fast Fourier Transform. To lower signal spectrum sparsity while maintaining the channel state information, the received signal is pre-processed through a proposed permutation and ltering algorithm. Additionally, a low-complexity sub-Nyquist wideband spectrum sensing scheme is proposed that locates occupied channels blindly by recovering the sig- nal support, based on the jointly sparse nature of multiband signals. Exploiting the common signal support shared among multiple secondary users, an e cient coopera- tive spectrum sensing scheme is developed, in which the energy consumption on signal acquisition, processing, and transmission is reduced with the detection performance guar- antee. To further reduce the computation complexity of wideband spectrum sensing, a hybrid framework of sub-Nyquist wideband spectrum sensing with geolocation database is explored. Prior channel information from geolocation database is utilized in the sens- ing process to reduce the processing requirements on the sensor nodes. The models of the proposed algorithms are derived and veri ed by numerical analyses and tested on both real-world and simulated TV white space signals
    corecore